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Abstract. While there has been significant progress on algorithmic aspects of the Lovász Local Lemma
(LLL) in recent years, a noteworthy exception is when the LLL is used in the context of random permutations.

The breakthrough algorithm of Moser & Tardos only works in the setting of independent variables, and does

not apply in this context. We resolve this by developing a randomized polynomial-time algorithm for such
applications. A noteworthy application is for Latin transversals: the best-known general result here (Bissacot

et al., improving on Erdős and Spencer), states that any n× n matrix in which each entry appears at most

(27/256)n times, has a Latin transversal. We present the first polynomial-time algorithm to construct such
a transversal. We also develop RNC algorithms for Latin transversals, rainbow Hamiltonian cycles, strong

chromatic number, and hypergraph packing.
In addition to efficiently finding a configuration which avoids bad-events, the algorithm of Moser &

Tardos has many powerful extensions and properties. These include a well-characterized distribution on the

output distribution, parallel algorithms, and a partial resampling variant. We show that our algorithm has
nearly all of the same useful properties as the Moser-Tardos algorithm, and present a comparison of this

aspect with recent works on the LLL in general probability spaces.
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1. Introduction

Recent years have seen substantial progress in developing algorithmic versions of the Lovász Local Lemma
(LLL) and some of its generalizations, starting with the breakthrough work of Moser & Tardos [34]: see,
e.g., [21, 22, 27, 36]. However, one major relative of the LLL that has eluded constructive versions, is the
“lopsided” version of the LLL (with the single exception of the CNF-SAT problem [34]). A natural setting
for the lopsided LLL is where we have one or many random permutations [17, 29, 32]. This approach has
been used for Latin transversals [8, 17, 41], hypergraph packing [30], certain types of graph coloring [9],
and in proving the existence of certain error-correcting codes [26]. However, current techniques do not give
constructive versions in this context. We develop a randomized polynomial-time algorithm to construct such
permutation(s) whose existence is guaranteed by the lopsided LLL, leading to several algorithmic applications
in combinatorics. Furthermore, since the appearance of the conference version of this work [23], related works
including [1, 20, 28] have been published; we make a comparison to these in Sections 1.2 and 6.3, detailing
which of our contributions do not appear to follow from the frameworks of [1, 20, 28].

1.1. The Lopsided Lovász Local Lemma and random permutations. Suppose we want to select
permutations π1, . . . , πN , where each πk is a permutation on the set [nk] = {1, . . . , nk}. In addition we have
a set B of “bad events.” We want to select permutations π such that no bad event is true. The lopsided
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version of the Lovász Local Lemma (LLL) can be used to prove that such permutations exist, under suitable
conditions.

We suppose that that the family of bad events B consists of atomic bad-events. That is, each bad event
B ∈ B is a set of tuples B = {(k1, x1, y1), . . . , (kr, xr, yr)}; it is true iff we have (πk1(x1) = y1)∧· · ·∧(πkr

(xr) =
yr). (Complex bad-events can usually be decomposed into atomic bad-events, so this does not lose much
generality.)

To apply the Lopsided Local Lemma in this setting, we need to define a dependency graph with respect to
these bad events. We connect two bad events B,B′ by an edge iff they overlap in one slice of the domain or
range of a permutation; namely, iff there are some k, x, y1, y2 with (k, x, y1) ∈ B, (k, x, y2) ∈ B′ or there are
some k, x1, x2, y with (k, x1, y) ∈ B, (k, x2, y) ∈ B′. We write this B ∼ B′; note that B ∼ B. The following
notation will be useful: for pairs (x1, y1), (x2, y2), we write (x1, y1) ∼ (x2, y2) if x1 = x2 or y1 = y2 (or both).
Thus, another way to write B ∼ B′ is that “there are (k, x, y) ∈ B, (k, x′, y′) ∈ B′ with (x, y) ∼ (x′, y′)”. We
will use the following notation at various points: we write (k, x, ∗) to mean any (or all) triples of the form
(k, x, y), and similarly for (k, ∗, y), or (x, ∗) etc. Therefore, yet another way to write the condition B ∼ B′

is that there are (k, x, ∗) ∈ B, (k, x, ∗) ∈ B′ or (k, ∗, y) ∈ B, (k, ∗, y) ∈ B′.
Now suppose we select each πk uniformly at random and independently. This defines a probability space

Ω, to which we can apply the lopsided LLL. One can show that the probability of avoiding a bad event B
can only be increased by avoiding other bad events B′ 6∼ B [30]. Thus, in the language of the lopsided LLL,
the relation ∼ defines a negative-dependence graph among the bad-events. (See [29, 30, 32] for a study of the
connection between negative dependence, random injections/permutations, and the lopsided LLL.) Hence,
the standard lopsided-LLL criterion is as follows:

Theorem 1.1 ([30]). Suppose that there is some assignment µ : B → [0,∞) such that for all bad-events
B ∈ B we have

µ(B) ≥ PΩ(B)
∏
B′∼B

(1 + µ(B′)).

Then the random process of selecting each πk uniformly at random and independently has a positive probability
of selecting permutations that avoid all the bad-events.

Remark: The condition of Theorem 1.1 about the existence of such a µ is equivalent to the more-familiar
LLL formulation “there exists x : B → [0, 1) such that for all B ∈ B, PΩ(B) ≤ x(B)

∏
B′∼B:B′ 6=B(1−x(B′))”:

just set µ(B) = x(B)/(1− x(B)).
The “positive probability” of Theorem 1.1 is however typically exponentially small, as is standard for

the LLL. As mentioned above, a variety of papers have used the framework of Theorem 1.1 for proving the
existence of various combinatorial structures. Unfortunately, the algorithms for the LLL, such as Moser-
Tardos resampling [34], do not apply in this setting. The problem is that such algorithms have a more
restrictive notion of when two bad-events are dependent; namely, that they share variables. (The Moser-
Tardos algorithm allows for a restricted type of dependence called lopsidependence: two bad-events which
share a variable but always agree on that value, are counted as independent. This is not strong enough to
generate permutations.) So we do not have an efficient algorithm to generate such permutations, we can
merely show that they exist.

We develop an algorithmic analogue of the LLL for permutations. The necessary conditions for our Swap-
ping Algorithm are the same as for the LLL (Theorem 1.1); however, we will construct such permutations
in randomized polynomial (typically linear or near-linear) time. Our setting is far more complex than in
similar contexts such as those of [34, 22, 36], and requires many intermediate results first. The main compli-
cation is that when we encounter a bad event involving “πk(x) = y”, and perform our algorithm’s random
swap associated with it, we could potentially be changing any entry of πk. In contrast, when we resample a
variable in [34, 22, 36], all the changes are confined to that variable. There is a further technical issue: the
current witness-tree-based algorithmic versions of the LLL such as [34, 22], identify, for each bad-event B in
the witness-tree τ , some necessary event occuring with probability at most PΩ(B). This is not the proof we
employ here; there are significant additional terms (“(nk −A0

k)!/n!” – see the proof of Lemma 3.1) that are
gradually “discharged” over time.

We also develop RNC versions of our algorithms. Going from serial to parallel is fairly direct in [34]; our
main bottleneck here is that when we resample an “independent” set of bad events, they could still influence
each other.
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(Note: we distinguish in this paper between the probability of events which occur in our algorithm, which
we denote simply by P , and the probabilities of events within the space Ω, which we denote by PΩ.)

1.2. Comparison with other LLLL algorithms. Building on an earlier version of this work [23], there
have been several papers which have developed generic frameworks for variations of the Moser-Tardos al-
gorithm applied to other probability spaces. In [1], Achlioptas & Iliopoulos gave an algorithm which is
based on a compression analysis for a random walk; this was improved for permutations and matchings by
Kolmogorov [28]. In [20], Harvey & Vondrak gave a probabilistic analysis similar to the parallel Moser-
Tardos algorithm. These frameworks both include the permutation LLL as well as some other combinatorial
applications. These papers give much simpler proofs that the Swapping Algorithm terminates quickly.

The Moser-Tardos algorithm has many other powerful properties and extensions, beyond the fact that it
efficiently finds a configuration avoiding bad-events. These properties include a well-characterized distribu-
tion on the output distribution at the end of the resampling process, a corresponding efficient parallel (RNC)
algorithm, a partial-resampling variant (as developed in [22]), and an arbitrary (even adversarial) choice of
which bad-event to resample. All of these properties follow from the Witness Tree Lemma we show for our
Swapping Algorithm. The more generalized LLLL frameworks of [1, 20] have a limited ability to show such
extensions.

We will discuss the relationship between this paper and the other LLLL frameworks further in Section 6.3.
As one example of the power of our proof method, we develop a parallel Swapping Algorithm in Section 7; we
emphasize that such a parallel algorithm cannot be shown using the results of [1] or [20]. A second example
is provided by Theorem 8.2, results such as which we do not see how to develop using the frameworks of
[1, 20, 28].

One of the main goals of our paper is to provide a model for what properties a generalized LLLL algorithm
should have. In our view, there has been significant progress toward this goal but there remain many missing
pieces toward a true generalization of the Moser-Tardos algorithm. We will discuss this more in a concluding
section, Section 9.

1.3. Applications. We present algorithmic applications for four classical combinatorial problems: Latin
transversals, rainbow Hamiltonian cycles, strong chromatic number, and edge-disjoint hypergraph packing.
In addition to the improved bounds, we wish to highlight that our algorithmic approach can go beyond Theo-
rem 1.1: as we will see shortly, one of our (asymptotically-optimal) algorithmic results on Latin transversals,
could not even have been shown nonconstructively using the lopsided LLL prior to this work.

The study of Latin squares and the closely-related Latin transversals is a classical area of combinatorics,
going back to Euler and earlier [11]. Given an m× n matrix A with m ≤ n, a transversal of A is a choice of
m elements from A, one from each row and at most one from any column. Perhaps the major open problem
here is: given an integer s, under what conditions will A have an s-transversal : a transversal in which no
value appears more than s times [8, 16, 17, 39, 40, 41]? The usual type of sufficient condition sought here
is an upper bound ∆ on the number of occurrences of any given value in A. That is, we ask: what is the
maximum ∆ = ∆(s;m,n) such that any m × n matrix A in which each value appears at most ∆ times,
is guaranteed to have an s-transversal? The case s = 1 is perhaps most studied, and 1-transversals are
also called Latin transversals. The case m = n is also commonly studied (and includes Latin squares as a
special case), and we will also focus on these. It is well-known that L(1;n, n) ≤ n − 1 [40]. In perhaps the
first application of the lopsided LLL to random permutations, Erdős & Spencer essentially proved a result
very similar to Theorem 1.1, and used it to show that L(1;n, n) ≥ n/(4e) [17]. (Their paper shows that
L(1;n, n) ≥ n/16; the n/(4e) lower-bound follows easily from their technique.) To our knowledge, this is the
first Ω(n) lower-bound on L(1;n, n). Alon asked if there is a constructive version of this result [3]. Building
on [17] and using the connections to the LLL from [37, 38], Bissacot et al. showed nonconstructively that
L(1;n, n) ≥ (27/256)n [8]. Our result makes this constructive.

The lopsided LLL has also been used to study the case s > 1 [41]. Here, we prove a result that is
asymptotically optimal for large s, except for the lower-order O(

√
s) term: we show (algorithmically) that

L(s;n, n) ≥ (s − O(
√
s)) · n. An interesting fact is that this was not known even nonconstructively before:

Theorem 1.1 roughly gives L(s;n, n) ≥ (s/e) · n. We also give faster serial and perhaps the first RNC
algorithms with good bounds, for the strong chromatic number. Strong coloring is quite well-studied [4, 7,
19, 24, 25], and is in turn useful in covering a matrix with Latin transversals [6].
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1.4. Outline. In Section 2 we introduce our Swapping Algorithm, a variant of the Moser-Tardos resampling
algorithm. In it, we randomly select our initial permutations; as long as some bad-event is currently true,
we perform certain random swaps to randomize (or resample) them.

Section 3 introduces the key analytic tools to understand the behavior of the Swapping Algorithm, namely
the witness tree and the witness subdag. The construction for witness trees follows [34]; it provides an
explanation or history for the random choices used in each resampling. The witness subdag is a related
concept, which is new here; it provides a history not for each resampling, but for each individual swapping
operation performed during the resamplings.

In Section 4, we show how these witness subdags may be used to deduce partial information about the
permutations. As the Swapping Algorithm proceeds in time, the witness subdags can also be considered to
evolve over time. At each stage of this process, the current value of the witness subdags provides information
about the current values of the permutations.

In Section 5, we use this process to make probabilistic predictions for certain swaps made by the Swapping
Algorithm: namely, whenever the witness subdags change, the swaps must be highly constrained so that the
permutations still conform to them. We calculate the probability that the swaps satisfy these constraints.

Section 6 puts the analyses of Sections 3, 4, 5 together, to prove that our Swapping Algorithm terminates
in polynomial time under the same conditions asthose of Theorem 1.1; also, as mentioned in Section 1.2,
Section 6.3 discusses certain contributions that our approach leads to that do not appear to follow from
[1, 20, 28].

In Section 7, we introduce a parallel (RNC) algorithm corresponding to the Swapping Algorithm. This
is similar in spirit to the Parallel Resampling Algorithm of Moser & Tardos. In the latter algorithm, one
repeatedly selects a maximal independent set (MIS) of bad-events which are currently true, and resamples
them in parallel. In our setting, bad-events which are “independent” in the LLL sense (that is, they are not
connected via ∼), may still influence each other; a great deal of care must be taken to avoid these conflicts.

