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1 Introduction

k-median is a classic problem in combinatorial optimization. Herein, we are
given a set of clients C, facilities F , and a symmetric distance metric c on C∪F .
The goal is to open k facilities such that we minimize the total connection cost
(distance to nearest open facility) of all clients. A natural generalization of k-
median is knapsack median (KM), in which we assign nonnegative weight
wi to each facility i ∈ F , and instead of opening k facilities, we require that
the sum of the open facility weights be within some budget B.

While KM is not known to be harder than k-median, it has thus far proved
more difficult to approximate. k-median was first approximated within con-
stant factor 6 2

3 in 1999[2], with a series of improvements leading to the current
best-known factor of 2.674[1]1. KM was first studied in 2011 by Krishnaswamy
et. al. [6], who gave a bicriteria 16 + ε approximation which slightly violated
the budget. Then Kumar gave the first true constant factor approximation for
KM with factor 2700 [7], subsequently reduced to 34 by Charikar&Li[3] and
then to 32 by Swamy[10].

This paper’s algorithm has a flow similar to Swamy’s: we first get a half-
integral solution (except for a few ‘bad’ facilities), and then create pairs of half-
facilities, opening one facility in each pair. By making several improvements,
we reduce the approximation ratio to 17.46. The first improvement is a simple
modification to the pairing process so that every half-facility is guaranteed
either itself or its closest neighbor to be open (versus having to go through
two ‘jumps’ to get to an open facility). The second improvement is to randomly
sample the half-integral solution, and condition on the probability that any
given facility is ‘bad’. The algorithm can be derandomized with linear loss in
the runtime.

The third improvement deals with the bad facilities which inevitabley arise
due to the knapsack constraint. All previous algorithms used Kumar’s bound
from [7] to bound the cost of nearby clients when bad facilities must be closed.
However, we show that by using a sparsification technique similar in spirit to -
but distinct from - that used in [8], we can focus on a subinstance in which the
connection costs of clients are guaranteed to be evenly distributed throughout
the instance. This allows for a much stronger bound than Kumar’s, and also
results in an LP with bounded integrality gap, unlike previous algorithms.

Another alternative is to just open the few bad facilities and violate the
budget by some small amount, as Krishnaswamy et. al. did when first introduc-
ing KM. By preprocessing, we can ensure this violates the budget by at most
εB. We show that the bi-point solution based method from [8] can be adapted
for KM using this budget-violating technique to get a 3.05 approximation.

1 the paper claims 2.611, but a very recent correction changes this to 2.674.
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1.1 Preliminaries

Let n = |F|+|C| be the size of the instance. For the ease of analysis, we assume
that each client has unit demand. (Indeed, our algorithm easily extends to the
general case.) For a client j, the connection cost of j, denoted as cost (j), is
the distance from j to the nearest open facility in our solution. The goal is
to open a subset S ⊆ F of facilities such that the total connection cost is
minimized, subject to the knapsack constraint

∑
i∈S wi ≤ B.

The natural LP relaxation of this problem is as follows.

minimize
∑

i∈F,j∈C
cijxij

subject to
∑
i∈F

xij = 1 ∀j ∈ C

xij ≤ yi ∀i ∈ F , j ∈ C∑
i∈F

wiyi ≤ B

0 ≤ xij , yi ≤ 1 ∀i ∈ F , j ∈ C

In this LP, xij and yi are indicator variables for the event client j is con-
nected to facility i and facility i is open, respectively. The first constraint
guarantees that each client is connected to some facility. The second con-
straint says that client j can only connect to facility i if it is open. The third
one is the knapsack constraint.

In this paper, given a KM instance I = (B,F , C, c, w), let OPTI and
OPTf be the cost of an optimal integral solution and the optimal value of the
LP relaxation, respectively. Suppose S ⊆ F is a solution to I, let cost I(S)
denote cost of S. Let (x, y) denote the optimal (fractional) solution of the LP
relaxation. Let Cj :=

∑
i∈F cijxij be the fractional connection cost of j. Given

S ⊆ F and a vector v ∈ R|F|, let v(S) :=
∑
i∈S vi. From now on, let us fix

any optimal integral solution of the instance for the analysis.

2 An improved approximation algorithm for Knapsack Median

2.1 Kumar’s bound

The main technical difficulty of KM is related to the unbounded integrality
gap of the LP relaxation. It is known that this gap remains unbounded even
when we strengthen the LP with knapsack cover inequalities [6]. All previous
constant-factor approximation algorithms for KM rely on Kumar’s bound from
[7] to get around the gap. Specifically, Kumar’s bound is useful to bound the
connection cost of a group of clients via some cluster center in terms of OPTI
instead of OPTf . We now review this bound, and will improve it later.
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Lemma 1 For each client j, we can compute (in polynomial time) an upper-
bound Uj on the connection cost of j in the optimal integral solution (i.e.
cost (j) ≤ Uj) such that∑

j′∈C
max{0, Uj − cjj′} ≤ OPTI .

Proof We first guess OPTI by enumerating the powers of (1 + ε) for some
small constant ε > 0. (We lose a factor of (1 + ε) in the approximation ratio
and a factor of O(log n/ε) in the runtime.) Now fix any optimal solution and
assume that j connects to i and j′ connects to i′. Then, by triangle inequality,

cost (j) = cij ≤ ci′j ≤ cjj′ + ci′j′ = cjj′ + cost (j′),

or equivalently,

cost (j′) ≥ cost (j)− cjj′ .

Taking the sum over all j′ 6= j, we have

OPTI ≥
∑
j′ 6=j

max{0, cost (j)− cjj′}.

Then we can simply take Uj such that

OPTI =
∑
j′∈C

max{0, Uj − cjj′}.

(Observe that the RHS is a linear function of Uj). ut

We can slightly strengthen the LP relaxation by adding the constraints:
xij = 0 for all cij > Uj . (Unfortunately, the integrality gap is still unbounded
after this step.) Thus we may assume that (x, y) satisfies all these constraints.

Lemma 2 (Kumar’s bound) Let S be a set of clients and s ∈ S, where
cjs ≤ βCj for all j ∈ S and some constant β ≥ 1, then

|S|Us ≤ OPTI + β
∑
j∈S

Cj .

