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Abstract—We study the problem of throughput maximization
in multi-hop wireless networks with end-to-end delay constraints
for each session. This problem has received much attention
starting with the work of Grossglauser and Tse (2002), and
it has been shown that there is a significant trade-off between
the end-to-end delays and the total achievable rate. We develop
algorithms to compute such trade-offs with provable performance
guarantees for arbitrary instances, with general interference
models. Given a target delay-bound ∆(c) for each session c,
our algorithm gives a stable flow vector with a total throughput
within a factor of O

(

log∆m

log log∆m

)

of the maximum, so that the

per-session (end-to-end) delay is O
(

( log∆m

log log∆m
∆(c))2

)

, where

∆m = maxc{∆(c)}; note that these bounds depend only on
the delays, and not on the network size, and this is the first such
result, to our knowledge.

Index Terms—Approximation Algorithms, Cross-layer Design,
End-to-end Delay, Optimization, Throughput.

I. INTRODUCTION

The end-to-end delay is an important issue in many multi-

hop wireless network applications, such as video streaming

[27], and there is a trade-off between the total achievable

throughput and the delays; an important open question in this

area has been to decide if it is possible to achieve delays

proportional to the number of hops for each session, without

much loss in throughput or throughput region [22]. Here

we study the problem of computing explicit throughput-delay

trade-offs in arbitrary networks. Given a multi-hop wireless

network represented by a graph G = (V,L) and a set of

sessions with a target delay ∆(c) for each session c, the goal

of the Delay-constrained Throughput Maximization (DCTM)
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problem is to find a stable rate vector λ() that (approximately)

maximizes the total achievable rate
∑

c λ(c), while ensuring

that the average per-packet delay for session c is at most ∆(c)
as possible. This problem is NP-hard, even without considering

any delay guarantees [43], [4]; however, with delay constraints,

this problem becomes hard to solve even approximately, as

we establish later. Therefore, we study “bi-criteria” approx-

imation algorithms which approximately maximize the total

throughput, while allowing the delay constraints to be relaxed

by a certain factor; our focus is on designing algorithms with

provable approximation guarantees.

While there has been much work on delay-throughput

trade-offs, especially for random networks or restricted 1-

hop sessions, the best results for average end-to-end de-

lay bounds known so far considering scheduling with fixed

routes and traffic rates are by [25], [22], [24], [28]. Kar et

al. [25] study both max-weight and randomized independent

set scheduling policies, and show that the average packet

delay is bounded by the chromatic number C(N ) of the

interference graph; C(N ) represents the minimum number

of independent sets into which the link conflict graph of a

network N can be partitioned. Jagabathula and Shah [22]

design a scheduling scheme that ensures per-session end-to-

end delays of O (#hops) with the total throughput within

a constant factor of the optimum; however, this result is

restricted to primary interference, whereas for general graph-

based interference, the delay bound becomes O
(

#hops ·D2
)

,

where D denotes the maximum degree in the conflict graph

(which could be high). Let n and m denote the number of

nodes and edges (links) respectively, in the given network.

Jayachandran and Andrews [24] design a scheduling scheme

that ensures per-session end-to-end delay of O (#hops · n). Le

et al. [28] prove that max-weight scheduling has a network-

average delay bound of O (#hopsmax · θmax · n ·m), where

θmax is the maximum number of flows going through any link

in the network. The bounds in prior results more or less depend

on the network size, and obtaining per-flow delay bounds

independent of the network size had been an important open

problem. In this paper, we develop an algorithm for DCTM

under the unit disk graph model based on our scheduling

scheme that improves on the average delay bounds under the

general graph-based interference model.

Our main contributions are as follows.

1. Approximation hardness of DCTM. We show lower

bounds on the computational complexity of the DCTM prob-
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lem. When the wireless network is modeled as a unit-disk

graph, we show that there is a constant K such that it is NP-

hard to approximate the DCTM problem within a factor of K;

for arbitrary graphs DCTM is hard to approximate within a

factor of O(n1−ε) for any constant ε ∈ (0, 1), while satisfying

all delay constraints. In light of these hardness results, we need

to relax the delay constraints: we study bi-criteria algorithms

that simultaneously approximately maximize throughput and

guarantee the delay performance.

2. Multi-commodity framework for DCTM. Given a net-

work G, set C of sessions, target delay ∆(c) for each

session c, we develop a multi-commodity flow framework to

compute a rate vector λ(), routes and a synchronous random-

access scheduling scheme (with an extension to asynchronous

random-access) such that under the unit disk graph model,

(1) total throughput capacity
∑

c λ(c) is within a factor of

Ω
(

log log∆m

log∆m

)

of the maximum possible (with the given delay

constraints), where ∆m = maxc{∆(c)}; (2) the average

end-to-end packet delay for each session c is bounded by

O
(

( log∆m

log log∆m
∆(c))2

)

(summarized in Theorems 1 and 2).

These end-to-end delay guarantees include queuing delays at

all intermediate nodes. The measured delay values are likely

to be smaller in most practical situations.

Our result involves two basic steps: (i) Under the general

interference model, when routes and mean traffic rates are

fixed, we develop a sequence of queueing system reductions

and isolation technique (detailed in Section V) to derive the

end-to-end per-flow delay upper-bounds for our random-access

scheduling scheme, such that the upper-bounds depend only

on a flow’s path length, while achieving a throughput region of
1

eImax
. In contrast, previous results (e.g., [25], [22], [24], [28])

depend on the network size or interference degrees. This has

motivated the design and techniques in our rounding-based al-

gorithm for traffic control and routing. (ii) We use a rounding-

based algorithm for a linear-programming (LP) relaxation of

the problem to construct a flow vector that uses “short” paths

(or has “low” costs), to send “high” flow on each selected path.

Our algorithm is based on a novel application of the Lovász

Local Lemma [41], combined with filtering and path refining

steps in order to reduce certain kinds of dependencies. Our

specific rounding scheme is crucial in ensuring that the factor

of loss in throughput is only O
(

log∆m

log log∆m

)

; in contrast, a

straight-forward and direct application of randomized rounding

[31] can only lead to an O(log n) factor. Path-constrained

flows have been studied in a wired setting, e.g., [5], [19];

interference constraints and the fact that we need both short

paths and large flow values makes our problem different.

3. Simulation results. We study the empirical performance

of our algorithm on small networks and compute explicit

throughput-delay trade-offs and the saturation throughput for

given delay bounds. For multi-channel networks we observe

that there is significant trade-off between the number of chan-

nels, the delays, and total throughput rate. In particular, for a

given target delay, there is a threshold beyond which additional

channels do not help. In our experiments, we also examine the

end-to-end delays with various indices. Our analytical delay

bounds turn out to be rather conservative, i.e., our scheduling

scheme may perform much better in real-world instances.

The main focus of our paper is theoretical. The initial

steps of computing the rate vector are centralized (though

the scheduling is distributed), and our results are on static

networks; nevertheless, our techniques give an efficient method

to provide provable conservative delay-throughput trade-offs

in any specific network, which can be useful in choosing

suitable rate vectors: e.g., as in the video streaming application

of [27]. We also present in Appendix B one application

of our framework and simulation in networks with adaptive

channels (e.g., in cognitive networks). We quantify the impact

of adaptive channel switching on the throughput capacity and

end-to-end delay.

Organization. We discuss related work in Section II and the

network model and relevant definitions in Section III. We

prove the approximation hardness of DCTM in Section IV.

The delay bounds for a given rate vector λ() are derived

in Section V (Theorem 1), and in Section VI we describe

our algorithm for computing a good rate vector; Theorem 2

shows the combined throughput and delay guarantees. We

discuss extensions to asynchronous random-access schemes

in Section VII, and to multi-channel networks in Appendix B.

Finally, we describe our experimental results in Section VIII

and conclude the paper in Section IX.