Section 8 describes a variety of combinatorial problems to which our Swapping Algorithm can be applied,
including Latin transversals, strong chromatic number, and hypergraph packing. Finally, we conclude in
Section 9 with a discussion of future goals for the construction of a generalized LLL algorithm.

2. The Swapping Algorithm

We will analyze the following Swapping Algorithm algorithm to find a satisfactory π1, . . . , πN :
(1) Generate the permutations π1, . . . , πN uniformly at random and independently.
(2) While there is some true bad-event:

(3) Choose some true bad-event B ∈ B arbitrarily. For each permutation that is involved in B,
we perform a swapping of all the relevant entries. (We will describe the swapping subroutine
“Swap” shortly.) We refer to this step as a resampling of the bad-event B.
Each permutation involved in B is swapped independently, but if B involves multiple entries
from a single permutation, then all such entries are swapped simultaneously. For example, if B
consisted of triples (k1, x1, y1), (k2, x2, y2), (k2, x3, y3), then we would perform Swap(π1;x1) and
Swap(π2;x2, x3), where the “Swap” procedure is given next.

The swapping subroutine Swap(π;x1, . . . , xr) for a permutation π : [t]→ [t] as follows:
Repeat the following for i = 1, . . . , r:

• Select x′i uniformly at random among [t]− {x1, . . . , xi−1}.
• Swap entries xi and x′i of π.

Note that at every stage of this algorithm all the πk are permutations, and if this algorithm terminates,
then the πk must avoid all the bad-events. So our task will be to show that the algorithm terminates in
polynomial time. We measure time in terms of a single iteration of the main loop of the Swapping Algorithm:
each time we run one such iteration, we increment the time by one. We will use the notation πTk to denote
the value of permutation πk after time T . The initial sampling of the permutation (after Step (1)) generates
π0
k.

The swapping subroutine seems strange; it would appear more natural to allow x′i to be uniformly se-
lected among [t]. However, the swapping subroutine is nothing more than than the Fisher-Yates Shuffle
for generating uniformly-random permutations. If we alloved x′i to be chosen from [t] then the resulting
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permutation would be biased. The goal is to change πk in a minimal way to ensure that πk(x1), . . . , πk(xr)
and π−1

k (y1), . . . , π−1
k (yr) are adequately randomized.

There are alternative methods for generating random permutations, and many of these can replace the
Swapping subroutine without changing our analysis. We discuss a variety of such equivalencies in Appen-
dix A; these will be used in various parts of our proofs. We note that one class of algorithms that has a
very different behavior is the commonly used method to generate random reals ri ∈ [0, 1], and then form the
permutation by sorting these reals. When encountering a bad-event, one would resample the affected reals
ri. In our setting, where the bad-events are defined in terms of specific values of the permutation, this is not
a good swapping method because a single swap can drastically change the permutation. When bad-events
are defined in terms of the relative rankings of the permutation (e.g. a bad event is π(x1) < π(x2) < π(x3)),
then this is a better method and can be analyzed in the framework of the ordinary Moser-Tardos algorithm.

3. Witness trees and witness subdags

To analyze the Swapping Algorithm, following the Moser-Tardos approach [34], we introduce the concept
of an execution log and a witness tree. The execution log consists of listing every resampled bad-event, in
the order that they are resampled. We form a witness tree to justify the resampling at time t. We start
with the resampled bad-event B corresponding to time t, and create a single node in our tree labeled by
this event. We move backward in time; for each bad-event B we encounter, we add it to the witness tree
if B ∼ B′ for some event B′ already in the tree: we choose such a B′ that has the maximum depth in the
current tree (breaking ties arbitrarily), and make B a child of this B′ (there could be many nodes labeled
B′). If B 6∼ B′ for all B′ in the current tree, we ignore this B and keep moving backward in time. To make
this discussion simpler we say that the root of the tree is at the “top” and the deep layers of the tree are at
the “bottom”. The top of the tree corresponds to later events, the bottom of the tree to the earliest events.

For the remainder of this section, the dependence on the “justified” bad-event at time t at the root of the
tree will be understood; we will omit it from the notation.

We will use the term “witness tree” in two closely-related senses in the following proof. First, when we
run the Swapping Algorithm, we produce a witness tree τ̂T ; this is a random variable. Second, we might
want to fix some labeled tree τ , and discuss hypothetically under what conditions it could be produced or
what properties it has; in this sense, τ is a specific object. We will always use the notation τ̂T to denote
the specific witness tree produced by running the Swapping Algorithm, corresponding to resampling time T .
We write τ̂ as short-hand for τ̂T where T is understood from context (or irrelevant).

If τ is a witness tree, we say that τ appears iff τ̂T = τ for some T ≥ 0.
The critical lemma that allows us to analyze the behavior of this algorithm is the Witness Tree Lemma:

Lemma 3.1 (Witness Tree Lemma). Let τ be a witness tree, with nodes labeled B1, . . . , Bs. The probability
that τ was produced as the witness tree corresponding any any resampling time t ≥ 0, is at most

P (τ appears) ≤ PΩ(B1) · · ·PΩ(Bs)

Note that the probability of the event B within the space Ω can be computed as follows: if B contains
r1, . . . , rN elements from each of the permutations 1, . . . , N , then we have

PΩ(B) =
(n1 − r1)!

n1!
. . .

(nN − rN )!
nN !

This lemma is superficially similar to the corresponding lemma in Moser-Tardos [34]. However, the proof
will be far more complex, and we will require many intermediate results first. The main complication is that
when we encounter a bad-event involving πk(x) = y, and we perform the random swap associated with it,
then we could potentially be changing any entry of πk. By contrast, in the usual Moser-Tardos algorithm,
when we resample a variable, all the changes are confined to that variable. However, as we will see, the
witness tree will leave us with enough clues about which swap was actually performed that we will be able
to narrow down the possible impact of the swap.

The analysis in the next sections can be very complicated. We have two recommendations to make these
proofs easier. First, the basic idea behind how to form and analyze these trees comes from [34]; the reader
should consult that paper for results and examples which we omit here. Second, one can get most of the
intuition behind these proofs by considering the situation in which there is a single permutation, and the
bad-events all involve just a single element; that is, every bad-event has the form π(xi) = yi. In this case,
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the witness subdags (defined later) are more or less equivalent to the witness tree. (The main point of the
witness subdag concept is, in effect, to reduce bad-events to their individual elements.) When reading the
following proofs, it is a good idea to keep this special case in mind. In several places, we will discuss how
certain results simplify in that setting.

The following proposition is the main reason the witness tree encodes sufficient information about the
sequence of swaps:

Proposition 3.2. Suppose that at some time t0 we have πt0k (X) 6= Y , and at some later time t2 > t0 we
have πt2k (X) = Y . Then there must have occured at some intermediate time t1 some bad-event including
(k,X, ∗) or (k, ∗, Y ).

Proof. Let t1 ∈ [t0, t2 − 1]′ denote the earliest time at which we had πt1+1(X) = Y ; this must be due to
encountering some bad-event including the elemenents (k, x1, y1), . . . , (k, xr,y )r (and possibly other elements
from other permutations). Suppose that the swap which first caused π(X) = Y was at swapping entry xi,
which at that time had πk(xi) = y′i, with some x′′.

After this swap, we have πk(xi) = y′′ and πk(x′′) = y′i. Evidently x′′ = X or xi = X. In the second case,
the bad event at time t1 included (k,X, ∗) as desired and we are done.

So suppose x′′ = X and y′i = Y . So at the time of the swap, we had πk(xi) = Y . The only earlier swaps
in this resampling were with x1, . . . , xi−1; so at the beginning of time t1, we must have had πt1k (xj) = Y for
some j ≤ i. This implies that yj = Y , so that the bad-event at time t1 included (k, ∗, Y ) as desired. �

To explain some of the intuition behind why Proposition 3.2 implies Lemma 3.1, consider the case of a
singleton witness tree.

Corollary 3.3. Suppose that τ is a singleton node labeled by B. Then P (τ appears) ≤ PΩ(B).

Proof. Suppose τ̂T = τ . We claim that B must have been true of the initial configuration. For suppose that
(k, x, y) ∈ B but in the initial configuration we have πk(x) 6= y. At some later point in time t ≤ T , the event
B must become true. By Proposition 3.2, then there is some time t′ < t at which we encounter a bad-event
B′ including (k, x, ∗) or (k, ∗, y). This bad-event B′ occurs earlier than B, and B′ ∼ B. Hence, we would
have placed B′ below B in the witness tree τ̂T . �

In proving Lemma 3.1, we will not need to analyze the interactions between the separate permutations,
but rather we will be able to handle each permutation in a completely independent way. For a permutation
πk, we define the witness subdag for permutation πk; this is a relative of the witness tree, but which only
includes the information for a single permutation at a time.

Definition 3.4 (witness subdags). For a permutation πk, a witness subdag for πk is defined to be a directed
acyclic simple graph, whose nodes are labeled with pairs of the form (x, y). If a node v is labeled by (x, y),
we write v ≈ (x, y). This graph must in addition satisfy the following properties:

(1) If any pair of nodes overlaps in a coordinate, that is, we have v ≈ (x, y) ∼ (x′, y′) ≈ v′, then nodes
v, v′ must be comparable (that is, either there is a path from v to v′ or vice-versa).

(2) Every node of G has in-degree at most two and out-degree at most two.
We also may label the nodes with some auxiliary information, for example we will record that the nodes

of a witness subdag correspond to bad-events or nodes in a witness tree τ .
We will use the same terminology as for witness trees: vertices on the “bottom” are close to the source

nodes of G (appearing earliest in time), and vertices on the “top” are close to the sink nodes of G (appear
latest in time).

The witness subdags that we will be interested in are derived from witness trees in the following manner.

Definition 3.5 (Projection of a witness tree). For a witness tree τ , we define the projection of τ onto
permutation πk which we denote Projk(τ), as follows.

Suppose we have a node v ∈ τ which is labeled by some bad-event B = (k1, x1, y1), . . . , (kr, xr, yr). For
each i with ki = k, we create a corresponding node v′i ≈ (xi, yi) in the graph Projk(τ). We also include
some auxiliary information indicating that these nodes came from bad event B, and in particular that all
such nodes are part of the same bad-event.

We add edges to Projk(τ) as follows. For each node v′ ∈ Projk(τ), labeled by (x, y) and corresponding
to v ∈ τ , we examine all occurences of nodes labeled (k, x, ∗). All such occurences are comparable; we find
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the node u′ corresponding to u ∈ τ which is closest to the source. In other words, we find the occurence u′

which appears “next-highest” in the dag. We create an edge from v′ to u′. Similarly, we find the next-highest
occurence w ∈ τ of a bad-event labeled by (k, ∗, y); we create an edge from v′ to w′.

Note that u,w must appear strictly higher in τ , because of the way new bad-events are added to witness
trees. This implies that Projk(τ) is acyclic. Also, note that it is possible that u = w; in this case we only
add a single edge to Projk(τ).

Expository Remark: In the special case when each bad-event contains a single element, the witness
subdag is a “flattening” of the tree structure. Each node in the tree corresponds to a node in the witness
subdag, and each node in the witness subdag points to the next highest occurence of the domain and range
variables.

Basically, the projection of τ onto k tells us all of the swaps of πk that occur. It also gives us some of the
temporal information about these swaps that would have been available from τ . If there is a path from v to
v′ in Projk(τ), then we know that the swap corresponding to v must come before the swap corresponding to
v′. It is possible that there are a pair of nodes in Projk(τ) which are incomparable, yet in τ there was enough
information to deduce which event came first (because the nodes would have been connected through some
other permutation). So Projk(τ) does discard some information from τ , but it turns out that we will not
need this information.

To prove Lemma 3.1, we will prove (almost) the following claim: LetG be a witness subdag for permutation
πk; suppose the nodes of G are labeled with bad-events B1, . . . , Bs. Then the probability that there is some
T > 0 such that G = Projk(τ̂T ), is at most

(1) P (G = Projk(τ̂T ) for some T > 0) ≤ Pk(B1) · · ·Pk(Bs)

where, for a bad-event B we define Pk(B) in a similar manner to PΩ(B); namely that if the bad-event B
contains rk elements from permutation k, then we define Pk(B) = (nk−rk)!

nk! .
Unfortunately, proving this directly runs into technical complications regarding the order of conditioning.

It is simpler to just sidestep these issues. However, the reader should bear in mind (1) as the informal
motivation for the analysis in Section 4.

4. The conditions on a permutation πk∗ over time

In Section 4, we will fix a value k∗, and we will describe conditions that πtk∗ must satisfy at various times t
during the execution of the Swapping Algorithm. In this section, we are only analyzing a single permutation
k∗. To simplify notation, the dependence on k∗ will be hidden henceforth; we will discuss simply π,Proj(τ),
and so forth.

This analysis can be divided into three phases.

(1) We define the future-subgraph at time t, denoted Gt. This is a kind of graph which encodes necessary
conditions on πt, in order for τ to appear, that is, for τ̂T = τ for some T > 0. Importantly, these
conditions, and Gt itself, are independent of the precise value of T . We define and describe some
structural properties of these graphs.

(2) We analyze how a future-subgraph Gt imposes conditions on the corresponding permutation πt, and
how these conditions change over time.

(3) We compute the probability that the swapping satisfies these conditions.

We will prove (1) and (2) in Section 4. In Section 5 we will put this together to prove (3) for all the
permutations.

4.1. The future-subgraph. Suppose we have fixed a target graph G, which could hypothetically have been
produced as the projection of τ̂T onto k∗. We begin the execution of the Swapping Algorithm and see if, so
far, it is still possible that G = Projk∗(τ̂T ), or if G has been disqualified somehow. Suppose we are at time t
of this process; we will show that certain swaps must have already occurred at past times t′ < t, and certain
other swaps must occur at future times t′ > t.

