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Abstract—In this paper, we propose an energy efficient device discovery protocol, eDiscovery, as the first step to bootstrapping
opportunistic communications for smartphones, the most popular mobile devices. We chose Bluetooth over WiFi as the underlying
wireless technology of device discovery, based on our measurement study of their operational power at different states on smartphones.
eDiscovery adaptively changes the duration and interval of Bluetooth inquiry in dynamic environments, by leveraging history
information of discovered peers. We implement a prototype of eDiscovery on Nokia N900 smartphones and evaluate its performance
in three different environments. To the best of our knowledge, we are the first to conduct extensive performance evaluation of Bluetooth
device discovery in the wild. Our experimental results demonstrate that compared with a scheme with constant inquiry duration and
interval, eDiscovery can save around 44% energy at the expense of discovering only about 21% less peers. The results also show
that eDiscovery performs better than other existing schemes, by discovering more peers and consuming less energy. We also verify
the experimental results through extensive simulation studies in the ns-2 simulator.

Index Terms—Device discovery, opportunistic communications, energy efficiency, smartphones, Bluetooth.
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1 INTRODUCTION

Mobility itself is a significant problem in mobile net-
working. On the one hand, protocols designed for mobile
networks should solve the challenges caused by the mo-
bility of wireless devices. For example, routing protocols,
such as DSR (Dynamic Source Routing) [16], are required
to handle frequent routing changes and reduce the corre-
sponding communication overhead. On the other hand,
mobility can increase the capacity of wireless networks
through opportunistic communications [13], where mo-
bile devices moving into wireless range of each other
can exchange information opportunistically during their
periods of contact [7], [21].
Opportunistic communications have been widely ex-

plored in delay-tolerant networks [32], mobile social
applications [21], [31] and mobile advertising [1], to fa-
cilitate message forwarding, media sharing and location-
based services. Meanwhile, there are more and more ap-
plications leveraging opportunistic communications for
various purposes. For example, LoKast1 is an iPhone ap-
plication that provides mobile social networking services
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by discovering and sharing media content among users
in proximity. Nintendo 3DS’s StreetPass2 enables players
to exchange game data with other users they pass on
the street, through the direct device-to-device communi-
cation between 3DS systems. Other similar applications
include Sony PS Vita’s Near and Apple’s iGroups.

Device discovery is essentially the first step of op-
portunistic communications. However, there are very
few practical protocols proposed for it and most of
the existing work mainly utilizes (trace-driven) simu-
lation to evaluate the performance of various device
discovery protocols [9], [29]. Moreover, although there
are several real-world mobility traces in the CRAWDAD
repository3 which were collected using Bluetooth device
discovery, most of them used very simple discovery
protocols with constant inquiry duration and interval. A
recently proposed opportunistic Twitter application [24]
also uses a 2-minute inquiry interval for Bluetooth device
discovery. It is known that these kinds of discovery
protocols are not energy efficient [29] and thus may
not be desirable for power-constrained mobile devices,
such as smartphones. In this paper, we bridge this gap
by developing an energy-aware device discovery proto-
col for smartphone-based opportunistic communications
and evaluating its performance in practice.

There are two major challenges in designing, imple-
menting and evaluating energy efficient device discovery
protocols for smartphones. First, the selection of un-
derlying communication technology is complicated by
the multiple wireless interfaces on smartphones, such

2. http://www.nintendo.com/3ds/features/
3. http://crawdad.cs.dartmouth.edu/
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as Bluetooth and WiFi (a.k.a., IEEE 802.11).4 Although
Bluetooth is a low-power radio, its device discovery
duration is much longer than WiFi (∼10s for Bluetooth
vs. ∼1s for WiFi active scanning), which may cause more
energy consumption on smartphones. Similarly, WiFi is
known to be power-hungry for mobile devices [22], [26].
Thus, it is not clear which of them is more suitable for
device discovery on smartphones.
Second, given the dynamic nature of human mobility,

we need to adaptively tune device discovery parame-
ters, such as inquiry duration and interval, to reduce
smartphone energy consumption. Schemes with constant
inquiry intervals have been proven to be optimal for
minimizing discovery-missing probability [29]. How-
ever, their energy consumption is usually higher than the
adaptive ones, which may miss more devices during dis-
covery procedures. Therefore, there is a tradeoff between
energy consumption and discovery-missing probability.
We make the following contributions in this paper.

• We present a systematic measurement study of the
energy consumption of Bluetooth and WiFi device
discovery on smartphones, by measuring both the
electrical power at various states and the discov-
ery duration (Section 4). Our results show that
the energy consumption depends on the number
of discovered peers. Based on our measurement
results, we chose Bluetooth as the underlying wire-
less technology, because even its high-power state
consumes less energy than the low-power state of
WiFi during device discovery. We emphasize that
although previous works have studied the power
of Bluetooth/WiFi devices [9], [11], [22], they either
focus on only Bluetooth [9] or ignore the duration of
device discovery [11], [22], without which it is hard
to evaluate the energy consumption of these devices.

• We design an energy-aware device discovery proto-
col, named eDiscovery, as the first and very im-
portant step to bootstrapping smartphone-based op-
portunistic communications (Section 6). By trading
energy consumption for a limited discovery loss, we
demonstrate that eDiscovery is highly effective
in saving energy on smartphones. eDiscovery dy-
namically tunes the discovery duration and interval
according to history information of the number of
discovered peers. It also introduces randomization
into device discovery, in order to explore the search
space further.

• Our major contribution is an extensive performance
evaluation of eDiscovery and other existing de-
vice discovery protocols in different realistic envi-
ronments, through a prototype implementation on
Nokia N900 smartphones (Section 7). We conduct
experiments in a university campus, a metro station
and a shopping center. Our experimental results
verify the effectiveness of eDiscovery in practice.

4. We prefer Bluetooth and WiFi to 3G, as they are local
communication technologies with almost no monetary cost.

Compared with the STAR protocol proposed by
Wang et al. [29], eDiscovery consumes less energy
and discovers more peers. eDiscovery also per-
forms better than another protocol in the literature.

Compared with its preliminary version [15], this pa-
per makes two new contributions. First, we add the
theoretical analysis of device-discovery missing prob-
ability (Section 5), which motivates us to design the
eDiscovery protocol. Second, we port the implemen-
tation of eDiscovery into the ns-2 simulator enhanced
with the UCBT Bluetooth module5 and offer a detailed
evaluation of its parameters (Section 8). We also compare
the performance of eDiscovery and STAR with more
network topologies using ns-2 simulations.

2 DEVICE DISCOVERY IN BLUETOOTH AND
WIFI

In the following, we discuss device discovery of Blue-
tooth and WiFi, the two most commonly available local
wireless communication technologies on smartphones.