Proof

|S|Us =
∑
j∈S

Us =
∑
j∈S

(Us − cjs) +
∑
j∈S

cjs ≤ OPTI + β
∑
j∈S

Cj ,

where we use the property of Us from Lemma 1 for the last inequality. ut

This bound allows one to bound the cost of clients which rely on the bad
facility.
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2.2 Sparse Instances

Kumar’s bound can only be tight when the connection cost in the optimal
solution is highly concentrated around a single client. However, if this were
the case, we could guess the client for which this occurs, along with its op-
timal facility, which would give us a large advantage. On the other hand, if
the connection cost is evenly distributed, we can greatly strengthen Kumar’s
bound. This is the idea behind our definition of sparse instances below.

Let CBall(j, r) := {k ∈ C : cjk ≤ r} denote the set of clients within radius
of r from client j. Let λj be the connection cost of j in the optimal integral
solution. Also, let i(j) denote the facility serving j in the optimal solution.

Definition 1 Given some constants 0 < δ, ε < 1, we say that a knapsack
median instance I = (B,F , C, c, w) is (δ, ε)-sparse if, for all j ∈ C,∑

k∈CBall(j,δλj)

(λj − cjk) ≤ εOPTI .

We will show that the integrality gap is bounded on these sparse instances.
We also give a polynomial-time algorithm to sparsify any knapsack median
instance. Moreover, the solution of a sparse instance can be used as a solution
of the original instance with only a small loss in the total cost.

Lemma 3 Given some knapsack median instance I0 = (B,F , C0, c, w) and
0 < δ, ε < 1, there is an efficient algorithm that outputs O(n2/ε) pairs of
(I,F ′), where I = (B,F , C, c, w) is a new instance with C ⊆ C0, and F ′ ⊆ F
is a partial solution of I, such that at least one of these instances is (δ, ε)-
sparse.

Proof Fix any optimal integral solution of I0. Consider the following algorithm
that transform I0 into a sparse instance, assuming for now that we know its
optimal solution:

– Initially, C := C0.
– While the instance (B,F , C, c, w) is not sparse, i.e. there exists a “bad”

client j such that
∑
k∈CBall(j,δλj)

(λj − cjk) > εOPTI , remove all clients in

CBall(j, δλj) from C.

Note that this algorithm will terminate after at most 1/ε iterations: for each
k ∈ CBall(j, δλj) and its serving facility i(k) in the optimal solution, we have
cji(k) ≤ cjk + λk, which implies∑
k∈CBall(j,δλj)

λk ≥
∑

k∈CBall(j,δλj)

(cji(k) − cjk) ≥
∑

k∈CBall(j,δλj)

(λj − cjk) > εOPTI ,

and there can be at most 1/ε such balls.
Now, while we do not know which client j is “bad” and which facility i

serves client j in the optimal solution, we can still guess these pairs in O(n2)
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time in each iteration. Specifically, we will guess the number of iterations
that the above algorithm terminates and the pair (j, i(j)) in each iteration.
There are at most O(n2/ε) possible cases and we will generate all of these new
instances. Finally, we include all the facilities i(j) during the process into the
set F ′ of the corresponding instance. ut

The following theorem says that if we have an approximate solution to a
sparse instance, then its cost on the original instance can be blown up by a
small constant factor.

Theorem 1 Let I = (B,F , C, c, w) be a (δ, ε)-sparse instance obtained from
I0 = (B,F , C0, c, w) (by the procedure in the proof of Lemma 3) and F ′ be
the corresponding partial solution. If S ⊇ F ′ is any approximate solution to I
(including those open facilities in F ′) such that

cost I(S) ≤ αOPTI ,

then

cost I0(S) ≤ max

{
1 + δ

1− δ
, α

}
OPTI0 .

Note that our notion of sparsity differs from that of Li and Svensson in several
ways. It is client-centric, and removes clients instead of facilities from the
instance. On the negative side, removed clients’ costs blow up by 1+δ

1−δ , so our
final approximation cannot guarantee better.

Proof (Theorem 1) For any k ∈ C0 \ C, let CBall(j, δλj) be the ball containing
k that was removed from C0 in the preprocessing phase in Lemma 3. Recall
that i(j) is the facility serving j in the optimal solution. We have

λk ≥ λj − cjk ≥ (1− δ)λj ,

which implies,

cki(j) ≤ cjk + λj ≤ (1 + δ)λj ≤
1 + δ

1− δ
λk.

Then, by connecting all k ∈ C0 \ C to the corresponding facility i(j) (which is
guaranteed to be open because i(j) ∈ F ′), we get

cost I0(S) =
∑

k∈C0\C

cost (k) +
∑
k∈C

cost (k)

≤ 1 + δ

1− δ
∑

k∈C0\C

λk + αOPTI

≤ 1 + δ

1− δ
∑

k∈C0\C

λk + α
∑
k∈C

λk

≤ max

{
1 + δ

1− δ
, α

}
OPTI0 .

ut
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From now on, assume that we are given some arbitrary knapsack median
instance I0 = (B,F , C0, c, w). We will transform I0 into a (δ, ε)-sparse instance
I and use Theorem 1 to bound the real cost at the end.

2.3 Improving Kumar’s bound and modifying the LP relaxation

We will show how to improve Kumar’s bound in sparse instances. Recall that,
for all j ∈ C, we have ∑

k∈CBall(j,δλj)

(λj − cjk) ≤ εOPTI .

Then, as before, we can guess OPTI and take the maximum Uj such that∑
k∈CBall(j,δUj)

(Uj − cjk) ≤ εOPTI .

(Observe that the LHS is an increasing function of Uj .) Now the constraints
xij = 0 for all i ∈ F , j ∈ C : cij > Uj are valid and we can add these into the
LP. We also add the following constraints: yi = 1 for all facilities i ∈ F ′. From
now on, assume that (x, y) is an optimal solution of this new LP, satisfying all
the mentioned constraints.

Lemma 4 Let s be any client in sparse instance I and S be a set of clients
such that cjs ≤ βCj for all j ∈ S and some constant β ≥ 1. Then

|S|Us ≤ εOPTI +
β

δ

∑
j∈S

Cj .

Proof Consider the following two cases.

– For clients j ∈ S ′ = S ∩ CBall(s, δUs), by definition of sparsity, we have

|S ′|Us =
∑
j∈S′

(Us − cjs) +
∑
j∈S′

cjs

≤ εOPTI + β
∑
j∈S′

Cj .