We define the future-subgraph of G at time t, denoted Gt, which tells us all the future swaps that must
occur.
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Definition 4.1 (The future-subgraph). We define the future-subgraphs Gt inductively. Initially G0 = G.
When we run the Swapping Algorithm, as we encounter a bad-event (k1, x1, y1), . . . , (kr, xr, yr) at time t, we
form Gt+1 from Gt as follows:

(1) Suppose that ki = k∗, and Gt contains a source node v labeled (xi, yi). Then Gt+1 = Gt − v.
(2) Suppose that ki = k∗, and Gt has a source labeled (xi, y′′) where y′′ 6= yi or (x′′, yi) where x′′ 6= xi.

Then, as will be shown in shown in Proposition 4.2, we can immediately conclude G is impossible;
we set Gt+1 = ⊥, and we can abort the execution of the Swapping Algorithm.

(3) Otherwise, we set Gt+1 = Gt.

Proposition 4.2. For any time t ≥ 0, let τ̂T≥t denote the witness tree built for the event at time T , but only
using the execution log from time t onwards. Then if Proj(τ̂T ) = G we also have Proj(τ̂T≥t) = Gt.

Note that if Gt = ⊥, the latter condition is obviously impossible; in this case, we are asserting that
whenever Gt = ⊥, it is impossible to have Proj(τ̂T ) = G.

Proof. We omit T from the notation, as usual. We prove this by induction on t. When t = 0, this is obviously
true as τ̂≥0 = τ̂ and G0 = G.

Suppose we have Proj(τ̂) = G; at time t we encounter a bad-event B = (k1, x1, y1), . . . , (kr, xr, yr). By
inductive hypothesis, Proj(τ̂≥t) = Gt.

Suppose first that τ̂≥t+1 does not contain any bad-events B′ ∼ B. Then, by our rule for building the
witness tree, we have τ̂≥t = τ̂≥t+1. Hence we have Gt = Proj(τ̂≥t+1). When we project this graph onto
permutation k, there cannot be any source node labeled (k, x, y) with (x, y) ∼ (xi, yi) as such node would
be labeled with B′ ∼ B. Hence, according to our rules for updating Gt, we have Gt+1 = Gt. So in this case
we have τ̂≥t = τ̂≥t+1 and Gt = Gt+1 and Proj(τ̂≥t) = Gt; it follows that Proj(τ̂≥t+1) = Gt+1 as desired.

Next, suppose τ̂≥t+1 does contain B′ ∼ B. Then bad-event B will be added to τ̂≥t, placed below any
such B′. When we project τ̂≥t, then for each i with ki = k∗ we add a node (xi, yi) to Proj(τ̂≥t). Each such
node is necessarily a source node; if such a node (xi, yi) had a predecessor (x′′, y′′) ∼ (xi, yi), then the node
(x′′, y′′) would correspond to an event B′′ ∼ B placed below B. Hence we see that Proj(τ̂≥t) is obtained
from Proj(τ̂≥t) by adding source nodes (xi, yi) for each (k∗, xi, yi) ∈ B.

So Proj(τ̂≥t) = Proj(τ̂≥t+1) plus the addition of source nodes for each (k∗, xi, yi). By inductive hypothesis,
Gt = Proj(τ̂≥t), so that Gt = Proj(τ̂≥t+1) plus source nodes for each (k∗, xi, yi). Now our rule for updating
Gt+1 from Gt is to remove all such source nodes, so it is clear that Gt+1 = Proj(τ̂≥t+1), as desired.

Note that in this proof, we assumed that Proj(τ̂) = G, and we never encountered the case in which
Gt+1 = ⊥. This confirms our claim that whenever Gt+1 = ⊥ it is impossible to have Proj(τ̂) = G. �

By Proposition 4.2, the witness subdag G and the future-subgraphs Gt have a similar shape; they are all
produced by projecting witness trees of (possibly truncated) execution logs. Note that if G = Proj(τ) for
some tree τ , then for any bad-event B ∈ τ , either B is not represented in G, or all the pairs of the form
(k∗, x, y) ∈ B are represented in G and are incomparable there.

The following structural decomposition of a witness subdag G will be critical.

Definition 4.3 (Alternating paths). Given a witness subdag G, we define an alternating path in G to be
a simple path which alternately proceeds forward and backward along the directed edges of G. For a vertex
v ∈ G, the forward (respectively backward) path of v in G, is the maximal alternating path which includes v
and all the forward (respectively backward) edges emanating from v. Because G has in-degree and out-degree
at most two, every vertex v has a unique forward and backward path (up to reflection); this justifies our
reference to “the” forward and backward path. These paths may be even-length cycles.

Note that if v is a source node, then its backward path contains just v itself. This is an important type of
alternating path which should always be taken into account in our definitions.

One type of alternating path, which is referred to as the W-configuration, plays a particularly important
role.

Definition 4.4 (The W-configuration). Suppose v ≈ (x, y) has in-degree at most one, and the backward
path contain an even number of edges, terminating at vertex v′ ≈ (x′, y′). We refer to this alternating path
as a W-configuration. (See Figure 1.)

Any W-configuration can be written (in one of its two orientations) as a path of vertices labeled

(x0, y1), (x1, y1), (x2, y1), . . . , (xs, ys), (xs, ys+1);
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here the vertices (x1, y1), . . . , (xs, ys) are at the “base” of the W-configuration. Note here that we have written
the path so that the x-coordinate changes, then the y-coordinate, then x, and so on. When written this way,
we refer to (x0, ys+1) as the endpoints of the W-configuration.

If v ≈ (x, y) is a source node, then it defines a W-configuration with endpoints (x, y). This should not be
considered a triviality or degeneracy, rather it will be the most important type of W-configuration.

(x0, y1) (x4,y5)

Figure 1. A W-configuration of length 9, with endpoints (x0, y5).

4.2. The conditions on πtk∗ encoded by Gt. At any t, the future-subgraph Gt gives certain necessary
conditions on π in order for some putative τ to appear. Proposition 4.5 describes a certain set of conditions
that plays a key role in the analysis.

Proposition 4.5. Suppose we have a witness subdag G for permutation π. Let πt denote the value of
permutation π at time t and Gt be the future-subgraph at time t. The following condition is necessary to
have G = Proj(τ̂T ) for some T > 0:

For every W-configuration in Gt with endpoints (x0, ys+1), we must have πt(x0) = ys+1.
For example, if v ≈ (x, y) is a source node of Gt, then πt(x) = y.

Proof. We prove this by induction on s. The base case is s = 0; in this case we have a source node (x, y).
Suppose πt(x) 6= y. In order for τ̂T to contain some bad-event containing (k∗, x, y), we must at some point
t′ > t have πt

′
(x) = y; let t′ be the minimal such time. By Proposition 3.2, we must encounter a bad-event

containing (k∗, x, ∗) or (k∗, ∗, y) at some intervening time t′′ < t′. If this bad-event contains (k∗, x, y) then
necessarily πt

′′
(x) = y contradicting minimality of t′. So there is a bad-event (k∗, x, 6= y) or (k∗, 6= x, y)

earlier than the earliest occurence of π(x) = y. This event (k∗, x, 6= y) or (k∗, 6= x, y) projects to a source
node (x, 6= y) or (6= x, y) in Gt. But then (x, y) cannot also be a source node of Gt.

We now prove the induction step. Suppose we have a W-configuration with base (x1, y1), . . . , (xs, ys).
At some future time t′ ≥ t we must encounter a bad-event involving some subset of the source nodes, say
the bad event includes (xi1 , yi1), . . . , (xir , yir ) for 1 ≤ r ≤ s. As these were necessarily source nodes, we
had πt

′
(xi1) = yi1 , . . . , π

t′(xir ) = yir for l = 1, . . . , r. After the swaps, the updated Gt+1 has r + 1 new
W-configurations. By inductive hypothesis, the updated permutation πt

′+1 must then satisfy πt
′+1(x0) =

yi1 , π
t′+1(xi1) = yi2 , . . . , π

t′+1(xir ) = ys+1.
By Proposition A.2, we may suppose without loss of generality that the resampling of the bad event first

swaps xi1 , . . . , xir in that order. Let π′ denote the result of these swaps; there may be additional swaps to
other elements of the permutation, but we must have πt+1(xil) = π′(xil) for l = 1, . . . , r.

In this case, we see that evidently xi1 swapped with xi2 , then xi2 swapped with xi3 , and so on, until
eventually xir was swapped with x′′ = (πt

′
)−1ys+1. At this point, we have π′(x′′) = yi1 . At the end of this

process, we must have πt
′+1(x0) = yi1 . We claim that we must have x′′ = xi0 . For, if x′′ is subsequently

swapped, then we would have πt
′+1(x) = yi1 where x is one of the source nodes in the current bad-event;

but x0 is at the top of the W-configuration and is not a source node.
This implies that we must have (πt

′
)−1ys = x′′ = x0; that is, that πt

′
(x0) = ys. This in turn implies that

πt(x0) = ys+1. For, by Proposition 3.2, otherwise we would have encountered a bad-event involving (x0, ∗)
or (∗, ys+1); in either case, we would have a predecessor node (x0, ∗) or (∗, ys+1) in Gt, which contradicts
that we have a W-configuration. �

Proposition 4.5 can be viewed equally as a definition:
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Definition 4.6 (Active conditions of a future-subgraph). We refer to the conditions implied by Proposi-
tion 4.5 as the active conditions of the graph Gt. More formally, we define

Active(G) = {(x, y) | (x, y) are the end-points of a W -configuration of G}

We also define Atk to be the cardinality of Active(Gt), that is, the number of active conditions of permutation
πk at time t. (The subscript k may be omitted in context, as usual.)

When we remove source nodes (x1, y1), . . . , (xr, yr) from Gt, the new active conditions of Gt+1 are related
to (x1, y1), . . . , (xr, yr) in a particular way.

Lemma 4.7. Suppose G is a future-subgraph with source nodes v1 ≈ (x1, y1), . . . , vr ≈ (xr, yr). Let H =
G − v1 − · · · − vr denote the graph obtained from G by removing these source nodes. Then there is a set
Z ⊆ {(x1, y1), . . . , (xr, yr)} with the following properties:

(1) There is an injective function f : Z → Active(H), with the property that (x, y) ∼ f((x, y)) for all
(x, y) ∈ Z

(2) |Active(H)| = |Active(G)| − (r − |Z|)

Expository remark: We have recommended bearing in mind the special case when each bad-event con-
sists of a single element. In this case, we would have r = 1; and the stated theorem would be that either
|Active(H)| = |Active(G)| − 1; OR we have |Active(H)| = |Active(G)| and (x1, y1) ∼ (x′1, y

′
1) ∈ Active(H).

Intuitively, we are saying that every node (x, y) we are removing is either explicitly constrained in an
“independent way” by some new condition in the graph H (corresponding to Z), or it is almost totally
unconstrained. We will never have the bad situation in which a node (x, y) is constrained, but in some
implicit way depending on the previous swaps.

Proof. Let Hi denote the graph G − v1 − · · · − vi. We will recursively build up the sets Zi, f i, where
Zi ⊆ {(x1, y1), . . . , (xi, yi)}, and which satisfy the given conditions up to stage i.

Now, suppose we remove the source node vi from Hi−1. Observe that (xi, yi) ∈ Active(Hi−1), but (unless
there is some other vertex with the same label in G), (xi, yi) 6∈ Active(Hi). Thus, the most obvious change
when we remove vi is that we destroy the active condition (xi, yi). This may add or subtract other active
conditions as well.

We will need to update Zi−1, f i−1. Most importantly, f i−1 may have mapped (xj , yj) for j < i, to an
active condition of Hi−1 which is destroyed when vi is removed. In this case, we must re-map this to a new
active condition.

Note that we cannot have f i−1(xj , yj) = (xi, yi) for j < i, as xi 6= xj and yi 6= yj . So, the fact that
(xi, yi) has been removed from the list of active conditions does not, so far, invalidate f i−1 remains a valid
mapping from Zi−1.

There are now a variety of cases depending on the forward-path of vi in Hi−1.

(1) This forward path consists of a cycle, or the forward path terminates on both sides in forward-
edges. This is the easiest case. Then no more active conditions of Hi−1 are created or destroyed.
We update Zi = Zi−1, f i = f i−1. One active condition is removed, in net, from Hi−1; hence
|Active(Hi)| = |Active(Hi−1)| − 1.

(2) This forward path contains a forward edge on one side and a backward edge on the other. For ex-
ample, suppose the path has the form (X1, Y1), (X1, Y2), (X2, Y2), . . . , (Xs, Ys+1), where the vertices
(X1, Y1), . . . , (Xs, Ys) are at the base, and the node (X1, Y1) has out-degree 1, and the node (Xs, Ys+1)
has in-degree 1. Suppose that we remove the source node (xi, yi) = (Xj , Yj) for 1 ≤ j ≤ s. (See Fig-
ure 2.) In this case, we do not destroy any W-configurations, but we create a new W-configuration
with endpoints (Xj , Ys+1) = (xi, Ys+1).

We now update Zi = Zi−1 ∪ {(xi, yi)}. We define f i = f i−1 plus we map (xi, yi) to the new
active condition (xi, Ys+1). In net, no active conditions were added or removed, and |Active(Hi)| =
|Active(Hi−1)|.
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(X4, Y5)

(X2, Y2)

(X2, Y3)

Figure 2. When we remove (X2, Y2), we create a new W-configuration with endpoints
(X2, Y5).

