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Abstract. Basic graph structures such as maximal independent sets (MIS’s) have spurred much theo-
retical research in randomized and distributed algorithms, and have several applications in networking
and distributed computing as well. However, the extant (distributed) algorithms for these problems
do not necessarily guarantee fault-tolerance or load-balance properties. We propose and study “low-
average degree” or “sparse” versions of such structures. Interestingly, in sharp contrast to, say, MIS’s,
it can be shown that checking whether a structure is sparse, will take substantial time. Nevertheless,
we are able to develop good sequential/distributed (randomized) algorithms for such sparse versions.
We also complement our algorithms with several lower bounds. Randomization plays a key role in our
upper and lower bound results.
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1 Introduction

Graph-theoretic structures such as maximal independent sets (MIS’s) and minimal dominating
sets (MDS’s) are fundamental to graph theory, and their efficient computation is especially useful
in the context of distributed computing and networks [13]. MIS, for example, is a basic building
block in distributed computing and is useful in basic tasks such as monitoring, scheduling, routing,
and clustering [12, 14]; furthermore, the development of fast parallel/distributed algorithms for
it has spurred fundamental progress in randomized algorithms and in derandomization [1, 7, 11].
Extensive research has gone into designing fast distributed algorithms for these problems since
the early eighties: see [9, 18] and the references therein. We now know that problems such as MIS
are quite local, i.e., that they admit distributed algorithms that run in a small number of rounds:
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typically (poly-)logarithmic in the network size n (n will denote the number of nodes in the network
throughout unless specified otherwise). However, one main drawback of these algorithms is that
there is no guarantee on the quality of the structure output. For example, the classical distributed
MIS algorithms of Alon, Babai & Itai [1] and Luby [11] compute an MIS in O(log n) rounds with
high probability; their focus is not on additional properties of the output MIS. In this paper, we
initiate a systematic study of “sparse” versions of these structures, i.e., the average degree – in the
original graph – of the nodes belonging to the structure is “small”; this study is motivated by both
theoretical and practical considerations.

We are not aware of previous work on adding additional sparse constraints to such classic graph
structures. Closest to our work, is the work of [4], which consider algorithms that compute “fair”
MIS on certain graph classes. In contrast to the classic MIS algorithms (cf. [1, 11]), a fair algorithm
must ensure that all nodes have roughly the same probability of entering the MIS.

1.1 Problems Addressed

We consider an undirected simple graph G = (V,E) with n nodes and m edges. We denote the
average degree of G by d = d(G) = 2m

n ; this parameter will play a key role in our results. More
generally, given any subset S ⊆ V , we define the average degree of S, denoted by dS , as the total

degree (in G) of the vertices of S divided by the number of vertices in S, i.e., dS =
∑
v∈S dv
|S| , where

dv is the degree of node v in G. We assume that G has no isolated vertices for convenience; this
assumption can be easily removed.

Recall the following fundamental graph structures:

– a Maximal Independent Set (MIS) is an inclusion-maximal vertex subset S ⊆ V such that no
two vertices in S are neighbors;

– a Minimal Dominating Set (MDS) is an inclusion-minimal vertex subset S ⊆ V such that every
vertex in G is either in S or is a neighbor of a vertex in S; and

– a Minimal Vertex Cover (MVC) is an inclusion-minimal vertex subset S ⊆ V such that every
edge in G has at least one endpoint in S.

This paper is concerned with the “sparse” versions of these problems:

1. Sparse Maximal Independent Set (SMIS): Given an undirected graph G, a SMIS is an MIS S in
G that minimizes dS . In other words, the SMIS has the minimum average degree (in G) among
all MIS’s in G.

2. Sparse Minimal Dominating Set (SMDS): Given an undirected graph G, a SMDS is an MDS D
in G that minimizes dD.

3. Sparse Minimal Vertex Cover (SMVC): Given an undirected graph G, a SMVC is an MVC C
in G that minimizes dC .

We note that the maximum independent set in a graph G – a well-studied NP-hard problem
[6] – is not necessarily a SMIS in G. Consider the graph G that contains a complete graph Kp

(assume p is even), and a complete bipartite graph KA,B with |A| = 2 and |B| = 3. Each vertex
in A is connected to a different half of the set of vertices in Kp (i.e., one vertex of A is connected
to one half of vertices of Kp and the second vertex of A is connected to the other half of Kp), and
each vertex in B is connected to all vertices in Kp. Clearly, B is the maximum independent set in
G and has average degree p + 2, while A is a SMIS in G since its average degree is p/2 + 3. Thus
SMIS is quite different compared to the maximum independent set problem: in sharp contrast to
the standard MIS, a maximum independent set may be very different from any SMIS.
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1.2 Motivations

One key motivation for our work is understanding the complexity of local computation of globally
optimal (or near optimal) fundamental structures. The correctness of structures such as MIS or
MDS can be verified strictly locally by a distributed algorithm.1 In the case of MIS, for example,
each node can check the MIS property by communicating only with its neighbors; if there is a
violation at least one node will raise an alarm. On the other hand, it is not difficult to show that
the correctness of sparse structures such as SMIS cannot be locally verified (in the above sense) as
the SMIS refers to a “global” property: nodes have to check the small average degree property, in
addition to the MIS property. In fact, it can be shown that, for any D such that D ∈ o(n), there
is a graph of diameter D, where it takes at least Ω(D) rounds to check whether a given MIS is (a
constant approximation of) a SMIS: Consider the graph consisting of a line L = (u1, . . . , uD) and a
cycle C of (n−D) nodes, and assume that node uD has an edge to each node in C. One way to select
an MIS is to select nodes u1, u3, . . . , uD−1 and Θ(n−D) nodes from C: this yields an MIS S with
constant average degree. On the other hand, the MIS S′ formed by selecting u1, u3, . . . , uD−3, uD
has an average degree of Θ(n/D) ∈ ω(1). For node u1, however, it takes D time to distinguish
between S and S′.

Moreover, we prove that SMIS is an NP-hard problem and hence the optimality of the structure
is not easy to check even in a centralized setting. A key issue that we address here is whether one
can compute near-optimal local (distributed) solutions to sparse global structures such as SMIS. A
main result of this paper is that despite the global nature, we can design fast distributed algorithms
that output high quality sparse structures.

Our work is also a step toward understanding the algorithmic complexity of a few basic sparse
problems. While every MIS is an MDS, these two differ significantly in their balanced versions.
In particular, we show that there exist graphs for which no MIS is a good SMDS. Hence we need
a different approach to compute a good SMDS as compared to a good SMIS. Even for SMIS, we
show that while one can (for example) use Luby’s algorithm [11] to efficiently compute an MIS, the
same approach fails to compute a good quality SMIS. We present new algorithms for computing
such (approximately) sparse structures.

In distributed networks, especially in resource-constrained networks such as ad hoc, sensor and
mobile networks, it is important to load-balance tasks among nodes. This is crucial in extending
the lifetime of the network (see e.g., [20] and the references therein). For example, in a typical
application, an MIS (or an MDS) can be used to form clusters with low diameter, with the nodes in
the MIS being the “clusterheads” [12]. Each clusterhead is responsible for monitoring the nodes that
are adjacent to it. Having an MIS with low degree is useful in a resource/energy-constrained setting
since the number of nodes monitored per node in the MIS will be low (on average). This can lead
to better load balancing, and consequently less resource or energy consumption per node, which is
crucial for ad hoc and sensor networks, and help in extending the lifetime of such networks while
also leading to better fault-tolerance. For example, in an n-node star graph, the above requirements
imply that it is better for the leaf nodes to form the MIS rather than the central node alone. In
fact, the average degree of the MIS formed by the leaf nodes – which is 1 – is within a constant
factor of the average degree of a star (which is close to 2), whereas the average degree, n − 1, of
the MIS consisting of the central node alone is much larger.

1 As is common in distributed verification (e.g., [5]), we require that all nodes output “yes” when given a valid
instance; otherwise at least one node must output “no”.
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Obtaining fast distributed algorithms for sparse structures is an important focus of our work.
As the extensive research (e.g., [1, 11]) on obtaining fast distributed algorithms for the classical
MIS problem shows, obtaining fast distributed algorithms for the sparse versions of these problems
are both well-motivated and challenging. Unlike MIS, the additional challenge is to obtain solutions
that also obey the sparse constraint and the goal is to accomplish this using a localized algorithm,
i.e., that takes only a small number of communication rounds. We note that a distributed algorithm
that takes k rounds requires each node to get information within only its k-neighborhood; hence
when k is small (e.g., logarithmic in the network size), it implies that the problem can be solved
using a small amount of local information. In this paper, we present a fast distributed algorithm for
the SMIS problem. A similar algorithm for the SMDS problem was left open. In a subsequent work
[10], a fast distributed algorithm for the SMDS problem was presented; this algorithm is based on
an efficient distributed implementation of the centralized algorithm of the present paper.

1.3 Our Results

Randomization is a vital component of our positive and negative results. We first note that the
trivial lower bound is d for all sparse problems which follows from the example of a regular graph
(where all nodes have the same degree). Hence, in general, the average degree of a balanced structure
cannot be guaranteed to be less than d. On the other hand, there exist graphs where the average
degree of the SMIS is significantly smaller than d (e.g., consider a graph in which n/2 nodes form
a complete subgraph, with these nodes connected by a perfect matching to the remaining n/2).
This leads us to two basic questions: (i) In every given graph G, does there always exist a SMIS
whose average degree is at most d? and (ii) Can question (i) be answered for a specific graph G in
polynomial time? We answer both questions in the negative.

The well-known probabilistic proof of Turán’s theorem on independent sets [2, 19, 17] motivates
question (i), and sheds light in an interesting way on the SMIS problem. Recall that in this proba-
bilistic approach, we construct an independent set in G as follows: randomly permute the vertices,
and construct an independent set I in which we put a vertex v iff no neighbor of v precedes v in the
permutation constructed. Note that P (v ∈ I) = 1/(dv + 1). Thus, E[|I|] =

∑
v 1/(dv + 1), which is

at least n/(d+ 1) by convexity; and, letting T denote the total degree (in G) of I, we have

E[T ] =
∑
v

dv
dv + 1

< n.

Thus, heuristically “E
[
T
|I|

]
6 O(d)”; this is also true rigorously at least in the case where all

degrees are small, in which case we can show that |I| is concentrated around its mean (e.g., by a
second-moment calculation). That is, there is an independent set I with dI = O(d). Note, however,
that I is an independent set, not necessarily an MIS. Nevertheless, this argument appears to suggest
that there is an MIS S with dS = O(d) for all graphs. Our theorems contradict this, show that
“O(d2)” is the truth here instead of O(d), and also develop good distributed versions of this result.

We show that unlike MIS, its balanced version, SMIS, is NP-hard. In particular, we show
that the following decision version of the problem is NP-complete (cf. Theorem 7 in Section 2.4):
“Given a graph G, is there an MIS in G with average degree at most d?” In fact we show that the
optimization version SMIS is hard to approximate in polynomial time (unless NP=ZPP) to within
a factor of Ω(

√
n) (cf. Theorem 8 in Appendix 2.5).
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Henceforth, we focus on obtaining solutions for SMIS that are good compared to the average
degree of the graph. We show that we can obtain near-tight solutions that compare well with d.
The following are our main results:

Theorem 1. There is a (centralized) deterministic algorithm that selects an MIS of average degree
at most d2/8 +O(d) and runs in O(m log n) time.

To prove this theorem, we show that Luby’s MIS algorithm [11] returns an MIS with average
degree at most d2/8 +O(d) with positive probability. This can be derandomized using the method
of conditional expectations. However, this does not yield a fast distributed algorithm. Our average-
degree bound here is near-optimal, as we show an almost-matching lower bound (thereby also
answering question (i) posed above in the negative):

Observation 1 For any real number α > 1, there is a graph G with average degree at most α, but
in which every MIS has average degree at least α2/8 + 3α/4 + 5/8.

We next consider distributed approximation algorithms for SMIS and show that we can output
near-optimal solutions fast, i.e., solutions that are close to the lower bound. We consider the fol-
lowing standard model for our distributed algorithms where the given graph G represents a system
of n nodes, with each node having a distinct ID [13]. Each node runs an instance of the distributed
algorithm and the computation advances in synchronous rounds, where, in each round, nodes can
communicate with their neighbors in G by sending messages of size O(log n). A node initially has
only local knowledge limited to itself and its neighbors. We assume that local computation (per-
formed by the node itself) is free as long it is polynomial in the network size. Each node u has local
access to a special bit (initially 0) that indicates whether u is part of the output set. Our focus is
on the time complexity, i.e., the number of rounds of the distributed computation.

We present two distributed algorithms for SMIS in Section 2.2, both running in polylogarithmic
rounds with high probability.2 The second algorithm gives a better bound on the average degree at
the cost of somewhat increased run-time.

Theorem 2. Consider a graph G = (V,E) with average degree d.
1. There is a distributed algorithm that runs in O(log n) rounds and with high probability outputs

an MIS with average degree O(d2).
2. For any ε > 0, there is a distributed algorithm that runs in O(log2 n) rounds and with high

probability outputs an MIS with average degree (1 + ε)(d2/4 + d).

We also give a deterministic parallel algorithm.

Theorem 3. Consider a graph G = (V,E) with average degree d. There is a NC algorithm that
runs in time O(log2 n) and outputs an MIS with average degree d2/8 +O(d).

Note that in general, due to the lower bound of Observation 1, the bounds provided by algo-
rithms of the above two theorems are optimal up to constant factors.

We next present results on SMDS. Since an MIS is also an MDS, an algorithm for MIS can
also be used to output an MDS. However, this can lead to a poor approximation guarantee, since
there are graphs for which every MIS has a very large average degree compared to some MDS. This
follows from the graph family used in Observation 1: while the average degree of every MIS – of

2 We say an event occurs with high probability if it has probability > 1− n−Ω(1).
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any graph in the family – is Ω(d2), there exists an MDS with average degree only O(d). Because
an MIS is also an MDS, the results of Theorem 2 also hold for SMDS. Our next theorem shows
that much better guarantees are possible for SMDS.

Theorem 4. Any graph G with average degree d has a minimal dominating set with average degree
at most O( d log d

log log d). Furthermore, there is a sequential deterministic algorithm to find such an MDS
in time O(m).

The next theorem shows that the bound of Theorem 4 is optimal in general up to constant
factors:

Theorem 5. For any real number α > 0, there are graphs with average degree 6 α, but for which
any MDS has an average degree of Ω( α logα

log logα).

Finally, we show that there cannot be any bounded approximation algorithm for SMVC:

Observation 2 For any real number α > 2, there are graphs for which the average degree is at
most α, but for which the average degree of any MVC is arbitrarily large.

2 Sparse Maximal Independent Set (SMIS)

We first prove Observation 1 which shows that there are graphs G for which the degree of every
MIS is much larger than d. More importantly, the theorem gives a lower bound on the quality of
SMIS in general: one cannot guarantee an MIS whose average degree is less than d2

8 +Θ(d).

Observation 1. For any real number α > 1, there is a graph G with average degree at most α, but
in which every MIS has average degree at least α2/8 + 3α/4 + 5/8.

Proof. Consider the graph consisting of a copies of Kb, as well one copy of Kc,c, where b = b3+α2 c
and c = b12

√
2ab(α− b+ 1) + α2 + αc.

The resulting graph has average degree ab(b−1)+2c2

ab+2c 6 α. Every MIS of this graph contains one

vertex from each Kb, as well as one half of the vertices of Kc,c, for an average degree of ab+c2

a+c . As

a tends to infinity, such average degree increasingly approaches (3+α−b)b
2 > α2/8 + 3α/4 + 5/8.

2.1 An Almost-Optimal Sequential SMIS Algorithm

In this section, we prove Theorem 1. To do so, we use Luby’s algorithm for MIS [11], which goes
through a number of rounds which can be described as follows. Every vertex v choose a rank ρv
uniformly and independently from the real interval [0, 1]. Any vertex whose rank is lower than all
its neighbors is then selected for the independent set. Such vertices and their neighbors are removed
from the graph. After a sufficient number of rounds have passed, this process forms an MIS.

We show that if the original graph has average degree d, then Luby’s algorithm may select an
MIS of average degree ≈ d2/8, with a small but positive probability. We then derandomize this
process to obtain an determinmistic algorithm to find such an MIS. Observation 1 shows that the
average degree bound obtained is close to optimal.

One key technical tool for this proof is definining, for any independent set I and a “target
degree” t, the random variable

Ψt(I) =
∑
v∈I

(dG(v)− t)

It is not hard to see that Ψt(I) 6 0 iff dI 6 t.
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Lemma 1. Suppose that I is the MIS obtained after running Luby’s algorithm, and let t = d2

8 + 7d
4 .

Then E[Ψt(I)] 6 −Ω(1).

Proof. Let B denote the set of vertices v such that dv > t (the “big” vertices), and let S = V −B
denote the set of vertices v such that dv 6 t (the “small” vertices.) Roughly speaking, our goal is
to choose an MIS of degree 6 t, and for this end adding small vertices helps us while adding big
vertices hurts us.

For each vertex v, let xv (respectively yv) denote the number of neighbors in S (respectively B)
neighbors, so xv + yv = dv.

We have

E[Ψt(I)] =
∑
v

(dv − t)P (v ∈ I) =
∑
v∈S

(dv − t)P (v ∈ I) +
∑
v∈B

(xv + yv − t)P (v ∈ I)

6
∑
v∈S

(dv − t)P (v ∈ I) + E
[∑
v∈B

yv[v ∈ I]
]
+

+
∑
v∈B

(xv − t)P (v ∈ I)

where here the expression [v ∈ I] is the Iverson notation, which is one if v ∈ I and zero otherwise.

Let us consider these terms in turn. For v ∈ S, the expression dv − t is negative; hence to
upper-bound E[Ψt(I)] we must lower-bound the probability that v ∈ I. To do so, we note that
if v is selected in the first round, then v ∈ I; the event that v is selected in the first round has
probability 1

dv+1 .

Next, note that the expression
∑

v∈B yv[v ∈ I] counts the number of edges, both of whose
endpoints are in B, that are adjacent to a vertex in I. As I is independent, each edge whose
endpoints are in B may be counted at most once in this sum, so we have

∑
v∈B yv[v ∈ I] 6∑

v∈B yv/2 for any independent set I.

Finally, for v ∈ B, we claim that (xv−t)P (v ∈ I) 6 xv/2. This is obvious if xv 6 t (in which case
the LHS is negative and the RHS is positive), so suppose xv > t. In this case we will upper-bound
the probability that v ∈ I.

To show this upper bound, we consider the probability that v was excluded from I in the first
round. To do so, consider all the small neighbors of v. Suppose that, for u ∈ N(v) ∩ S, the rank
of vertex u is smaller than all its neighbors (including v), as well as all the other small neighbors
of v.3 This occurs with probability 1

|(N(v)∩S)∪N(u)| >
1

du+xv
. If this event occurs, then vertex u is

selected and vertex v is unavailable for I. Furthermore, for each of the small neighbors of v, the
corresponding events are mutually exclusive. Hence we get

P (v ∈ I) 6 P (v available after 1st round) 6 1−
∑

u∈N(v)∩S

1

du + xv

6 1−
∑

u∈N(v)∩S

1

t+ xv

= 1− xv ×
1

t+ xv
=

t

t+ xv

3 The notation N(v) denotes the neighborhood of v, that is, the set of all vertices with an edge to v.
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So (xv − t)P (v ∈ I) 6 (xv − t) t
t+xv

; simple calculus show that this at most 0.172xv 6 xv/2 as
claimed.

Now putting these three estimates into our bound on E[Ψt(I)]:

E[Ψt(I)] 6
∑
v∈S

dv − t
dv + 1

+
∑
v∈B

yv/2 +
∑
v∈B

xv/2

6
∑
v∈S

dv − t
dv + 1

+
∑
v∈B

dv/2

Now let the averages degrees of S,B be dS , dB respectively. We have |S|+ |B| = n and |S|ds +
|B|dB = nd. By concavity we have

E[Ψt(I)] 6 n
dBdS(d+ 1− dS)− 2t(dB − d) + d(dB − 2dS)

2(dS + 1)(dB − dS)
.

Routine calculus shows that this achieves its maximum value at dB = t and dS =
√
2t(t+1)−3t
t−2 ,

yielding

E[Ψt(I)] 6 n
2
√

2t(d− t) + t(d− 1) + 2d

2(t+ 1)
.

For t = d2/8 + 7d/4, we have

E[Ψt(I)] 6 n(−Ω(1/d)) 6 −Ω(1).

This result immediately gives us a randomized, polynomial-time algorithm to find an MIS of
degree 6 d2/8 + 7d/4. But we can do better.
Theorem 1. There is a (centralized) deterministic algorithm that selects an MIS of average degree
at most d2/8 + 7d

4 and runs in time O(m log n).

Proof. We will use the method of conditional expectations to derandomize Lemma 1. Although
Lemma 1 discusses the full Luby algorithm, which has Θ(log n) rounds, in fact our analysis of
Luby’s algorithm has been limited to its first round. Suppose that Luby’s algorithm uses the ranks
ρ(v) in its first round, and I is the final MIS. We may define Ψ ′t(ρ), which serves as a pessimistic
estimator for Ψt(I):

Ψ ′t(ρ) =
∑
v∈S

[ ∧
w∈N(v)

ρ(v) < ρ(w)
]
(dv − t)

+
∑
v∈B

yv/2 +
∑
v∈B

(xv − t)
(

1−
∑

u∈S∩N(v)

[ ∧
w∈N(u)
∪(S∩N(v))

ρ(u) < ρ(w)
])

Assuming that all the ranks ρ are distinct, we have already shown in the proof of Lemma 1
that Ψt(I) 6 Ψ ′t(ρ), and E[Ψ ′t(ρ)] 6 −Ω(1). So we really only need to derandomize a single round
of Luby’s algorithm, producing an set of distinct ranks ρ with Ψ ′t(ρ) 6 0.

As we have stated Luby’s algorithm, each vertex selects a rank in the real interval [0, 1]. We
claim that it suffices to select the ranks from the integer interval {0, 1, . . . , 210dlog2 ne − 1}. For, we
may refine the potential function as

Ψ ′′t (ρ) = Ψ ′t(ρ) +mn
∑
v,v′∈V
v 6=v′

[ρ(v) = ρ(v′)]
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It is not hard to see that Ψ ′′t 6 0 iff all the vertices have distinct values of ρ and Ψ ′t(ρ) 6 0.
Furthermore, E[Ψ ′′t ] 6 E[Ψ ′t(I

′)] +mn
∑

v,v′ P (ρ(v) = ρ(v′)) 6 −Ω(1) + n2n−10 6 0.

Finally, to turn this into a deterministic algorithm, we need to select ρ such that Ψ ′′t (ρ) 6 0.
We apply the method of conditional expectations, setting the values of ρ(v) bit-by-bit.

For i = 1, . . . , 10dlog2 ne, and for each vertex v in turn, we bisect the range of ρ(v). Initially,
each ρ(v) is drawn uniformly and independently from the range {0, 1, . . . , 210dlog2 ne − 1}; after
stage i, each random variable ρ(v) is drawn uniformly from an integer interval of length exactly
210dlog2 ne−i. To implement this, we must be able to calculate the expected value of E[Ψ ′′t ] when
the random variables ρ(v) are drawn uniformly from these intervals. The expected value of E[Ψ ′′t ]
only depends on comparing the sizes of ρ(v), ρ(w) where v, w are neighbors of each other. This
only depends on the size of the overlaps of the ranges of ρ(v), ρ(w) and the sizes of the ranges of
ρ(v), ρ(w) themselves. One can show that, in time O(dv), one can determine the change in E[Ψ ′′t ]
when we fix a bit of ρ(v).

Thus, the total time for each round i of this bisection procedure is O(
∑

v dv) = O(m). The total
time for the bisection is O(m log n).

At the end of this procedure, ρ(v) is determined exactly and Ψ ′′t 6 0. Thus, I ′ has been con-
structed deterministically such that Ψ ′t(I

′) 6 0 and hence Ψt(I) 6 0 and hence dI 6 d2/8 + 7d/4 as
desired.

Theorem 3. There is an NC (deterministic parallel) algorithm that selects an MIS of average
degree at most d2/8 + 7d

4 and runs in time O(log2 n).

Proof. As we have shown in the proof of Theorem 1, it suffices to find a value for the ranks ρ(v)
such that Ψ ′′t (ρ) 6 0; furthermore, if the bits of ρ are selected at random then we have that
E[Ψ ′′t ] 6 poly(1/n).

Now observe that Ψ ′′t can be written as a sum of a polynomial number of terms, each of which
can be written as an indicator function of the form [ρ(v) < minu∈X ρ(u)]. Such an indicator function
can be computed via a log-space function of ρ; essentially, for a given vertex v, one only needs to
keep track of ρ(v) and the current running minimum value of ρ(u), u ∈ X. As shown in [16], there
is an NC algorithm, running in time O(log2 n) and polynomial space to produce a probability
distribution D, of polynomial support size, which “fools” such log-space statistical functions to
within relative error n−a, for any fixed value of a. That is, the expected value of Ψ ′′t (ρ), when
ρ ∼ D, differs by a factor of most n−a from its expectation of unbiased bits. As E[Ψ ′′t ] 6 poly(1/n),
then there is some constant a sufficiently large such that E[Ψ ′′t (ρ)] 6 0 for ρ ∼ D. One may search
the full support of this space to find ρ such that Ψ ′′t (ρ) 6 0 as desired.

2.2 Distributed Algorithms for SMIS

This section is devoted for designing different distributed algorithms for SMIS. In particular we will
prove Theorem 2. The proposed algorithms do not require any global information of the original
graph, not even knowledge of the network size n.

Theorem 2. Consider a graph G = (V,E) with average degree d.

1. There is a distributed algorithm that runs in O(log n) rounds and with high probability outputs
an MIS with average degree O(d2).

2. For any ε > 0, there is a distributed algorithm that runs in O(log2 n) rounds and with high
probability outputs an MIS with average degree (1 + ε)(d2/4 + d).
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Proof of Part 1 of Theorem 2. We propose a distributed algorithm that constructs an MIS I
of G such that the following two properties hold with high probability: (a) I has average degree at
most O(d2), and (b) I is constructed within O(log n) rounds.

Our algorithm is based on Luby’s algorithm for constructing an MIS, in which vertices v are
marked independently with probabiltiy 1

2dv
. However, if we apply Luby’s algorithm directly, it is

possible to select high-degree vertices early which invalidate many neighboring low-degree vertices.
To remedy this, we will begin by marking the low-degree vertices, and gradually increase the degree
of the vertices we allow to enter the MIS. This gives low-degree vertices a head-start compared to
high-degree vertices.

We introduce the following definition which will be used throughout the proof. For any real
number s, we let Gs denote the subgraph of G induced on the vertices of degree 6 s. This notation
is used in describing Algorithm 1.

1. Repeat for rounds i = 1, 2, 3, . . . :
Phase I – Selecting vertices from G2i −G2i−1 :

2. Each vertex v in G2i −G2i−1 marks itself independently with probability 1/(2dv).
3. If two adjacent nodes are marked, unmark the one with higher degree (breaking ties arbitrarily).
4. Add any marked nodes to the independent set I. Remove their neighbors from G.

Phase II – One round of Luby’s algorithm on G2i :
5. Each vertex v in G2i marks itself independently with probability 1/(2d′v), where d′v represents the degree of

vertex v with respect to the residual graph G2i − I −N(I).
6. If two adjacent nodes are marked, unmark the one with higher degree d′ (breaking ties arbitrarily).
7. Add any marked nodes to the independent set I. Remove their neighbors from G.

Algorithm 1: Distributed Algorithm for Approximating SMIS.

Here, i iterates over the natural numbers; but we will show that if the algorithm were terminated
at i = Θ(log n) then it successfully finds the MIS. We refer to each iteration of i as a round. Each
round of this algorithm applies a single iteration of the Luby algorithm, respectively selecting
vertices from G2i −G2i−1 and G2i . We refer to these as Phase I and Phase II respectively. In Phase
I, the sampling probabilities are based on the degrees with respect to the original graph while in
Phase II the sampling probabilities are based on the degrees in the residual graph (which may be
smaller).

The following basic principle will be used in a variety of places in this proof:

Proposition 1. Suppose a graph G has n vertices and average degree d. Suppose s > 1. Then the
subgraph Gsd contains at least n(1− 1/s) vertices.

Proof. Note that
∑

v dv = nd. Suppose that Gsd has fewer than n(1− 1/s) vertices. Then there are
more than n/s vertices with degree larger than sd. They contribute more than sd · n/s to the sum∑

v dv, which is a contradiction. ut

Lemma 2. Suppose d 6
√
n. Let i be minimal such that |V (G2i)|/2i > 0.1(n/d). Then with high

probability, the independent set after Phase I of round i (i.e. selecting vertices in G2i − G2i−1)
contains at least 0.01(n/d) vertices.

Proof. Let n′ = |V (G2i−1)| and let I ′ be the independent set produced after round i − 1. By
minimality of i, we may assume n′/2i−1 6 0.1(n/d). We may also suppose |I ′| 6 0.01(n/d) as
otherwise we would be done.

10



Let S denote the set of vertices eligible to be selected in round i. These are all the vertices in
G2i −G2i−1 −N(I ′). We thus have

|S| = |V (G2i −G2i−1)−N(I ′)|
> |V (G2i)| − |V (G2i−1)| − |N(I ′)|
> |V (G2i)| − n′ − |I ′|2i−1 as I ′ ⊆ G2i−1

> 0.1(n/d)2i − (0.1)2i−1(n/d)− 0.01(n/d)2i−1

> 0.04(n/d)2i

So we are applying a single round of the Luby algorithm to the set S. We now analyze the
behavior of that algorithm. For each vertex v ∈ S, let Xv denote that vertex v is marked; these are
independent Bernoulli random variables with probability 1

2dv
. Let Y =

∑
v∈S Xv−

∑
u,v∈S
〈u,v〉∈E

XuXv.

Clearly Y is a lower-bound on the number of vertices selected. Note that Y is a polynomial in the
underlying independent variables X.

Let Z =
∑

v∈S
1
dv

. Note that dS 6 2i and Z > |S|/dS > 0.04(n/d) > Ω(
√
n). We first may

calculate the mean of Y :

E[Y ] >
∑
v∈S

1

2dv
−

∑
v∈S,u∈N(v)∩S
d(u)>d(v)

1

4dvdu
>
∑
v∈S

1

2dv
= Z/2

Thus, if Y were equal to its mean value, then in round i we would select 0.04(n/d) vertices
for the independent set, thus achieving the induction claim. So we need to show that Y is close
to its mean value. To do so, we use the moment inequality of Schudy & Sviridenko [15]. To apply
this inequality, we must calculate µ0 and µ1, which are almost the same as the maximum partial
derivatives of the polynomial Y in terms of the underlying variables Xv. These are given by

µ1 = max
v∈S

E[
∑

u∈N(v)∩S

Xu] 6
∑

u∈N(v)∩S

1

2du
6 2i

1

2(2i−1)
6 1

Similarly, we have for µ0:

µ0 =
∑
u∈S

1

2du
+

∑
u,v∈S
〈u,v〉∈E

1

4dudv
6 Z/2 +

∑
u∈S

1

2du

∑
v∈N(v)∩S

1

2dv
6 Z

We may now apply the inequality of Schudy & Sviridenko, setting λ = Z/4:

P (Y 6 Z/4) 6 P (|Y −E[Y ]| > λ)

6 e2 max(e
− λ2

µ0µ1LR , e
−( λ

µ1LR
)1/2

)

6 e2 max(e−
Z2/16
ZLR , e−(

Z/4
LR

)1/2)

for constants L,R

6 e−Z
Ω(1)

6 e−n
Ω(1)

6 n−ω(1)

Thus, with high probability, we have Y > Z/4. So in round i, we choose an independent set
containing Z/4 > 0.01(n/d) vertices as desired.
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Proposition 2. Suppose G has average degree d. Then with high probability the independent set
created by this algorithm after O(log n) rounds is an MIS with average degree O(d2).

Proof. First, note that when i > log2 n, then the Phase I of this algorithm does nothing, while Phase
II executes a single round of Luby’s algorithm on the residual graph. Thus, after log2 n+O(log n)
rounds, this algorithm produces an MIS with high probability.

If d >
√
n, then this MIS trivially has average degree 6 d2.

Suppose d 6
√
n. We claim that there is some i with the property that |V (G2i)|/2i > 0.1(n/d).

For, consider setting i = blog2 2dc. Then by Proposition 1, |V (G2i)| > n/2. So we have:

|V (G2i)|/2i >
n/2

2log2 2d

>
n/2

2d
> 0.25(n/d)

Thus, let i be minimal such that V (G2i)/2
i > 0.1(n/d). By Lemma 2, the independent set after

round i contains 0.01(n/d) vertices with high probability. Thus, the final MIS produced by this
algorithm contains at least 0.01(n/d) vertices. As the full graph G contains nd edges, the final MIS
must contain 6 nd edges, and hence has average degree 6 nd

0.01n/d 6 O(d2) as desired. ut

2.3 The greedy algorithm for SMIS

The greedy algorithm for SMIS is very simple. We label the vertices in order of increasing degree
(breaking ties arbitrarily). Each vertex is added to the independent set I (initially, I = ∅), unless
it was adjacent to an earlier vertex already selected.

In this section, we show that this greedy algorithm gives a good distributed algorithms, thus
proving Part 2 of Theorem 2. The greedy algorithm is also a fast sequential algorithm requiring
time O(m), which is slightly faster than the algorithm of Theorem 2.1.

Theorem 6. The greedy algorithm produces an MIS of degree at most d2

4 + d. (As we have seen in
Theorem 1, this is within a factor of 2 of the lowest degree possible.)

Proof. Order the vertices in order of increasing degree d1 6 d2 6 . . . 6 dn. Define the indicator
variable xv to be 1 if v ∈ I and 0 otherwise, where I is the MIS produced. For any pair of vertices
u and v with du > dv, we also define the indicator yvu to be 1 if v ∈ I and there is an edge from v
to u. (It may seem strange to include the variable yvv, as we always have yvv = 0 in the intended
solution, but this will be crucial in our proof, which is based on LP relaxation.)

As the greedy algorithm selects v iff no earlier vertex was adjacent to it, we have xv = 1 if
and only if y1v = y2v = · · · = yv−1,v = 0. In particular, xv satisfies the linear constraint xv >
1−y1v−y2v−· · ·−yvv. The variables x, y also clearly satisfy the linear constraints ∀v : 0 6 xv 6 1,
∀v 6 u : 0 6 yvu, and ∀v :

∑
u yvu 6 dvxv which we refer to as the core constraints. The final MIS

contains
∑
xv vertices and

∑
v dvxv edges, and hence the average degree of the resulting MIS is

dI =
∑

v dvxv/
∑

v xv.

We wish to find an upper bound on the ratio R =
∑
v dvxv∑
v xv

. The variables x, y satisfy many

other linear and non-linear constraints, and in particular are forced to be integral. However, we will
show that the core constraints are sufficient to bound R. The way we will prove this is to explicitly
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construct a solution x, y which satisfies the core constraints and maximizes R subject to them, and
then show that the resulting x, y still satisfies R 6 d2

4 + d.

Let x, y be real vectors which maximizes R among all real vectors satisfying the core constraints,
and among all such vectors, which minimize

∑
u>v yvu (the vertices have been sorted in order of

degree, so u > v here means that u comes after v in the ordering). Suppose yvu > 0 for some u > v.
If xu = 1, then we simply decrement yvu by ε. The constraint xu > 1 − y1u − · · · − yuu clearly
remains satisfied as xu = 1, and all other constraints are unaffected. The objective function is also
unchanged. However, this reduces

∑
u>v yvu, contradicting maximality of x, y.

Suppose yvu > 0 for some u > v, and xu < 1 strictly. Note that yvu 6 dvxv, so we must have
xv > 0 strictly. For some sufficiently small ε, we change x, y as follows: y′vu = yvu−ε, y′vv = yvv+

ε
dv+1 ,

x′v = xv − ε
dv+1 , x′u = xu + ε

du+1 , and y′uu = yuu + εdu
du+1 . All other values remain unchanged. We

claim that the constraints on x, y are still preserved. Furthermore, the numerator of R does not
decrease and the denominator does not increase; hence R′ > R. However,

∑
u>v y

′
vu <

∑
u>v yvu

strictly. This contradicts the maximality of x, y.

In summary, we can assume yvu = 0 for all u > v. In this case, the core constraints on v become
simply 1− yvv 6 xv 6 1 and yvv 6 dvxv.

It is a simple exercise to maximize R subject to these constraints (every vertex operates com-
pletely independently). The maximum is achieved by a solution which has the form, for some t > 0,
of xv = 1

dv+1 for dv 6 t, and xv = 1 for dv > t. In this case, the objective function R(x) satisfies

R 6

∑
dv6t

dv
dv+1 +

∑
dv>t

dv∑
dv6t

1
dv+1 +

∑
dv>t

1

Let S,B denote respectively the vertices of degree 6 t, > t. Then by concavity, we have

R 6
|S| dSdS+1 + |B|dB

|S|
dS+1 + |B|

6
d(dB − dS) + dBdS(d− dS)

dS(d− dS) + (dB − dS)

Routine calculus shows that this achieves its maximum value at dB =∞ and dS = d/2, yielding
R 6 d2/4 + d as claimed. ut

This greedy algorithm can be converted, with only a little loss, to a parallel algorithm as shown
in Algorithm 2.

1: Let φ > 1 be a fixed parameter. Initialize I = ∅.
2: for i = 0, . . . , dlogφ ne do
3: Using any MIS algorithm, extend I to an MIS of the graph Gφi .
4: Return the final MIS I.

Algorithm 2: Greedy Distributed Approximation Algorithm for SMIS.

This is basically the greedy algorithm, except we are quantizing the degrees to multiples of some
parameter φ. This does not immediately lead to a distributed algorithm, because we are assuming
the existence of a “subroutine” implementing an MIS algorithm; this would require knowledge of the
network size n. However, it is fairly easy to convert Algorithm 2 to work in the distributed setting.
In parallel, we can run rounds of Luby’s algorithm on the graph Gφi −Gφi−1 , which are producing
independent sets Ii. Whenever we add v to Ii, we can remove all of the vertices neighboring v
from Ij for j > i. Thus, after log n rounds, I1 converges to an MIS of Gφ1 ; after 2 log n rounds, I2
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converges to an MIS to Gφ2 −N(I1); and so forth. After O(log2φ n) rounds, we have an MIS of the
full graph.

For any constant ε > 0, we can choose φ to be a sufficiently small constant so that this algorithm
requires O(log2 n) rounds and returns an MIS of average degree at most (1 + ε)(d2/4 + d).

The following observation shows that the above analysis of the greedy algorithm is essentially
tight.

Observation 3 For all real numbers α > 0, there are graphs of average degree 6 α, and for which
the greedy algorithm produces an MIS of average degree at least α2/4 + α− 1.

Proof. Define the following graph G which contains three groups of vertices A,B,C. We have
|A| = a, |B| = b− 1, and |C| = ab. Each A-vertex connects to b C-vertices. Each C-vertex connects
to all b− 1 B-vertices.

The graph G contains a + ab + b − 1 vertices and ab2 edges, and has an average degree of
d = 2ab2

a+ab+b−1 .

Now, the vertices in A,C have degree b, while the vertices in B have degree ab. Suppose that
the greedy algorithm selects the A-vertices (they are tied with the C-vertices). It then selects
all B-vertices, and hence, the resulting MIS has a + b − 1 vertices and ab2 edges. Now set b =⌊
(a+1)α+

√
(a+1)2α2+8(a−1)aα

4a

⌋
. As a tends to infinity, we have d 6 α, while the degree of the resulting

MIS approaches a value that is at least α2/4 + α− 1. ut

2.4 NP-Completeness of the Decision Version of SMIS

We show NP-completeness of the decision version of SMIS (cf. Sec. 1.1) by reducing a variant of
the 3-SAT problem to the SMIS problem and vice versa.

A Boolean formula in conjunctive normal form is called a (k, s)-formula if every clause contains
exactly k distinct variables and every variable occurs in at most s clauses. A (k, s)-formula is called
a (k,=s)-formula if every variable occurs in exactly s clauses. Let (k, s)-SAT (resp., (k,=s)-SAT)
denote the satisfiability problem restricted to (k, s)-formula (resp., (k,=s)-formula). Kratochvil et
al. [8] proved that the (k,= s)-SAT problem is NP-complete for every k > 3 and s > 4. We now
show how to reduce an instance of the (3,=4)-SAT problem to an instance of SMIS.

In the (3,= 4)-SAT problem, the input is a set of clauses, each of them with 3 variables and
each variable occurs in exactly 4 clauses and the aim is to find a satisfying truth assignment to
the whole (3,= 4)-formula. To form a satisfying truth assignment we must pick one literal from
each clause and give it the value TRUE. But our choices must be consistent, namely, if we choose
a variable x in one clause, we cannot choose the negation of x in another. Any consistent choice of
literals, one from each clause, specifies a truth assignment. Recall that for the SMIS problem, we
are given a graph G and we want to know whether G contains MIS with average degree at most
that of the graph. We relate the above two problems as follows.

SMIS Graph Construction Given a (3,= 4)-formula F = A1 ∧ A2 ∧ · · · ∧ Ak, we construct the
following graph GF , which we simply denote as G if F is clear from the context. For each clause,
say Ai = (x∨ y∨ z), in F , we construct the following corresponding clause component. Construct a
triangle with vertices labeled x, y, and z, and for each triangle vertex, add an additional neighbor
labeled the negation of the corresponding vertex, and for each of these negations, add another
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Fig. 1. Graph construction corresponding to clause (x ∨ y ∨ z).

neighbor (of degree 1). Construct a single copy of Kq,q and q copies of Kj , and connect each of the
triangle vertices with all vertices in Kq,q (see Fig. 1).

Finally, we connect each labeled vertex in each clause component with its negation vertex in all
other clause components, and hence, any MIS in G cannot contain vertices labeled both x and −x
for all variables x in F . We will see in the proof of Theorem 7 how to obtain a mapping between
truth assignments of the literals in F and maximal independent sets on GF .

Clearly, this construction takes polynomial time and each of the triangle vertices has degree
2q + 6, whereas each of the negation vertices has degree 5, and each neighbor of these negation
vertices has degree 1.

Lemma 3. Let F be a (3,=4)-formula and consider the corresponding graph G with average degree
d. Consider any MIS S in G. Then dS 6 d iff S contains one triangle vertex from every clause
component of G.

Proof. The average degree of one component in G is (qj(j − 1) + 2q(q+ 3) + 3(2q+ 6) + 18)/(qj +
2q + 3 + 6). The average degree of an MIS (in one component) containing one of the triangle
vertices and the three degree 1 vertices is (q(j − 1) + (2q + 6) + 3)/(q + 1 + 3). On the other
hand, the average degree of any MIS that does not contain one of the triangle vertices is at least
(q(j − 1) + q(q + 3) + 3)/(q + q + 3). Therefore, the ratio of the average degree of any MIS in
one component that does not contain one of the triangle vertices to the average degree of this
component tends to (j + 2)/4 as q tends to infinity.

Now consider the whole graph G. Clearly, the average degree of G is the average degree of each
component scaled appropriately by the number of clauses in F , denoted by k. Now, assume that i
of the k clauses are not satisfiable (hence k− i clauses are satisfiable). Then, the average degree of
any MIS in G is at least

(k − i)(q(j − 1) + (2q + 6) + 3) + i(q(j − 1) + q(q + 3) + 3)

(k − i)(q + 1 + 3) + i(q + q + 3)
.
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Therefore, the ratio of the average degree of any MIS in G to the average degree of G tends to
i(j + 2)/(2(k+ i)) as q tends to infinity. That is, by choosing j large enough with respect to k, the
above ratio will be greater than 1.

Theorem 7. The following decision problem is NP-complete: Given a graph G, is there an MIS
in G with average degree at most that of the graph?

Proof. We proceed by giving reductions from (3,=4)-SAT to SMIS and vice versa.
(3,=4)-SAT → SMIS: We need to show that if a (3,=4)-formula F has a satisfying assignment,
then there exists an MIS S in G with dS 6 d.

Assume that the (3,=4)-formula F has a satisfying assignment. For each clause in F , we pick
any literal whose value under a satisfying assignment is TRUE (there must be at least one such
literal), and add the corresponding vertex in the component corresponding to that clause to S. We
then add, from each component, all degree one vertices and one vertex from each complete graph
Kq to S. Clearly, S yields an independent set that is maximal. Moreover, since S contains one of
the triangle vertices in each component, Lemma 3 tells us that the average degree of S is at most
that of G.
SMIS → (3,= 4)-SAT: We want to show that if there exists an MIS S in G with an average
degree of at most that of the graph G, then the corresponding (3,= 4)-formula F has a satisfying
assignment.

By Lemma 3, if S has dS 6 d, then S includes, for each clause component of G, one of the
triangle vertices, all degree one vertices, and one vertex from each complete graph Kq.

To obtain a satisfying assignment of F , we assign x a value of TRUE if S contains a vertex
labeled x, and a value of FALSE if S contains a vertex labeled −x (if S contains neither, we assign
an arbitrary truth value to x). Clearly this yields get a truth assignment that satisfies all clauses
in F .

2.5 Hardness of Approximating SMIS

Theorem 8. For every ε > 0, the SMIS problem is hard to approximate within a factor of 1
8n

1
2
−ε

in polynomial time, unless NP=ZPP.

Proof. Given a graph H with p =
√
n vertices4, we construct a graph G with n vertices as follows.

We first construct a complete graph Kp2−p, and then attach H to Kp2−p by connecting each vertex
in H with p1+ε−pε vertices in Kp2−p such that each vertex in Kp2−p has pε neighbors in H. Assume
that the size of the maximum independent set of H is at least p1−ε, where ε = O(1/

√
log log p)

(see for example the graph in [3]). It is known that the maximum independent set problem on
graphs with p vertices cannot be approximated within p1−ε in polynomial time (unless NP =
ZPP) [3]. This implies that there is no approximation algorithm that guarantees an approximated
solution for the maximum independent set problem on H of more than pε vertices (since the
size of the maximum independent set is at most p). We now convert the graph H to a p-regular
graph by adding an appropriate number of self loops to each vertex in H. We observe that the
above inapproximability result on the maximum independent set problem on H still holds for the
resulting p-regular graph H. Thus, each vertex of the graph H has degree p1+ε − pε + p, and each
vertex in Kp2−p has degree p2−p−1 +pε. Clearly, the optimal solution for SMIS on G includes the

4 To simplify the proof, we will ignore rounding issues; the errors they introduce dimnish asymptotically as n grows.
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1: Mark each vertex of degree > 2d independently with prob. ln t
t

where t = 2d ln d
ln ln d

.
2: Mark every vertex of degree 6 2d.
3: If any vertex v is not marked, and none of the neighbors of v are marked, then mark v.
4: Let M denote the set of marked vertices at this point. M forms a dominating set of G, but is not necessarily

minimal. Using any algorithm, select a minimal dominating set M ′ ⊆M .
5: Check if dM′ 6 t. If so, return M ′. Otherwise, return FAIL.

Algorithm 3: Approximation Algorithm for SMDS.

maximum independent set on H, and has average degree p1+ε− pε + p (the degree of each vertex in
H). On the other hand, the average degree of the approximated polynomial time solution of SMIS
is at least (pε(p1+ε − pε + p) + (p2 − p− 1 + pε))/(pε + 1). Thus the approximated SMIS is at least
(p2 − p+ pε − 1)/((pε + 1)(p1+ε − pε + p)) times the optimal. Note that, pε − 1 > 0, p2 − p > p2/2,
and (pε + 1)(p1+ε − pε + p) 6 4p1+2ε hold. Therefore, the approximated SMIS is at least p1−2ε/8
times the optimal, which proves the theorem.

3 Sparse Minimal Dominating Set (SMDS)

For arbitrary graphs, we turn our attention to designing algorithms for finding approximate solu-
tions to SMDS. Since any MIS in a given graph G is also an MDS in G, all algorithms designed for
SMIS also return an SMDS in G of the same average degree. Thus, we have the same bounds (and
distributed algorithms) corresponding to those in Section 2. However, for SMDS, better bounds are
possible. Given a graph with average degree d, we will present a polynomial-time algorithm that
finds an MDS of average degree O( d log d

log log d). We will also construct a family of graphs G for which

every MDS has average degree Ω( d log d
log log d).

Theorem 4. Any graph G with average degree d has a minimal dominating set with average degree
at most O( d log d

log log d). Furthermore, there is a sequential deterministic algorithm to find such an MDS
in time O(m).

Proof. For a target degree t, and any set of vertices V0, we define Ψt(V0) =
∑

v∈V0(dv− t). Our goal

is to find an MDS X with Ψt(X) 6 0, for some t = O( d log d
log log d).

Let x = 2d and divide the vertices into three classes: A, the set of vertices of degree 6 x; B,
the set of vertices of degree > x, which have at least one neighbor in A; and C, the set of vertices
of degree > x, all of whose neighbors are in B or C. Let D = B ∪ C. Mark each vertex in D with
probability p = ln t

t . Next, define the set Y ⊆ D consisting of all marked vertices in D and vertices
in C with no marked neighbors. Clearly Y dominates C, and A ∪ Y dominates G. We finish by
producing an MDS X ⊆ A ∪ Y ; we may write X = A′ ∪ Y ′ where A′ ⊆ A and Y ′ ⊆ Y .

We first examine Ψt(Y
′). Any vertex of G with degree 6 t contributes at most 0 to Ψt(Y

′).
Therefore, suppose v has degree > t. If v ∈ B, it is selected for Y with probability at most ln t

t . If

v ∈ C, all its neighbors are marked with probability ln t
t , so it is selected for Y with probability at

most ln t
t + (1 − ln t

t )t 6 2 ln t
t . Hence the expected contribution of such vertex to Ψt(Y

′) is at most

2 ln t
t (dv − t) 6 2dv

ln t
t . Summing over all such vertices, we have E[Ψt(Y

′)] 6 2|D|dD ln t
t ,

Now, some of the vertices in A are dominated by B-vertices of Y ′. Let A0 be the set of vertices
not dominated by Y ′. These vertices can only be dominated by vertices of A′, so we must have
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|A′|(dA′ + 1) > |A0|. Thus, we have

Ψt(A
′) =

∑
v∈A′

dv − t = |A′|(dA′ − t) 6 |A0|
dA′ − t
dA′ + 1

6 |A0|
x− t
x+ 1

Consider the expected size of A0. A vertex v ∈ A lies in A0 if none of its neighbors are marked
(this is not a necessary condition), and vertices are marked independently with probability p. Hence
E[|A0|] >

∑
v∈A(1− p)dv > |A|(1− p)dA .

Putting all this together, we have that the final MDS X = A′∪Y ′ satisfies E[Ψt(X)] 6 2p|D|dD+
|A| x−tx+1(1− p)dA . For d sufficiently large, p approaches zero, so (1− p)dA 6 e−2pdA .

We know that |A|+ |D| = n, and |A|dA + |D|dD = nd. Eliminating |A|, |D| we have

E[Ψt(X)] 6 n
(2dD(d− dA) ln t

t(dD − dA)
− (dD − d)(t− 2d)t−2

dA
t

(2d+ 1)(dD − dA)

)
Routine calculus shows that, for t sufficiently large, this achieves its maximum value at dD →∞

and dA =
t ln( t−2d

2d+1)
ln t , yielding

E[Ψt(X)] 6
2d ln t

t
− 2 ln

(
t− 2d

2d+ 1

)
− 1.

For t = 3d ln d
ln ln d , the RHS approaches −∞ as d → ∞. This implies that E[Ψt(X)] 6 0, so there is a

positive probability of selecting an MDS of average degree 6 t.
This is summarized as Algorithm 3.
This process can be derandomized using the method of conditional expectations. The underlying

random variables here are the marking vectors Z for the vertices of D. Given a marking vector Z,
we can define the pessimistic estimator

Ψ ′(Z) =
∑
v∈D

Zv(dv − t) +
∑
v∈C

[ ∧
w∈N(v)∪{v}

Zw = 0
]
(dv − t) +

∑
v∈A

[ ∧
w∈N(v)

Zw = 0
] x− t
x+ 1

We have already shown that each vector v ∈ D is marked independently with probability p,
then E[Ψ ′] 6 0 and furthermore that if Ψ ′ 6 0 then we are guaranteed that the final MDS has
degree O( d log d

log log d). For any vertex v ∈ D, it is not hard to compute the change in E[Ψ ′] when we
set Zv = 0 or Z1 = 1 deterministically; this only depends on the neighbors of v, so it requires time
O(dv). Thus, we can determine in time O(m) a marking vector Z which guarantees Ψ ′ 6 0. This
can be easily extended to an MDS in time O(m).

We next prove Theorem 5, which shows that this bound O( d log d
log log d) is optimal up to constant

factors.

Theorem 5. For any real number α > 0, there are graphs with average degree 6 α, but for which
any MDS has an average degree of Ω( α logα

log logα).

Proof. We will construct a graph of average degree d = O(α), all of whose MDS’s have degree
Ω( α logα

log logα). To simplify the proof, we will ignore rounding issues. As all the quantities tend to
infinity with α, such rounding issues are negligible for α sufficiently large.

Define k = log2(α lnα/ ln lnα). We define a random process which constructs a graph with three
types of vertices, which we denote A,B,C (these play the same role as in the proof of Theorem 4).
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The vertices in A,B are organized into clusters of related vertices. For class A, there are l = ( lnα
ln lnα)2

clusters of size α. For class B, there are r clusters of size α lnα
r ln lnα , for some r = Θ(k) (the constant

will be specified later).
There are 2k − 1 vertices in class C. These are not organized into clusters but are considered

individually. We index these vertices by the non-zero k-dimensional binary vectors over the finite
field GF (2). That is, C corresponds to C = GF (2)k − 0.

We add the following edges to the graph (some of these edges are deterministic, some are
random):
1. From each A-vertex to the other vertices in the same A-cluster.
2. From each B-vertex to all the other B-vertices, even those outside its cluster.
3. For each B-cluster b, we choose a random non-zero binary vector vb in GF (2)k. For each vertex

in C, indexed by vector w, we construct an edge from all the B-vertices in the cluster b to the
vertex w iff vb • w = 1. The dot product here is taken over the field GF (2).

4. For each A-cluster a, we select r ln lnα
lnα of the B-clusters uniformly at random, with replacement.

We add an edge from every vertex in the A-cluster a to every vertex in the selected B-clusters.
This graph has degree O(α). The following lemmas characterize the behavior of this graph and its
minimal dominating sets:

Lemma 4. Any MDS of G contains at most one vertex from each B-cluster. If the MDS contains
i such B-vertices, then it contains at least 2k−i − 1 C-vertices.

Proof. Let v1, . . . , vi be the binary vectors associated with the selected B-vertices. Then the set of
k-dimensionsal binary vectors which are perpendicular to v1, . . . , vi has dimension at least k− i. So
there are at least 2k−i−1 non-zero vectors perpendicular to v1, . . . , vi. The corresponding C-vectors
have no edges to the selected B-vertices, and no edges to any other type of vertex. In order for
them to be dominated, they must themselves be part of the MDS. ut

Lemma 5. It is possible to select the parameter r = Θ(k) such that, with high probability, all C
vertices have degree Ω( α logα

log logα).

Proof. Let us fix a particular C-vertex, associated to binary vector w ∈ GF (2)k. This vector w is
perpendicular to any randomly selected vector v 6= 0 with probability 1/2−2−k. Hence the expected
number of B-clusters connected to it is r(1/2− 2−k). By Chernoff’s bound, the probability that it
connects to fewer than r/4 clusters is exp(−Ω(r)).

For r a sufficiently large constant multiple of k, this probability is much less than 2−k. By the
union bound, this implies that there is a negligible probability that any C vertex connects to fewer
than r/4 of the B-clusters. So with high probability, every C-vertex connects to Ω(r) B-clusters.
As every B-cluster has α lnα

r ln lnα vertices, this implies that the C-vertices have degree Ω( α logα
log logα). ut

Lemma 6. With high probability, the graph G satisfies the following property: For all sets X of
B-clusters where X contains at least (3/4)k distinct B-clusters, all but O(logα) of the A-clusters
are connected to some vertex in X.

Proof. Suppose we fix a set X which contains i > 3/4k distinct B-clusters. Any given A-cluster
connects to α/(2k/r) B-clusters chosen uniformly a random, so the probability that this A-cluster

is disjoint to X is at most (1 − i/r)α/(2k/r) 6 exp(−αi/2k). Hence the expected number of such
A-clusters is at most l exp(−αi/2k). For i > 3/4k, this is o(logα). Hence by Chernoff’s bound,
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the probability that the number of disconnected A-clusters exceeds φ lnα is at most exp(−φ′ lnα),
where φ′ increases with φ.

The total number of such sets X is at most 2r = exp(O(k)). So, by the union-bound, the
probability that any such X has this event occuring is at most exp(O(k)−φ′ lnα). For φ a sufficiently
large constant, this probability is negligible. ut

Lemma 7. Suppose the graph G has all the properties of Lemmas 4, 5, 6. Then every MDS of G
has degree Ω( α logα

log logα).

Proof. Suppose we have an MDS of G which contains i distinct B-clusters. There are two cases.
First, suppose i 6 3/4k. In this case, the MDS contains at least 2k−i > 2k/4 C-clusters. The MDS
contains at most one vertex from each of the A-clusters. Hence, the average degree of the A,C

vertices in this MDS is Ω( lα+2k/42k

l+2k/4
) = Ω( α logα

log logα). As any B-vertex has also degree Ω( α logα
log logα), this

implies that the total average degree of the MDS is Ω( α logα
log logα).

Next, suppose i > 3/4k. The total number of B + C vertices is at least i + 2k−i = Ω(k). All
but O(logα) of the A-clusters are already dominated by B vertices; these are the only A-clusters
which can join the MDS. As a vertex in A cluster connects to only the other vertices in that same
cluster, the total number of A-vertices in the MDS is at most O(logα). Hence the degree of the

MDS is at least Ω(α logα+k2k

logα+k ) = Ω( α logα
log logα). This completes the proof of Theorem 5. ut

With high probability, every MDS of G has degree Ω( α logα
log logα).

4 Sparse Minimal Vertex Cover (SMVC)

Observation 2. For any real number α > 2, there are graphs for which the average degree is at
most α, but for which the average degree of any MVC is arbitrarily large.

Proof. The following example shows that the ratio of the average degree of any MVC in the un-
derlying graph to that of the graph itself can become arbitrarily large.

Consider the graph G that contains a single copy H of a complete graph Kp such that each
vertex of H is connected to q neighbors, each of them of degree 1. Then we have d = p−1+2q

1+q .
On the other hand, any VC in G contains at least p − 1 vertices from H. In particular, the

minimum-average-degree MVC in G contains exactly p− 1 vertices from H and the q neighbors of
the remaining vertex of H, so has average degree at least (p−1)(p−1+q)+q

p−1+q . Now, let p = b(α − 2)qc
and let p, q →∞. The resulting graphs have d 6 α, while the MVC has its degree approach ∞.

(Note that if we allow G to contain isolated vertices, then this theorem becomes a triviality: we
can simply add arbitarily many isolated vertices to a graph G.)

5 Conclusion

We have initiated the study – graph-theoretic, algorithmic, randomized, and distributed – of the
balanced versions of some fundamental graph-theoretic structures. As discussed in Section 1, the
study of balanced structures can be useful in providing fault-tolerant, load-balanced MISs and
MDSs. We have developed reasonably-close upper and lower bounds for many of these problems.
Furthermore, for the SMIS problem, we have presented fast (local) distributed algorithms that
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achieves an approximation close to the best possible in general; a key problem that is left open
is whether one can do the same for the SMDS problem (this has been partially addressed in a
subsequent work [10]). We view our results also as a step toward understanding the complexity of
local computation of these structures whose optimality itself cannot be verified locally.

Acknowledgements. We would like to thank the anonymous referees for their suggestions that helped
to improve the paper.
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