II. RELATED WORK

Characterizing the rate region has been broadly studied in

all kinds of wired and wireless networks. Here we only focus

on the ones addressing throughput-delay issues.

Wired networks: A large class of papers, e.g., [34], [13], [3],

[29], [30], provide analytical guarantees on end-to-end delays

and network utilization achievable through specific scheduling

protocols in multi-hop wired networks. However, none of these

explicitly deal with the problem of routing to simultaneously

guarantee network utilization and end-to-end delays.

Random wireless networks: Precise trade-offs between the

network capacity and end-to-end delay as well as other pa-

rameters such as fairness, or number of radio channels (in a

multi-radio multi-channel network) have been well studied for

wireless networks under the assumption that the physical node

locations follow uniform spatial distributions. Building on

[18], [15], El Gamal et al. [12] show the relationship between

average delay and (per-node) capacity. This problem has been

extended in various directions, e.g., [33], [12], [42], [38],

[39]. However, in general, the techniques employed analyzing

random wireless networks do not help shed light on the delay-

throughput trade-offs in an arbitrary wireless network (with

non-random topology).

Arbitrary wireless networks: The design and analysis of

wireless protocols for arbitrary networks (with non-random

topologies) from the perspective of guaranteeing network

utilization and end-to-end delays is relatively less-understood;

some of the recent papers on this topic include [25], [22],

[24], [28] discussed in Section I. Besides, there are also

important delay results for single-hop traffic [23], [32], [26],

[17]. Jaramillo, Srikant, Ying [23] propose a scheduling algo-
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TABLE I: Comparison of relevant scheduling and delay bound results for arbitrary wireless networks (for given traffic and flow

routes with general interference). Notation used: n: #nodes; m: #links; Imax: max interference degree; θmax: max congestion

(#flows through a link); C(N ): chromatic number of link interference graph; CM(N ): chromatic number of the interference

graph based on flow-links [25].

Type In Paper Delay Bound Scheduling Scheme Efficiency Ratio Type of Delay Bound

End-to-end

[22] O
(

#hops ·D2
)

preemptive LIFO & stable marriage Ω
(

1/D2
)

per-session, upper

[24] O (#hops · n) coordinated EDF or max-weight Θ(1) per-session, upper
[28] O (#hopsmax · θmax · n ·m) max-weight Θ(1) network-average, upper

[25] O
(

(#hopsmax)2 · CM(N )
)

max-weight indep. set Θ(1) network-average, upper

Ours O
(

(#hops)2
)

random access Ω (1/Imax) per-session, upper

[17] non-analytical max-weight & variants Θ(1) network-average, lower

Single-hop
[32] O(1) maximal scheduling Ω (1/Imax) network-average, upper
[26] O (C(N )) max-weight or randomized indep. set Θ(1) network-average, upper

rithm to satisfy long-term QoS requirements under heteroge-

neous delay constraints of a specific class of periodic traffic.

Neely [32] shows that general maximal matching policies

achieve O(1) network-average delay for given traffic. Kar,

Luo and Sarkar [26] show that the maximum expected delay

depends linearly on the chromatic number of the interference

graph. Gupta and Shroff [17] give an algorithm for computing

lower bounds for average delay under max-weight scheduling.

We compare our scheduling and delay results with recent

relevant results in Table I. We note that, our unique DCTM

framework maximizes throughput with low per-session delay

guarantees that only depend on target delays.

Based on random-access scheduling policies, there has been

a lot of research studying end-to-end delay. However, most

of them use approximate models with tools from statistical

mechanics, such as diffusion-approximation model [7], totally

asymmetric simple exclusion process [40], and approximate

queueing model [45], [37]; it is not clear to what extent

these simplified approximate statistical queueing models can

be applied for the multi-hop dynamics in general networks

with general arrival processes. We provide analytical bounds

without simplifying either queueing or traffic model.

The throughput and delays depend on constraints from

multiple layers, e.g., routing and scheduling. Recently Huang

et al. [21] propose a cross-layer framework that incorporates

congestion control and scheduling constraints to deal with de-

lays. Their sophisticated algorithm is well designed to achieve

order-optimal delays with a throughput region comparable to

that of maximal scheduling. While their framework is similar

to ours, their work does not consider routing, and does not

handle explicitly given per-session bounds.

In summary, the main aspects which distinguish our work

from the prior results include: (1) We provide a theoretical

analysis and competitive performance guarantees of the end-

to-end delay and the achievable throughput, in arbitrary net-

work with general traffic; (2) our work can also serve a way of

guiding practical network design and management by finding

rate vectors, choosing paths, scheduling to achieve specific

delay-throughput guarantees.

III. NETWORK MODEL AND SCHEDULING

A. Network Model

The wireless network is modeled as a directed graph

G = (V,L). A link (u, v) ∈ L denotes that u can transmit

to v directly. We use a general graph-based interference

model as in [32], [16]. Interference is defined by means

of interference sets: each link l has its own interference

set I(l) , {l′ : l′ interferes with l}. We define maximum

interference degree, denoted by Imax, as the maximum number

of links that can transmit simultaneously within any I(l);
in most interference models, Imax remains a constant. We

consider bidirectional interference, which accounts for ACK

packets that may be crucial in a distributed setting with

random-access. Our derivation of the delay bounds applies

to general interference models. For results in Section VI, we

assume a unit-disk model [36], in which each node u has

a fixed transmission range (assumed to be 1, w.l.o.g.), and

(u, v) ∈ L if and only if d(u, v) ≤ 1; two links interfere

when one end of a link is within h hops from one end of the

other, where h is a constant integer.

TABLE II: Summary of notation used in the paper.

G network graph I(l) interference set of l
V set of nodes Lin(v) incoming links of v
L set of links Lout(v) outgoing links of v
n #nodes C set of connections

µ service rate ΛOPT capacity region

λ mean arrival rate A exogenous arrival

s(c) source node of c t(c) destination node of c
Q queue or backlog pl channel access prob. of l
a arrival rate d actual # departure pkts

Λ throughput region F set of flows

∆(c) target delay of c OPT max total throughput

χ(G) chromatic number Imax max interference degree

Time is divided into uniform and contiguous slots of length

1. Define µl(t) ∈ {0, 1} as the service rate for link l at time

slot t; µl(t) is determined by the specific scheduling protocol

used. For simplicity, we use time and link service models

similar to [32], [26], [17]; our results can be extended to

cases where link capacity is more than 1.

Let C denote the set of connections or sessions. Let s(c)
and t(c) denote the source and destination, respectively, for

session c ∈ C. Each session c might use multiple paths (also

referred to as flows, in this paper) for communication; let F(c)
denote the set of paths/flows that can be used by session c.
Let L(f) denote the set of links on flow f . Let Af (t) denote

the exogenous arrival process for flow f . We use if , where

i > 0 is an integer, to denote the ith link on f (e.g., 1f is the

1st link in L(f)). We assume the exogenous arrival process of

each flow to be i.i.d over time and independent of each other;
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the first moment E{Af (t)} = λ(f) and the second moment

E{A2
f (t)} ≤ A(2), where A(2) is a constant.

In our queueing model, each link l is associated with a

queue Ql, which holds packets waiting for transmission. Ql is

divided into logical FIFO sub-queues for each flow through l.
Let Ql,f denote the logical FIFO sub-queue for flow f on link

l. We also use the same notation to denote the backlogs: For

each time slot t, let Ql(t) ,
∑

f∈F(l) Ql,f (t) denote the queue

size, where Ql,f (t) denotes the number of packets waiting for

transmission on link l for flow f , and where F(l) is the set

of flows that include l in their paths1. Each time l is activated

to transmit, only one logical queue on l gets serviced. Each

packet of flow f traverses from Q1f ,f through Q|L(f)|f ,f . For

a slot t, let aif ,f (t) be the number of arrival packets for f
at Qif ,f , dif ,f (t) the actual number of f ’s departure packets

from Qif ,f , and µif ,f (t) the service rate offered to Qif ,f .