(3) This forward path was a W-configuration (X0, Y1), (X1, Y1), . . . , (Xs, Ys), (Xs, Ys+1) with the pairs
(X1, Y1), . . . , (Xs, Ys) on the base, and we had (xi, yi) = (Xj , Yj). This is the most complicated
situation; in this case, we destroy the original W-configuration with endpoints (X0, Ys+1) but create
two new W-configurations with endpoints (X0, Yj) and (Xj , Ys+1). We update Zi = Zi−1∪{(xi, yi)}.
We will set f i = f i−1, except for a few small changes as follows.

Now, suppose f i−1(xl, yl) = (X0, Ys+1) for some l < i; so either xl = X0 or yl = Ys+1. If it is
the former, we set f i(xl, yl) = (X0, Yj), f i(xi, yi) = (Xj , Ys+1). If it is the latter, we set f i(xl, yl) =
(Xj , Ys+1), f i(xi, yi) = (X0, Yj).. If (f i−1)−1(X0, Ys+1) = ∅ then we simply set f i(xi, yi) = (X0, Yj).

In any case, f i is updated appropriately, and in the net no active conditions are added or removed,
so we have |Active(Hi)| = |Active(Hi−1)|.

�

5. The probability that the swaps are all successful

In the previous sections, we determined necessary conditions for the permutations πt, depending on the
graphs Gt. In this section, we finish by computing the probability that the swapping subroutine causes the
permutations to, in fact, satisfy all such conditions.

Proposition 5.1 states the key randomness condition satisfied by the swapping subroutine. The basic
intutition behind this is as follows: suppose π : [n]→ [n] is a fixed permutation with π(x) = y, and we call
π′ = Swap(π;x1, . . . , xr). Then π′(x1) has a uniform distribution over [n]. Similarly, π′−1(y1) has a uniform
distribution over [n]. However, the joint distribution is not uniform — there is essentially only one degree of
freedom for the two values. In general, any subset of the variables π′(x1), . . . , π′(xr), π′−1(y1), . . . , π−1(yr)
will have the uniform distribution, as long as the subset does not simultaneously contain π′(xi), π′−1(yi) for
some i ∈ [r].

Proposition 5.1. Suppose n, r, s, q are non-negative integers obeying the following constraints:
(1) 0 ≤ s ≤ min(q, r)
(2) q + (r − s) ≤ n

Let π be a fixed permutation of [n], and let x1, . . . , xr ∈ [n] be distinct, and let yi = π(xi) for i = 1, . . . , r.
Let (x′1, y

′
1), . . . , (x′q, y

′
q) be a given list with the following properties:

(3) All x′ are distinct; all y′ are distinct
(4) For i = 1, . . . , s we have xi = x′i or yi = y′i.

Let π′ = Swap(π;x1, . . . , xr). Then the probability that π′ satisfies all the constraints (x′, y′) is at most

P (π′(x′1) = y′1 ∧ · · · ∧ π′(x′q) = y′q) ≤
(n− r)!(n− q)!
n!(n− q − r + s)!

Expository remark: Consider the special case when each bad-event contains a single element. In that
case, we have r = 1. There are two possibilities for s; either s = 0 in which case this probability on the right
is 1 − q/n (i.e. the probability that π′(x1) 6= y′1, . . . , y

′
q); or s = 1 in which case this probability is 1/n (i.e.

the probability that π′(x1) = y′1).

Proof. Define the function g(n, r, s, q) = (n−r)!(n−q)!
n!(n−q−r+s)! . We will prove this proposition by induction on s, r.

There are a few cases we handle separately:
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(1) Suppose s > 0 and x1 = x′1. Then, in order to satisfy the desired conditions, we must swap x1

to x′′ = π−1(y′1); this occurs with probability 1/n. The subsequent r − 1 swaps starting with the
permutation π(x1 x

′′) must now satisfy the conditions π′(x′2) = y′2, . . . , π
′(xq) = y′q. We claim that

we have (xi, π(x1 x
′′)xi) ∼ (x′i, y

′
i) for i = 2, . . . , s. If x′′ 6= x2, . . . , xs, this is immediately clear.

Otherwise, suppose x′′ = xj . If xj = x′j , then we again still have (xj , π(x1 x
′′)xj) ∼ (x′j , y

′
j). If

yj = y′j , then this implies that y′1 = yj = y′j , which contradicts that the y′j 6= y′1 .
So we apply the induction hypothesis to π(x1 x

′′); in the induction, we subtract one from n, q, r, s.
This gives

P (π′(x′1) = y′1 ∧ · · · ∧ π(x′q) = y′q) ≤ 1
ng(n− 1, r − 1, s− 1, q − 1) = g(n, r, s, q)

as desired.
(2) Similarly, suppose s > 0 and suppose y1 = y′1. By Proposition A.3, we would obtain the same

distribution if we executed (π′)−1 = Swap(π−1; y1, . . . , yr). Hence we have

P (π′(x′1) = y′1 ∧ · · · ∧ π(x′q) = y′q) = P ((π′)−1(y′1) = x′1 ∧ · · · ∧ (π′)−1(y′q) = x′q)

Now, the right-hand side has swapped the roles of x1/y1; in particular, it now falls under the previous
case (1) already proved, and so the right-hand side is at most g(n, r, s, q) as desired.

(3) Suppose s = 0 and that there is some i ∈ [r], j ∈ [q] with (xi, yi) ∼ (x′j , y
′
j). By Proposition A.2, we

can assume without loss of generality that (x1, y1) ∼ (x′1, y
′
1). So, in this case, we are really in the

case with s = 1; by apply the induction hypothesis so that

P (π′(x′1) = y′1 ∧ · · · ∧ π(x′q) = y′q) ≤ g(n, r, 1, q) =
g(n, r, 0, q)
n− q − r + 1

≤ g(n, r, s, q)

Here, we are using our hypothesis that n ≥ q + (r − s) = q + r.
(4) Finally, suppose s = 0 and x1, . . . , xr are distinct from x′1, . . . , x

′
q and y1, . . . , yq are distinct from

y′1, . . . , y
′
q. In this case, a necessary (although not sufficient) condition to have π′(x′1) = y′1, . . . , π(x′q) =

y′q is that there are some y′′1 , . . . , y
′′
r , distinct from each other and distinct from y′1, . . . , y

′
q, with the

property that π′(xi) = y′′i for j = 1, . . . , r. By the union bound, we have

P (π′(x′1) = y′1 ∧ · · · ∧ π(x′q) = y′q) ≤
∑

y′′1 ,...,y
′′
r

P (π′(x1) = y′′1 ∧ · · · ∧ π(xr) = y′′r )

For each individual summand, we apply the induction hypothesis; the summand has probability at
most g(n, r, r, q). As there are (n−q)!/(n−q−r)! possible values for y′′1 , . . . , y

′′
r , the total probability

is at most (n− q)!/(n− q − r)!× g(n, r, r, q) = g(n, r, s, q).
�

We apply Proposition 5.1 to upper-bound the probability that the Swapping Algorithm successfully swaps
when it encounters a bad event.

Proposition 5.2. Suppose we encounter a bad-event B at time t containing elements (k, x1, y1), . . . ,
(k, xr, yr) from permutation k (and perhaps other elements from other permutations). Then the probability
that πt+1

k satisfies all the active conditions of its future-subgraph, conditional on all past events and all other
swappings at time t, is at most

P (πt+1
k satisfies Active(Gk,t+1)) ≤ Pk(B)

(nk −At+1
k )!

(nk −Atk)!
.

Recall that we have defined Atk to be the number of active conditions in the future-subgraph corresponding
to permutation πk at time t, and we have defined Pk(B) = (nk−r)!

nk! .
Expository remark: Consider the special case when each bad-event consists of a single element. In

this case, we would have Pk(B) = 1/n. The stated theorem is now: either At+1 = At, in which case the
probability that π satisfies its swapping condition is 1/n; or At+1 = At− 1; in which case the probability that
π satisfies its swapping condition is 1−At+1/n.

Proof. Let H denote the future-subgraph Gk,t+1 after removing the source nodes corresponding to the
pairs (x1, y1), . . . , (xr, yr). Using the notation of Lemma 4.7, we set s = |Z| and q = At+1

k . We have
Active(H) = {(x′1, y′1), . . . , (x′q, y

′
q)}.
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For each (x, y) ∈ Z, we have y = πt(x), and there is an injective function f : Z → Active(H) and
(x, y) ∼ f((x, y)). By Proposition A.2, we can assume without loss of generality Z = {(x1, y1), . . . , (xs, ys)}
and f(xi, yi) = (x′i, y

′
i). In order to satisfy the active conditions on Gk,t+1, the swapping must cause

πt+1(x′i) = y′i for i = 1, . . . , q.
By Lemma 4.7, we have Atk = At+1

k + (r − s) = q + (r − s). Note that Atk ≤ n. So all the conditions of

Proposition 5.1 are satisfied. Thus this probability is at most (nk−r)!
nk! × (nk−q)!

(nk−q−r+s)! = (nk−r)!(nk−At+1
k )!

nk!(nk−At
k)!

. �

We have finally all the pieces necessary to prove Lemma 3.1.

Lemma 3.1. Let τ be a witness tree, with nodes labeled B1, . . . , Bs. The probability that τ appears is at
most

P (τ appears) ≤ PΩ(B1) · · ·PΩ(Bs)

Proof. The Swapping Algorithm, as we have defined it, begins by selecting the permutations uniformly at
random. One may also consider fixing the permutations to some arbitrary (not random) value, and allowing
the Swapping Algorithm to execute from that point onward. We refer to this as starting at an arbitrary
state of the Swapping Algorithm. We will prove the following by induction on τ ′: The probability, starting
at an arbitrary state of the Swapping Algorithm, that the subsequent swaps would produce the subtree τ ′,
is at most

(2) P (τ̂T = τ ′ for some T ≥ 0) ≤
∏
B∈τ ′

PΩ(B)×
N∏
k=1

nk!
(nk − |Active(Projk(τ ′))|)!

.

When τ ′ = ∅, the RHS of (2) is equal to one so this is vacuously true.
To show the induction step, note that in order for τ ′ to be produced as the witness tree for some T ≥ 0,

it must be that some B is resampled, where some node v ∈ τ ′ is labeled by B. Suppose we condition on
that v is the first such node, resampled at time t. A necessary condition to have τ̂T = τ ′ for some T ≥ t is
that πt+1 satisfies all the active conditions on Gt+1. By Proposition 5.2, the probability that πt+1 satisfies

these conditions is at most
∏
k Pk(B) (nk−At+1

k )!

(nk−At
k)!

.

Next, if this event occurs, then subsequent resamplings must cause τ̂T≥t+1 = τ ′−v. To bound the probabilit
of this, we use the induction hypothesis. Note that the induction hypothesis gives a bound conditional on
any starting configuration of the Swapping Algorithm, so we may multiply these probabilities. Thus

P (τ̂T = τ ′ for some T > 0) ≤
∏
k

Pk(B)
(nk −At+1

k )!
(nk −Atk)!

×
∏

B∈τ ′−v
PΩ(B)×

N∏
k=1

nk!
(nk − |Active(Projk(τ ′ − v))|)!

=
∏
B∈τ ′

PΩ(B)
∏
k

(nk −At+1
k )!

(nk −Atk)!
nk!

(nk − |Active(Projk(τ ′ − v))|)!

=
∏
B∈τ ′

PΩ(B)
∏
k

nk!
(nk −Atk)!

as At+1
k = |Active(Projk(τ ′ − v))|

completing the induction argument.
We now consider the necessary conditions to produce the entire witness tree τ , and not just fragments of

it. First, the original permutations π0
k must satisfy the active conditions of the respective witness subdags

Projk(τ). For each permutation k, this occurs with probability (nk−A0
k)!

nk! . Next, the subsequent sampling

must be compatible with τ ; by (2) this has probability at most
∏
B∈τ PΩ(B)×

∏N
k=1

nk!
(nk−A0

k)!
. Again, note

that the bound in (2) is conditional on any starting position of the Swapping Algorithm, hence we may
multiply these probabilities. In total we have

P (τ̂T = τ for some T ≥ 0) ≤
∏
k

(nk −A0
k)!

nk!
×
∏
B∈τ

PΩ(B)×
N∏
k=1

nk!
(nk −A0

k)!
=
∏
B∈τ

PΩ(B).

We note one counter-intuitive aspect to this proof. The natural way of proving this lemma would be to
identify, for each bad-event B ∈ τ , some necessary event occuring with probability at most PΩ(B). This is
the general strategy in Moser-Tardos [34] and related constructive LLL variants such as [22], [1], [20]. This is
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not the proof we employ here; there is an additional factor of (nk −A0
k)!/n! which is present for the original

permutation and is gradually “discharged” as active conditions disappear from the future-subgraphs. �

6. The constructive LLL for permutations

Now that we have proved the Witness Tree Lemma, the remainder of the analysis is essentially the same
as for the Moser-Tardos algorithm [34]. Using arguments and proofs from [34] with our key lemma, we can
now easily show our key theorem:

Theorem 6.1. Suppose there is some assignment of weights µ : B → [0,∞) which satisfies, for every B ∈ B
the condition

µ(B) ≥ PΩ(B)
∏
B′∼B

(1 + µ(B′))

Then the Swapping Algorithm terminates with probability one. The expected number of iterations in which
we resample B is at most µ(B).

In the “symmetric” case, this gives us the well-known LLL criterion:

Corollary 6.2. Suppose each bad-event B ∈ B has probability at most p, and is dependent with at most
d bad-events. Then if ep(d + 1) ≤ 1, the Swapping Algorithm terminates with probability one; the expected
number of resamplings of each bad-event is O(1).