2.1 Bluetooth

The Bluetooth specification (Version 2.1) [3] defines all
layers of a typical network protocol stack, from the
baseband radio layer to the application layer. Bluetooth
operates in the 2.4 GHz ISM (Industrial, Scientific and
Medical) frequency band, shared with other devices such
as IEEE 802.11 stations, baby monitors and microwave
ovens [12]. Therefore, it uses Frequency-Hopping Spread
Spectrum (FHSS) to avoid cross-technology interference,
by randomly changing its operating frequency bands.
Bluetooth has 79 frequency bands (1 MHz width) in the
range 2402-2480 MHz and the duration of a Bluetooth
time slot is 625 µs. In the following we focus on device
discovery and refer interested readers to Smith et al. [27]
for further study of the Bluetooth protocol stack.
During device discovery, an inquiring device sends

out inquiry messages periodically and waits for re-
sponses, and a scanning device listens to wireless
channels and sends back responses after receiving in-
quiries [3]. The inquiring device uses two trains of 16
frequency bands each, selected from 79 bands. The 32
bands of these two trains are selected according to a
pseudo-random scheme and a Bluetooth device switches
its trains every 2.56 seconds. In every time slot, the
inquiring device sends out two inquiry messages on
two different frequency bands and waits for response
messages on the same frequency bands during the next
time slot. After a device receives an inquiry message, it
will wait for 625 µs (i.e., the duration of a time slot)
before sending out a response message on the same
frequency band, which completes the device discovery
procedure. For scanning devices, Bluetooth controls their
scanning duration and frequency with two parameters,
scan window and scan interval.

5. http://www.cs.uc.edu/∼cdmc/ucbt/
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2.2 Bluetooth Low Energy

Bluetooth Low Energy (LE) [4] operates in the 2400-
2483.5 MHz frequency band and divides this band into
40 channels with 2 MHz width, instead of 79 channels
with 1 MHz width in the classic Bluetooth. Three out of
these 40 channels, with channel indexes 37, 38, and 39,
are used for advertising, and the rest are data channels.
Differently from the classic Bluetooth, the LE system

leverages these advertising channels for device discovery
and connection establishment. Among the five states
defined in Bluetooth LE, three of them are related to
device discovery: advertising, scanning and initiating
states (the rest two are standby and connection states).
After a device enters the advertising state (directed by
the host machine), it sends out one or more adver-
tising packets that contains its device address on the
advertising channels. These advertising packets compose
the so-called advertising events. The time between the
start of two consecutive advertising events is defined as
the sum of a constant advInterval, which should be an
integer multiple of 625 µs and in the range of 20 ms
to 10.24 s, and a pseudo-random value advDelay in the
range of 0 ms to 10 ms. A device in either scanning or
initiating state listens on an advertising channel with the
duration of scanWindow and the interval scanInterval (i.e.,
the interval between the start of two consecutive scan
windows). The scanWindow and scanInterval parameters
should not be greater than 10.24 s.

2.3 WiFi

The key concept of device discovery in WiFi is well
understood. WiFi stations in infrastructure and ad-hoc
modes periodically (100 ms by default) send out Bea-
con messages to announce the presence of a network.
A Beacon message includes information such as SSID
(service set identifier) and capability information. The
WiFi interfaces of mobile phones should operate in ad-
hoc mode and form an Independent Basic Service Set
(IBSS) to support opportunistic communications, since
infrastructure-mode interfaces cannot form a network
and thus cannot communicate directly. Besides sending
out Beacon messages, a WiFi interface also scans wireless
channels to discover peers.
There are two types of WiFi scanning, passive and ac-

tive. In passive scanning, a WiFi interface listens for Bea-
con messages on each channel, broadcasted by its peers
at regular intervals. It periodically switches channels,
but does not send any probe request message. During
active scanning, a WiFi interface actively searches for its
peers, by broadcasting probe request messages on each
possible operating channel (channels 1 to 11 in North
America). It then waits for probe response messages
from its peers, which include information similar to that
in Beacon messages.
We prefer active scanning to passive scanning for

device discovery of opportunistic networks for two rea-
sons. First, although passive scanning has the advantage

of not broadcasting probe request messages, it dwells
on each channel longer than active scanning, to collect
Beacon messages from peers, and thus may consume
more energy. Second, an ad-hoc mode interface may skip
the sending of Beacon messages and thus make itself
not discoverable by passive scanning, when it tries to
scan for other peers with the same SSID (which happens
frequently when it is the only station in an IBSS).

3 RELATED WORK

In this section, we briefly review the literature of device
discovery in wireless networks.

3.1 Wireless Device Discovery in General

Device discovery has been studied in various wireless
networks, such as ad-hoc networks [20], [28], sensor
networks [10], [17] and delay-tolerant networks [29].
Neighbor/device discovery is one of the first steps

to initialize large wireless networks. McGlynn and Bor-
bash [20] examine the problem of neighbor discovery
during the deployment of static ad-hoc networks, where
the discovery may last only a few minutes. Vasudevan
et al. [28] show that an existing ALOHA-like neighbor
discovery algorithm reduces to the classical Coupon Col-
lector’s Problem when nodes are not capable of collision
detection. They also propose an improved algorithm
based on receiver status feedback when nodes have a
collision detection mechanism. Cohen and Kapchits [6]
investigate a slightly different neighbor discovery prob-
lem in asynchronous sensor networks. Instead of study
the initial neighbor discovery, they are interested in
continuous neighbor discovery after the initial discovery
phase. Unlike the above works that are based on abstract
communication models, our focus is practical Bluetooth
device discovery for smartphone-based opportunistic
communications.
Dutta and Culler [10] propose an asynchronous neigh-

bor discovery protocol, called Disco, for mobile sensing
applications. U-Connect [17] is another asynchronous
neighbor discovery protocol for mobile sensor networks
that selects carefully the time slots to perform discovery
and that has been proven theoretically better than Disco.
Recently, Bakht et al. [2] propose Searchlight, a pro-
tocol that combines both deterministic and probabilis-
tic approaches to further reduce the discovery latency
for mobile social applications. Disco, U-Connect and
Searchlight mainly aim to achieve a tradeoff between
discovery latency and energy consumption. For example,
U-Connect uses the power-latency product metric for
performance evaluation. Differently from them, we are
interested in the tradeoff between energy consumption
and discovery-missing probability.
The goal of eDiscovery is similar in spirit to that

of Wang et al. [29] who investigate the tradeoff be-
tween the contact probing frequency (which determines
energy consumption) and the missing probability of a
contact for delay tolerant applications. They design a
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contact probing algorithm, named STAR (Short Term
Arrival Rate), to dynamically change the contact probing
frequency. Specifically, STAR estimates the peer arriv-
ing rate over a short time, which decays slowly, and
calculates the probing frequency based on the estima-
tion. Without specifying the communication technolo-
gies, they assume that every probing message is just an
impulse and consumes no time. We compare the per-
formance of eDiscovery with STAR through extensive
real-world experiments and simulation studies.
FlashLinQ [30] is a synchronous wireless network

architecture developed by Qualcomm for direct device-
to-device communication over licensed spectrum. Al-
though FlashLinQ may be more energy efficient than
Bluetooth and WiFi, given its clean-slate design for ad
hoc networks, it requires special purpose hardware and
also operates in licensed spectrum. Unlike from Flash-
LinQ, we aim to design and implement device discovery
protocols using existing hardware and communication
technologies available on commercial smartphones.