– For clients j ∈ S ′′ = S \ CBall(s, δUs), we have βCj ≥ cjs ≥ δUs and we

get an alternative bound Us ≤ β
δCj . Thus,

|S ′′|Us =
∑
j∈S′′

Us ≤
∑
j∈S′′

β

δ
Cj .

The lemma follows by taking the sum of these two cases. ut
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2.4 Filtering Phase

We will apply the standard filtering method for facility-location problems (see
[3,10]). Basically, we choose a subset C′ ⊆ C such that clients in C′ are far
from each other. After assigning each facility to the closest client in C′, it is
possible to lower-bound the opening volume of each cluster. Each client in C′
is called a cluster center.

Filtering algorithm: Initialize C′ := C. For each client j ∈ C′ in in-
creasing order of Cj , we remove all other clients j′ such that cjj′ ≤ 4Cj′ =
4 max{Cj′ , Cj} from C′.

For each j ∈ C′, define Fj = {i ∈ F : cij = mink∈C′ cik}, breaking ties
arbitrarily. Let F ′j = {i ∈ Fj : cij ≤ 2Cj} and γj = mini/∈Fj

cij . Then define
Gj = {i ∈ Fj : cij ≤ γj}. We also reassign yi := xij for i ∈ Gj and yi := 0
otherwise. For j ∈ C′, let Mj be the set containing j and all clients removed
by j in the filtering process.

We note that the solution (x, y) may not be feasible to the LP anymore after
the reassignment step. For the rest of the paper, we will focus on rounding y
into an integral vector. One important property is that the knapsack constraint
still holds. In other words, the new sum

∑
i∈F wiyi is still at most the budget

B. This is due to the fact that xij ≤ yi. The opening variables only decrease
after this step; and hence, the knapsack constraint will be preserved.

Lemma 5 We have the following properties:

– All sets Gj are disjoint,
– 1/2 ≤ y(F ′j) and y(Gj) ≤ 1 for all j ∈ C′.
– F ′j ⊆ Gj for all j ∈ C′.

Proof For the first claim, observe that all Fj ’s are disjoint and Gj ⊆ Fj by
definition. Also, if

∑
i∈F ′

j
yi =

∑
i∈F ′

j
xij < 1/2, then

∑
i∈F\F ′

j
xij > 1/2. Since

the radius of F ′j is 2Cj , this means that Cj > (1/2)(2Cj) = Cj , which is a
contradiction. Since we reassign yi := xij for all i ∈ Gj , the volume y(Gj) is
now at most 1. Finally, we have 2Cj ≤ γj . Otherwise, let i /∈ Fj be the facility
such that γj = cij . Observe that facility i is claimed by another cluster center,
say j′, because cij′ ≤ cij ≤ 2Cj . This implies that cjj′ ≤ cij + cij′ ≤ 4Cj ,
which is a contradiction. ut

It is clear that for all j, j′ ∈ C′, cjj′ ≥ 4 max{Cj′ , Cj}. Moreover, for each
j ∈ C \ C′, we can find j′ ∈ C′, where j′ causes the removal of j, or, in other
words, Cj′ ≤ Cj and cjj′ ≤ 4Cj . Assuming that we have a solution S for the
instance I ′ = (B,F , C′, c, w) where each client j in C′ has demand dj = |Mj |
(i.e. there are |Mj | copies of j), we can transform it into a solution for I as
follows. Each client j ∈ C \ C′ will be served by the facility of j′ that removed
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j. Then cost (j) = cjj′ + cost (j′) ≤ cost (j′) + 4Cj . Therefore,

cost I(S) =
∑
j∈C′

cost (j) +
∑

j∈C\C′
cost (j)

≤
∑
j∈C′

cost (j) +
∑

j∈C\C′
( cost (j′(j)) + 4Cj)

≤ cost I′(S) + 4OPTf .

where, in the second line, j′(j) is the center in C′ that removed j.

2.5 A basic (23.09 + ε)-approximation algorithm

In this section, we describe a simple randomized (23.09 + ε)-approximation
algorithm. In the next section, we will derandomize it and give more insights
to further improve the approximation ratio to 17.46 + ε.

High-level ideas: We reuse Swamy’s idea from [10] to first obtain an
almost half integral solution ŷ. This solution ŷ has a very nice structure. For
example, each client j only (fractionally) connects to at most 2 facilities, and
there is at least a half-opened facility in each Gj . We shall refer to this set
of 2 facilities as a bundle. In [10], the author applies a standard clustering
process to get disjoint bundles and round ŷ by opening at least one facility
per bundle. The drawback of this method is that we have to pay extra cost
for bundles removed in the clustering step. In fact, it is possible to open at
least one facility per bundle without filtering out any bundle. The idea here
is inspired by the work of Charikar et. al [2]. In addition, instead of picking
ŷ deterministically, sampling such a half integral extreme point will be very
helpful for the analysis.

We consider the following polytope.

P = {v ∈ [0, 1]|F| : v(F ′j) ≥ 1/2, v(Gj) ≤ 1, ∀j ∈ C′;
∑
i∈F

wivi ≤ B}.

Lemma 6 ([10]) Any extreme point of P is almost half-integral: there exists
at most 1 cluster center s ∈ C′ such that Gs contains variables /∈ {0, 12 , 1}. We
call s a fractional client.

Notice by Lemma 5 that y ∈ P. By Carathéodory’s theorem, y is a con-
vex combination of at most t = |F|+ 1 extreme points of P. Moreover, there
is an efficient algorithm based on the ellipsoid method to find such a de-
composition (e.g., see [9]). We apply this algorithm to get extreme points
y(1), y(2), . . . , y(t) ∈ P and coefficients 0 ≤ p1, . . . , pt ≤ 1,

∑t
i=1 pi = 1, such

that

y = p1y
(1) + p2y

(2) + . . .+ pty
(t).

This representation defines a distribution on t extreme points of P. Let
Y ∈ [0, 1]F be a random vector where Pr[Y = y(i)] = pi for i = 1, . . . , t.
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Observe that Y is almost half-integral. Let s be the fractional client in Y . (We
assume that s exists; otherwise, the cost will only be smaller.)

Defining primary and secondary facilities: For each j ∈ C′,

– If j 6= s, let i1(j) be any half-integral facility in F ′j (i.e. Yi1(j) = 1/2;
such a facility exists because Y (F ′j) ≥ 1/2). Else (j = s), let i1(j) be the
smallest-weight facility in F ′j with Yi1(j) > 0.

– If Y (i1(j)) = 1, let i2(j) = i1(j).
– If Y (Gj) < 1, then let σ(j) be the nearest client to j in C′. Define i2(j) =
i1(σ(j)).

– If Y (Gj) = 1, then
– If j 6= s, let i2(j) be the other half-integral facility in Gj .
– Else (j = s), let i2(j) be the smallest-weight facility in Gj with Yi2(j) >

0. If there are ties and i1(j) is among these facilities then we let i2(j) =
i1(j).

– We call i1(j), i2(j) the primary facility and the secondary facility of j,
respectively.

Constructing the neighborhood graph: Initially, construct the directed
graph G on clients in C′ such that there is an edge j → σ(j) for each j ∈ C′ :
Y (Gj) < 1. Note that all vertices in G have outdegree ≤ 1. If Y (Gj) = 1,
then vertex j has no outgoing edge. In this case, we replace j by the edge
i1(j) → i2(j), instead. Finally, we relabel all other nodes in G by its primary
facility. Now we can think of each client j ∈ C′ as an edge from i1(j) to i2(j)
in G.

Lemma 7 Without loss of generality, we can assume that all cycles of G (if
any) are of size 2. This means that G is bipartite.

Proof Since the maximum outdegree is equal to 1, each (weakly) connected
component of G has at most 1 cycle. Consider any cycle j → σ(j)→ σ2(j)→
. . . → σk(j) → j. Then it is easy to see that cjσ(j) = cσk(j)j . The argument
holds for any j in the cycle, and all edges on the cycle have the same length.
Then we can simply redefine σ(σk(j)) := σk−1(j) and get a cycle of size 2
instead. We can also change the secondary of the client corresponding to the
edge (σk(j), j) into σk−1(j) because they are both at the same distance from
it. ut

We are now ready to describe the main algorithm.

Theorem 2 Algorithm 2 returns a feasible solution S where

E[ cost I0(S)] ≤ max

{
1 + δ

1− δ
, 10 + 12/δ + 3ε

}
OPTI0 .

In particular, the approximation ratio is at most (23.087 + 3ε) when setting
δ := 0.916966.
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Algorithm 1 Round(Y )
1: Construct the neighborhood graph G based on Y
2: Let C1, C2 be independent sets which partition G.
3: Let W1,W2 be the total weight of the facilities in C1, C2 respectively.
4: if W1 ≤W2 then
5: return C1

6: else
7: return C2

Algorithm 2 BasicAlgorithm(δ, ε, I0)
1: Generate O(n2/ε) pairs (I,F ′) using the algorithm in the proof of Lemma 3.
2: S ← ∅
3: for each pair (I,F ′) do
4: Let (x, y) be the optimal solution of the modified LP relaxation in Section 2.3.
5: Apply the filtering algorithm to get I′.
6: Use F , C′ to define the polytope P.
7: Sample a random extreme point Y of P as described above.
8: Let S′ ←Round(Y )
9: If S′ is feasible and its cost is smaller than the cost of S then S ← S′.

10: return S

Proof Assume I is the sparse instance obtained from I0. We will give a proof
of feasibility and a cost analysis. Recall that s is the center where we may have
fractional values Yi with i ∈ Gs.
Feasibility:

– For all centers j ∈ C′ with Y (Gj) < 1, we have

wi1(j) ≤ 2
∑
i∈Gj

Yiwi.

Note that this is true for j 6= s because Yi1(j) = 1/2. Otherwise, j = s, by
definition, wi1(j) is the smallest weight in the set F ′s which has volume at
least 1/2. Thus, wi1(j) ≤ 2

∑
i∈F ′

s
Yiwi ≤ 2

∑
i∈Gj

Yiwi.

– For all centers j ∈ C′ with Y (Gj) = 1, we have

wi1(j) + wi2(j) ≤ 2
∑
i∈Gj

Yiwi.

The equality happens when j 6= s. Otherwise, j = s, we consider the
following 2 cases
– If i1(s) = i2(s) the inequality follows because wi1(j) = wi2(j) ≤

∑
i∈Gj

Yiwi.

– Else, we have i2(s) ∈ Gj \F ′j by definition of i2(s). Since wi1(s) ≥ wi2(s)
and Y (F ′s) ≥ 1/2,

1

2
wi1(s) +

1

2
wi2(s) ≤ Y (F ′s)wi1(s) + (1− Y (F ′s))wi2(s)

≤
∑
i∈F ′

j

Yiwi +
∑

i∈Gj\F ′
j

Yiwi =
∑
i∈Gj

Yiwi.
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Recall that each center j ∈ C′ is accounted for either one vertex i1(j) of G
if Y (Gj) < 1 or two vertices i1(j), i2(j) of G if Y (Gj) = 1). Thus, the total
weight of all vertices in G is at most

2
∑
j∈C′

∑
i∈Gj

Yiwi ≤ 2B,

where the last inequality follows because Y ∈ P. It means that either W1

or W2 is less than or equal to B, and Algorithm 1 always returns a feasible
solution.

Cost analysis:
We show that the expected cost of j can be bounded in terms of γj , Uj , and y.
For j ∈ C, let j′(j) denote the cluster center of j and define j′(j) = j if j ∈ C′.
Recall that in the instance I ′ = (B,F , C′, c), each client j ∈ C′ has demand
dj = |Mj |. Notice that

OPTf =
∑
j∈C

Cj ≥
∑
j∈C

Cj′(j) =
∑
j∈C′

djCj

=
∑
j∈C′

dj

∑
i∈Gj

xijcij +
∑

i∈F\Gj

xijcij


≥
∑
j∈C′

dj

∑
i∈Gj

yicij + γj(1− y(Gj))

 . (1)

The last inequality follows because, for any center j,
∑
i∈F xij = 1, and γj is

the radius of the ball Gj by definition. Now, for v ∈ [0, 1]F , we define

Bj(v) := dj

∑
i∈Gj

vicij + γj(1− v(Gj))

 .

Let K(v) =
∑
j∈C′ Bj(v). Recall that E[Yi] = yi for all i ∈ F . By (1) and

linearity of expectation, we have

E[K(Y )] = K(y) ≤ OPTf .