Some extensions of the LLL, such as the Moser-Tardos distribution bounds shown in [21], the observation
of Pegden regarding independent sets in the dependency graph [36], or the partial-resampling of [22], follow
almost immediately here. There are a few extensions which require slightly more discussion:

6.1. Lopsidependence. As in [34], it is possible to slightly restrict the notion of dependence. Two bad-
events which share the same valuation of a variable are not forced to be dependent. We can re-define the
relation ∼ on bad-events as follows: for B,B′ ∈ B, we have B ∼ B′ iff

(1) B = B′, or
(2) there is some (k, x, y) ∈ B, (k, x′, y′) ∈ B′ with either x = x′, y 6= y′ or x 6= x′, y = y′.

In particular, bad-events which share the same triple (k, x, y), are not caused to be dependent.
Proving that the Swapping Algorithm still works in this setting requires only a slight change in our

definition of Projk(τ). Now, the tree τ may have multiple copies of any given triple (k, x, y) on a single level.
When this occurs, we create the corresponding nodes v ≈ (x, y) ∈ Projk(τ); edges are added between such
nodes in an arbitrary (but consistent) way. The remainder of the proof remains as before.

6.2. LLL for injective functions. The analysis of [30] considers a slightly more general setting for the
LLL, in which we select random injections fk : [mk] → [nk], where mk ≤ nk. In fact, our Swapping
Algorithm can be extended to this case. We simply define a permutation πk on [nk], where the entries
πk(mk + 1), . . . , πk(nk) are “dummies” which do not participate in any bad-events. The LLL criterion for
the extended permutation πk is exactly the same as the corresponding LLL criterion for the injection fk.
Because all of the dummy entries have the same behavior, it is not necessary for the Swapping Algorithm to
keep track of the dummy entries exactly; they are needed only for the analysis.

6.3. Comparison with the approaches of Achlioptas & Iliopoulos, Harvey & Vondrak, and Kol-
mogorov. Achlioptas & Iliopoulos [1] and Harvey & Vondrak [20] gave generic frameworks for analyzing
variants of the Moser-Tardos algorithm, applicable to different types of combinatorial configurations. These
frameworks can include vertex-colorings, permutations, Hamiltonian cycles of graphs, spanning trees, match-
ings, and other settings. For the case of permutations, both of these frameworks give the same algorithm as
our Swapping Algorithm and show that it terminates under the same conditions as we do, which in turn are
the same conditions as the LLL (Theorem 1.1).

The key difference between our approach and [1, 20, 28] is that they enumerate the entire history of all
resamplings to the permutations. In contrast, our proof is based on the Witness Tree Lemma; this is a much
more succint structure that ignores most of the resamplings, and only enumerates the few resamplings that
are necessary to justify a single item in the execution log. Their proofs are much simpler than ours; a major
part of the complexity of our proof lies in the need to argue that the bad-events which were ignored by the
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witness tree do not affect the probabilities. (The ignored bad-events do interact with the variables we need
to track for the witness tree, but do so in a “neutral” way.)

If our only goal is to prove that the Swapping Algorithm terminates in polynomial time, then the other
frameworks give a better and simpler approach. However, the Witness Tree Lemma allows much more precise
estimates for many types of events. The main reason for this precision is the following: suppose we want
to show that some event E has a low probability of occuring during or after the execution of the Swapping
Algorithm. The proof strategy of Moser & Tardos is to take a union-bound over all witness trees that
correspond to this event. In this case, we are able to show a probability bound which is proportional to
the total weight of all such witness trees. This can be a relatively small number as only the witness trees
connected to E are relevant. Our analysis, which is also based on witness trees, is able to show similar types
of bounds.

However, the analyses of Achlioptas & Iliopoulos, Harvey & Vondrak, and Kolmogorov (herafter the
“alternate analyses”) are not based on witness trees, but the much larger set of full execution logs. The
number of possible execution logs can be exponentially larger than the number of witness trees. It is very
inefficient to take a union bound over all such logs. Hence, the alternate analyses give bounds which are
exponentially weaker than the ones we provide.

Many properties of the Swapping Algorithm depend on the fine degree of control provided by the Witness
Tree Lemma, and it seems difficult to obtain them from the alternate LLLL approaches. We list a few of
these properties here.

The LLL criterion without slack. As a simple example of the problems caused by taking a union
bound over execution logs, suppose that we satisfy the LLL criterion without slack, say epd = 1; here,
as usual, p and d are bounds respectively on the probability of any bad event and the degree of any bad
event in the dependency graph. In this case, we show that the expected time for our Swapping Algorithm
to terminate is O(m). By contrast, the alternate analyses require satisfying the LLL criterion with slack
ep(1 + ε)d = 1, and achieve a termination time of O(m/ε). They require this slack term in order to damp
the exponential growth in the number of execution logs.1

Arbitrary choice of which bad-event to resample. The Swapping Algorithm as we have stated it
is actually under-determined, in that the choice of which bad-event to resample is arbitrary. In contrast,
in both Achlioptas & Iliopoulos and Harvey & Vondrak, there is a fixed priority on the bad-events. (The
work of [28] removes this restriction in certain special cases of the Achlioptas & Iliopoulous setting, including
for random permutations and matchings.) This freedom can be quite useful. For example, in Section 7 we
consider a parallel implementation of our Swapping Algorithm. We will select which bad-events to resample
in a quite complicated and randomized way. However, the correctness of the parallel algorithm will follow
from the fact that it simulates some serial implementation of the Swapping Algorithm.

The Moser-Tardos distribution. The Witness Tree Lemma allows us to analyze the so-called “Moser-
Tardos (MT) distribution,” first discussed by [21]. The LLL and its algorithms ensure that bad-events
B cannot possibly occur. In other words, we know that the configuration produced by the LLL has the
property that no B ∈ B is true. In many applications of the LLL, we may wish to know more about such
configurations, other than they exist.

There are a variety of reasons we might want this; we give two examples for the ordinary, variable-
based LLL. Suppose that we have some weights for the values of our variables, and we define the objective
function on a solution

∑
i w(Xi); in this case, if we are able to estimate the probability that a variable Xi

takes on value j in the output of the LLL (or Moser-Tardos algorithm), then we may be able to show that
configurations with a good objective function exist. A second example is when the number of bad-events
becomes too large, perhaps exponentially large. In this case, the Moser-Tardos algorithm cannot test them
all. However, we may still be able to ignore a subset of the bad events, and argue that the probability that
they are true at the end of the Moser-Tardos algorithm is small even though they were never checked.

The Witness Tree Lemma gives us an extremely powerful result concering this MT distribution, which
carries over to the Swapping Algorithm.

1Harvey & Vondrak show that if the symmetric LLL criterion is satisfied without slack, then the Shearer criterion is satisfied
with slack ε = O(1/m). Thus, they would achieve a running time of O(m2) without slack. This extra slack, which our analysis

does not need, is not present in all settings of the LLL.
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Proposition 6.3. Let E ≡ πk1(x1) = y1 ∧ · · · ∧ πkr (xr) = yr. Then the probability that E is true in the
output of the Swapping Algorithm, is at most PΩ(E)

∏
B′∼E(1 + µ(B′)).

Proof. See [21] for the proof of this for the ordinary MT algorithm; the extension to the Swapping Algorithm
is straightforward. �

Bounds on the depth of the resampling process. One key requirement for parallel variants of the
Moser-Tardos algorithm appears to be that the resampling process has logarithmic depth. This is equivalent
to showing that there are no deep witness trees. This follows easily from the Witness Tree Lemma, along
the same lines as in the original paper of Moser & Tardos, but appears to be very difficult in the other LLLL
frameworks.

Partial resampling. In [22], a partial resampling variant of the Moser-Tardos algorithm was developed.
In this variant, one only resamples a small, random subset of the variables (or, in our case, permutation
elements) which determine a bad-event. To analyze this variant, [22] developed an alternate type of witness
tree, which only records the variables which were actually resampled. Ignoring the other variables can
drastically prunes the space of witness trees. Again, this does not seem to be possible in other LLLL
frameworks in which the full execution log must be recorded. We will see an example of this in Theorem 8.2;
we do not know of any way to show Theorem 8.2 using alternate analyses.

7. A parallel version of the Swapping Algorithm

The Moser-Tardos resampling algorithm for the ordinary LLL can be transformed into an RNC algorithm
by allowing a slight slack in the LLL’s sufficient condition [34]. The basic idea is that in every round, we
select a maximal independent set of bad-events to resample. Using the known distributed/parallel algorithms
for MIS, this can be done in RNC; the number of resampling rounds is then shown to be logarithmic whp
(“with high probability”), in [34].

In this section, we will describe a parallel algorithm for the Swapping Algorithm, which runs along the
same lines. However, everything is more complicated than in the case of the ordinary LLL. In the Moser-
Tardos algorithm, events which are not connected to each other cannot affect each other in any way. For the
permutation LLL, such events can interfere with each other, but do so rarely. Consider the following example.
Suppose that at some point we have two active bad-events, “πk(1) = 1” and “πk(2) = 2” respectively, and so
we decide to resample them simultaneously (since they are not connected to each other, and hence constitute
an independent set). When we are resampling the bad-event πk(1) = 1, we may swap 1 with 2; in this case,
we are automatically fixing the second bad-event as well. The sequential algorithm, in this case, would only
swap a single element. The parallel algorithm should likewise not perform a second swap for the second
bad-event, or else it would be over-sampling. Avoiding this type of conflict is quite tricky.

Let n = n1+· · ·+nK ; since the output of the algorithm will be the contents of the permutations π1, . . . , πk,
this algorithm should be measured in terms of n, and we must show that this algorithm runs in logO(1) n
time. We will make the following assumptions in this section. First, we assume that |B|, the total number
of potential bad-events, is polynomial in n. This assumption can be relaxed if we have the proper kind of
“separation oracle” for B. Next, we assume that every element B ∈ B has size |B| ≤ M = logO(1) n; this
holds in many cases.

We describe the following Parallel Swapping Algorithm:
(1) In parallel, generate the permutations π1, . . . , πN uniformly at random.
(2) We proceed through a series of rounds while there is some true bad-event. In round i (i = 1, 2, . . . ,)

do the following:
(3) Let Vi,1 ⊆ B denote the set of bad-events which are currently true at the beginning of round i.

We will attempt to fix the bad-events in Vi,1 through a series of sub-rounds. This may introduce
new bad-events, but we will not fix any newly created bad-events until round i+ 1.
We repeat the following for j = 1, 2, . . . as long as Vi,j 6= ∅:

(4) Let Ii,j be a maximal independent set (MIS) of bad-events in Vi,j .
(5) For each true bad-event B ∈ Ii,j , choose the swaps corresponding to B. Namely, if we

have some bad-event B involving triples (k1, x1, y1), . . . , (kr, xr, yr), then we select each
zl ∈ [nkl

], which is the element to be swapped with πkl
(xl) according to procedure Swap.

Do not perform the indicated swaps at this time though! We refer to (k1, x1), . . . , (kr, xr)
as the swap-sources of B and the (k1, z1), . . . , (kr, zr) as the swap-mates of B.
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(6) Select a random ordering ρi,j of the elements of Ii,j . Consider the graph Gi,j whose
vertices correspond to elements of Ii,j : add an edge connecting B with B′ if ρi,j(B) <
ρi,j(B′) and one of the swap-mates of B is a swap-source of B′. Generate I ′i,j ⊆ Ii,j as
the lexicographically-first MIS (LFMIS) of the resulting graph Gi,j , with respect to the
vertex-ordering ρi,j .

(7) For each permutation πk, enumerate all the transpositions (x z) corresponding to elements
of I ′i,j , arranged in order of ρi,j . Say these transpositions are, in order (x1, z1), . . . (xl, zl),
where l ≤ n. Compute, in parallel for all πk, the composition π′k = πk(xl zl) . . . (x1 z1).

(8) Update Vi,j+1 from Vi,j by removing all elements which are either no longer true for the
current permutation, or are connected via ∼ to some element of I ′i,j .

Most of the steps of this algorithm can be implemented using standard parallel algorithms. For example,
step (1) can be performed simply by having each element of [nk] choose a random real and then executing
a parallel sort. The independent set Ii,j can be found in time in polylogarithmic time using [5, 31].

The difficult step to parallelize is in selecting the LFMIS I ′i,j . In general, the problem of finding the
LFMIS is P-complete [10], hence we do not expect a generic parallel algorithm for this. However, what saves
us it that the ordering ρi,j and the graph Gi,j are constructed in a highly random fashion.

This allows us to use the following greedy algorithm to construct I ′i,j , the LFMIS of Gi,j :

(1) Let H1 be the directed graph obtained by orienting all edges of Gi,j in the direction of ρi,j . Repeat
the following for s = 1, 2, . . . ,:
(2) If Hs = ∅ terminate.
(3) Find all source nodes of Hs. Add these to I ′i,j .
(4) Construct H ′s+1 by removing all source nodes and all successors of source nodes from H ′s.

The output of this algorithm is the LFMIS I ′i,j . Each step can be implemented in parallel time O(1). The
number of iterations of this algorithm is the length of the longest directed path in G′i,j . So it suffices it show
that, whp, all directed paths in G′i,j have length at most polylogarithmic in n.

Proposition 7.1. Let I ⊆ B be an an arbitrary independent set of true bad-events, and suppose all elements
of B have size ≤M . Let G = Gi,j be the graph constructed in Step (6) of the Parallel Swapping Algorithm.

Then whp, every directed path in G has length O(M + log n).