We assume the transmission takes place during the entire slot,

and at the end of the current slot, the arrival to a queue is

counted in the backlog. The queue-evolution mechanism can

be expressed as

Qif ,f (t+ 1) = Qif ,f (t)− dif ,f (t) + aif ,f (t)
= [Qif ,f (t)− µif ,f (t)]

+ + aif ,f (t),
(1)

where aif ,f (t) =

{

Af (t), i = 1;
d(i−1)f ,f (t), i = 2, 3, . . . , |L(f)|

and

where [a]+ = max{0, a}.

B. Throughput Region, Delay and Problem Definition

A schedule S in our model describes the times at which

data is moved over the links of the network. A scheduling

scheme is said to be stable if the average delay is bounded

and consequently, all backlogs have bounded sizes. Formally,

lim sup
t →∞

1

t

∑

τ≤t

∑

l∈L

E {Ql(τ)} < ∞.

The throughput region ΛS of a scheduling scheme S is

the closure of the set of all exogenous arrival rate vectors

that can be stably supported under S. The network capacity

region ΛOPT is the closure of the set of all rate vectors that

can be stably supported by any feasible scheduling scheme;

it is known that max-weight scheduling can stably schedule

any traffic vector interior to ΛOPT (but without any delay

constraints) [14].

The delay metric used in this paper is average delay, which

can be deduced by Little’s law in a stable system. We study the

average end-to-end delay: (1) for each flow f , as the average

time for packets to reach the destination following the flow

path; (2) for each session c, as the average time for packets

to reach the destination t(c); and (3) for the entire network,

as the average over all sessions.

We are now in a position to formally describe the problem

we study in this paper. Given a multi-hop wireless network

represented by a graph G = (V,L) and a set C of connections

1 The notation used in this paper conforms to the following convention: for
time-related quantities, subscripts are used to indicate specific links or flows,
e.g., Ql, Af ; for non-time-related quantities, a function-like style is used to
indicate specific links or flows, e.g., I(l),L(f).

with a target delay ∆(c) (in number of time slots) for each

connection c, the goal of the Delay-Constrained Throughput

Maximization (DCTM) problem is to find a stable rate vector

λ() and routes that maximize the total achievable rate
∑

c λ(c),
while ensuring that the average delay is at most ∆(c) for each

session c. Let OPT denote the maximum total throughput
∑

c λ(c) for λ() ∈ ΛOPT . Let OPT (∆()) denote the max-

imal total rate
∑

c λ(c) that is feasible under these (delay)

constraints. Note that this definition does not restrict us to any

scheduling scheme.

As discussed earlier, this problem is computationally hard

in general, and our focus is on approximation algorithms. In

particular, we develop polynomial-time bi-criteria approxima-

tion algorithms; we say an algorithm that computes a rate

vector λ() and routes gives a (β1, β2)-approximation if the

total throughput rate guaranteed is at least β1OPT (∆()),
while the average delays are at most β2∆(c) for each session.

Note that these are worst-case approximation guarantees which

hold for every problem instance.

C. Random-access Scheduling

In this paper, we focus on random-access scheduling, which

involves the following process: at each time slot t, each link

l stochastically makes channel access attempt with a specific

probability pl(t) (known as channel access probability) when

Ql(t) > 0; if link l decides to transmit, it will choose a flow

f associated with the link with probability p(l, f), defined

below. If no collision happens, it will result in successful data

transmission, with an ACK packet sent backward at the end

of the slot; otherwise, the packet will stay in the queue for the

next transmission service. Note that the collision accounts for

transmission of both directions on links, due to the definition

of interference and the interference sets. In order to simplify

our presentation, we ignore the complexity of handling ACKs,

which can be done in the same manner as the flows for the

sessions, i.e., by reserving a constant fraction of the rate on

every link— this only alters our approximation bounds by

a constant factor. We focus on synchronous random-access

scheduling, where all slots are of the same length. In Section

VII, we also discuss extensions to asynchronous random-

access scheduling, in which the transmission durations for

different links could be different from each other, and from

idle slots. The channel access probability for each link l at

time t is

pl(t) = 1− exp
(

e
∑

f : l∈L(f)

λ(f)/(1− ǫ)
)

, (2)

where ǫ ∈ (0, 1) denotes a rate slackness parameter which

can be set before system initiation as a constant. For each

transmission on l, Ql,f ’s packets get serviced with probability

p(l, f) =
λ(f)

∑

f ′: l∈L(f ′) λ(f
′)
.

We prove in Section V that this random-access scheduling

scheme is stable if
∑

l′∈I(l)∪{l}

∑

f : l′∈L(f)

λ(f) ≤
1− ǫ

e
, ∀l ∈ L. (3)
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It follows from [9] that the above constraints in Inequal-

ity (3) with RHS scaled up by eImax are necessary conditions

for any stable scheduling scheme; note that Imax is usually

a constant in most interference models. Inequality (3) defines

a throughput region within a factor of 1/ (eImax) of ΛOPT .

In other words, this random-access gives an O(Imax) approx-

imation of the capacity region comparable to that of maximal

scheduling, while maintaining a low-complexity distributed

manner of operation.

IV. APPROXIMATION HARDNESS OF DCTM

DCTM is NP-hard: this follows from the fact that even

without any delay constraints, the throughput maximization

problem is NP-hard [43]. We extend this to show that even

simple cases of the DTCM problem are hard even to approx-

imate, if the delay bounds are required to be satisfied; this

motivates the need for bi-criteria approximations.

Lemma 1: There is a constant K ′ > 0 such that the DCTM

problem cannot be approximated within a factor of K ′ if the

interference graph G is a unit-disk graph, unless P = NP .

Proof: Our proof is based on the result of Clark et al. [10],

which shows that given a unit-disk graph G = (V,L) (where

V is the nodes set and L is the link set), it is NP-complete

to distinguish between the case χ(G) = 3 and χ(G) = 4,

where χ(G) is the chromatic number of G. We reduce this

to an instance of DCTM in an interference model based

on distance-2 independence model (i.e., two transmissions

are simultaneously possible only if the senders are at least

distance-2 apart): let V ′ be a duplicate node set of V , such

that each v ∈ V and its counterpart v′ in V ′ are located very

close; let G′′ = (V ′′,L′′) be a graph where V ′′ = V ∪V ′, and

L′′ = L∪{(v, v′) : v ∈ V}. For each node v ∈ V , we construct

n sessions originating at v and ending at each node v′. For

each session c, let the target delay ∆(c) , 3. We assume that

the exogenous traffic is at a constant bit-rate for each session

c. If χ(G) = 3, observe that a throughput rate of 1/3 for each

connection is possible — within each window of three time

steps, all the connections can be scheduled in this interference

model, making the total throughput of n/3 feasible. On the

other hand, if χ(G) = 4, at most K ′n of the sessions can be

colored using 3 colors (this follows from a simple analysis of

the reduction of [10]). Since ∆(c) = 3 for each session, at

most K ′n sessions can be scheduled within a window of size

3, implying a total throughput of at most K ′n/3.

For arbitrary interference graphs, it can be shown by a

reduction from graph coloring that DCTM cannot be approxi-

mated within a factor of O(n1−ε), for any ε ∈ (0, 1); we omit

the proof because of space limitations.

V. DELAY UPPER-BOUNDS

We now derive end-to-end delay bounds for flows with

a given feasible average rate vector λ() that satisfies the

constraints in Inequality (3). The main idea is to progressively

“isolate” each flow as a tandem system for which we can easily

find a bound on the per-flow delay.

Theorem 1: For a rate vector λ() that satisfies Inequality (3),

the random-access scheduling protocol described in Section

III-C ensures that (i) the system is stable, implying a through-

put region of ΛOPT

eImax
; (ii) the average delay for each flow f is

O
(

|L(f)|2
/

(λ(f))2
)

; and (iii) the average network delay is

O
(

∑

f∈F |L(f)|2
/(

∑

f∈F λ(f)minf∈F{λ(f)}
))

.