Also note that∑
j∈C′

E[Bj(Y )] =
∑
j∈C′

Bj(y) ≤
∑
j∈C′

djCj ≤
∑
j∈C′

∑
k∈Mj

Ck =
∑
j∈C

Cj .

Next, we will analyze cost I′(S). To this end, we shall bound the connection
cost of a client j in terms of Bj(Y ). Algorithm 1 guarantees that, for each
j ∈ C′, either i1(j) or i2(j) is in S. By construction, ci1(j)j ≤ ci2(j)j . In the
worst case, we may need to connect j to i2(j), and hence cost (j) ≤ djci2(j)j
for all client j.
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Fix any client j with Y (Gj) < 1. Recall that γj = mini/∈Fj
cij and σ(j) is

the closest client to j in C′. Suppose γj = ci′j where i′ ∈ Fj′ for some j′ ∈ C′.
By definition, ci′j′ ≤ γj . Then cjσ(j) ≤ cjj′ ≤ ci′j + ci′j′ ≤ 2γj . Also, since
i1(σ(j)) ∈ F ′σ(j), we have that cσ(j)i1(σ(j)) ≤ 2Cσ(j). In addition, recall that

4 max{Cj , Cσ(j)} ≤ cjσ(j) ≤ 2γj . Thus, 2Cσ(j) ≤ γj . Then the following bound
holds when Y (Gj) < 1:

cost (j) ≤ djci2(j)j
≤ dj(cjσ(j) + cσ(j)i2(j))

= dj(cjσ(j) + cσ(j)i1(σ(j)))

≤ dj(2γj + 2Cσ(j))

≤ 3djγj .

Consider the following cases.

– If j 6= s, then either Y (Gj) = 1 or Y (Gj) = 1/2.
– Case Y (Gj) = 1: then Yi1(j) = Yi2(j) = 1/2, we have

cost (j) ≤ djci2(j)j ≤ 2dj
∑
i∈Gj

Yicij = 2Bj(Y ).

– Case Y (Gj) = 1/2: we have

cost (j) ≤ 3djγj = 6djγj(1− Y (Gj)) ≤ 6Bj(Y ).

– If j = s, we cannot bound the cost in terms of Bj(Y ). Instead, we shall
use Kumar’s bound.
– Case Y (Gj) = 1: i2(j) ∈ Gj . Recall that Uj is the upper-bound on the

connection cost of j. Our LP constraints guarantee that xij = 0 for all
cij > Uj . Since Yi2(j) > 0, we also have yi2(j) > 0 or xi2(j)j > 0, which
implies that ci2(j)j ≤ Uj . Thus,

cost (j) ≤ djci2(j)j ≤ djUj .

– Case Y (Gj) < 1: then there must exists some facility i /∈ Gj such that
xij > 0. Since γj is the radius of Gj , we have γj ≤ cij ≤ Uj ; and hence,

cost (j) ≤ 3djγj ≤ 3djUj .

In either cases, applying the improved Kumar’s bound to the cluster Ms

where cks ≤ 4Ck for all k ∈Ms, we get

cost (j) ≤ 3djUj

≤ 3εOPTI +
3 · 4
δ

∑
k∈Ms

Ck

≤ 3εOPTI +
12

δ
OPTf .
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Now, we will bound the facility-opening cost. Notice that, for all facilities
i ∈ C1 ∪ C2 but at most two facilities i1(s) and i2(s), we have Yi ∈ {1/2, 1}.

Then,

E[ cost I′(S)] ≤
∑

j∈C′:j 6=s

6 E[Bj(Y )] + 3εOPTI + (12/δ)OPTf

= 6
∑
j∈C′

Bj(y) + 3εOPTI + (12/δ)OPTf

≤ 6K(y) + 3εOPTI + (12/δ)OPTf

≤ (6 + 12/δ)OPTf + 3εOPTI .

Therefore,

E[ cost I(S)] ≤ E[ cost I′(S)] + 4OPTf ≤ (10 + 12/δ)OPTf + 3εOPTI .

Finally, applying Theorem 1 to S,

E[ cost I0(S)] ≤ max

{
1 + δ

1− δ
, 10 + 12/δ + 3ε

}
OPTI0 .

ut

2.6 A (17.46 + ε)-approximation algorithm via conditioning on the fractional
cluster center

Recall that the improved Kumar’s bound for the fractional client s is

|Ms|Us ≤ εOPTI + (4/δ)
∑
j∈Ms

Cj .

In Theorem 2, we upper-bound the term
∑
j∈Ms

Cj by OPTf . However, if this
is tight, then the fractional cost of all other clients not in Ms must be zero
and we should get an improved ratio.

To formalize this idea, let u ∈ C′ be the client such that
∑
j∈Mu

Cj is
maximum. Let α ∈ [0, 1] such that

∑
j∈Mu

Cj = αOPTf , then

|Ms|Us ≤ εOPTI + (4/δ)αOPTf . (2)

The following bound follows immediately by replacing the Kumar’s bound by
(2) in the proof of Theorem 2.

E[ cost I(S)] ≤ (10 + 12α/δ + 3ε)OPTI . (3)

In fact, this bound is only tight when u happens to be the fractional client
after sampling Y . If u is not “fractional”, the second term in the RHS of (2)
should be at most (1 − α)OPTf . Indeed, if u is rarely a fractional client, we
should obtain a strictly better bound. To this end, let E be the event that u
is the fractional client after the sampling phase. Let p = Pr[E ]. We get the
following lemma.
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Lemma 8 Algorithm 2 returns a solution S with

E[ cost I(S)] ≤ (10 + min{12α/δ, (12/δ)(pα+ (1− p)(1− α))}+ 3ε)OPTI .

Proof We reuse the notations and the connection cost analysis in the proof of
Theorem 2. Recall that E is the event that u is the fractional client. We have

E[ cost I′(S)|E ] ≤ 6
∑

j∈C′:j 6=u

E[Bj(Y )|E ] + 3εOPTI + (12α/δ)OPTf .

If Ē happens, assume s 6= u is the fractional one and let Ē(s) denote this event.
Then,

E[ cost I′(S)|Ē(s)] ≤ 6
∑

j∈C′:j 6=s

E[Bj(Y )|Ē(s)] + 3εOPTI + (12/δ)(1− α)OPTf

≤ 6
∑
j∈C′

E[Bj(Y )|Ē(s)] + 3εOPTI + (12/δ)(1− α)OPTf

Therefore,

E[ cost I′(S)|Ē ] ≤ 6
∑
j∈C′

E[Bj(Y )|Ē ] + 3εOPTI + (12/δ)(1− α)OPTf .

Also, (1 − p) E[Bu(Y )|Ē ] ≤ E[Bu(Y )] because Bu(Y ) is always non-negative.
The total expected cost can be bounded as follows.

E[ cost I′(S)] = pE[costI′(S)|E ] + (1− p) E[costI′(S)|Ē ]

≤ 6
∑

j∈C′:j 6=u

E[Bj(Y )] + 3εOPTI

+ (12/δ)(pα+ (1− p)(1− α))OPTf + 6(1− p) E[Bu(Y )|Ē ]

≤ 6
∑
j∈C′

E[Bj(Y )] + 3εOPTI + (12/δ)(pα+ (1− p)(1− α))OPTf .

≤ 6K(y) + (3ε+ (12/δ)(pα+ (1− p)(1− α)))OPTI

≤ (6 + 3ε+ (12/δ)(pα+ (1− p)(1− α)))OPTI . (4)

The lemma follows due to (3), (4), and the fact that E[ cost I(S)] ≤ E[ cost I′(S)]+
4OPTf . ut

Finally, conditioning on the event E , we are able to combine certain terms
and get the following improved bound.

Lemma 9 Algorithm 2 returns a solution S with

E[ cost I(S)|E ] ≤ (max{6/p, 12/δ}+ 4 + 3ε)OPTI .
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Proof Again, since Bj(Y ) ≥ 0 for all j ∈ C′ and all Y , we have E[Bj(Y )|E ] ≤
E[Bj(Y )]/p. Also, recall that E[Bj(Y )] = Bj(y) ≤ djCj ≤

∑
k∈Mj

Ck for any

j ∈ C′. Therefore,

E[ cost I′(S)|E ] ≤ 6
∑

j∈C′:j 6=u

E[Bj(Y )|E ] + 3εOPTI + (12/δ)
∑
j∈Mu

Cj

≤ (6/p)
∑

j∈C′:j 6=u

E[Bj(Y )] + 3εOPTI + (12/δ)
∑
j∈Mu

Cj

≤ (6/p)
∑

j∈C:j /∈Mu

Cj + 3εOPTI + (12/δ)
∑
j∈Mu

Cj

≤ max{6/p, 12/δ}
∑
j∈C

Cj + 3εOPTI

≤ max{6/p, 12/δ}OPTf + 3εOPTI

≤ (max{6/p, 12/δ}+ 3ε)OPTI .

The lemma follows since E[ cost I(S)|E ] ≤ E[ cost I′(S)|E ] + 4OPTf . ut

Now we have all the required ingredients to get an improved approximation
ratio. Algorithm 3 is a derandomized version of Algorithm 2.

Algorithm 3 DeterministicAlgorithm(δ, ε, I0)
1: Generate O(n2/ε) pairs (I,F ′) using the algorithm in the proof of Lemma 3.
2: S ← ∅
3: for each pair (I,F ′) do
4: Let (x, y) be the optimal solution of the modified LP relaxation in Section 2.3.
5: Apply the filtering algorithm to get I′.
6: Use F , C′ to define the polytope P.
7: Decompose y into a convex combination of extreme points y(1), y(2), . . . , y(t) of P.
8: for each Y ∈ {y(1), y(2), . . . , y(t)} do
9: Let S′ ←Round(Y )

10: If S′ is feasible and its cost is smaller than the cost of S then S ← S′.
11: return S

Theorem 3 Algorithm 3 returns a feasible solution S where

cost I0(S) ≤ (17.46 + 3ε)OPTI0 ,

when setting δ = 0.891647.

Proof Again, suppose I is a sparse instance obtained from I0. Recall that
p = Pr[E ] is the probability that u, the cluster center with maximum fractional
cost

∑
j∈Mu

Cj = αOPTf , is fractional. Consider the following cases:

– Case p ≤ 1/2: By Lemma 8 and the fact that Algorithm 3 always returns
a solution S from the same distribution with minimum cost, we have

cost I(S) ≤ (10 + min{12α/δ, (12/δ)(pα+ (1− p)(1− α))}+ 3ε)OPTI .
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By Theorem 1, the approximation ratio is at most

max

{
1 + δ

1− δ
, 10 + 3ε+ min{12α/δ, (12/δ)(pα+ (1− p)(1− α))}

}
.

– If α ≤ 1/2, the ratio is at most max
{

1+δ
1−δ , 10 + 3ε+ 6/δ

}
.

– If α ≥ 1/2, we have

(12/δ)(pα+ (1− p)(1− α)) = (12/δ)(p(2α− 1)− α+ 1) ≤ 6/δ.

Again, the ratio is at most max
{

1+δ
1−δ , 10 + 3ε+ 6/δ

}
.

– Case p ≥ 1/2: Observe that the event E does happen for some point in the
for loop at lines 8, 9, and 10. By Lemma 9 and the fact that 1 + 2/p = 3 <
12/δ, we have

cost I(S) ≤ (max{6/p, 12/δ}+ 4 + 3ε)OPTI = (12/δ + 4 + 3ε)OPTI .

By Theorem 1, the approximation ratio is bounded by max
{

1+δ
1−δ ,

12
δ + 3ε+ 4

}
.

In all cases, the approximation ratio is at most

max

{
1 + δ

1− δ
, 12/δ + 3ε+ 4, 10 + 3ε+ 6/δ

}
≤ 17.4582 + 3ε,

when δ = 0.89167. ut

Note that in [10], Swamy considered a slightly more general version of KM
where each facility also has an opening cost. It can be shown that Theorem 3
also extends to this variant.

3 A bi-factor 3.05-approximation algorithm for Knapsack median

In this section, we develop a bi-factor approximation algorithm for KM that
outputs a pseudo-solution of cost at most 3.05OPTI and of weight bounded
by (1 + ε)B. This is a substantial improvement upon the previous comparable
result, which achieved a factor of 16 + ε and violated the budget additively
by the largest weight wmax of a facility. It is not hard to observe that one can
also use Swamy’s algorithm [10] to obtain an 8-approximation that opens a
constant number of extra facilities (exceeding the budget B). Our algorithm
works for the original problem formulation of KM where all facility costs are
zero. Our algorithm is inspired by a recent algorithm of Li and Svensson [8] for
the k-median problem, which beat the long standing best bound of 3 + ε. The
overall approach consists in computing a so-called bi-point solution, which is
a convex combination aF1 + bF2 of two integral pseudo solutions F1 and F2

for appropriate factors a, b ≥ 0 with a+b = 1, and then rounding this bi-point
solution to an integral one.
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Depending on the value of a, Li and Svensson apply three different bi-
point rounding procedures. We extend two of them to the case of KM. The
rounding procedures of Li and Svensson have the inherent property of opening
k+ c facilities where c is a constant. Li and Svensson find a way to preprocess
the instance such that any pseudo approximation algorithm for k-median that
opens k + c facilities can be turned into a (proper) approximation algorithm
by paying only an additional ε in the approximation ratio. We did not find a
way to prove a similar result also for KM and therefore our algorithms violate
the facility budget by a factor of 1 + ε.

3.1 Pruning the instance

The bi-factor approximation algorithm that we will describe in Section 3.2
has the following property. It outputs a (possibly infeasible) pseudo-solution
of cost at most αOPTI such that the budget B is respected when we remove
the two heaviest facilities from this solution. This can be combined with a
simple reduction to the case where the weight of any facility is at most εB.
This ensures that our approximate solution violates the budget by a factor at
most 1 + 2ε while maintaining the approximation factor α.

Lemma 10 Let I = (B,F , C, c, w) be any KM instance. Assume there exists
an algorithm A that computes for instance I a solution that consists of a fea-
sible solution and two additional facilities, and that has cost at most αOPTI .
Then there exists for any ε > 0 a bi-factor approximation algorithm A′ which
computes a solution of weight (1 + ε)B and of cost at most αOPTI .

Proof Let I = (B,F , C, c, w) be an instance of knapsack median, let Fε ⊆ F be
the set of facilities whose weight exceeds εB and let S be some fixed optimum
solution. Note that any feasible solution can have no more than 1/ε many
facilities in Fε.

This allows us to guess the set Sε := S ∩ Fε of “heavy” facilities in the
optimum solution S. To this end we enumerate all O( 1

ε |F|
1/ε) many subsets

of Fε of cardinality at most 1/ε. At some iteration, we will consider precisely
the set Sε. We modify the instance as follows. The budget is adjusted to
B′ := B −w(Sε). The weight of each facility in Sε is set to zero. The facilities
in Fε \ Sε are removed from the instance. Let I ′ = (B′,F \ (Fε \ Sε), C, c, w′)
be the modified instance. Since S is a feasible solution to I ′ it follows that
OPTI′ ≤ OPTI . Therefore, the algorithm A from the statement outputs a
solution S ′ whose cost is at most αOPTI . If S ′ ⊆ Sε we are done since then S ′
is already feasible solution under the original weight w. Otherwise, let f1, f2
be the two heaviest facilities of S ′ \ Sε where we set f2 = f1 if there is only
one such facility. By the above-mentioned property of our algorithm, we have
that w′(S ′ \ {f1, f2}) ≤ B′ and thus w(S ′ \ {f1, f2}) ≤ B. Since f1, f2 6∈ Sε
we have that w(f1) and w(f2) are bounded by εB. Hence the total weight of
solution S ′ under the original weight function is w(S ′) ≤ (1 + 2ε)B. ut
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3.2 Computing and rounding a bi-point solution

Extending a similar result for the k-median [11], we can compute a so-called
bi-point solution, which is a convex combination of two integral pseudo-solutions.

Theorem 4 We can compute in polynomial time two sets F1 and F2 of fa-
cilities and factors a, b ≥ 0 such that a + b = 1, w(F1) ≤ B ≤ w(F2),
a · w(F1) + b · w(F2) ≤ B, and a · costI(F1) + b · costI(F2) ≤ 2 ·OPTI .

Proof We use the idea of Lagrangean relaxation to reduce the Knapsack me-
dian problem to the uncapacitated facility location problem. We would like
to get rid of problematic constraint

∑
i∈F wiyi ≤ B. Its violation will be pe-

nalized in the objective function by λ(
∑
i∈F wiyi − B), for some parameter

λ ≥ 0. This penalty will favors solutions that obey the constraint. Our new
linear program is then

min
∑

i∈F,j∈C
cijxij + λ

∑
i∈F

wiyi − λB

s.t.
∑
i∈F

xij = 1 ∀j ∈ C

xij ≤ yi ∀i ∈ F , j ∈ C
xi,j , yi ≥ 0 ∀i ∈ F , j ∈ C

This LP gives a lower bound on OPTf as each feasible solution to the
relaxation of the knapsack LP is also a feasible solution to the above LP
of no larger cost. In the above LP the term −λB in the objective function
is a constant. Therefore, this LP can be interpreted as a relaxation of the
uncapacitated facility location problem where each facility has i has an opening
cost λwi. Note that increasing the parameter λ also increases the cost of the
facilities and will therefore generally lead to optimum solutions of smaller
facility weight (with respect to w). The idea of the algorithm is now to find
two values λ1 and λ2 for parameter λ, and two approximate solutions F1 and
F2 to the above facility location problem with these parameter settings such
that λ1 and λ2 are sufficiently close and such that w(F1) ≤ B ≤ w(F2). It
can then be shown that a convex combination of these two solutions, called
bi-point solution, is a good approximation to the knapsack median problem.

Williamson and Shmoys (Section 7.7, pages 182–186 in [11]) prove an anal-
ogous theorem for the k-median problem, which arises when we set wi = 1 for
all facilities i and B = k. We can extend this proof to the case of non-uniform
weights in a completely analogous manner. Moreover, instead of using the al-
gorithm of Jain and Vazirani [5] for facility location (which has approximation
ratio 3), we use a greedy algorithm of Jain et al. (Algorithm 2 in [4]) for facility
location achieving a factor of 2. ut

We will now give an algorithm which for a given Knapsack Median
instance I = (B,F , C, d, w) returns a pseudo-solution as in Lemma 10 with
cost 3.05OPTI .
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We use Theorem 4 to obtain a bi-point solution of cost 2 OPTI . We will
convert it into a pseudo-solution of cost 1.523 times bigger than the bi-point
solution. Let aF1 +bF2 be the bi-point solution where a+b = 1, w(F1) ≤ B <
w(F2) and aw(F1) + bw(F2) = B. For each client j ∈ C the closest elements
in sets F1 and F2 are denoted by i1(j) and i2(j), respectively. Moreover, let
d1(j) = ci1(j)j and d2(j) = ci2(j)j . Then the (fractional) connection cost of j
in our bi-point solution is ad1(j)+bd2(j). In a similar way let d1 =

∑
j∈C d1(j)

and d2 =
∑
j∈C d2(j). Then the bi-point solution has cost ad1 + bd2.