Proof. One of the main ideas below is to show that for the typical B1, . . . , Bl ∈ I, where l = 5(M + log n),
the probability that B1, . . . , Bl form a directed path is small. Suppose we select B1, . . . , Bl ∈ I uniformly at
random without replacement. Let us analyze how these could form a directed path in G. (We may assume
|I| > l or otherwise the result holds trivially.)

First, it must be the case that ρ(B1) < ρ(B2) < · · · < ρ(Bl). This occurs with probability 1/l!.
Next, it must be that the swap-mates of Bs overlap the swap-sources of Bs+1, for s = 1, . . . , l − 1. Now,

Bs has O(M) swap-mates; each such swap-mate can overlap with at most one element of I, since I is an
independent set. Conditional on having chosen B1, . . . , Bs, there are a remaining |I| − s choices for Bs+1.
This gives that the probability of having Bs with an edge to Bs+1, conditional on the previous events, is at
most M

|I|−s . (The fact that swap-mates are chosen randomly does not give too much of an advantage here.)
Putting this all together, the total probability that there is a directed path on B1, . . . , Bl is

P (directed path B1, . . . , Bl) ≤
M l−1(|I| − l)!

(|I| − 1)!l!

Since the above was for a random B1, . . . , Bl, the probability that there is some such path (of length l)
is at most

P (some directed path) ≤ |I|!
(|I| − l)!

× M l−1(|I| − l)!
(|I| − 1)!l!

= |I| × M l−1

l!
≤ n× M l−1

(l/e)l
≤ n−Ω(1),

since l = 5(M + log n). �
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So far, we have shown that each sub-round of the Parallel Swapping Algorithm can be executed in parallel
time logO(1) n. Next, we show that whp that number of sub-rounds corresponding to any round is bounded
by logO(1) n.

Proposition 7.2. Suppose |B| = nO(1) and all elements B ∈ B have size |B| ≤ M . Then whp, we have
Vi,j = ∅ for some j = O(M log2 n).

Proof. We will first show the following: Let B ∈ I, where I is an arbitrary independent set of B. Then with
probability at least 1− 1

2M lnn we have B ∈ I ′ as well, where I ′ is the LFMIS associated with I.
Observe that if there is no B′ ∈ I such that ρ(B′) < ρ(B) and such that a swap-mate of B′ overlaps with

a swap-source of B, then B ∈ I ′ (this is not a necessary condition). We will analyze the ordering ρ using
the standard trick, in which each element B ∈ I chooses a rank W (B) ∼ Uniform[0, 1], independently and
identically. The ordering ρ is then formed by sorting in increasing ordering of W . In this way, we are able
to avoid the dependencies induced by the rankings. For the moment, let us suppose that the rank W (B) is
fixed at some real value w. We will then count how many B′ ∈ I satisfy W (B′) < w and a swap-mate of B′

overlaps a swap-source of B.
So, let us consider some swap-source s of B in permutation k, and consider some B′j ∈ I which has r′j

other elements in permutation k. For l = 1, . . . , r′j , there are nk− l+1 possible choices for the lth swap-mate
from B′j , and hence the total expected number of swap-mates of B′ which overlap s is at most

E[ # swap-mates of B′j overlapping s] ≤
r′j∑
l=1

1
nk − l + 1

≤
∫ r′j+1

l=1

1
nk − l + 1

dl

= ln(
nk

nk − r′j
)

Next, sum over all B′j ∈ I. Observe that since I is an independent set, we must have
∑
r′j ≤ nk − 1.

Thus,

E[ # swap-mates of some B′j overlapping s] ≤
∑
j

ln(
nk

nk − r′j
)

≤ ln(
nk

nk −
∑
j r
′
j

) by concavity

≤ lnnk ≤ lnn

Thus, summing over all swap-sources of B, the total probability that there is some B′ with ρ(B′) ≤ B and
for which a swap-mate overlaps a swap-source of B, is at most w|B| lnn ≤ wM lnn. By Markov’s inequality,
we have

P (B′ ∈ I ′ |W (B) = w) ≥ 1− wM lnn

Integrating over w, we have that B′ ∈ I ′ with probability at least

P (B′ ∈ I ′) ≥ 1− 1
2M lnn

Now, using this fact, we show that Vi,j is decreasing quickly in size. For, suppose B ∈ Vi,j . So B ∼ B′

for some B′ ∈ Ii,j , as Ii,j is a maximal independent set (possibly B = B′). We will remove B from Vi,j+1

if B′ ∈ I ′i,j , which occurs with probability at least 1 − 1
2M lnn . As B was an arbitrary element of Vi,j , this

shows that E
[
|Vi,j+1| | Vi,j

]
≤ (1− 1

2M lnn )|Vi,j |.
For j = Ω(M log2 n), this implies that

E
[
|Vi,j |

]
≤ (1− 1

2M lnn
)Ω(M log2 n)|Vi,1| ≤ n−Ω(1)

This in turn implies that Vi,j = ∅ with high probability, for j = Ω(M log2 n). �
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To finish the proof, we must show that the number of rounds is itself bounded whp. We begin by showing
that Witness Tree Lemma remains valid in the parallel setting.

Proposition 7.3. When we execute this parallel swapping algorithm, we may generate an “execution log”
according to the following rule: suppose that we resample B in round i, j and B′ in round i′, j′. Then we
place B before B′ iff:

(1) i < i′; OR
(2) i = i′ AND j < j′; OR
(3) i = i′ and j = j′ and ρi,j(B) < ρi′,j′(B′)

that is, we order the resampled bad-events lexicographically by round, sub-round, and then rank ρ.
Given such an execution log, we may also generate witness trees in the same manner as the sequential

algorithm.
Now let τ be any witness tree; we have

P (τ appears) ≤
∏
B∈τ

PΩ(B)

Proof. Observe that the choice of swaps for a bad-event B at round i, subround j, and rank ρi,j(B), is only
affected by the events in earlier rounds / subrounds as well as other B′ ∈ Ii,j with ρi,j(B′) < ρi,j(B).

Thus, we can view this parallel algorithm as simulating the sequential algorithm, with a particular rule
for selecting the bad-event to resample. Namely, we keep track of the sets Vi and Ii,j as we do for the parallel
algorithm, and within each sub-round we resample the bad-event in Ii,j with the minimum value of ρi,j(B).

This is why it is critical in step (6) that we select I ′i,j to be the lexicographically-first MIS; this means
that the presence of B ∈ I ′i,j cannot be affected with B′ with ρ(B′) > ρ(B). �

Proposition 7.4. Let B be any resampling performed at the ith round of the Parallel Swapping Algorithm
(that is, B ∈ I ′i,j for some integer j > 0.) Then the witness tree corresponding to the resampling of B has
height exactly i.

Proof. First, note that if we have B ∼ B′ in the execution log, where B occurs earlier in time, and the
witness tree corresponding to B has height i, then the witness tree corresponding to B′ must have height
i+ 1. So it will suffice to show that if B ∈ I ′i,j , then we must have B ∼ B′ for some B′ ∈ I ′i−1,j′ .

At the beginning of round i, it must be the case that πi makes the bad-event B true. By Proposition 3.2,
either the bad-event B was already true at the beginning of round i − 1, or some bad-event B′ ∼ B was
resampled at round i− 1. If it is the latter, we are done.

So suppose B was true at the beginning of round i− 1. So B was an element of Vi−1,1. In order for B to
have been removed from Vi−1, then either we had B ∼ B′ ∈ I ′i−1,j′ , in which case we are also done, or after
some sub-round j′ the event B was no longer true. But again by Proposition 3.2, in order for B to become
true again at the beginning of round i, there must have been some bad-event B′ ∼ B encountered later in
round i− 1. �

This gives us the key bound on the running time of the Parallel Swapping Algorithm. We give only a
sketch of the proof, since the argument is identical to that of [34].

Proposition 7.5. Suppose that ε > 0 and that there is some assignment of weights µ : B → [0,∞) which
satisfies, for every B ∈ B, the condition

µ(B) ≥ (1 + ε)PΩ(B)
∏
B′∼B

(1 + µ(B′))

Then, whp, the Parallel Swapping Algorithm terminates after logO(1)(n
P

B µ(B))

ε rounds.

Proof. Consider the event that for some B ∈ B, that B is resampled after i rounds of the Parallel Swapping
Algorithm. In this case, τ̂ has height i. As shown in [34], the sum, over all witness trees of some height h, of
the product of the probabilities of the constituent events in the witness trees, is decreasing exponentially in
h. So, for any fixed B, the probability that this occurs is exponentially small; this remains true after taking
a union-bound over the polynomial number of B ∈ B. �

We can put this analysis all together to show:
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Theorem 7.6. Suppose |B| = nO(1) and that for all B ∈ B′ we have |B| ≤ logO(1) n. Suppose also that ε > 0
and that there is some assignment of weights µ : B → [0,∞) which satisfies, for every B ∈ B, the condition

µ(B) ≥ (1 + ε)PΩ(B)
∏
B′∼B

(1 + µ(B′))

Then, whp, the Parallel Swapping Algorithm terminates after logO(1)(n
P

B µ(B))

ε time.

Proof. The number of rounds, the number of sub-rounds per round, and the running time of each sub-round,
are all polylogarithmic in n whp. �

8. Algorithmic Applications

The LLL for permutations plays a role in diverse combinatorial constructions. Using our algorithm, nearly
all of these constructions become algorithmic. We examine a few selected applications now.

8.1. Latin transversals. Suppose we have an n× n matrix A. The entries of this matrix come from a set
C which are referred to as colors. A Latin transversal of this matrix is a permutation π ∈ Sn, such that no
color appears twice among the entries A(i, π(i)); that is, there are no i 6= j with A(i, π(i)) = A(i′, π(i′)). A
typical question in this area is the following: suppose each color c appears at most ∆ times in the matrix.
How large can ∆ be so as to guarantee the existence of a Latin transversal?

In [17], a proof using the probabilistic form of the Lovász Local Lemma for permutations was given,
showing that ∆ ≤ n/(4e) suffices. This was the first application of the LLL to permutations. This bound
was subsequently improved by [8] to the criterion ∆ ≤ (27/256)n; this uses a variant of the probabilistic
Local Lemma which is essentially equivalent to Pegden’s variant on the constructive Local Lemma. Using
our algorithmic LLL, we can almost immediately transform the existential proof of [8] into a constructive
algorithm. To our knowledge, this is the first polynomial-time algorithm for constructing such a transversal.

Theorem 8.1. Suppose ∆ ≤ (27/256)n. Then there is a Latin transversal of the matrix. Furthermore, the
Swapping Algorithm selects such a transversal in polynomial time.

Proof. For any quadruples i, j, i′, j′ with A(i, j) = A(i′, j′), we have a bad-event (i, j), (i′, j′). Such an event
has probability 1

n(n−1) . We give weight µ(B) = α to every bad event B, where α is a scalar to be determined.
This bad-event can have up to four types of neighbors (i1, j1, i′1, j

′
1), which overlap on one of the four

coordinates i, j, i′, j′; as discussed in [8], all the neighbors of any type are themselves neighbors in the
dependency graph. Since these are all the same, we will analyze just the first type of neighbor, one which
shares the same value of i, that is i1 = i. We now may choose any value for j1 (n choices). At this point,
the color A(i1, j1) is determined, so there are ∆− 1 remaining choices for i′1, j

′
1.

By Lemma 3.1 and Pegden’s criterion [36], a sufficient condition for the convergence of the Swapping
Algorithm is that

α ≥ 1
n(n− 1)

(1 + n(∆− 1)α)4

Routine algebra shows that this has a positive real root α when ∆ ≤ (27/256)n. �

In [41], Szabó considered a generalization of this question: suppose that we seek a transversal, such that
no color appears more than s times. When s = 1, this is asking for a Latin transversal. Szabó gave similar
criteria “∆ ≤ γsn” for s a small constant. Such bounds can be easily obtained constructively using the
permutation LLL as well.

By combining the permutation LLL with the partial resampling approach of [22], we can provide asymp-
totically optimal bounds for large s:

Theorem 8.2. Suppose ∆ ≤ (s−c
√
s)n, where c is a sufficiently large constant. Then there is a transversal

of the matrix in which each color appears no more than s times. This transversal can be constructed in
polynomial time.

Proof. For each set of s appearances of any color, we have a bad event. We use the partial resampling
framework, to associate the fractional hitting set which assigns weight

(
s
r

)−1 to any r appearances of a color,
where r = d

√
se.
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We first compute the probability of selecting a given r-set X. From the fractional hitting set, this
has probability

(
s
r

)−1. In addition, the probability of selecting the indicated cells is (n−r)!
n! . So we have

p ≤
(
s
r

)−1 (n−r)!
n! .

Next, we compute the dependency of the set X. First, we may select another X ′ which overlaps with X
in a row or column; the number of such sets is 2rn

(
∆
r−1

)
. Next, we may select any other r-set with the same

color as X (this is the dependency due to ./ in the partial resampling framework; see [22] for more details).
The number of such sets is

(
∆
r

)
.

So the LLL criterion is satisfied if

e×
(
s

r

)−1 (n− r)!
n!

×
(

2rn
(

∆
r − 1

)
+
(

∆
r

))
≤ 1

Simple calculus now shows that this can be satisfied when ∆ ≤ (s−O(
√
s))n. Also, it is easy to detect a

true bad-event and resample it in polynomial time, so this gives a polynomial-time algorithm. �

Our result depends on the Swapping Algorithm in a fundamental way — it does not follow from Theo-
rem 1.1 (which would roughly require ∆ ≤ (s/e)n). Hence, prior to this paper, we would not have been able
to even show the existence of such transversals; here we provide an efficient algorithm as well. To see that
our bound is asymptotically optimal, consider a matrix in which the first s+1 rows all contain a given color,
a total multiplicity of ∆ = (s+ 1)n. Then the transversal must contain that color at least s+ 1 times.