We start the proof with the following lower bound on the

expected service rate µl,f (t) for any flow f and link l; this

will be used in all our analysis in the rest of this section.

For notational simplicity, we use x(l, f) = λ(f)/(1− ǫ), and

x(l) =
∑

f∈F(l) x(l, f). Rewriting Inequality (3), we have
∑

l′∈I(l)∪{l} x(l
′) ≤ 1/e. Then, Equation (2) can be rewritten

as pl(t) = 1− e−ex(l), and that gives us:

E {µl,f (t)} ≥ p(l, f)pl(t)
∏

l′∈I(l)

(1− pl′(t))

≥ p(l, f)pl(t)
∑

l′∈I(l)

e−ex(l′)

≥ p(l, f)
(

1− e−ex(l)
)

eex(l)−1

=

(

eex(l) − 1
)

x(l, f)

ex(l)
≥ x(l, f).

(4)

The idea for the proof of the above theorem is that due to

the properties of random-access scheduling, each flow can be

viewed in “isolation” as a tandem system, with lower bounds

on the expected service rate of µ(l, f) that only depend on

x(l, f) for each logical queue Ql,f , as shown in Equation (4).

Let the triplet (Q(), a(), µ()) denote a queueing system. From

now on till the end of this section, we use R to denote the

basic queueing system under the basic scheduling scheme

specified in Section III-C, with the queueing model and the

exogenous arrival processes described in Section III-A. We put

R at superscript to denote the quantities of the corresponding

system.

We now consider the queues for a specific flow f : {QR
if ,f

},

i ∈ {1, 2, . . . , |L(f)|}, as a series of tandem queues, and

derive delay bounds. Our proof involves two “reductions”,

which progressively lead to a simpler queueing system with

Bernoulli arrival and service processes for the non-source

queues, with delays no smaller than those of {QR
if ,f

}; ad-

ditionally, the second queueing system we construct has an

increasing sequence of service rates, allowing us to derive

end-to-end delay bounds. We start with the following intuitive

lemma, whose proof is in Appendix A.

Lemma 2: Let R′ and R′′ be two identical queueing systems

(with the same initial states and the same set of general i.i.d.

arrival processes) but only differ in the service rates: for R′, the

service rate at time t for the ith link of flow f is µR′

if ,f
(t) ∈

{0, 1}, and for R′′ it is µR′′

if ,f
(t) ∈ {0, 1}; E

{

µR′

if ,f
(t)

}

≥

E

{

µR′′

if ,f
(t)

}

, for each flow f and link if , at any time t. Then,

for each flow f , the average total queue size in R′ is no greater

than that in R′′, i.e.,

lim sup
t→∞

1

t

t−1
∑

τ=0

E

{

|L(f)|
∑

i=1

QR′

if ,f
(τ)

}

≤ lim sup
t→∞

1

t

t−1
∑

τ=0

E

{

|L(f)|
∑

i=1

QR′′

if ,f
(τ)

}

.
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(1) Reduction 1. We reduce the basic queueing system R
for flow f to another tandem system R1, such that for all

i ∈ [1, |L(f)|], the service rate µR1

if ,f
of each queue QR1(if , f)

is a Bernoulli distribution with

E

{

µR1

if ,f
(t)

}

= λ(f) +
iε(f)

|L(f)|
≤ xR(if , f) ≤ E

{

µR
if ,f

(t)
}

,

where ε(f) = ǫλ(f)/(1 − ǫ); the exogenous arrival

rates remain the same. Then, Lemma 2 implies

that lim supt→∞
1
t

∑t−1
τ=0 E

{

∑|L(f)|
i=1 QR1

if ,f
(τ)

}

≥

lim supt→∞
1
t

∑t−1
τ=0 E

{

∑|L(f)|
i=1 QR

if ,f
(τ)

}

. Note that

whether the reduced system is using wireless medium no

longer matters.

(2) Reduction 2. Note that the exogenous arrival at the source

link of the tandem system (QR1(), aR1(), µR1()) is a rather

general arrival process, making it nontrivial to use earlier

methods directly, e.g., [6], [11], [20], in bounding the end-

to-end delays. We seek to reduce the system R1 to another

queueing system R2 so that the arrival process for each non-

source queue is also Bernoulli. The queueing system R2 is

defined in the following manner: at each time slot t the service

rate for each link if in Lf on flow f is the same as that for

R1, except that this link tries to access the medium even if

the queue QR2

if ,f
is empty or does not have enough packets to

fill in the capacity. In case (if , f) gets serviced and QR2

if ,f
has

a backlog smaller than the channel capacity, dummy packets

are injected to make full use of the channel capacity during

the time slot. These packets will be labeled as packets for

flow f . Now that we have unit capacities, each time (if , f)
accesses the medium, it transmits one packet to the next queue

in line. Therefore, the service process of QR2

if ,f
, and the arrival

process at the subsequent queue QR2

(i+1)f ,f
coincide. Note that

if the number of retransmission is upper-bounded, the arrival

at non-source queues will be smaller. In the system R1, for

any i, µR1

if ,f
follows a Bernoulli distribution, which implies

that the subsequent arrival is also a Bernoulli process with

aR2

(i+1)f ,f
(t) = µR2

if ,f
(t) = µR1

if ,f
(t). This leads to Lemma 3,

which directly follows from Lemma 2:

Lemma 3: For each flow f ,

lim sup
t→∞

1

t

t−1
∑

τ=0

E

{

|L(f)|
∑

i=1

QR
if ,f

(τ)
}

≤ lim sup
t→∞

1

t

t−1
∑

τ=0

E

{

|L(f)|
∑

i=1

QR1

if ,f
(τ)

}

≤ lim sup
t→∞

1

t

t−1
∑

τ=0

E

{

|L(f)|
∑

i=1

QR2

if ,f
(τ)

}

.

(3) Queueing analysis for R2. The fact that the arrival

and service processes of each QR2

if ,f
are subject to Bernoulli

distribution, allows us to perform the isolated queueing anal-

ysis for each QR2

if ,f
in isolation. For any link if where

i = 1, 2, . . . , |L(f)|,

E

{

µR2

if ,f
(t)

}

= E

{

µR1
if ,f

(t)
}

= λ(f) +
iε(f)

|L(f)|
.

Next, we perform Lyapunov drift analysis to derive an

upper-bound on the queue size of each QR2

if ,f
. Refer to [14],

[32] for the details of this approach. We define the Lyapunov

function as L

(

QR2

if ,f
(t)

)

,

(

QR2

if ,f
(t)

)2

.

The 1-step Lyapunov drift is then defined as:

△
(1)
Q

(

QR2

if ,f
(t)

)

,E

{

L

(

QR2

if ,f
(t+ 1)

)

− L

(

QR2

if ,f
(t)

) ∣

∣

∣
QR2

if ,f
(t)

}

.

By referring to Equation 1 and Lemma 4.3 of [14], we

obtain

△
(1)
Q

(

QR2

if ,f
(t)

)

≤E

{

(

µR2

if ,f
(t)

)2

+
(

aR2

if ,f
(t)

)2
∣

∣

∣

∣

QR2

if ,f
(t)

}

−

E

{

2QR2

if ,f
(t)

(

µR2

if ,f
(t)− aR2

if ,f
(t)

)

∣

∣

∣

∣

QR2

if ,f
(t)

}

. (5)

Further, E

{

(

µR2

if ,f
(t)

)2
}

= E

{

µR2

if ,f
(t)

}

≤ 1/e, and

E

{

µR2

if ,f
(t)− aR2

if ,f
(t)

}

= ε(f)
/

|L(f)|. Additionally, for

i = 1, we have E

{

(

aR2

1f ,f
(t)

)2
}

≤ A(2); when i > 1,

E

{

(

aR2

if ,f
(t)

)2
}

= E

{

aR2

if ,f
(t)

}

≤ 1/e. Inequality (5) can

be then rewritten as

△
(1)
Q

(

QR2

if ,f
(t)

)

≤
1

e
+max

{

1

e
,A(2)

}

−
2ε(f)

|L(f)|
QR2

if ,f
(t).

We use Qif ,f
to denote lim sup

t→∞

1

t

t−1
∑

τ=0

E
{

Qif ,f (τ)
}

for

simplicity. From Theorem 1 in [32] which deduces an inequal-

ity from the Lyapunov drift, Q
R2

if ,f
≤

1+max{1,eA(2)}
2eε(f) |L(f)|.

Therefore, the sum of mean backlogs for flow f is

|L(f)|
∑

i=1

Q
R2

if ,f
(t) ≤

1 + max
{

1, eA(2)
}

2eε(f)
|L(f)|2.

(4) Average end-to-end delay bound. By Little’s Law, the

average delay for flow f ’s packets is

D
R
(f) =

|L(f)|
∑

i=1

Q
R

if ,f

/

λ(f) ≤

|L(f)|
∑

i=1

Q
R2

if ,f

/

λ(f)

≤
1 + max

{

1, eA(2)
}

2eε(f)

|L(f)|2

λ(f)
.

The average network delay is

D
R
=

∑

f∈F

|L(f)|
∑

i=1

Q
R

if ,f

/

∑

f∈F

λ(f)

≤
1 + max

{

1, eA(2)
}

2emin
f∈F

{ε(f)}

∑

f∈F

|L(f)|2

∑

f∈F

λ(f)
.

Theorem 1 follows by substituting ǫλ(f)/(1− ǫ) for ε(f).
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VI. MULTI-COMMODITY FLOWS WITH DELAY

GUARANTEES

From Theorem 1, it follows that the average end-to-end

delay bound for flow f is proportional to |L(f)|2, and in-

versely proportional to λ2(f); the average network end-to-end

delay bound is in proportion to
∑

f∈F |L(f)|2, and inversely

in proportion to
∑

f∈F λ(f) and minf∈F λ(f). Therefore, in

order to find a feasible rate vector λ() that minimizes the delay

guarantees, we need to construct flows with “high” rate (i.e., to

keep λ(f) high) and “short” paths (i.e., to make |L(f)| low). In

this section, we use terms “path” and “flow” interchangeably.

Given the delay constraint ∆(c) for each connection c (as

defined in Section III), we present a multi-commodity flow

framework for choosing a rate vector λ() and constructing

a set of flows F ′′(c) for each session c, with the following

properties (recall the definition of OPT (∆()) in Section III).

Theorem 2: (i) The rate vector λ() resulting from our

multi-commodity flow framework ensures that:
∑

c λ(c) =

Ω
(

log log∆m

log∆m

)

OPT (∆()). (ii) For each flow f in the set of

flows F ′′(c) constructed for each session c if λ(c) > 0, the

rate λ(f) = Ω
(

log log∆m

log∆m

)

, and the path has a length of at

most 2∆(c).
Putting everything together: the total rate is “close” to

OPT (∆()), and we have the following delay bounds.

Corollary 1: Using the rate vector λ() along with the

random-access scheduling scheme described in Section V, we

ensure that, for each session c and each flow f ∈ F ′′(c), the

average delay is O
(

( log∆m

log log∆m
∆(c))2

)

.

Our algorithm involves construction of multi-commodity

flows with constraints on the paths used; broadly, these con-

straints bound the sum of the “costs” of the links on the paths,

which will be explained later with the LP formulation. Our

approach employs an approximation algorithm, which selec-

tively drops some cost-unfavorable sessions and maximizes

the rates of the rest of the sessions. Path constrained flows

have been studied in a wired setting, e.g., [5], [19], but the

interference constraints, and the fact that we need both short

paths and large flow values make our problem different and

difficult. Our algorithm is comprised of the following 3 steps:

(1) linear programming formulation, (2) path filtering, and

(3) randomized rounding.

(Step 1) Linear programming formulation. We use the

LP formulation as a basis to compute an upper-bound of

OPT (∆()), and to develop our bi-criteria approximation algo-

rithm. For session c, recall that F(c) denotes the set of possible

paths from s(c) to t(c). We assume a cost function defined on

the links; let cost(l) denote the cost of link l. For path f , we

define cost(f) =
∑

l∈L(f) cost(l) as the cost of path f . The

costs can be defined in a fairly general manner. In most of

this paper, the cost of a link l will denote the time (in number

of slots) needed for a packet transmission (ignoring queuing

and interference delays); therefore, the cost of a path will be

proportional to its length. Let F(c, L) denote the set of paths

of cost at most L from s(c) to t(c). As mentioned in Section

III, we will assume that all link capacities are 1. We start with

the following LP formulation (LP) to find a flow vector y() that

maximizes
∑

c y(c) subject to Constraints LP-(6a) to LP-(6e).

Here, y(c) denotes the total rate for connection c, and y(f)
the rate along path f ∈ F(c); y(l, c) =

∑

f∈F(c):l∈L(f) y(f)
is the total flow for c along l.

LP: max
∑

c

y(c)

s.t. ∀c, y(c) =
∑

f∈F(c)

y(f) (6a)

∀c,
∑

f∈F(c)

y(f)cost(f) ≤ ∆(c)y(c) (6b)

∀l, c, y(l, c) =
∑

f∈F(c): l∈L(f)

y(f) (6c)

∀l,
∑

l′∈I(l)∪{l}

∑

c

y(l′, c) ≤
1− ǫ

e
(6d)

∀f, y(f) ≥ 0 (6e)

In the above formulation: (1) Constraints LP-(6a) and

LP-(6c) represent path-based flow-conservation constraints.

(2) LP-(6b) constrains the total path cost, which we use

as a lower-bound on the average delay along a flow-path;

in our case the cost function is chosen to be path length

since end-to-end delay is lower bounded by the number

of hops. (3) Congestion constraints in LP-(6d) ensure the

stability under a random-access scheme; Note that under the

h-hop unit disk graph model, since the interference degree

Imax = O(h) = O(1),
∑

l′∈I∪{l}

∑

c y(l
′, c) ≤ Imax = O(1)

for any link l.

We write the optimal objective value of (LP) as

OPTLP (∆()). Since LP-(6b) serves as relaxed delay con-

straints and LP-(6d) may potentially compromise the op-

timal value of total flow by at most a constant factor,

OPTLP (∆()) = Ω
(

OPT (∆())
)

.

The above program may have exponentially many con-

straints because it is formulated using all the flow paths in

F(c), which may include all viable paths in graph G. It is

easy to reformulate this as a polynomial sized LP by

(1) replacing Constraints LP-(6a) and LP-(6c) with for all c,
∑

l∈Lout(s(c))

y(l, c) = y(c) and
∑

l∈Lin(t(c))

y(l, c) = y(c),

and flow-conservation constraints at all other nodes;

(2) replacing LP-(6b) with for all c,
∑

l∈L y(l, c)cost(l) ≤ ∆(c)y(c); and

(3) replacing LP-(6e) with for all l, c, y(l, c) ≥ 0.

Let y∗() denote the optimum fractional solution to the

above LP; OPTLP (∆()) =
∑

c y
∗(c). Following standard

techniques, e.g., [2], this flow can be decomposed into path

flows y∗(f) in polynomial time, with a polynomial number of

paths that have positive flow. Let F∗ = {f : y∗(f) > 0} be

the set of flows with positive flow.

(Step 2) Filtering. The LP solution might result in some

flows on long paths. For any session c, let F∗(c, 2∆(c)) =
{f ∈ F∗(c) : |L(f)| ≤ 2∆(c)} be the set of flows in F∗(c)
with path lengths bounded by 2∆(c). We transform y∗() into

another fractional solution y′() in the following manner, to
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avoid long paths:

∀f, y′(f) =

{

y∗(f), if f ∈ F∗(c, 2∆(c));
0, otherwise

It follows by a simple averaging argument, that

∀c, y′(c) =
∑

f∈F∗(c,2∆(c))

y′(f) ≥ y∗(c)/2. (7)

Let F ′ = {f ∈ F : y′(f) > 0} be the set of flows with

positive flow; for each f ∈ F ′, we have cost(f) ≤ 2∆(c).

(Step 3) Randomized rounding. In this step, we round the

filtered solution to an integral solution to obtain Lemma 4.

Lemma 4: After the randomized rounding step, we ob-

tain a set F ′′ ⊆ F∗ of paths with positive rates,

and a rate vector λ(), such that (1) for each f ∈
F ′′, λ(f) = Ω (log log∆m/ log∆m); (2)

∑

c λ(c) is

Ω(log log∆m/ log∆m)OPTLP (∆()); and (3) the chosen

paths incur “low” congestion; more precisely, for each link

l, we have
∑

l′∈I(l)∪{l}

∑

c λ(l
′, c) ≤ 1−ǫ

e , where λ(l′, c) is

the rate on all paths f ∈ F ′′(c) such that l′ ∈ L(f).
We first describe the sub-steps of the rounding stage and

then discuss the proof of Lemma 4.

(1) Pre-processing: we partition paths into groups, formulate

a minimax integer program (MIP) that minimizes maxi-

mum congestion and that chooses one path in each group

with “large” flow rate, and formulate a relaxation of the

minimax integer program with refined paths.

(2) Randomized rounding: we employ the techniques based

on [41] to derive an approximate solution to the relaxed

minimax integer program.

(3) Post-processing: we scale down the flow rates by a “rea-

sonably small” factor, such that the congestion constraints

LP-(6d) can be satisfied.

The details are provided below.

(Step 3.1) Pre-processing: Bin-packing. Let lmax be such

that I(lmax) has the maximum congestion under with y′()
and F ′, i.e.,

lmax , argmax
l∈L

∑

l′∈I(l)∪{l}

∑

f∈F ′:l′∈L(f)

y′(f).

Define F ′
max as the set of all paths that touch I(lmax):

F ′
max ,

⋃

l∈I(lmax)∪{lmax}

{f : l ∈ L(f)}.

We partition F ′ into a sequence of groups F ′
1,F

′
2, . . . of

paths, where the first group F ′
1 = F ′

max, and F ′
2,F

′
3, . . . are

constructed in an arbitrary manner, such that for each i (for

all but possibly one group),
∑

f∈F ′
max

y′(f) ≤
∑

f∈F ′
i

y′(f) < 2
∑

f∈F ′
max

y′(f).

Let k denote the total number of such path groups. Due to

our construction, if there is a group F ′
i with

∑

f∈F ′
i
y′(c) <

∑

f∈F ′
max

y′(f), we have i = k. It is easy to see that k =

Θ(OPTLP ), since
∑

f∈F ′
max

y′(f) = Θ(1) according to (LP).

(Step 3.2) Pre-processing: MIP formulation.

MIP: min w

s.t.
∑

f∈F ′
i

z(f) = 1, ∀i = 1, . . . , k (8a)

∑

l′∈I(l)∪{l}

∑

f∈F ′:l′∈L(f)

z(f) ≤ w, ∀l (8b)

z(f) ∈ {0, 1}, ∀f ∈ F ′ (8c)

(MIP) above formulates a minimax integer program that

minimizes maximum congestion among all the interference

sets. Constraints MIP-(8a) and MIP-(8c) let us choose one flow

path from each set F ′
i , and assign flow rate of 1 to the paths

chosen. Since
∑

f∈F ′
max

y′(f) = Θ(1), the vector y′, after

suitable scaling is a feasible solution for the linear relaxation

of (MIP); further, it will turn out that the objective value of

an optimum fractional solution to (MIP) is O(1). MIP-(8b)

can be rewritten in an aggregate manner as B~z ≤ ~w, where

B is a |L| × |F ′| matrix. Note that |F ′| is polynomial in

|L|. Intuitively, this integer program is hard to solve exactly,

because matrix B can be dense and irregular, as a result of the

facts that an interference set can be as large as L and that both

of the set of flow paths in an optimal solution and the graph

topology are non-controllable. In light of this, we perform

the following path refinement (Step 3.3), constraint relaxation

(Step 3.4) and MIP reformulation (Step 3.5) to approximately

solve (MIP). It is in these steps that we require an h-hop unit-

disk graph (UDG) model as described in Section III.

(Step 3.3) Pre-processing: Path refinement. For each link

l = (u, v), if there is a path f ∈ F ′ that uses more than a

constant number, K0, of links in I(l), we “short-cut” f into

f ′ that uses at most K0 such links, and does not violate any

of the constraints of (LP). This is illustrated in Figure 1.

u v

e
1

e
2

e

f

Fig. 1: Path refinement operation: Consider path f (shown

by dashed curved line) and link l = (u, v), in a UDG model.

Path f revisits I(l) multiple times, and the segment of f from

between the endpoints of edges e1 and e2 can be replaced by

edge e (shown in light gray and bold) to get a path f ′ which

is shorter; sending the same flow on f ′ (instead of f ) is still

feasible. We then continue to use F ′ to denote the refined set

of paths without ambiguity.

(Step 3.4) Pre-processing: Relaxation of congestion con-

straints. Recall that we have rewritten MIP-(8b) into B~z ≤ ~w.

Let η(B) denote the maximum number of congestion con-

straints (in MIP-(8b)) in which a path in F ′ is simultaneously

involved; the definition is based on the fact that a path f
appears in every congestion constraint corresponding to the

links on f and those interfering with links on f . It is crucial
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that η(B) be “small”, so that the rounding scheme in later

steps produces a “good” approximate ratio. However, η(B)
may become Ω(∆m maxl |I(l)|) if we use the original set of

congestion constraints in LP-(6d), which is the case for general

interference model. To control this, in a UDG model, we now

coarsen the formulation in the following manner:

(1) We partition the plane into 1
8 ×

1
8 grid cells. A cell is said

to be non-empty if there is at least one node in it. Let B
denote the set of non-empty cells and let b denote a cell in

B. We say a link l ∈ b if and only if l is within a constant

distance of any point in cell b. Since the path refinement do

not increase path lengths, all the path lengths are bounded

by 2∆m. The number of cells that a path f ∈ F ′ goes

through is hence O (∆m).
(2) MIP-(8b) implies the following:

∀b ∈ B,
∑

l∈b

∑

f∈F ′:l∈L(f)

z(f) ≤ w. (9)

We scale the coefficients of any rate variable z(f) in

Inequality (9) down by a constant factor of K0 (which

upper-bounds the number of links of a path that lie in the

same interference set (as a result of Step 3.3)), such that

the coefficients in the inequality above falls in [0, 1]. That

renders a relaxed set of congestion constraints as

∀b ∈ B,
1

K0

∑

l∈b

∑

f∈F ′:l∈L(f)

z(f) ≤ w.

This can be rewritten in an aggregate manner as B′~z ≤ ~w,
where B

′ is a [0, 1]|B|×|F ′| matrix (with |B| ≤ |V| as the

number of non-empty cells). After the relaxation, η(B′) =
O (∆m).

(Step 3.5) Pre-processing: MIP reformulation. We reformu-

late (MIP) into (MIP-1) as below:

MIP-1: min w

s.t.
∑

f∈F ′
i

x(f) = 1, ∀i = 1, . . . , k (10a)

B
′~x ≤ ~w (10b)

x(f) ∈ {0, 1}, ∀f ∈ F ′ (10c)

Since any interference set in an h-hop UDG model touches

at most O(h2) cells, any solution to the (MIP-1) with an

objective value w is a solution to (MIP) and produces an

objective value of (MIP) which is O(h2K0)w = O(w), where

h and K0 are constant.

(Step 3.6) Rounding process. Applying the rounding algo-

rithm of [41] to solving (MIP-1) yields a rate vector x′(),
such that a path fi with rate x′(fi) = 1 is chosen from F ′

for each group F ′
i (except group F ′

k, in case
∑

f∈F ′
k
y′(f) <

∑

f∈F ′
1
y′(f)); and for the rest of the paths not chosen, zero

flows are assigned.

Lemma 5: Let F ′′ = {f : x′(f) > 0} denote the

set of selected paths with positive rates; F ′′ ⊆ F ′. The

rounding process ensures that (1) for each f ∈ F ′′, x′(f) =
1; (2) for each connection c, x′(c) =

∑

f∈F ′′(c) x
′(f).

(3) |F ′′| =
∑

c x
′(c) = Θ(

∑

c y
∗(c)) = Θ

(

OPTLP (∆())
)

;

and (4) for each link l, we have
∑

l′∈I(l)∪{l}

∑

c x
′(l′, c) ≤

K1 log∆m/ log log∆m, where x′(l′, c) is the flow rate on path

f ∈ F ′′(c) such that l′ ∈ L(f), and K1 is a constant.

In [41], randomized rounding techniques are proposed for

solving a minimax integer program (MIP-2) as shown below.

MIP-2: min w

s.t.
∑

j∈Xi

xi,j = 1, ∀i ∈ X (11a)

A~x ≤ ~w (11b)

xi,j ∈ {0, 1}, ∀i ∈ X , ∀j ∈ Xi (11c)

(MIP-2) seeks to minimize maximum components in A~x
while satisfying the equality constraints MIP-2-(11a) and

the integrity constraints MIP-2-(11c). X is a set of distinct

integers, and Xi is a set of distinct integers associated with

integer i ∈ X . The total number of xi,j variables is denoted by

N =
∑

i |Xi|. ~x denotes the N -dimensional vector of variables

xi,j . A ∈ [0, 1]M×N is an M × N matrix, and ~w is an M -

dimensional vector with variable w in each component.

Lemma 6 (Lemma 2.4(a) in [41]): Given independent r.v.s

X1, . . . , Xn ∈ [0, 1], let X =
∑

i=1 Xi and µ = E{X}.

Then, ∀µ > 0, ∀p ∈ (0, 1), ∃δ = H(µ, p) > 0, such that

⌈µδ⌉(eδ/(1 + δ)1+δ)µ ≤ p, and such that

H(µ, p) =

{

Θ( log(p−1)
µ log(µ−1 log(p−1)) ) if µ ≤ 1

2 log(p
−1);

Θ(
√

µ−1 log(µ+ p−1) otherwise.

For any matrix M, let γ(M) denote the maximum number

of non-zero entries in any column of M.

Theorem 3 (Theorem 2.5 in [41]): Let w∗
LP denote the

optimum value of the LP relaxation of (MIP-2). Then there

exists an integral solution of value at most w∗
LP + O(1) +

O(min{w∗
LP ,M}H(min{w∗

LP ,M}, 1/γ(A))) for (MIP-2).

proof of Lemma 5: We observe that (MIP-1) is an

instance of (MIP-2). Recall that γ(A) denotes the maximum

number of non-zero entries in any column of A; note that

γ(B′) = η(B′) = O (∆m), and we will refer to this later.

Since w∗
LP is the optimum value of the LP relaxation of

(MIP-2), w∗
LP is a lowerbound on the optimum value of

(MIP-2). According to Lemma 6 and Theorem 3, if (MIP-2)

satisfies the three conditions —

(1) w∗
LP = Ω(1),

(2) γ(A) > max
{

1, 22w
∗
LP

}

, and

(3) M > w∗
LP

— then the rounding scheme yields an integral solution to

(MIP-2) with an objective value of O
(

log γ(A)
log log γ(A)

)

.

Now we argue that (MIP-1) satisfies the three conditions.

With a little abuse of notation, we use w∗
LP , M for the same

meanings in the context of (MIP-1). Let rate vector x∗
LP ()

denote an optimal solution to the LP relaxation of (MIP-1).

(1) Because the set F ′
1 have been chosen in a way that it

only contains the paths that touch the most congested

interference set, there exists a cell b that covers part of

the most congested interference set such that
∑

l∈b

∑

f∈F ′:l∈L(f)

x∗
LP (f)/K0 ≥

∑

f∈F ′
1

x∗
LP (f)

/

O(h2K0)

≥ 1/O(h2K0),
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which implies that w∗
LP = Ω(1).

(2) W.l.o.g., we assume at least one connection requires more

than one hop. We construct a feasible solution x′
LP for the

LP relaxation of (MIP-1) and show that the corresponding

objective value w′
LP is at most 1. For each i and each

f ∈ F ′
i , we assign x′

LP (f) = y′(f)
/
∑

f ′∈F ′
i
y′(f ′),

such that constraints MIP-1-(10a) are satisfied. On the

one hand, any path of two or more hops touches at least

6 cells; that implies γ(B′) ≥ 6. On the other hand,

because a path has at most K0 links in any interference

set,
∑

l∈b

∑

f∈F ′:l∈L(f) y
′(f) ≤ K0

∑

f∈F ′
1
y′(f); and

since ∀f ∈ F ′, x′
LP (f) ≤ y′(f)

/
∑

f ′∈F ′
1
y′(f ′), the

congestion incurred by x′
LP () in each cell b is

∑

l∈b

∑

f∈F ′:l∈L(f)

x′
LP (f) ≤ K0.

The objective value under the rate vector xLP (f) is thus

w′
LP ≤ K0/K0 = 1, which implies w∗

LP ≤ 1. Therefore,

γ(B′) > max
{

1, 22w
∗
LP

}

.

(3) M = |B| ≥ γ(B′) > w∗
LP .

Therefore, by applying the rounding algorithm, we obtain a

set F ′′ = {fi} of paths with positive rates and a rate vector

x′() that satisfies

x′(fi) =
∑

f∈F ′
i

x′(f) = 1 = Θ
(

∑

f∈F ′
i

y′(f)
)

, ∀i.

That can be translated to

|F ′′| =
∑

c

x′(c) =
∑

i

∑

f∈F ′
i

z′(f)

= Θ
(

∑

c

y′(c)
)

= Θ
(

∑

c

y∗(c)
)

= Θ
(

OPTLP (∆()
)

.

Since γ(B′) = O (∆m), the congestion at each cell is at most

O(log γ(B′)/ log log γ(B′)) = O(log∆m/ log log∆m),

which implies that the congestion at each interference set

is O(h2 log∆m/ log log∆m) = O(log∆m/ log log∆m).
Hence, Lemma 5 holds.

(Step 3.7) Post-processing: Scaling and choosing flow vec-

tor. We choose a rate vector λ() as λ(f) = K2
log log∆m

log∆m
x′(f),

∀f ∈ F ′′, where K2 is a constant, such that the congestion

constraints in LP-(6d) are satisfied. Note that for some con-

nections, multiple flows might be chosen (whereas for some

connections, none would be chosen); for each (“original”)

connection c, define λ(c) =
∑

f∈F ′′(c) λ(f) as the total flow

of c.
∑

c λ(c) = log log∆m

log∆m
Ω
(

OPTLP (∆())
)

. As discussed

before, OPTLP (∆()) = Ω
(

OPT (∆())
)

. Now Lemma 4

follows, and our algorithm ends.

Combining the delay analysis in Section V, gives us Theo-

rem 2 and Corollary 1 — the bi-criteria approximation — for

DCTM problem.

VII. ASYNCHRONOUS RANDOM-ACCESS SCHEDULING

The asynchronous random-access scheduling scheme is

based on mechanisms of the 802.11 protocol. The smallest unit

of time has a length of Tid. Let l be an arbitrary link in G. The

interference set I(l) is partitioned into two sets: (1) Iexp(l)
that consists of all links that can sense link l’s transmission and

(2) Ihid(l) = I(l)\Iexp(l), where “exp” means exposed and

“hid” means hidden. When link l senses no interfering signals,

it attempts to transmit with probability pl(t). Once link l gets

the channel without collision, it occupies the channel for Ttx(l)
time until its backlog is empty.

The work of [8] gives the following results. Let γ de-

note the maximum ratio between Ttx(l) of any link l and

Ttx(l
′) of any hidden interfering link l′ of l, i.e., γ =

maxl maxl′∈Ihid(l)
Ttx(l)
Ttx(l′)

. For a system under asynchronous

random-access scheduling, we set the channel access proba-

bility of each link l:

pl(t) = 1− e−e
∑

f:l∈L(f)(λ(f)/(1−ǫ))Tid/Ttx(l),

where 0 < ǫ < 1; then we can achieve a throughput region of
1

e(γ+1)Imax
ΛOPT , when the arrival vector λ() satisfies

∑

l′∈Ihid(l)

∑

f∈F(l′)

λ(f)
Ttx(l

′) + Ttx(l)− Tid

Ttx(l′)

+
∑

l′∈Iexp(l)

∑

f :l′∈L(f)

λ(f) ≤
1− ǫ

e(γ + 1)
, ∀l ∈ L.

The expected service rate for queue Ql,f on l at any time t
is lower-bounded as E{µl,f (t)} ≥ λ(f)/(1 − ǫ). Details can

be found in [8]. By using the queueing reduction technique in

Section V, we obtain a similar delay bounds as in Theorem 1.

Plugging in the stability constraints to (LP) in Section VI, we

obtain the throughput-delay guarantees as in Theorem 4.

Theorem 4: (i) The rate vector λ() resulted by our

multi-commodity flow framework ensures that:
∑

c λ(c) =

Ω
(

log log∆m

γ log∆m

)

OPT (∆()). (ii) For each flow f in the set of

flows F ′′(c) constructed for each session c if λ(c) > 0, the

rate λ(f) = Ω
(

log log∆m

γ log∆m

)

, and the path has length at most

2∆(c). (iii) Using the random-access scheduling protocol, we

ensure that, for each session c and each flow f ∈ F ′′(c), the

average delay is O
(

( γ log∆m

log log∆m
∆(c))2

)

.

VIII. SIMULATION RESULTS

We study the performance of our algorithms empirically

with simulation. First, for single-channel models, we show

how the optimal network throughput depends on varying

uniform target delay, number of sessions and network size.

Next, for a multi-channel network, we study the variation

in the optimal throughput as the number of channels and ∆
values vary. Experiments are carried out both on random unit-

disk graph topologies and grid network topologies, with both

primary interference and two-hop interference models. LP’s

are solved with SCIP [1] and SoPlex [44] bundle.

A. Single-channel Networks

We generated random unit-disk graphs with varying sizes,

and varied the number of random connections for a network

topology. For each choice of network size, number of con-

nections and ∆ value, we perform 500 iterations of random

topology and connection generation, plus LP formulation.
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Fig. 2: Trade-offs among OPT throughput, delay, number of flows, network size.

Figure 2 shows the throughput-delay trade-offs for different

number of flows and different network size under the same

interference model. Figure 2a features a fixed network size of

100, and Figure 2b features a fixed number of flows equal to 8.

Intuitively, as ∆ values increase, thereby loosening the delay

constraint, the optimal throughput will rise; as the number

of random connections goes up, throughput increases, since

the optimization process gets more exploration space. The

saturation of the curves happen where the interference plays

a major role through the congestion constraints in the LP.
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Fig. 3: Impact of interferences: primary interference and two-

hop interference.

Figure 3 shows the impact of different levels of interference

severance by using primary and 2-hop interference models,

both on 100-node topologies. The increased interference sev-

erance (due to added flows and extended interference) causes

the network throughput to reach a saturation point faster.

B. Distribution of Individual Flow Packet Delay

Figure 4 shows the cumulative distribution of individual

flow packet delays. We conducted this set of experiments

on 50-node network topologies with 5 flows that have i.i.d.

arrivals and random paths, operating with a single channel.

We run the simulation for 500 iterations. In Figure 4, we show

the results for flows with path lengths (i.e., number of hops)

of 24, 16, 8, 7, 7 respectively. We notice that over 90% of the

packets of each flow experience session delays linear in the

number of hops. Further, the CDF curves are almost centro-

symmetric within the 0.1% and 99.9% range, and the total

span of the packet delays of each flow is small and is densely

around the line in which over 90% of the packets of a flow

attribute their delay distribution to. That means that with a high

probability, all packet delays are subject to a reasonably small

upper-bound. Moreover, the packet delay CDF for flows with

the same path length tend to be the same, as can be seen from

the two flows of lengths 7; we also have the same observations

for flows of other lengths on other topologies (omitted here).

Fig. 4: CDF of individual flow packet delay.

In Figure 5, we show the average ratios of packet delay

to path length for the flows with the same mean arrival rate.

These CDF curves, which lie close to each other, share a small

span of values and almost the same mean value, meaning that

on a topology the flows that have the same arrival rate tend to

share the same ratio of delay to path length under our random-

access scheduling scheme. We also observe that the average

individual packet delays tend to have a much lower growth rate

than our analytical quadratic delay bound (which may be too

conservative); that suggests that our random-access scheduling

scheme may yield close-to-linear (or close-to-optimal) delay

performance in practice.



12

Fig. 5: CDF of individual packet delay to path length ratio.

C. Average Queue Size

With the same setting as that of the previous set of exper-

iments in Section VIII-B, we observe the average backlogs

for the following three representative types of flows: high-

rate, medium-rate, and low-rate flows. The high-rate flow

is close to saturating the stability condition in Inequality 3,

while the medium-rate flow injects packets with half of the

high rate, and the low-rate flow has an even smaller rate.

Each of the flows has a path of at least 25 hops. Figure 6

shows the average queue sizes as a function of hop number.

The average backlog of each flow stays much flatter than a

quadratic curve in the number of hops; the higher the flow

rate, the higher the backlog. We note that it is hard in general

to prove a tight bound on average queue sizes and thereafter

the average delays using Lyapunov drift techniques, which

appears more efficient in the use of proving stability. For

example, one can only get a delay bound exponential in path

length by applying Lyapunov-drift-based analysis. Devising

more efficient techniques stands as a major challenge to better

understand scheduling in multi-hop wireless networks. It is

necessary to develop problem-specific new analysis techniques

towards this end, for example, in this paper, the queueing

reduction technique to derive the quadratic delay bounds for

the random-access scheduling scheme.

Fig. 6: Average queue size with no transmission threshold.

IX. CONCLUSION AND OPEN PROBLEMS

Characterizing delay-throughput trade-offs and bounds is

a fundamental problem in wireless networks, with numerous

applications. In this paper, we develop a theoretical framework

to rigorously bound this trade-off and provably approximate

the maximum throughput with given per-session delay require-

ments. The performance guarantees we prove are worst-case

bounds (in terms of problem instances), and are likely to be

better for specific instances. Extending these techniques to

bounding the average per-session delay with additional fair-

ness constraints is a very challenging open problem. Maximal

scheduling [32] and random-access maximal scheduling [16]

also fit in our DCTM framework. However, tightly bounding

per-session end-to-end delay in general is an open and difficult

problem. New progress on this will likely enable our DCTM

framework to work on a larger class of scheduling schemes.

Besides, a potential application of our framework lies in the

setting of physical interference based on SINR constraints.

For example, it would be interesting to derive end-to-end

delay bounds with an efficient scheduling scheme such as the

random-access algorithm in [35].
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