We consider two candidate solutions. In the first we just pick F1 which has
cost bounded by d1

ad1+bd2
≤ 1

a+brD
, where rD = d2

d1
. This, multiplied by 2, gives

our approximation factor.

To obtain the second candidate solution we use the concept of stars. For
each facility i ∈ F2 define π(i) to be the facility from set F1 which is closest to i.
For a facility i ∈ F1 define star Si with root i and leafs Li = {i′ ∈ F2|π(i′) = i}.
Note that by the definition of stars, we have that any client j with i2(j) ∈ Si
has ci2(j)i ≤ ci2(j)i1(j) = d2(j) + d1(j) and therefore cji ≤ cji2(j) + ci2(j)i ≤
2d2(j) + d1(j).

The idea of the algorithm is to open for each star either its root or all of its
leaves so that in total the budget is respected. We formulate this subproblem
by means of an auxiliary LP. For any star Si let δ(Li) = { j ∈ C | i2(j) ∈ Si }.
Consider a client j ∈ δ(Li). If we open the root of Si the connection cost of j is
bounded by 2d2(j)+d1(j), but if we open the leaf i2(j) ∈ Li we pay only d2(j)
for connecting j. Thus, we save in total an amount of

∑
j∈δ(Li)

d2(j) + d1(j)
when we open all leaves of Si in comparison to opening just the root i. This
leads us to the following linear programming relaxation where we introduce
for each star Si a variable xi indicating whether we open the leaves of this star
(xi = 1) or its root

max
∑
i∈F1

∑
j∈δ(Li)

(d1(j) + d2(j))xi subject to (5)

∑
i∈F1

(w(Si)− wi)xi ≤ B − w(F1)

0 ≤ xi ≤ 1 ∀i ∈ F1 .

Now observe that this is a knapsack LP. Therefore, any optimum extreme
point solution x to this LP has at most one fractional variable. Note that if
we set xi = b for all i ∈ F1 we obtain a feasible solution to the above LP.
Therefore the objective value of the above LP is lower bounded by b(d1 + d2).
We now open for all stars Si with integral xi either its root (xi = 0) or all of
its leaves (xi = 1) according to the value of xi. For the (single) star Si where
xi is fractional we apply the following rounding procedure.

We always open i, the root of Si. To round the leaf set Li, we set up
another auxiliary knapsack LP similar to LP (5). In this LP, each leaf i′ ∈ Li
has a variable x̂i′ indicating if the facility is open (x̂i′ = 1) or not (x̂i′ = 0).
For each leaf i′ ∈ Li let gi′ =

∑
j : i2(j)=i′

(d1(j) + d2(j)) be its contribution to
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LP (5). This gives rise to the following LP on the variables x̂i′ for all i′ ∈ Li.
(The value xi is a constant now.)

max
∑
i′∈Li

gi′ x̂i′ subject to

∑
i′∈Li

wi′ x̂i′ ≤ xi · w(Li)

0 ≤ x̂i′ ≤ 1 ∀i′ ∈ Li .

Note that in the budget constraint of this LP we neglect the fact that
the root is opened unconditionally, which causes a slight violation of the total
budget bound B. Similar as for LP (5), we can compute an optimum extreme
point solution x̂ which has at most one fractional variable x̂i′ and whose ob-
jective function value is lower bounded by

∑
j∈δ(Li)

(d1(j)+d2(j))xi. We open

all i′ ∈ Li with x̂i′ = 1 and also the only fractional leaf. As a result, the
overall set of opened facilities consists of a feasible solution and two additional
facilities (namely the root i and the fractional leaf in Li).

We will now analyze the cost of this solution. Both of the above knapsack
LPs only reduce the connection cost in comparison to the original bipoint
solution (or equivalently increase the saving with respect to the quantity d1 +
2d2), the total connection cost of the solution can be upper bounded by d1 +
2d2 − b(d1 + d2) = (1 + a)d2 + ad1.

The cost increase of the second algorithm with respect to the bi-point
solution is at most

(1 + a)d2 + ad1
(1− a)d2 + ad1

=
(1 + a)rD + a

(1− a)rD + a
,

We always choose the better of the solutions of the two algorithms described
above. Our approximation ratio is upper bounded by

max
rD≥0
a∈[0,1]

min

{
(1 + a)rD + a

(1− a)rD + a
,

1

a+ rD(1− a)

}
≤ 1.523

This, multiplied by 2 gives our overall approximation ratio of 3.05.

Theorem 5 For any ε > 0, there is a bi-factor approximation algorithm for
KM that computes a solution of weight (1 + ε)B and has a cost 3.05OPTI .

Proof As argued above our algorithm computes a pseudo solution S of cost at
most 3.05OPTI . Moreover, S consists of a feasible solution and two additional
facilities. Hence, Lemma 10 implies the theorem. ut
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4 Discussion

The proof of Theorem 3 implies that for every (ε, δ)-sparse instance I, there
exists a solution S such that cost I(S) ≤ (4+12/δ)OPTf+3εOPTI . Therefore,

the integrality gap of I is at most 4+12/δ
1−3ε . Unfortunately, our client-centric

sparsification process inflates the approximation factor to at least 1+δ
1−δ , so we

must choose some δ < 1 which balances this factor with that of Algorithm 3. In
contrast, the facility-centric sparsification used in [8] incurs only a 1 + ε factor
in cost. We leave it as a open question whether the facility-centric version
could also be used to get around the integrality gap of KM.

Our bi-factor approximation algorithm achieves a substantially smaller ap-
proximation ratio at the expense of slightly violating the budget by opening
two extra facilities. We leave it as an open question, to obtain a pre- and post-
processing in the flavor of Li and Svensson to turn this into an approximation
algorithm. It seems even interesting to turn any bi-factor approximation into
an approximation algorithm by losing only a constant factor in the approxi-
mation ratio. We also leave it as an open question to extend the third bi-point
rounding procedure of Li and Svensson to knapsack median, which would give
an improved result.
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