8.2. Rainbow Hamiltonian cycles and related structures. The problem of finding Hamiltonian cycles
in the complete graph Kn, with edges of distinct colors, was first studied in [12]. This problem is typically
phrased in the language of graphs and edges, but we can rephrase it in the language of Latin transversals,
with the additional property that the permutation π has full cycle. How often can a color appear in the
matrix A, for this to be possible? In [13], it was shown that such a transversal exists if each color appears
at most ∆ = n/16 times.2 This proof is based on applying the non-constructive Lovász Local Lemma to the
probability space induced by a random choice of full-cycle permutation. This result was later generalized in
[14], to show the following result: if each color appears at most ∆ ≤ c0n times for a certain constant c0 > 0,
then not only is there a full-cycle Latin transversal, but there are also cycles of each length 3 ≤ k ≤ n. The
constant c0 was somewhat small, and this result was also non-constructive. Theorem 8.3 uses the Swapping
Algorithm to construct Latin transversals with essentially arbitrary cycle structures; this generalizes [14]
and [13] quite a bit.

Theorem 8.3. Suppose that each color appears at most ∆ ≤ 0.027n times in the matrix A, and n is
sufficiently large. Let τ be any permutation on n letters, whose cycle structure contains no fixed points
nor swaps (2-cycles). Then there is a Latin transversal π which is conjugate to τ (i.e., has the same cycle
structure); furthermore the Swapping Algorithm finds it in polynomial time. Also, the Parallel Swapping
Algorithm finds it in time logO(1) n.

Proof. We cannot apply the Swapping Algorithm directly to the permutation π, because we will not be able
to control its cycle structure. Rather, we will set π = σ−1τσ, and apply the Swapping Algorithm to σ.

A bad-event is that A(x, π(x)) = A(x′, π(x′)) for some x 6= x′. Using the fact that τ has no fixed points or
2-cycles, we can see that this is equivalent to one of the following two situations: (A) There are i, i′, x, y, x′, y′

such that σ(x) = i, σ(y) = τ(i), σ(x′) = i′, σ(y′) = τ(i′), and x, y, x′, y′ are distinct, and i, i′, τ(i), τ(i′) are
distinct, and A(x, y) = A(x′, y′) or (B) There are i, x, y, z with σ(x) = i, σ(y) = τ(i), σ(z) = τ2(i), and all of
x, y, z are distinct, and A(x, y) = A(y, z). We will refer to the first type of bad-event as an event of type A
led by i (such an event is also led by i′); we will refer to the second type of bad-event as type B led by i.

Note that in an A-event, the color is repeated in distinct column and rows, and in a B-event the column
of one coordinate is the row of another. So, to an extent, these events are mutually exclusive. Much of the
complexity of the proof lies in balancing the two configurations. To a first approximation, the worst case
occurs when A-events are maximized and B-events are impossible. This intuition should be kept in mind
during the following proof.

2The terminology used for rainbow Hamilton cycles is slightly different from that of Latin transversals. In the context of

Hamilton cycles, one often assumes that the matrix A is symmetric. Furthermore, since A(x, y) and A(y, x) always have the
same color, one only counts this as a single occurrence of that color. Thus, for example, in [13], the stated criterion is that the

matrix A is symmetric and a color appears at most ∆/32 times.



A CONSTRUCTIVE ALGORITHM FOR THE LLL ON PERMUTATIONS 21

We will define the function µ as follows. Each event of type A is assigned the same weight µA, and each
event of type B is assigned weight µB . The event of type A has probability (n − 4)!/n! and each event of
type B has probability (n− 3)!/n!. In the following proof, we shall need to compare the relative magnitude
of µA, µB . In order to make this concrete, we set

µA = 2.83036n−4, µB = 1.96163n−3

(In deriving this proof, we left these constant coefficients undetermined until the end of the computation,
and we then verified that all desired inequalities held.)

Now, to apply Pegden’s criterion [36] for the convergence of the Swapping Algorithm, we will need to
analyze the independent sets of neighbors each bad-event can have in the dependency graph. In order to
keep track of all the neighborhood structure ssible neighbors, it will be convenient to define the following
sums. We let t denote the sum of µ(X) over all bad-events X involving some fixed term σ(x). Let s denote
the sum of µ(X) over all bad-events X (of type either A or B) led by some fixed value i, and let b denote
the sum of µ(X) over B-events X alone. Recall that each bad-event of type A is led by i and also by i′.

We now examine how to compute the term t. Consider a fixed value x; we will enumerate all the bad-
events that involve σ(x). These correspond to color-repetitions involving either row or column x in the
matrix A. Let ci (respectively ri) denote the number of occurrences of color i in column (respectively row)
x of the matrix, excluding A(x, y) itself.

We can have a color repetition of the form A(y, x) = A(x, y′) where y 6= y′; or we can have repetitions
of the form A(x, y) = A(x′, y′) or A(y, x) = A(y′, x′), where x 6= x′, y 6= y′ (but possibly x′ = y). The
total number of repetitions of the first type is v1 ≤

∑
i ciri. The total number of repetitions of the second

type is at most v2 ≤
∑
i ci(∆ − ci − ri). The total number of repetitions of the third type is at most

v3 ≤
∑
i ri(∆− ci − ri).

For a repetition of the first type, this must correspond to an B-event, in which σ(y) = i, σ(x) =
τ(i), σ(y′) = τ2(i) for some i. For a repetition of the second type, if x′ 6= y this correspond to an A-
event in which σ(x) = i, σ(y) = τ(i), σ(x′) = i′, σ(y′) = τ(i′) for some i, i′ or alternatively if x′ = y it
correspond to a B-event in which σ(x) = i, σ(y) = τ(i), σ(y′) = τ2(i) for some i. A similar argument holds
for the third type of repetition.

Summing all these cases, we have

t ≤ v1nµB + v2(max(n2µA + nµB)) + v3(max(n3µA + nµB))

≤ v1nµB + v2n
2µA + v3n

2µA

≤
∑
j

(cjrjnµB + cj(∆− cj − rj)n2µA + rj(∆− cj − rj)n2µA)

Observe that the the RHS is maximized when there are n distinct colors with cj = 1 and n distinct colors
with rj = 1. For, suppose that a color has (say) cj > 1. If we decrement cj by 1 while adding a new color
with cj′ = 1, this changes the RHS by (−1 + 2(cj + rj)−∆)n2µA + (−1 + ∆− rj)nµB ≥ 0.

This gives us
t ≤ 2n3∆µA

Similarly, let us consider s. Given i, we choose some y with σ(y) = τ(i). Now, we again list all color
repetitions A(x, y) = A(x′, y′) or A(x, y) = A(y, z). The number of the former is at most

∑
j cj(∆− cj − rj)

and the number of the latter is at most
∑
j cjrj . As before, this is maximized when each color appears once

in the column, leading to
s ≤ n3∆µA

For term b, the worst case is when each color appears ∆/2 times in the row and column of y; this yields

b ≤ n2(∆/2)µB

Now consider a fixed bad-event A, with parameters i, i′, x, y, x′, y′, and let us count the sum over all
independent sets of neighbors, of µ. This could have one or zero children involving σ(x) and similarly for
σ(y), σ(x′), σ(y′); this gives a total contribution of (1 + t)4. The children could also overlap on i; the total
set of possibilities is either zero children, a B-child led by i− 2, a B-child led by i− 2 and a child led by i, a
child led by i− 1, a child led by i− 1 and a child led by i+ 1, a child led by i, a child led by i+ 1. There is



22 DAVID G. HARRIS AND ARAVIND SRINIVASAN

an identical factor for the contributions of bad-events led by i′ − 2, . . . , i′ + 1. In total, the criterion for A is
that we must have

µA ≥
(n− 4)!
n!

(1 + t)4(1 + b+ sb+ s+ s2 + s+ s)2

Applying the same type of analysis to an event of type B gives us the criterion:

µB ≥
(n− 3)!
n!

(1 + t)3(1 + b+ sb+ sb+ s+ s2 + s2 + s+ s2 + s)

Putting all these constraints together gives a complicated system of polynomial equations, which can be
solved using a symbolic algebra package. Indeed, the stated values of µA, µB satisfy these conditions when
∆ ≤ 0.027n and n is sufficiently large.

Hence the Swapping Algorithm terminates, resulting in the desired permutation π = σ−1τσ. It is easy to
see that the Parallel Swapping Algorithm works as well. �

We note that for certain cycle structures, namely the full cycle σ = (123 . . . n−1 n) and n/2 transpositions
σ = (12)(34) . . . (n− 1 n), one can apply the LLLL directly to the permutation π. This gives a qualitatively
similar condition, of the form ∆ ≤ cn, but the constant term is slightly better than ours. For some of these
settings, one can also apply a variant of the Moser-Tardos algorithm to find such permutations [1]. However,
these results do not apply to general cycle structures, and they do not give parallel algorithms.

8.3. Strong chromatic number of graphs. Suppose we have a graph G, with a given partition of the
vertices into k blocks each of size b, i.e., V = V1 t · · · t Vk. We would like to b-color the vertices, such that
every block has exactly b colors, and such that no edge has both endpoints with the same color (i.e., it is a
proper vertex-coloring). This is referred to as a strong coloring of the graph. If this is possible for any such
partition of the vertices into blocks of size b, then we say that the graph G has strong chromatic number b.

A series of papers [4, 7, 19, 24] have provided bounds on the strong chromatic number of graphs, typically
in terms of their maximum degree ∆. In [25], it is shown that when b ≥ (11/4)∆ + Ω(1), such a coloring
exists; this is the best bound currently known. Furthermore, the constant 11/4 cannot be improved to any
number strictly less than 2. The methods used in most of these papers are highly non-constructive, and do
not provide algorithms for generating such colorings.

In this section, we examine two routes to constructing strong colorings. The first proof, based on [2], builds
up the coloring vertex-by-vertex, using the ordinary LLL. The second proof uses the permutation LLL to
build the strong coloring directly. The latter appears to be the first RNC algorithm with a reasonable bound
on b.

We first develop a related concept to the strong coloring known as an independent transversal. In an
independent transversal, we choose a single vertex from each block, so that the selected vertices form an
independent set of the graph.

Proposition 8.4. Suppose b ≥ 4∆. Then G has an independent transversal, which can be found in expected
time O(n∆).

Furthermore, let v ∈ G be any fixed vertex. Then G has an independent transversal which includes v,
which can be found in expected time O(n∆2).

Proof. Use the ordinary LLL to select a single vertex uniformly from each block. See [8], [22] for more
details. This shows that, under the condition b ≥ 4∆, an independent transversal exists and is found in
expected time O(n∆).

To find an independent transversal including v, we imagine assigning a weight 1 to vertex v and weight
zero to all other vertices. As described in [22], the expected weight of the independent transversal returned
by the Moser-Tardos algorithm, is at least Ω(w(V )/∆), where w(V ) is the total weight of all vertices. This
implies that that vertex v is selected with probability Ω(1/∆). Hence, after running the Moser-Tardos
algorithm for O(∆) separate independent executions, one finds an independent transversal including v. �

Using this as a building block, we can form a strong coloring by gradually adding colors:

Theorem 8.5. Suppose b ≥ 5∆. Then G has a strong coloring, which can be found in expected time
O(n2∆2).
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Proof. (This proof is almost identical to the proof of Theorem 5.3 of [2]). We maintain a partial coloring of
the graph G, in which some vertices are colored with {1, . . . , b} and some vertices are uncolored. Initially all
vertices are uncolored. We require that in a block, no vertices have the same color, and no adjacent vertices
have the same color.

Now, suppose some color is partially missing from the strong coloring; say without loss of generality there
is a vertex w missing color 1. In each block i = 1, . . . , k, we will select some vertex vi to have color 1. If the
block does not have such a vertex already, we will simply assign vi to have color 1. If the block i already
had some vertex ui with color 1, we will swap the colors of vi and ui (if vi was previously uncolored, then
ui will become uncolored).

We need to ensure three things. First, the vertices v1, . . . , vk must form an independent transversal of G.
Second, if we select vertex vi and swap its color with ui, this cannot cause ui to have any conflicts with its
neighbors. Third, we insist of selecting w itself for the independent traversal.

A vertex ui will have conflicts with its neighbors if vi currently has the same color as one of the neighbors of
ui. In each block, there are at least b−∆ possible choices of vi that avoid that; we must select an independent
transversal among these vertices, which also includes the designated vertex w. By Proposition 8.4, this can
be done in time O(n2∆2) as long as b ≥ 4∆.

Whenever we select the independent transversal v1, . . . , vk, the total number of colored vertices increases
by at least one: for, the vertex w becomes colored while it was not initially, and in every other block the
number of colored vertices does not decrease. So, after n iterations, the entire graph has a strong coloring;
the total time is O(n2∆2). �

The algorithm based on the ordinary LLL is slow and is inherently sequential. Using the permutation
LLL, one can obtain a more direct and faster construction; however, the hypothesis of the theorem will need
to be slightly stronger.

Theorem 8.6. Suppose we have a given graph G of maximum degree ∆, whose vertices are partitioned into
blocks of size b. Then if b ≥ 256

27 ∆, it is possible to strongly color graph G in expected time O(n∆). If
b ≥ ( 256

27 + ε)∆ for some constant ε > 0, there is an RNC algorithm to construct such a strong coloring.