3.2 Bluetooth Device Discovery

Bluetooth specifies a detailed device discovery proto-
col [3]. Salonidis et al. [25] identify the bottlenecks
of asymmetric device-discovery delay of Bluetooth and
introduce a randomized symmetric discovery protocol to
reduce this delay. Based on Bluetooth specification v1.1,
Peterson et al. [23] derive rigorous expressions for the
inquiry-time probability distribution of two Bluetooth
devices that want to discover each other. Chakraborty
et al. [5] present an analytical model of the time of
Bluetooth device discovery protocol. Liberatore et al. [18]
solve the problem of long discovery duration of Blue-
tooth due to its half-duplex discovery process by the
addition of another Bluetooth radio.
Drula et al. [9] study how to select Bluetooth device

discovery parameters according to the mobility context
and thus reduce the energy consumption of device dis-
covery. They present two algorithms that adjust these
parameters based on recent activity level (referred as
RAL) and the location of previous contacts, and evaluate
their performance through simulations. RAL defines sev-
eral inquiry modes based on parameters, such as inquiry
duration and interval, and switches to a more aggressive
mode whenever another device is discovered. In our
previous work [14], we compare energy consumption
of Bluetooth and WiFi device discovery on Nokia N900
smartphones, using battery life as a metric. We evaluate
the Bluetooth device-discovery probability in an office
environment using a static phone and a moving phone.
Besides the above works, although there is a large

body of literature about Bluetooth device discovery, most
of them focus on the improvements of discovery la-
tency between two Bluetooth devices by tuning various
parameters or changing the protocol itself, which may
not be feasible to implement on smartphones. The focus
of this paper is about the performance evaluation of

an energy-aware device discovery protocol in the wild
through a prototype implementation on smartphones.
Bluetooth device discovery has been an important

component in opportunistic networks. We refer inter-
ested readers to a preliminary version of this paper [15]
for a literature review in that area.

4 ENERGY CONSUMPTION OF DEVICE DIS-
COVERY

In this section, we measure the power and energy
consumption of Bluetooth and WiFi device discovery
on smartphones. Based on the experimental results, we
chose Bluetooth as the communication technology. Al-
though previous work has measured energy consump-
tion of WiFi and Bluetooth devices several years ago [9],
[22], these results may be invalid given the rapid devel-
opment of battery and wireless technologies [11]. Fried-
man et al. [11] have recently studied the power of Blue-
tooth scanning and WiFi search. However, they over-
look the duration of device discovery which determines
the energy consumption on smartphones. Furthermore,
their measurements are for station mode WiFi interfaces
and demonstrate inconsistent results about WiFi device
discovery. To the best of our knowledge, there is no
systematic study of smartphone energy consumption of
Bluetooth and WiFi device discovery.

4.1 Measurement Setup

We measure the electrical power of two states of Blue-
tooth and WiFi device discovery, idle (i.e., inquiry in-
terval) and active probing, on Nokia N900 smartphones
using the Monsoon power monitor6. The default OS of
Nokia N900, Maemo 5, is an open source Linux distri-
bution (kernel version 2.6.28). Its WiFi chipset is Texas
Instruments WL1251 using the wl12xx device driver7. Its
Bluetooth chipset is Broadcom BCM2048. We use BlueZ8,
the default Bluetooth protocol stack of most Linux distri-
butions, to run Bluetooth device discovery experiments.
During the measurements, we redirect standard output
to \dev\null and turn the screen off to minimize
their impact on the measurement results. We report the
average result and the 95% confidence intervals for each
configuration over 10 runs in this section. Note that all
results of power measurements in this paper include the
baseline power of the smartphone under test.

4.2 Bluetooth

We present a 60-second snapshot of the power of Blue-
tooth device discovery in Figure 1. We perform the
experiments by running hcitool, a tool that can send
commands, such as inq (inquiry), to Bluetooth devices.
We use the flush option to clear the cache of previously

6. http://www.msoon.com/LabEquipment/PowerMonitor/
7. http://linuxwireless.org/en/users/Drivers/wl12xx
8. http://www.bluez.org/
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Fig. 1: A 60-second snapshot of the temporal power of pe-
riodic Bluetooth device discovery with 10-second interval.
The smartphone under test is a Nokia N900 smartphone.
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Fig. 2: A 60-second snapshot of the temporal power of
periodic WiFi device discovery with 10-second interval.
The smartphone under test is a Nokia N900 smartphone.

# of Devices Average 95% Confidence Interval

0 162.03 (160.72, 163.34)

1 227.06 (219.42, 234.70)

2 247.72 (242.39, 253.05)

3 248.91 (243.02, 254.80)

4 248.59 (246.63, 250.55)

5 256.02 (252.96, 259.08)

6 253.05 (249.63, 256.47)

TABLE 1: The electrical power (in mW) of Bluetooth
device discovery with different numbers of peers.

discovered devices before each inquiry. During the mea-
surements, the phone queries neighboring Bluetooth de-
vices periodically with a 10-second interval. When there
is no neighboring device, the average power of Bluetooth
inquiry over 10 runs is ∼162.03 mW (standard deviation:
2.12 mW). During the idle states, the Bluetooth radio is
in discoverable mode with average power ∼16.54 mW
(standard deviation: 1.11 mW).
The average power of Bluetooth device discovery

is affected by the number of neighboring devices. We
repeat the experiments with the number of neighboring
Bluetooth devices increasing from 0 to 6 and summarize
the results in Table 1. As we can see from this table,
when there is one neighboring device, the average power
increases to around 227.06 mW, due to the reception of
response messages of Bluetooth inquiry. When there are
more than one neighboring devices, the average power
increases to about 250 mW. Defined in the standard [3],
the duration of Bluetooth device discovery should be a
multiple of 1.28 seconds and the recommended default
value is 10.24 seconds, which we used in the measure-
ments. Figure 1 shows clearly the configured Bluetooth
device discovery duration and interval.

4.3 WiFi

We present another 60-second snapshot of the power
of WiFi device discovery in Figure 2. We perform the

Environment # of peers duration (s)

Office 43.52 (42.48, 44.56) 1.07 (1.04, 1.10)

Home 14.02 (13.75, 14.29) 0.87 (0.86, 0.88)

Park 0.01 (n/a) 0.52 (0.51, 0.53)

TABLE 2: The average number of discovered peers and
duration of WiFi device discovery in three environments.
The numbers in the parentheses are the 95% confidence
intervals.

experiments by running iwlist, a tool that shows the
list of access points and ad-hoc cells in range through
active scanning. During the measurements, the phone
scans neighboring devices periodically also with a 10-
second interval, which can be clearly identified in Fig-
ure 2. The average power of WiFi active scanning over 10
runs is ∼836.65 mW (standard deviation: 8.98 mW). Even
during scanning intervals, the average power is ∼791.02
mW (standard deviation: 5.23 mW), because the WiFi
radio is in ad-hoc mode and sends out Beacon messages
with 100 ms intervals.
Differently from Bluetooth, the duration of WiFi active

scanning is not constant and may depend on the number
of operation channels and the amount of neighboring
peers. We measure the duration of WiFi device discovery
in three different environments: a campus office build-
ing, an apartment, and a national park, and summarize
the results in Table 2. In each environment, we repeat the
experiments 100 times and report the average values and
the 95% confidence intervals. As we can see from this
table, when the number of discovered peers increases,
the duration of WiFi device discovery grows from ∼0.52
seconds to ∼1.07 seconds, which is much shorter than
the duration of Bluetooth inquiry.

4.4 Energy Consumption

We summarize the average power of Bluetooth (with
6 neighboring devices) and WiFi device discovery in
Table 3. Suppose the power is Pidle for the idle state
and Pprobe for the inquiry/scan state of Bluetooth/WiFi
devices, the duration of Bluetooth inquiry/WiFi scan is
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Fig. 3: A 60-second snapshot of the temporal power of pe-
riodic Bluetooth device discovery with 10-second interval.
The smartphone under test is a HTC Hero smartphone
(Android 1.5).
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Fig. 4: A 60-second snapshot of the temporal power of
periodic WiFi device discovery with 10-second interval.
The smartphone under test is a HTC Hero smartphone
(Android 1.5).

Pidle Pprobe

Bluetooth 16.54 (15.85, 17.23) 253.05 (249.63, 256.47)

WiFi 791.02 (787.78, 794.26) 836.65 (831.08, 842.22)

TABLE 3: The average power of Bluetooth and WiFi
device discovery in mW. The numbers in the parentheses
are the 95% confidence intervals.

Tprobe and the inquiry/scan interval is Tidle. Then the
estimated energy consumption is

E = Tidle · Pidle + Tprobe · Pprobe

Given the high power of WiFi device discovery in both
active probing and idle states, we prefer Bluetooth to
WiFi for device discovery of smartphone-based oppor-
tunistic communications. We note that no matter how
long the duration of Bluetooth inquiry is, the overall en-
ergy consumption of Bluetooth device discovery should
always be lower than that of WiFi, because the power of
Bluetooth inquiry is even lower than that of the WiFi idle
state (253.05 vs. 791.02 mW). To perform device discov-
ery, the major problem of WiFi ad-hoc mode is that the
radio needs to send out Beacon messages periodically
and power saving mechanisms for WiFi ad-hoc mode
are not available on most mobile phones [26].
Although the communication range of WiFi is longer

than Bluetooth and may discover more peers, making
its device discovery energy efficient requires substantial
modifications of the WiFi protocol, which may not be
feasible on most smartphones. In this paper, we aim
to design a device discovery protocol without changing
the underlying communication protocol and thus make
its deployment easy. This is another reason why we
chose Bluetooth over WiFi. However, we emphasize that
if energy consumption is not a major concern and the
design goal is to discover as many peers as possible or to
transfer a large amount of data efficiently, we should use
WiFi as the underlying communication protocol (which
is out of the scope of this paper), because it has a larger
coverage area.

4.5 Android Smartphones

We also measured the power of Bluetooth and WiFi
device discovery using a HTC Hero smartphone with
Android 1.5. We plot the results in Figure 3 for Bluetooth
and Figure 4 for WiFi. On this smartphone, the average
power is 432.84 mW (standard deviation: 7.86 mW) for
Bluetooth inquiry and 900.25 mW (standard deviation:
21.54 mW) for WiFi scan. There are two differences of
the experiments on the Nokia N900 and HTC Hero
smartphones. First, the experiments on HTC Hero were
performed with the screen on due to the operational
requirements and thus the baseline power of HTC Hero
is higher than that of Nokia N900. Second, the WiFi
interface on HTC Hero does not support ad-hoc mode
and we cannot measure the average power Pidle on it.
However, these results still clearly show the significant
power difference (467.41 mW) of Bluetooth inquiry and
WiFi scan.

5 DEVICE DISCOVERY MISSING PROBABILITY

In this section, we analyze the missing probability of
a device discovery protocol with constant Bluetooth
inquiry window and interval (referred as Constant in
the following).
First, we introduce some notations. For a given device

i, we assume that the contact durations tD(i) are in-
dependent and identically distributed random variables
with common PDF (probability density function) p(x) =
d

dx
Pr[tD ≤ x]. We assume the inter-contact time (the

time between subsequent contacts) tC(i) are stationary
random variables.
If a scanning device is in the discovery/contact range

of an inquiring device for L seconds, it can be discovered
with probability R(L). We can easily derive R(L) from
the analysis of the probability distribution of the inquiry
time for Bluetooth devices by Peterson et al. [23]. For
Bluetooth device discovery, R(L) is a monotonically
increasing function of L. Let R(L) = 1 − R(L). Assume
that for different devices, or for the same device in
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Fig. 5: Two contact cases for analyzing the device dis-
covery missing probability.

different contact intervals, the discovery probabilities are
independent of each other. For any real number L, we let
L+ = max{L, 0}. We use Pmiss to denote the probability
that a contact is missed (i.e., the scanning device is not
discovered by the inquiring device).
Now, we analyze Pmiss for the Constant protocol
that repeatedly performs Bluetooth inquiry for W sec-
onds and sleeps for next V seconds. Let T = W + V .
Suppose the scanning device arrives at time nT + x for
some very large integer n and x ∈ [0, T ] and the contact
duration tD is a constant real L. We use Pmiss(x,L) to de-
note the missing probability under the above condition.
Let k = L+x−T

T
. Based on the value of k, we distinguish

the following two cases, as shown in Figure 5.

1) If k < 0 (i.e., x + L < T , contact #1 in Figure 5)
which means the contact ends within the period T ,
it is easy to see that

Pmiss(x,L) = 1 − R(min{L, (W − x)+})

= R(min{L, (W − x)+})

2) If k > 0 (e.g., contact #2 in Figure 5), there may
be more than one inquiry cycles (inquiry window
plus inquiry interval). Let us consider them one by
one. In (nT, (n + 1)T ), the scanning device is not
discovered by the inquiring device with probability
R((W −x)+). In each of the next ⌊k⌋ cycles, the two
devices are in the contact range for W seconds and
the missing probability is R(W ). In the last possible
cycle, the contact interval is of length min(y,W ),
where y = L + x − T − ⌊k⌋T . Therefore,

Pmiss(x,L) = R((W − x)+)R(W )⌊k⌋R(min(y,W ))

If the inter-contact time follows a nonlattice distribution,
by Blackwell’s Theorem in renewal theory [29], we have
that, when n → ∞,

Pmiss =

∫ T

0

∫ ∞

0

Pmiss(x,L)p(L)dLdx

=

∫ T

0

∫ T−x

0

R(min{L, (W − x)+})p(L)dLdx

+

∫ T

0

∫ ∞

T−x

R((W − x)+)R(W )⌊k⌋R(min(y,W ))p(L)dLdx

Similar with the analysis by Wang et al. [29], the
missing probability is independent of the inter-contact
time distribution. The major difference is that we also
consider the inquiry window duration in our analysis,
besides the contact duration and inquiry interval. A key
observation here is that the missing probability is also
independent of device density and is solely determined
by the values of W and V . Therefore, if we dynami-
cally tune W and V to decrease (increase) the missing
probability when the device density is high (low), we
may be able to increase the overall device-discovery
probability. For example, if we fix the missing probability
at 0.2, for two adjacent areas with density 100 and 10
we can discover 88 devices. However, if we decrease
the missing probability to 0.1 for the dense area and
increase it to 0.3 for the sparse area, we can discover
97 devices. This observation motivates us to design the
eDiscovery protocol in the next section.

6 EDISCOVERY DESIGN

In this section, we present eDiscovery, an energy-
aware device discovery protocol that adaptively changes
the duration and probing interval of Bluetooth inquiry.
The major design principle of eDiscovery is to re-

duce smartphone energy consumption of device discov-
ery, while not missing too many peers. To achieve this
goal, we dynamically change the duration and interval
of Bluetooth device discovery, based on the number of
discovered peers. In theory, if a mobile device knows
the density of its peers at any given time, it may be
able to select the optimal values for these two Bluetooth
device discovery parameters. However, in practice it
is hard to estimate this density, especially in dynamic
environments, such as shopping malls and train stations.
Therefore, we present a heuristic adaptive inquiry ap-
proach of eDiscovery in Algorithm 1.
There are two approaches to control the duration of

Bluetooth device discovery: (1) specifying the length
of the inquiry window explicitly or (2) specifying the
number of received responses before device discov-
ery stops. Accordingly, there are two parameters of
hci_inquiry, the device discovery function of BlueZ,
inquiry window and num responses. This function stops
inquiry after 1.28×inquiry window seconds or it has re-
ceived num responses inquiry responses.
We focus on the control of the inquiry window in this

paper, as it is hard to predict the number of neighboring
peers in practice. Moreover, a peer can respond to an
inquiry more than once. Suppose there are 3 neighboring
peers, A, B, and C, and we set num responses to be 3. If all
the first 3 responses are sent by peer A, device discovery
will stop after receiving them and thus discover only
peer A. We note that eDiscovery sits between mobile
applications and Bluetooth device discovery and thus
the contention/collision of Bluetooth device discovery
messages are resolved at the MAC layer of Bluetooth
protocol stack.
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Algorithm 1 Adaptive Inquiry Algorithm of
eDiscovery

1: inquiry window = base W, inquiry interval = base I;
2: while (TRUE) do
3: peers = hci_inquiry(inquiry window,

MAX RSP);
4: if (peers > N ) then
5: inquiry window = base W;
6: else
7: inquiry window = small W + r;
8: end if
9: if (peers == 0 and last peers == 0) then
10: inquiry interval += inc NP + r;
11: else if (peers <> 0 and last peers == 0) then
12: inquiry interval = base I + r;
13: else if (peers > last peers and inquiry interval − I

is in the valid range) then
14: inquiry interval −= I ;
15: else if (peers < last peers and inquiry interval + I

is in the valid range) then
16: inquiry interval += I ;
17: end if
18: last peers = peers;
19: sleep(inquiry interval);
20: end while

The two key parameters in Algorithm 1 of
eDiscovery are the threshold of the number of
discovered peers N and the increment/decrement of
inquiry interval I . The outputs of Algorithm 1 are
inquiry window and inquiry interval, which control the
duration and interval of Bluetooth inquiry. The main
body of this algorithm is a while loop that performs
Bluetooth inquiry 1.28∗inquiry window seconds and then
sleeps inquiry interval seconds.

After each Bluetooth inquiry, we adapt the values
of inquiry window based on the number of discovered
peers. If this number is larger than N , we keep the
default initial value base W, aiming to discover more
peers. If it is smaller or equal to N , we set the next
inquiry window to be small W + r, where r is defined
as

r =







1 with probability (1 − p)/2
0 with probability p
−1 with probability (1 − p)/2

By changing inquiry window in this way, we can reduce
the duration of Bluetooth inquiry and thus save energy
on smartphones when the number of neighboring peers
is small.

We adapt the value of inquiry interval to the number of
discovered peers in a similar way. When a smartphone
discovers no peers for two consecutive inquiries, we
increase inquiry interval by inc NP + r and reset it to
base I + r after the smartphone discovers new peers.
Moreover, if the current number of discovered peers is
larger than the previous one, we decrease inquiry interval

Parameter Default Description

N 5 Threshold of discovered peers

I 1 Increment of inquiry interval

base W 8 Base of inquiry window

base I 10 Base of inquiry interval

MAX RSP 255 Maximum number of scanned peers

small W 5 Smaller inquiry window

inc NP 10 Increment of interval when no peers

r 0 Random variable for robustness

p 0.8 Probability of r = 0

TABLE 4: The parameters in Algorithm 1 and their
default values.

by I , and vice versa. An implication of this algorithm
is that inquiry interval will not change if the number of
discovered peers does not vary. We allow inquiry interval
to vary between 10 – 200 seconds. The random variable r
is refreshed for every inquiry. We use it for improving the
robustness of eDiscovery for dynamic environments.
Furthermore, it can avoid synchronization of Bluetooth
inquiry which may make Bluetooth devices not be able
to discover each other [14], [23].

The intuition behind these adaptations is that we can
reduce inquiry duration and increase inquiry interval
when the number of neighboring peers is small, because
doing this will not miss too many peers. By changing the
values of N and I , we can achieve different tradeoff be-
tween the number of discovered peers and smartphone
energy consumption. Smaller N and I lead to more
aggressive Bluetooth inquiry, which may discover more
peers but also consume more energy on smartphones.

We list the default values of the parameters of Algo-
rithm 1 in Table 4. These values are not set arbitrarily. We
set the initial inquiry window to be 8 (i.e., 8∗1.28 = 10.24
seconds) because it is the default standard value of
Bluetooth inquiry. We set MAX RSP to be 255 (the
suggested value in BlueZ protocol stack). We set small W
to be 5. Thus when the number of discovered peers
is smaller than N , the smallest inquiry window 5 + r
would be 4, as this is the minimum inquiry window to
perform a complete scan of all possible frequency bands.
Moreover, Peterson et al. [23] demonstrate that by setting
the inquiry window to be 4, a Bluetooth device can locate
99% of neighboring devices within its transmission range
in a static environment. When deciding the probability
p in r, essentially, we want to set the parameters to be
their default values under certain conditions with a high
probability (by default p = 0.8) and slightly change their
values by 1 with a low probability.

We evaluate the performance of eDiscovery with
different values of N and I in Section 7. We also evaluate
how other parameters, such as base W, base I and the
choice of random variable r, affect the performance
of eDiscovery in Section 8.1. Moreover, we evaluate
various solutions of changing inquiry interval based on
the difference of discovered peers, by replacing line 14
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Fig. 6: The ratio of the number of discovered peers for
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different N and I . The error bars are the 95% confidence
intervals.

in Algorithm 1 with

inquiry interval− = ceil(α × abs(peers − last peers));

and line 16 with

inquiry interval+ = ceil(α × abs(peers − last peers));

where α is a parameter to further tune the value of
inquiry interval. Finally, we note that there may be a
diminishing return for some applications for which the
change from discovering nothing to one peer is more
important than that from discovering, for example, 10
to 11 peers. In this case, we need to invest more energy
when the number of peers is small, the opposite behavior
of our eDiscovery protocol.

7 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our
proposed eDiscovery protocol through a prototype im-
plementation on Nokia N900 smartphones and compare
it with other schemes. Although previous work has eval-
uated device discovery protocols using simulations [9],
[29], a recent study demonstrates that even contact-
based simulations using real-world mobility traces may
not be able to accurately evaluate the performance of
opportunistic networks [24]. Moreover, it is also not clear
how Bluetooth device discovery performs in the wild,
under cross-technology interference [12].
We implement eDiscovery in C language using

the BlueZ protocol stack and compare its performance
with three other approaches: the Constant protocol in
Section 5, the STAR algorithm by Wang et al. [29] and
the RAL scheme by Drula et al. [9]. The two metrics
we are interested in are the ratio of discovered peers,
compared to the ground truth, and the estimated en-
ergy consumption. To get the ground truth, we perform
Bluetooth inquiry with the default 10.24-second duration
continuously. Based on the ground truth, we can know
how may peers Constant can discover by aggregating

Param.
Constant eDiscovery Percent

N, I

5, 1 220.83 (212.67, 228.99) 123.93 (115.92, 131.94) 56.12%

7, 3 209.02 (202.63, 215.41) 113.84 (96.24, 131.44) 54.46%

15, 10 210.80 (200.86, 220.74) 105.60 (103.70, 107.50) 50.09%

TABLE 5: The estimated energy consumption (in Joules)
of eDiscovery with different N and I and the compari-
son with Constant. The numbers in the parentheses are
the 95% confidence intervals.

the inquiries in the ground truth with only odd/even
indices. We did all experiments three times and report
the average results with the 95% confidence intervals.

7.1 Impact of N and I

We first evaluate the performance of eDiscovery for
different combinations of N and I , using Constant
as the baseline. During a single experiment, we run
the continuous Bluetooth inquiry on one phone and
eDiscovery on another simultaneously. We conducted
the experiments in and around the Stamp Student Union
of the University of Maryland. We walked along a pre-
defined route for around 30 minutes during the experi-
ments. Most of the Bluetooth devices discovered by us
should be on mobile phones, although they can also be
on other mobile devices such as tablets and laptops.
We plot the percentage of discovered Bluetooth de-

vices of eDiscovery and Constant in Figure 6. We
also summarize their estimated energy consumption in
Table 5. The experimental results show that increasing N
and I can save smartphone energy consumption at the
expense of a higher missing probability. When N = 5
and I = 1, eDiscovery consumes only 56% energy of
Constant, and discovers 21% less peers than it. These
results also partially verify experimentally the theoretical
analysis by Wang et al. [29] that the probing scheme
with constant inquiry intervals achieves the minimum
discovery-missing probability among all probing meth-
ods with the same average inquiry interval. The ratio
of discovered peers between Constant and the ground
truth is higher than 80% for all experiments.

7.2 Dynamic Environment

We then compare the performance of eDiscovery (N =
5 and I = 1) with Constant and STAR [29] in three dif-
ferent environments: the Student Union of the University
of Maryland, the Union Station of Washington D.C. and
the Mall at Short Hills in New Jersey. We also chose a
pre-defined route in the other two locations, including
both indoor and outdoor environments, and the duration
of experiments was about 30 minutes too. Generally,
there are much more peers in the indoor environment
than the outdoor environment in these three locations.
We limit the inquiry interval of STAR to be 10 – 200
seconds, the same as eDiscovery.



10 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXX 20XX

 0

 20

 40

 60

 80

 100

UMD
Campus

Union
Station

The Mall at
Short Hills

%
 o

f d
is

co
ve

re
d 

pe
er

s

Different environments

Constant
eDiscovery

STAR

Fig. 7: The comparison of the percentage of discovered
peers for different schemes. The error bars are the 95%
confidence intervals.

 0

 20

 40

 60

 80

 100

UMD
Campus

Union
Station

The Mall at
Short Hills

%
 o

f e
ne

rg
y 

co
ns

um
pt

io
n

Different environments

eDiscovery STAR

Fig. 8: The comparison of the percentage of energy con-
sumption for different schemes, using Constant as base-
line. The error bars are the 95% confidence intervals.

We plot in Figure 7 the percentage of discovered peers
of eDiscovery, Constant and STAR, compared with
the ground truth. In each group of experiments, we
run Constant along with either eDiscovery or STAR.
Thus there are two bars for Constant for each location
in Figure 7. We note that the first two bars in this figure
for Constant and eDiscovery present the results from
the same experiment as the first two bars in Figure 6.
We also plot in Figure 8 the energy consumption of
eDiscovery and STAR, compared with Constant. As
we can see from these figures, eDiscovery performs
better than STAR in all three locations. In particular,
eDiscovery discovers more peers than STAR but con-
sumes much less energy on smartphones.

eDiscovery outperforms STAR for two reasons.
First, eDiscovery takes into account not only the in-
quiry interval, but also the duration of inquiry, to further
reduce smartphone energy consumption. As shown in
Section 4, the active probing state consumes much more
energy than the idle state of Bluetooth inquiry. Second,
it adapts to environmental changes (i.e., the number
of neighboring peers) much more quickly than STAR,
which is important in dynamic environments.

7.3 An In-Depth Look at the Traces

To verify the above, we took an in-depth look at the
traces collected for the experiments we did in the Mall
at Short Hills. We plot the start time, duration, and the
number of discovered peers of a single experiment for
STAR in Figure 9a and for eDiscovery in Figure 9b. For
a Bluetooth device discovery starting at s and ending at t
that discovers p peers, we plot a horizontal bar from (s, p)
to (t, p). We note that in these two figures, a Bluetooth
device may be counted several times if it appeared in
multiple device discoveries. In each figure, we use the
red color to plot the ground truth and the black color for
either STAR or eDiscovery. During both experiments,
we discovered more than 100 peers in the ground truth.

The percentage of discovered peers is around 60% for
eDiscovery and 40% for STAR.
There are two main observations from Figure 9a

and Figure 9b. First, on average the duration of Blue-
tooth device discovery in eDiscovery is shorter than
STAR (6.79 seconds vs. 10.25 seconds), which is demon-
strated by the narrower black bars in Figure 9b. Second,
eDiscovery increases the inquiry intervals much faster
than STAR when there are few peers and decreases
the intervals much quicker when there are more peers.
For example, from 300 seconds to 600 seconds of both
experiments, there were at most 3 peers found by each
inquiry. During this quiet period, eDiscovery per-
formed Bluetooth inquiry only 10 times, 3 times less than
STAR. Moreover, during the period from 800 seconds to
1,000 seconds when there were more peers, eDiscovery
performed Bluetooth inquiry 7 times, 4 times more than
STAR. On the one hand, the shorter discovery duration
and less frequent Bluetooth device discovery during the
quiet period translate into less energy consumption of
eDiscovery than STAR. On the other hand, the more
frequent device discovery when there are many peers is
one of the reasons that the discovery-missing probability
of eDiscovery is lower than STAR.

7.4 Comparison with Another Protocol

We also evaluate the performance of the RAL protocol in
Drula et al. [9], by measuring the number of discovered
peers. RAL can discover only less than 30% of peers
found in the ground truth for the experiment we did
in the Mall at Short Hills. The possible reason may be
that even for the most aggressive discovery mode in
RAL, the duration of Bluetooth device discovery is less
than 1 second, which is too short to complete a scan
of all possible Bluetooth frequency bands. Differently
from RAL, the shortest duration of Bluetooth device
discovery in eDiscovery is 5.12 seconds, which is
more suitable when the number of neighboring peers
changes dynamically. Note that although it is possible to
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Fig. 9: Detailed traces of eDiscovery and STAR experiments.

tune the parameters of RAL and STAR to improve their
performance, that is beyond the scope of this paper.

7.5 Summary

To summarize, our performance evaluation shows that
if energy consumption is not a major concern and the
key objective is to discover more neighboring devices,
Constant may be a good choice. It can discover more
than 80% peers but consumes only half energy of con-
tinuous device discovery. However, when the major goal
is to save energy on smartphones and the missing of
some peers is acceptable, we should use eDiscovery to
dynamically tune the parameters of Bluetooth device dis-
covery. In other words, the selection between Constant
and eDiscovery depends on the requirements of appli-
cations that actually use them for device discovery.

8 SIMULATION STUDIES IN NS-2
To perform a much more extensive evaluation of
eDiscovery, we port its implementation into the ns-
2 simulator enhanced with the UCBT Bluetooth module

(version 0.9.9.2a). This UCBT module is for Bluetooth
version 1.2 and there is no significant difference between
the device discovery specifications of Bluetooth versions
1.2 and 2.1.

8.1 eDiscoveryParameters

Using UCBT based simulation studies, we evaluate how
the parameters of Algorithm 1, including different val-
ues of base W, base I, small W and inc NP, and the
choice of random variable r, affect the performance of
eDiscovery. Recall that we set the default values of
these parameters as listed in Table 4. The simulation
setup is as follows. The simulation area is a 1800x20
rectangle. The inquiring Bluetooth devices moves from
(0, 10) to (1,800, 10) with a constant speed 1 m/s and
thus the simulation duration is 30 minutes. We distribute
100 scanning Bluetooth devices in the simulation area
uniformly and randomly.
We summarize the simulation results for 1,000 ran-

domly generated network topologies in Table 6. The sec-
ond row of this table shows the simulation results with
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Param. / Value % of Discovered Peers Duration of Inquiry

Default 74.39 (73.96, 74.82) 581.33 (579.30, 583.36)

base W
4 47.48 (46.92, 48.04) 323.71 (321.42, 326.00)

12 74.72 (74.29, 75.15) 585.69 (583.64, 587.74)

base I
6 76.62 (76.18, 77.06) 693.54 (690.79, 696.29)

14 68.42 (67.99, 68.85) 490.58 (488.96, 492.20)

small W
3 47.47 (46.91, 48.03) 328.24 (325.91, 330.57)

7 79.40 (79.03, 79.77) 748.66 (746.76, 750.56)

inc NP
5 80.47 (80.16, 80.78) 628.25 (627.05, 629.45)

15 69.40 (68.88, 69.92) 541.01 (538.15, 543.87)

p
0.9 74.91 (74.50, 75.32) 585.56 (583.62, 587.50)

0.7 74.57 (74.13, 75.01) 580.35 (578.25, 582.45)

α

0.5 74.51 (74.10, 74.92) 581.30 (579.31, 583.29)

1.0 74.73 (74.32, 75.14) 578.49 (576.53, 580.45)

1.5 73.22 (72.80, 73.64) 565.07 (562.94, 567.20)

TABLE 6: Performance evaluation of eDiscovery using
different parameters. The numbers in the parentheses are
the 95% confidence intervals.

the default values of these parameters. For the rest of the
table, when the value of a parameter is changed, we use
the default values for all other parameters. The major
observation from Table 6 is that by increasing inquiry
duration or decreasing inquiry interval eDiscovery can
discover more peers, but at the cost of longer inquiry
time. Based on the description about energy consump-
tion of Bluetooth device discovery in Section 4.4, the
longer inquiry time will lead to higher energy consump-
tion. Moreover, the performance of eDiscovery is more
sensitive to the change of inquiry duration. Compared
with the default setup, decreasing the value of base W
by 4, or the value of small W by 2 will reduce the device
discovery probability by 36% (whereas increasing their
values by the same amount can discover about only
0.4% and 6.7% more peers). In eDiscovery, we use the
two key parameters N and I to dynamically control the
values of inquiry duration and interval.
Another observation from Table 6 is that the perfor-

mance of eDiscovery does not heavily depend on the
choice of r which is determined by the probability p,
because the mean of r is always 0 no matter how large
or small p is. We verified this with very small values
of p. For example, when p = 0.1, eDiscovery can
find 1.6% more peers and increase inquiry duration by
4.3%. Moreover, increasing α from 0.5 to 1.0 has limited
impact on the performance of eDiscovery. However,
when changing from 1.0 to 1.5, eDiscovery discovers
about 2% less peers and reduces the inquiry duration by
around 2%.

8.2 Comparison of eDiscoveryand STAR

To offer a direct apple-to-apple comparison of
eDiscovery and STAR and evaluate their performance
for more network topologies, we also port the
implementation of STAR into the UCBT Bluetooth
module. We summarize the simulation results for 1,000
randomly generated network topologies in Table 7.

% of Discovered Peers Duration of Inquiry

eDiscovery 77.80 (77.32, 78.28) 410.00 (408.21, 411.79)

STAR 75.83 (74.93, 76.73) 676.23 (671.40, 681.06)

TABLE 7: Performance evaluation of eDiscovery and
STAR in the ns-2 simulator. The numbers in the paren-
theses are the 95% confidence intervals.

% of Discovered Peers Duration of Inquiry

eDiscovery 85.55 (85.12, 85.98) 417.70 (416.09, 419.31)

STAR 82.50 (81.58, 83.42) 689.33 (684.91, 693.75)

TABLE 8: Performance evaluation of eDiscovery and
STAR in the ns-2 simulator with interlaced inquiry scan.
The numbers in the parentheses are the 95% confidence
intervals.

The simulation setup is similar to that in Section 8.1.
To validate the experimental results in Section 7, we
distribute Bluetooth devices in the simulation area
based on the characteristics of our collected traces.
More specifically, we divide the area into five regions
and the device density of regions 1, 3 and 5 is much
higher than that of regions 2 and 4, similar to the
distribution illustrated in Figure 9. We set the Bluetooth
communication range to be 10 meters.

The two metrics that we are interested in are the
percentage of discovered peers and the duration of
Bluetooth inquiry. As we can see from Table 7, although
eDiscovery discovers only slightly more peers than
STAR, the standard deviation of the percentage of dis-
covered peers is much smaller for eDiscovery than
STAR. Moreover, the duration of Bluetooth inquiry in
eDiscovery is only around 60% of that of STAR, which
confirms the energy-efficiency feature of eDiscovery
because shorter inquiry time means less energy con-
sumption. Both eDiscovery and STAR discover more
peers in the simulations than in the field studies. One of
the possible reasons may be that there is no co-channel
interference considered in the ns-2 simulator. When two
Bluetooth devices are in the communication range of
each other (one of them is in the inquiring mode and
another in the scanning mode), the discovery probability
is very close to 1.0, which is not true in practice. This
high device discovery probability in the ns-2 simulator
also decreases eDiscovery’s room for improvements.

In addition to the standard inquiry scan mode de-
scribed in Section 2, Bluetooth version 2.1 also introduces
an optional interlaced inquiry scan mode to increase the
discovery probability. When in the interlaced inquiry
scan mode, a Bluetooth device performs two back to
back scans, where the first one is on the normal hop
frequency fscan and the second one is on frequency
(fscan + 16) mod 32. This means that the two inquiry
scan frequencies will be in different trains.

It is hard to evaluate the performance of device dis-
covery protocols with the interlaced inquiry scan mode
in practice because by default Bluetooth devices use
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the standard inquiry scan mode and it is impossible to
change this setting on the discovered mobile phones in
our field studies. Thus, we also evaluate the performance
of eDiscovery and STAR in the ns-2 simulator with
the interlaced inquiry scan mode enabled and report
the simulation results in Table 8. By comparing Table 8
with Table 7, we can see that interlaced inquiry scans
can increase the number of discovered peers, but at
the same time also increase the duration of Bluetooth
inquiry. Still, eDiscovery outperforms STAR when the
interlaced inquiry mode is enabled.

9 DISCUSSION

In this section, we discuss the limitations of this paper
and some possible extensions of eDiscovery.

9.1 Bluetooth Low Energy
As pointed out by Liu et al. [19], although the wide-
range parameter settings of Bluetooth LE (in Section 2.2)
offer the flexibility for devices to customize the discovery
performance, improper settings could significantly in-
crease the latency and energy consumption of Bluetooth
LE device discovery. The device discovery procedure for
Bluetooth LE looks simpler than that of the classical
Bluetooth (e.g., smaller number of channels and the
elimination of switching between two trains). However,
they share fundamentally the same design principle
of interleaving between the transmission of multiple
inquiry messages/advertising packets and staying in the
idle mode to save energy. We can extend our proposed
scheme about how to dynamically change the duration
and interval of classical Bluetooth inquiry to control
the duration of advertising events (i.e., the number of
advertising packets to send out) and the advInterval
in a similar way, and thus further reduce the energy
consumption for device discovery in Bluetooth LE. We
leave this extension as our future work.

9.2 Other Extensions
Device discovery is only the first step of opportunistic
communications. The next two steps are service discov-
ery and data transfer. There are several options of service
discovery. We can exploit the standard service discovery
protocol of Bluetooth [3], or develop our own protocols.
We plan to leverage multiple radio interfaces on smart-

phones, such as Bluetooth and WiFi, for opportunistic
data transfer. These interfaces usually have different
communication ranges and diverse radio characteristics.
Pering et al. [22] have demonstrated the benefits of
energy reduction by switching between these interfaces
for mobile applications. In our case, Bluetooth may be
suitable for short data transfer due to its low-power
nature. For transmissions of large amounts of data, WiFi
may be more desirable, because its data rate is higher
and its communication range is much longer than Blue-
tooth. Although WiFi is not energy efficient for device
discovery, we can still enable it for data transfer after
mobile phones discover each other through Bluetooth.

9.3 Limitations

Although we have evaluated the performance of
eDiscovery in three different realistic environments,
the major limitation of the evaluation is that we had no
control of other mobile phones during the experiments.
If all the mobile phones perform Bluetooth device dis-
covery, the number of phones discovered by us may be
changed, as Bluetooth devices that are in inquiry state
at the same time cannot discover each other [14], [23].
During our field experiments, most of the discovered
Bluetooth devices were probably in discoverable mode
only. Running experiments on mobile testbeds, such as
CrowdLab [8], may solve this problem.

Another limitation of our work presented in this
paper is that we have evaluated the performance of
eDiscovery on only Nokia N900 smartphones. We
are planing to port eDiscovery to other smartphone
platforms, such as Android and iPhones, and evaluate
its performance on them.

10 CONCLUSION

In this paper, we present eDiscovery, an adaptive
device discovery protocol for reducing energy con-
sumption of smartphone-based opportunistic communi-
cations. To choose the underlying communication tech-
nology, we measured the power of Bluetooth and WiFi
device discovery on Nokia N900 and HTC Hero smart-
phones. Based on the measurement results, we prefer
Bluetooth to WiFi because Bluetooth is more energy
efficient for device discovery. eDiscovery dynamically
changes the Bluetooth inquiry duration and interval to
adapt to dynamic environments. We verify the effec-
tiveness of eDiscovery through the first experimental
field study of Bluetooth device discovery in three dif-
ferent environments, using a prototype implementation
on smartphones. We are currently working on a more
extensive evaluation of eDiscovery to further improve
its performance.
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