Proof. We will use the permutation LLL. For each block, we assume the vertices and colors are identified
with the set [b]. Then any proper coloring of a block corresponds to a permutation of Sb. When we discuss
the color of a vertex v, we refer to πk(v) where k is the block containing vertex v.

For each edge f = 〈u, v〉 ∈ G and any color c ∈ [1, . . . b], we have a bad-event that both u and v have
color c. (Note that we cannot specify simply that u and v have the same color ; because we have restricted
ourselves to atomic bad-events, we must list every possible color c with a separate bad event.)

Each bad-event has probability 1/b2. We give weight µ(B) = α to every bad event, where α is a scalar to
be determined.

Now, each such event (u, v, c) is dependent with four other types of bad-events:
(1) An event u, v′, c′ where v′ is connected to vertex u;
(2) An event u′, v, c′ where u′ is connected to vertex v;
(3) An event u′, v′, c where u′ is in the block of u and v′ is connected to u′;
(4) An event u′, v′, c where v′ is in the block of v and u′ is connected to v′

There are b∆ neighbors of each type. For any of these four types, all the neighbors are themselves
connected to each other. Hence an independent set of neighbors of the bad-event (u, v, c) can contain one or
zero of each of the four types of bad-events.

Using Lemma 3.1 and Pegden’s criterion [36], a sufficient condition for the convergence of the Swapping
Algorithm is that

α ≥ (1/b2) · (1 + b∆α)4

When b ≥ 256
27 ∆, this has a real positive root α∗ (which is a complicated algebraic expression). Further-

more, in this case the expected number of swaps of each permutation is ≤ b2∆α∗ ≤ 256
81 ∆. So the Swapping

Algorithm terminates in expected time O(n∆). A similar argument applies to the parallel Swapping Algo-
rithm. �

8.4. Hypergraph packing. In [30], the following packing problem was considered. Suppose we are given
two r-uniform hypergraphs H1, H2 and an integer n. Is it possible to find two injections φi : V (Hi) → [n]
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with the property that φ1(H1) is edge-disjoint to φ2(H2)? (That is, there are no edges e1 ∈ H1, e2 ∈ H2

with {φ1(v) | v ∈ e1} = {φ2(v) | v ∈ e2}. ). A sufficient condition on H1, H2, n was given using the LLLL.
We achieve this algorithmically as well:

Theorem 8.7. Suppose that H1, H2 have m1,m2 edges respectively. Suppose that each edge of Hi intersects
with at most di other edges of Hi, and suppose that

(d1 + 1)m2 + (d2 + 1)m1 <

(
n
r

)
e

Then the Swapping Algorithm finds injections φi : V (Hi) → [n] such that φ1(H1) is edge-disjoint to
φ2(H2).

Suppose further that r ≤ logO(1) n and

(d1 + 1)m2 + (d2 + 1)m1 <
(1− ε)

(
n
r

)
e

Then the Parallel Swapping Algorithm finds such injections with high probability in logO(1) n
ε time and

using poly(m1,m2, n) processors.

Proof. [30] proves this fact using the LLLL, and the proof immediately applies to the Swapping Algorithm
as well. We review the proof briefly: we may assume without loss of generality that the vertex set of H1 is
[n] and the vertex set of H2 has cardinality n and that φ1 is the identity permutation; then we only need to
select the bijection φ2 : H2 → [n]. For each pair of edges e1 = {u1, . . . , ur} ∈ H1, e2 = {v1, . . . , vr} ∈ H2,
and each ordering σ ∈ Sr, there is a separate bad-event φ2(v1) = uσ1 ∧ · · · ∧φ2(vr) = uσr. Now observe that
the LLL criterion is satisfied for these bad-events, under the stated hypothesis.

The proof for the Parallel Swapping Algorithm is almost immediate. There is one slight complication: the
total number of atomic bad-events is m1m2r!, which could be super-polynomial for r = Θ(log n). However,
it is easy to see that the total number of bad-events which are true at any one time is at most m1m2; namely,
for each pair of edges e1, e2, there may be at most one σ such that φ2(v1) = uσ1 ∧ · · · ∧ φ2(vr) = uσr. It is
not hard to see that Theorem 7.6 still holds under this condition. �

9. Conclusion

The original formulation of the LLLL [17] applies in a natural way to general probability spaces. There has
been great progress over the last few years in developing constructive algorithms, which find in polynomial
time the combinatorial structures in these probability spaces whose existence is guaranteed by the LLL. These
algorithms have been developed in great generality, encompassing the Swapping Algorithm as a special case.

However, the Moser-Tardos algorithm has uses beyond simply finding a object which avoids the bad-
events. In many ways, the Moser-Tardos algorithm is more powerful than the LLL. We have already seen
problems that feature its extensions: e.g., Theorem 8.2 requires the use of the Partial Resampling variant of
the Moser-Tardos algorithm, and Proposition 8.4 requires the use of the Moser-Tardos distribution (albeit
in the context of the original Moser-Tardos algorithm, not the Swapping Algorithm).

While the algorithmic frameworks of Achlioptas & Iliopoulous, Harvey & Vondrak, and Kolmogorov
achieve the main goal of a generalized constructive LLL algorithm, they do not match the full power of the
Moser-Tardos algorithm. However, our analysis shows that the Swapping Algorithm matches nearly all of the
additional features of the Moser-Tardos algorithm. In our view, one main goal of our paper is to serve as a
roadmap to the construction of a true generalized LLL algorithm. Behind all the difficult technical analysis,
there is the underlying theme: even complicated probability spaces such as permutations can be reduced
to “variables” (the domain and range elements of the range) which interact in a somewhat “independent”
fashion.

Encouragingly, there has been progress toward this goal. For example, one main motivation of [1, 20] was
to generalize the Swapping Algorithm. Then, Kolmogorov noticed in [28] that our Swapping Algorithm had
a certain nice property, namely the ability to select the resampled bad-event in an arbitrary fashion, that
the analysis of [1] lacked; this led to the work of [28] which partially generalized that property (referred to
by Kolmogorov as commutativity.)

At the current time, we do not even know how to define a truly generalized LLL algorithm, let alone
analyze it. But we hope that we have at least provided an example approach toward such an algorithm.
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Appendix A. Symmetry properties of the swapping subroutine

In the following series of propositions, we show a variety of symmetry properties of the swapping subrou-
tine. This analysis will use simple results and notations of group theory. We let Sl denote the symmetric
group on l letters, which we identify with the set of permutations of [l]. We let (a b) denote the permutation
(of whatever dimension is appropriate) that swaps a/b and is the identity otherwise. We write multiplications
on the right, so that στ denotes the permutation which maps x to σ(τ(x)). Finally, we will sometimes write
σx instead of the more cumbersome σ(x).

Proposition A.1. The swapping subroutine is invariant under permutations of the domain or range, namely
that for any permutations τ, σ we have

P (Swap(π;x1, . . . , xr) = σ) = P (Swap(πτ ; τ−1x1, . . . , τ
−1xr) = στ)

and

P (Swap(π;x1, . . . , xr) = σ) = P (Swap(τπ;x1, . . . , xr = τσ)

Proof. We prove this by induction on r. The following equivalence will be useful. We can view a single call
to Swap as follows: we select a random x′1 and swap x1 with x′1; let π′ = π · (x1 x

′
1) denote the permutation

after this swap. Now consider the permutation on n− 1 letters obtained by removing x1 from the range and
π′(x1) from the range of π′; we use the notation π′ − (x1, ∗) to denote this restriction of range/domain. We
then recursively call Swap(π′ − (x1, ∗), x2, . . . , xr).

Now, in order to have Swap(πτ ; τ−1x1, . . . , τ
−1xr) = στ we must first swap τ−1x1 with x′1 = τ−1π−1στx1;

this occurs with probability 1/n. Then we would have

P (Swap(πτ ; τ−1x1, . . . , τ
−1xr) = στ)

= 1
nP (Swap(πτ(τ−1x1 τ−1π−1σx1)− (τ−1x1, ∗); τ−1x2, . . . , τ

−1xr) = στ − (τ−1x1, ∗))
= 1

nP (Swap(πτ(τ−1x1 τ−1π−1σx1)τ−1 − (x1, ∗); τ−1τx2, . . . , τ
−1τxr) = σττ−1 − (x1, ∗))

by inductive hypothesis

= 1
nP (Swap(π(x1 π

−1σx1)τ−1 − (x1, ∗);x2, . . . , xr) = σ − (x1, ∗))
= P (Swap(π;x1, x2, . . . , xr) = σ)

A similar argument applies for permutation of the range (i.e., post-composition by τ). �

Also, the order in which we perform the swaps is irrelevant:

Proposition A.2. Let π ∈ Sn be fixed, and let x1, . . . , xr ∈ [n] be fixed as well. Let ρ : [r] → [r] be a
permutation on r letters; then for any permutation σ ∈ Sn we have

P (Swap(π;x1, . . . , xr) = σ) = P (Swap(π;xρ(1), . . . , xρ(r) = σ)

Proof. We will prove this by induction on r. We assume ρ(1) 6= 1 or else this follows immediately from
induction.
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We have:

P (Swap(π;xρ(1), . . . , xρ(r)) = σ)

= 1
nP (Swap(π(xρ(1) π

−1σxρ(1));xρ(2), . . . , xρ(r)) = σ)

= 1
nP (Swap(π(xρ(1) π

−1σxρ(1));x1, x2, . . . , xρ(1)−1, xρ(1)+1, . . . , xr) = σ) by I.H.

= 1
n(n−1)P (Swap(π(xρ(1) π

−1σxρ(1))(x1 (π(xρ(1) π
−1σxρ(1))−1)σx1)x2, . . . , xρ(1)−1, xρ(1)+1, . . . , xr) = σ)

= 1
n(n−1)P (Swap(π(xρ(1) π

−1σxρ(1))(x1 (xρ(1) π
−1σxρ(1))π−1σx1)x2, . . . , xρ(1)−1, xρ(1)+1, . . . , xr) = σ)

At this point, consider the following simple fact about permutations: for any a1, a2, b1, b2 ∈ [l] with
a1 6= a2, b1 6= b2, we have

(a2 b2)(a1 (a2 b2)b1) = (a1 b1)(a2 (a1 b1)b2)

This fact is simple to prove by case analysis considering which of the letters a1, a2, b1, b2 are equal to each
other.

We now apply this fact using a1 = x1, a2 = xρ(1), b1 = π−1σa1, b2 = π−1σa2; this gives us

P (Swap(π;xρ(1), . . . , xρ(r)) = σ)

= 1
n(n−1)P (Swap(π(x1 π

−1σx1)(xρ(1) (x1 π
−1σx1)π−1σxρ(1));x2, . . . , xρ(1)−1, xρ(1)+1, . . . , xr) = σ)

= 1
nP (Swap(π(x1 π

−1σx1);xρ(1), x2, . . . , xρ(1)−1, xρ(1)+1, . . . , xr) = σ)

= 1
nP (Swap(π(x1 π

−1σx1);x2, . . . , xr) = σ) by I.H.

= P (Swap(π;x1, . . . , xr) = σ)

�

In our analysis and algorithm, we will seek to maintain the symmetry between the “domain” and “range”
of the permutation. The swapping subroutine seems to break this symmetry, inasmuch as the swaps are all
based on the domain of the permutation. However, this symmetry-breaking is only superficial as shown in
Proposition A.3.

Proposition A.3. Define the alternate swapping subroutine, which we denote Swap2(π; y1, . . . , yr) as fol-
lows:

(1) Suppose π is a permutation of [n]. Repeat the following for i = 1, . . . , r:
(2) Select y′i uniformly at random among [n]− {y1, . . . , yi−1}.
(3) Swap entries π−1(yi) and π−1(y′i) of the permutation π.

More compactly:

Swap2(π; y1, . . . , yr) = Swap(π−1, y1, . . . , yr)−1

Then the algorithms Swap and Swap2 induce the same distribution, namely that if π(x1) = y1, . . . , π(xr) =
yr, then for any permutation σ we have

P (Swap(π;x1, . . . , xr) = σ) = P (Swap2(π; y1, . . . , yr) = σ)

Proof. A similar recursive definition applies to Swap2 as for Swap: we select x′1 uniformly at random, swap
x1/x

′
1, and then call Swap2(π(x1 x

′
1)− (∗, y1); y2, . . . , yr). The main difference is that we remove the image

point (∗, y1) instead of the domain point (x1, ∗).
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Now, in order to have Swap2(π; y1, . . . , yr) = σ we must first swap x1 with x′1 = π−1σx1; this occurs with
probability 1/n. Next, we recursively call Swap2 on the permutation π(x1x

′
1)− (∗, y1) yielding:

P (Swap2(π; y1, . . . , yr) = σ) = 1
nP (Swap2(π(x1x

′
1)− (∗, y1); y2, . . . , yr) = σ − (∗, y1))

= 1
nP (Swap(π(x1 x

′
1)− (∗, y1); (x1 x

′
1)π−1y2, . . . , (x1 x

′
1)π−1yr) = σ − (∗, y1))

by inductive hypothesis

= 1
nP (Swap(π − (x1, y1);x2, . . . , xr) = σ(x1 x

′
1)− (x1, y1))

by Proposition A.1, when we pre-compose with (x1 x
′
1)

= 1
nP (Swap((σx1 σx

′
1)π − (x1, ∗);x2, . . . , xr) = (σx1 σx

′
1)σ(x1 x

′
1)− (x1, ∗)

by Proposition A.1; when we post-compose with (σx1 σx
′
1)

= 1
nP (Swap(π(x1 x

′
1)− (x1, ∗);x2, . . . , xr) = σ − (x1, ∗)

= P (Swap(π;x1, . . . , xr) = σ)

�


