
Allocation Problems in Ride-Sharing Platforms: Online Matching with Offline
Reusable Resources

John P. Dickerson
University of Maryland, College Park, USA

john@cs.umd.edu

Karthik A. Sankararaman∗
University of Maryland, College Park, USA

kabinav@cs.umd.edu

Aravind Srinivasan†
University of Maryland, College Park, USA

srin@cs.umd.edu

Pan Xu‡
University of Maryland, College Park, USA

panxu@cs.umd.edu

Abstract

Bipartite matching markets pair agents on one side of a
market with agents, items, or contracts on the opposing
side. Prior work addresses online bipartite matching mar-
kets, where agents arrive over time and are dynamically
matched to a known set of disposable resources. In this pa-
per, we propose a new model, Online Matching with (offline)
Reusable Resources under Known Adversarial Distributions
(OM-RR-KAD), in which resources on the offline side are
reusable instead of disposable; that is, once matched, resources
become available again at some point in the future. We show
that our model is tractable by presenting an LP-based adaptive
algorithm that achieves an online competitive ratio of 1

2
− ε

for any given ε > 0. We also show that no non-adaptive al-
gorithm can achieve a ratio of 1

2
+ o(1) based on the same

benchmark LP. Through a data-driven analysis on a massive
openly-available dataset, we show our model is robust enough
to capture the application of taxi dispatching services and ride-
sharing systems. We also present heuristics that perform well
in practice.

1 Introduction
In bipartite matching problems, agents on one side of a
market are paired with agents, contracts, or transactions
on the other. Classical matching problems—assigning stu-
dents to schools, papers to reviewers, or medical residents
to hospitals—take place in a static setting, where all agents
exist at the time of matching, are simultaneously matched,
and then the market concludes. In contrast, many matching
problems are dynamic, where one side of the market arrives
in an online fashion and is matched sequentially to the other
side.

Online bipartite matching problems are primarily moti-
vated by Internet advertising. In the basic version of the prob-
lem, we are given a bipartite graph G = (U, V,E) where U
represents the offline vertices (advertisers) and V represents
∗Supported in part by NSF Awards CNS 1010789 and CCF

1422569
†Supported in part by NSF Awards CNS-1010789, CCF-

1422569 and CCF-1749864, and by research awards from Adobe,
Inc
‡Supported in part by NSF Awards CNS 1010789 and CCF

1422569
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the online vertices (keywords or impressions). There is an
edge e = (u, v) if advertiser u bids for a keyword v. When
a keyword v arrives, a central clearinghouse must make an
instant and irrevocable decision to either reject v or assign v
to one of its “neighbors” (i.e., set of incident edges) u and ob-
tain a profit we for the match e = (u, v). When an advertiser
u is matched, it is no longer available for matches with other
keywords (in the most basic case) or its budget is reduced.
The goal is to design an efficient online algorithm such that
the expected total weight (profit) of the matching obtained is
maximized. Following the seminal work of Karp, Vazirani,
and Vazirani (1990), there has been a large body of research
on related variants (overviewed by Mehta (2012)). One par-
ticular flavor of problems is online matching with known
identical independent distributions (OM-KIID) (Feldman et
al. 2009; Haeupler, Mirrokni, and Zadimoghaddam 2011;
Manshadi, Gharan, and Saberi 2012; Jaillet and Lu 2013;
Brubach et al. 2016). In this flavor, agents arrive over T
rounds, and their arrival distributions are assumed to be iden-
tical and independent over all T rounds; additionally, this
distribution is known to the algorithm beforehand.

Apart from the Internet advertising application, online
bipartite matching models have been used to capture a wide
range of online resource allocation and scheduling problems.
Typically we have an offline and an online party representing,
respectively, the service providers (SP) and online users; once
an online user arrives, we need to match it to an offline SP
immediately. In many cases, the service is reusable in the
sense that once an SP is matched to a user, it will be gone
for some time, but will then rejoin the system afterwards.
Besides that, in many real settings the arrival distributions of
online users do change from time to time (i.e., they are not
i.i.d.). Consider the following motivational examples.

Taxi Dispatching Services and Ride-Sharing Systems.
Traditional taxi services and rideshare systems like Uber
and Didi Chuxing match drivers to would-be riders (Tong
et al. 2016a; Lowalekar, Varakantham, and Jaillet 2016;
Lee et al. 2004; Seow, Dang, and Lee 2010). Here, the of-
fline SPs are different vehicle drivers. Once an online request
(potential rider) arrives, the system matches it to a nearby
driver instantly such that the rider’s waiting time is mini-
mized. In most cases, the driver will rejoin the system and
can be matched again once she finishes the service. Addition-
ally, the arrival rates of requests changes dramatically across

the day. Consider the online arrivals during the peak hours
and off-peak hours for example: the arrival rates in the former
case can be much larger than the latter.

Organ Allocation. Chronic kidney disease affects tens of
millions of people worldwide at great societal and monetary
cost (Neuen et al. 2013; Saran et al. 2015). Organ donation—
either via a deceased or living donor—is a lifesaving alter-
native to organ failure. In the case of kidneys, a donor organ
can last up to 15 years in a patient before failing again. Var-
ious nationwide organ donation systems exist and operate
under different ethical and logistical constraints (Bertsimas,
Farias, and Trichakis 2013; Dickerson and Sandholm 2015;
Mattei, Saffidine, and Walsh 2017), but all share a common
online structure: the offline party is the set of patients (who
reappear every 5 to 15 years based on donor organ longevity),
and the online party is the set of donors or donor organs, who
arrive over time.

Similar scenarios can be seen in other areas such as wire-
less network connection management (SPs are different wire-
less access points) (Yiu et al. 2008) and online cloud com-
puting service scheduling (Miller 2008; Younge et al. 2010).
Inspired by the above applications, we generalize the model
of OM-KIID in the following two ways.

Reusable Resources. Once we assign v to u, u will re-
join the system after Ce rounds with e = (u, v), where
Ce ∈ {0, 1, . . . , T} is an integral random variable with
known distribution. In this paper, we call Ce the occupa-
tion time of u w.r.t. e. In fact, we show that our setting can
directly be extended to the case when Ce is time sensitive:
when matching v to u at time t, u will rejoin the system after
Ce,t rounds. This extension makes our model adaptive to
nuances in real-world settings. For example, consider the taxi
dispatching or ride-sharing service: the occupation time of a
driver u from a matching with an online user v does depend
on both the user type of v (such as destination) and the time
when the matching occurs (peak hours can differ significantly
from off-peak hours).

Known Adversarial Distributions (KAD). Suppose we
have T rounds and that for each round t ∈ [T] 1, a ver-
tex v is sampled from V according to an arbitrary known
distribution D where the marginal for v is {pv,t} such that∑
v∈V pv,t ≤ 1 for all t. Also, the arrivals at different times

are independent (and according to these given distributions).
The setting of KAD was introduced by (Alaei, Hajiaghayi,
and Liaghat 2012; 2013) and is known as Prophet Inequality
matching.

We call our new model Online Matching with (offline)
Reusable Resources under Known Adversarial Distributions
(OM-RR-KAD, henceforth). Note that the OM-KIID model
can be viewed as a special case when Ce is a constant (with
respect to T) and {pv,t|v ∈ V } are the same for all t ∈ [T].

Competitive Ratio. Let E[ALG(I,D)] denote the expected
value obtained by an algorithm ALG on an input I and arrival
distribution D. Let E[OPT(I)] denote the expected offline
optimal, which refers to the optimal solution when we are

1Throughout this paper, we use [N] to denote the set
{1, 2, . . . , N}, for any positive integer N .

allowed to make choices after observing the entire sequence
of online arrival vertices. Then, competitive ratio is defined
as minI,D

E[ALG(I,D)
E[OPT(I)] . It is a common technique to use an

LP optimal value to upper bound the E[OPT(I)] (called the
benchmark LP) and hence get a valid lower bound on the
resulting competitive ratio.

1.1 Our Contributions
First, we propose a new model of OM-RR-KAD to cap-
ture a wide range of real-world applications related to on-
line scheduling, organ allocation, rideshare dispatch, among
others. We claim that this model is tractable enough to ob-
tain good algorithms with theoretically provable guarantees
and general enough to capture many real-life instances. Our
model assumptions take a significant step forward from the
usual assumptions in the online matching literature where the
offline side is assumed to be single-use or disposable. This
leads to a larger range of potential applications which can be
modeled by online matching.

Second, we show how this model can be cleanly analyzed
under a theoretical framework. We first construct a linear
program (LP henceforth) LP (1) which we show is a valid
upper-bound on the expected offline optimal (note the lat-
ter is hard to characterize). Next, we propose an efficient
algorithm that achieves a competitive ratio of 1

2 − ε for any
given ε > 0. This algorithm solves the LP and obtains an
optimal fractional solution. It uses this optimal solution as
a guide in the online phase. Using Monte-Carlo simulations
(called simulations henceforth), and combining with this op-
timal solution, our algorithm makes the online decisions. In
particular, Theorem 1 describes our first theoretical results
formally.
Theorem 1. LP (1) is a valid benchmark for OM-RR-KAD.
There exists an online algorithm, based on LP (1), achieving
an online competitive ratio of 1

2 − ε for any given ε > 0.
Third, we show that our simple algorithm is nearly optimal

among all non-adaptive algorithms. We show that no non-
adaptive algorithm can achieve a competitive ratio better than
1
2 if using LP (1) as the benchmark. Formally, Theorem 2
states this result.
Theorem 2. No non-adaptive algorithm, based on bench-
mark LP (1), can achieve a competitive ratio better than
1
2 + o(1) 2 even when all Ce are constants.

Finally, through a data-driven analysis on a massive openly
available dataset we show that our model is robust enough
to capture the setting of taxi hailing/sharing at least. Addi-
tionally, we provide certain simpler heuristics which also
give good performance. Hence, we can combine these theo-
retically grounded algorithms with such heuristics to obtain
further improved ratios in practice. Section 5 provides a de-
tailed qualitative and quantitative discussion.

1.2 Other Related Work
In addition to the arrival assumptions of KIID and KAD,
there are several other important, well-studied variants of

2o(1) is a vanishing term when both of Ce and T/Ce are suffi-
ciently large.

online matching problems. Under adversarial ordering, an
adversary can arrange the arrival order of all items in an arbi-
trary way (e.g., online matching (Karp, Vazirani, and Vazirani
1990; Sun, Zhang, and Zhang 2016) and AdWords (Buch-
binder, Jain, and Naor 2007; Mehta et al. 2007)). Under a
random arrival order, all items arrive in a random permuta-
tion order (e.g., online matching (Mahdian and Yan 2011)
and AdWords (Goel and Mehta 2008)). Finally, under un-
known distributions, in each round, an item is sampled from
a fixed but unknown distribution. (e.g., (Devanur et al. 2011)).
For each of the above categories, we list only a few examples
considered under that setting. For a more complete list, please
refer to the book by Mehta (2012).

Despite the fact that our model is inspired by online bipar-
tite matching, it also overlaps with stochastic online schedul-
ing problems (SOS) (Megow, Uetz, and Vredeveld 2004;
2006; Skutella, Sviridenko, and Uetz 2016). We first restate
our model in the language of SOS: we have |U | nonidentical
parallel machines and |V | jobs; at every time-step a single
job v is sampled from V with probability pv,t; the jobs have
to be assigned immediately after its arrival; additionally each
job v can be processed non-preemptively on a specific subset
of machines; once we assign v to u, we get a profit of we
and u will be occupied for Ce rounds with e = (u, v), where
Ce is a random variable with known distribution. Observe
that the key difference between our model and SOS is in the
objective: the former is to maximize the expected profit from
the completed jobs, while the latter is to minimize the total
or the maximum completion time of all jobs.

2 Main Model
In this section, we present a formal statement of our main
model. Suppose we have a bipartite graph G = (U, V,E)
where U and V represent offline and online parties respec-
tively. We have a finite time horizon T (known beforehand)
and for each time t ∈ [T], a vertex v will be sampled (we
use the term v arrives) from a known probability distribution
{pv,t} such that

∑
v∈V pv,t ≤ 13 (noting that such a choice

is made independently for each round t). The expected num-
ber of times v arrives across the T rounds,

∑
t∈[T] pv,t is

called the arrival rate for vertex v. Once a vertex v arrives,
we need to make an irrevocable decision immediately: ei-
ther to reject v or assign v to one of its neighbors in U . For
each u, once it is assigned to some v, it becomes unavail-
able for Ce rounds with e = (u, v), and subsequently rejoins
the system. Here Ce is an integral random variable taking
values from {0, 1, . . . , T} and the distribution is known in
advance. Each assignment e is associated with a weight we
and our goal is to design an online assignment policy such
that the total expected weights of all assignments made is
maximized. Following prior work, we assume |V | � |U |
and T � 1. Throughout this paper, we use edge e = (u, v)
and assignment of v to u interchangeably.

For an assignment e, let xe,t be the probability that e is
chosen at t in any offline optimal algorithm. For each u
(likewise for v), let Eu (Ev) be the set of neighboring edges

3Thus, with probability 1 −
∑

v∈V pv,t, none of the vertices
from V will arrive at t.

incident to u (v). We use the LP (1) as a benchmark to upper
bound the offline optimal. We now interpret the constraints.
For each round t, once an online vertex v arrives, we can
assign it to at most one of its neighbors. Thus, we have: if v
arrives at t, the total number of assignments for v at t is at
most 1; if v does not arrive, the total is 0. The LHS of (2) is
exactly the expected number of assignments made at t for v.
It should be no more than the prob. that v arrives at t, which
is the RHS of (2). Constraint (3) is the most novel part of our
problem formulation. Consider a given u and t. In the LHS,
the first term (summation over t′ < t and e ∈ Eu) refers to
the prob. that u is not available at t while the second term
(summation over e ∈ Eu) is the prob. that u is assigned to
some worker at t, which is no larger than prob. u is available
at t. Thus, the sum of the first term and second term on LHS
is no larger than 1.4 This argument implies that the LP forms
a valid upper-bound on the offline optimal solution and hence
we have Lemma 1.

Lemma 1. The optimal value to LP (1) is a valid upper
bound for the offline optimal.

3 Simulation-based Algorithm
In this section, we present a simulation-based algorithm.
Proofs for Lemma 2, 3 and 4 can be found in the supple-
mentary material. The main idea is as follows. Let x∗ denote
an optimal solution to LP (1). Suppose we aim to develop
an online algorithm achieving a ratio of γ ∈ [0, 1]. Consider
an assignment e = (u, v) when some v arrived at time t. Let
SFe,t be the event that e is safe at t, i.e., u is available at
t. By simulating the current strategy up to t, we can get an
estimation of Pr[SFe,t], say βe,t, within an arbitrary small
error. Therefore in the case e is safe at t, we can sample it
with probability

x∗e,t
pv,t

γ
βe,t

, which leads to the fact that e is
sampled with probability γx∗e,t unconditionally. Hence, we
call any algorithm that satisfies γ ≤ βe,t as valid.

The simulation-based attenuation technique has been
used previously for other problems, such as stochastic
knapsack (Ma 2014) and stochastic matching (Adamczyk,
Grandoni, and Mukherjee 2015). Throughout the analysis,
we assume that we know the exact value of βe,t := Pr[SFe,t]
for all t and e. (It is easy to see that the sampling error can be
folded into a multiplicative factor of (1− ε) in the competi-
tive ratio by standard Chernoff bounds and hence, ignoring it
leads to a cleaner presentation). The formal statement of our
algorithm, denoted by ADAP(γ), is as follows. For each v
and t, let Ev,t be the set of safe assignments for v at t.

Lemma 2. ADAP(γ) is valid with γ = 1
2 .

The main Theorem 1 follows directly from Lemmas 1
and 2.

Extension from Ce to Ce,t. Consider the case when the oc-
cupation time of u from e is sensitive to t. In other words,

4We would like to point out that our LP constraint (3)
on u is inspired by Ma (2014). The proof is similar to that
by Alaei, Hajiaghayi, and Liaghat (2012) and Alaei, Hajiaghayi,
and Liaghat (2013).

!h

maximize
∑
t∈[T]

∑
e∈E

wexe,t (1)

subject to
∑
e∈Ev

xe,t ≤ pv,t ∀v ∈ V, t ∈ [T] (2)

∑
t′<t

∑
e∈Eu

xe,t′ Pr[Ce > t− t′] +
∑
e∈Eu

xe,t ≤ 1 ∀u ∈ U, t ∈ [T] (3)

0 ≤ xe,t ≤ 1 ∀e ∈ E, t ∈ [T] (4)

Algorithm 1: Simulation-based adaptive algorithm
(ADAP(γ))

1 For each time t, let v denote the request arriving at time
t.

2 If Ev,t = ∅, then reject v; otherwise choose e ∈ Ev,t
with prob.

x∗e,t
pv,t

γ
βe,t

where e = (u, v).

each u will be unavailable for Ce,t rounds from the assign-
ment e = (u, v) at t. We can accommodate the extension by
simply updating the constraints (3) on u in the benchmark
LP (1) to the following. We have that ∀u ∈ U, t ∈ [T],

∑
t′<t

∑
e∈Eu

xe,t′ Pr[Ce,t′ > t− t′] +
∑
e∈Eu

xe,t ≤ 1 (5)

The rest of our algorithm remains the same as before. We can
verify that (1) LP (1) with constraints (3) replaced by (5) is
a valid benchmark; (2) ADAP achieves a competitive ratio
of 1

2 − ε for any given ε > 0 for the new model based on the
new valid benchmark LP. The modifications to the analysis
transfer through in a straightforward way and for brevity we
omit the details here.

4 Hardness Result

Consider a complete bipartite graph of G = (U, V,E) where
|U | = K, |V | = n2. Suppose we have T = n rounds and
pv,t =

1
n2 for each v and t. In other words, in each round t,

each v is sampled uniformly from V . For each e, let Ce be a
constant of K, which implies that each u will be unavailable
for a constant K rounds after each assignment. Assume all
assignments have a uniform weight (i.e., we = 1 for all e).
Split the whole online process of n rounds into n −K + 1
consecutive windows W = {W`} such that W` = {`, ` +
1, . . . , `+K−1} for each 1 ≤ ` ≤ n−K+1. The benchmark
LP (1) then reduces to the following.

max
∑
t∈[T]

∑
e∈E

xe,t (6)

s.t.
∑
e∈Ev

xe,t ≤
1

n2
∀v ∈ V, t ∈ [T] (7)

∑
t∈W`

∑
e∈Eu

xe,t ≤ 1 ∀u ∈ U, 1 ≤ ` ≤ n−K + 1

(8)
0 ≤ xe,t ≤ 1 ∀e ∈ E, t ∈ [T] (9)

We can verify that an optimal solution to the above LP
is as follows: x∗e,t = 1/(n2K) for all e and t with the op-
timal objective value of n. We investigate the performance
of any optimal non-adaptive algorithm. Notice that the ex-
pected arrivals of any v in the full sequence of online arrivals
is 1/n. Thus for any non-adaptive algorithm NADAP, it
needs to specify the allocation distribution Dv for each v
during the first arrival. Consider a given NADAP parame-
terized by {αu,v ∈ [0, 1]} for each v and u ∈ Ev such that∑
u∈Ev

αu,v ≤ 1 for each v. In other words, NADAP will
assign v to u with probability αu,v when v comes for the first
time and u is available.

Let βu =
∑
v∈Eu

αu,v ∗ 1
n2 , which is the probability that

u is matched in each round if it is safe at the beginning of
that round, when running NADAP. Hence,∑
u∈U

βu =
∑
u∈U

∑
v∈Eu

αu,v ∗
1

n2
=
∑
v∈V

∑
u∈Ev

αu,v ∗
1

n2
≤ 1

Consider a given u with βu and let γu,t be the probability
that u is available at t. Then the expected number of matches
of u after the n rounds is

∑
t βuγu,t. We have the recursive

inequalities on γu,t as in Lemma 3, with γu,t = 1, t = 1.

Lemma 3. ∀1 < t ≤ n, we have

γu,t + βu
∑

t−K+1≤t′<t

γu,t′ = 1

Note that the OPT of our benchmark LP is n while the
performance of NADAP is

∑
u

∑
t βuγu,t. The resulting

competitive ratio achieved by an optimal NADAP is cap-
tured by the following maximization program.

max
∑
u

∑
t βuγu,t
n

s.t.
∑
u∈U

βu ≤ 1

γu,t + βu
∑

t−K+1≤t′<t

γu,t′ = 1 ∀1 < t ≤ n, u ∈ U

βu ≥ 0, γu,1 = 1 ∀u ∈ U
(10)

We prove the following Lemma which implies Theorem 2.

Lemma 4. The optimal value to the program (10) is at most
1

2−1/K + o(1) when K = o(n).

Unconditional Hardness. Manshadi, Gharan, and
Saberi (2012) prove that for the online matching problem
under known distribution (but disposable offline vertices), no
algorithm can achieve a ratio better than 0.823. Since our
setting generalizes this, the hardness results directly apply to
our problem as well.

5 Experiments
To validate the approaches presented in this paper, we use
the New York City yellow cabs dataset,5 which contains the
trip records for trips in Manhattan, Brooklyn, and Queens
for the year 2013. The dataset is split into 12 months. For
each month we have numerous records each corresponding
to a single trip. Each record has the following structure. We
have an anonymized license number which is the primary key
corresponding to a car. For privacy purposes a long string
is used as opposed to the actual license number. We then
have the time at which the trip was initiated, the time at
which the trip ended, and the total time of the trip in seconds.
This is followed by the starting coordinates (i.e., latitude and
longitude) of the trip and the destination coordinates of the
trip.

Assumptions. We make two assumptions specific to our ex-
perimental setup. Firstly, we assume that every car starts
and ends at the same location, for all trips that it makes. Ini-
tially, we assign every car a location (potentially the same)
which corresponds to its docking position. On receiving a
request, the car leaves from this docking position to the point
of pick-up, executes the trip and returns to this docking posi-
tion. Secondly, we assume that occupation time distributions
(OTD) associated with all matches are identically (and inde-
pendently) distributed, i.e., {Ce} follow the same distribution.
Note that this is a much stronger assumption than what we
made in the model, and is completely inspired by the dataset
(see Section 5.2). We test our model on two specific distri-
butions, namely a normal distribution and the power-law
distribution (see Figure 5). The docking position of each
car and parameters associated with each distribution are all
learned from the training dataset (described below in the
Training discussion).

5http://www.andresmh.com/nyctaxitrips/

5.1 Experimental Setup
For our experimental setup, we randomly select 30 cabs (each
cab is denoted by u). We discretize the Manhattan map into
cells such that each cell is approximately 4 miles (increments
of 0.15 degrees in latitude and longitude). For each pair
of locations, say (a, b), we create a request type v, which
represents all trips with starting and ending locations falling
into a and b respectively. In our model, we have |U | = 30 and
|V | ≈ 550 (variations depending on day to day requests with
low variance). We focus on the month of January 2013. We
split the records into 31 parts, each corresponding to a day
of January. We choose a random set of 12 parts for training
purposes and use the remaining for testing purposes.

The edge weight we on e = (u, v) (i.e., edge from a car u
to type v) is set as a function of two distances in our setup.
The first is the trip distance (i.e., the distance from the starting
location to the ending location of v, denoted L1) while the
second is the docking distance (i.e., the distance from the
docking position of u to the starting/ending location of v,
denoted L2). We set we = max(L1 − αL2, 0), where α is a
parameter capturing the subtle balance between the positive
contribution from the trip distance and negative contribution
from the docking distance to the final profit. We set α = 0.5
for the experiments. We consider each single day as the time
horizon and set the total number of rounds T = 24∗60

5 =
288 by discretizing the 24-hour period into a time-step of 5
minutes. Throughout this section, we use time-step and round
interchangeably.

Training. We use the training dataset of 12 days to learn var-
ious parameters. As for the arrival rates {pv,t}, we count
the total number of appearances of each request type v
at time-step t in the 12 parts (denote it by cv,t) and set
pv,t = cv,t/12 under KAD. When assuming KIID, we set
pv = pv,t = (c/12)/T (i.e., the arrival distributions are as-
sumed the same across all the time-steps for each v). The
estimation of parameters for the two different occupation
time distributions are processed as follows. We first compute
the average number of seconds between two requests in the
dataset (note this was 5 minutes in the experimental setup).
We then assume that each time-step of our online process cor-
responds to a time-difference of this average in seconds. We
then compute the sample mean and sample variance of the
trip lengths (as number of seconds taken by the trip divided
by five minutes) in the 12 parts. Hence we use the normal
distribution obtained by this sample mean and standard devi-
ation as the distribution with which a car is unavailable. We
assign the docking position of each car to the location (in the
discretized space) in which the majority of the requests were
initiated (i.e., starting location of a request) and matched to
this car.

5.2 Justifying The Two Important Model
Assumptions

Known Adversarial Distributions. Figure 4 plots the num-
ber of arrivals of a particular type at various times during the
day. Notice the significant increase in the number of requests
in the middle of the day as opposed to the mornings and

Figure 1: OTD is normal distribution un-
der KIID

Figure 2: OTD is normal distribution un-
der KAD

Figure 3: OTD is power law distribution
under KAD

Figure 4: The number of requests of a
given type at various time-steps. x-axis:
time-step, y-aixs: number of requests

Figure 5: Occupation time distribution
of all cars. x-axis: number of time-steps,
y-axis: number of requests

Figure 6: Occupation time distribution
of two different cars. x-axis: number of
time-steps, y-axis: number of requests

nights. This justified our arrival assumption of KAD which
assumes different arrival distributions at different time-steps.
Hence the LP (and the corresponding algorithm) can exploit
this vast difference in the arrival rates and potentially obtain
improved results compared to the assumption of Known Iden-
tical Independent Distributions (KIID). This is confirmed by
our experimental results shown in Figures 1 and 2.

Identical Occupation Time Distribution. We assume each
car will be available again via an independent and identical
random process regardless of the matches it received. The
validity of our assumptions can be seen in Figures 5 and 6,
where the x-axis represents the different occupation time and
the y-axis represents the corresponding number of requests
in the dataset responsible for each occupation time. It is clear
that for most requests the occupation time is around 2-3 time-
steps and dropping drastically beyond that with a long tail.
Figure 6 displays occupation times for two representative (we
chose two out of the many cars we plotted, at random) cars
in the dataset; we see that the distributions roughly coincide
with each other, suggesting that such distributions can be
learned from historical data and used as a guide for future
matches.

5.3 Results
Inspired by the experimental setup by (Tong et al. 2016a;
2016b), we run five different algorithms on our dataset. The

first algorithm is the ALG-LP. In this algorithm, when a
request v arrives, we choose a neighbor u with probability
x∗e,t/pv,t with e = (u, v) if u is available. Here x∗e,t is an
optimal solution to our benchmark LP and pv,t is the arrival
rate of type v at time-step t. The second algorithm is called
ALG-SC-LP. Recall thatEv,t is the set of “safe" or available
assignments with respect to v when the type v arrives at
t. Let xv,t =

∑
e∈Ev,t

x∗e,t. In ALG-SC-LP, we sample a
safe assignment for v with probability x∗e,t/xv,t. The next
two algorithms are heuristics oblivious to the underlying LP.
Our third algorithm is called GREEDY which is as follows.
When a request v comes, match it to the safe neighbor u
with the highest edge weight. Our fourth algorithm is called
UR-ALG which chooses one of the safe neighbors uniformly
at random. Finally, we use a combination of LP-oblivious
algorithm and LP-based algorithm called ε-GREEDY. In
this algorithm when a type v comes, with probability ε we
use the greedy choice and with probability 1− ε we use the
optimal LP choice. In our algorithm, we optimized the value
of ε and set it to ε = 0.1. We summarize our results in the
following plots. Figures 1, 2, and 3 show the performance of
the five algorithms and OPT (optimal value of the benchmark
LP) under the different assumptions of the OTD (normal or
power law) and online arrives (KIID or KAD). In all three
figures the x-axis represents test data-set number and the
y-axis represents average weight of matching.

Discussion. From the figures, it is clear that both the LP-
based solutions, namely ALG-LP and ALG-SC-LP, do bet-
ter than choosing a free neighbor uniformly at random. Ad-
ditionally, with distributional assumptions the LP-based so-
lutions outperform greedy algorithm as well. We would like
to draw attention to a few interesting details in these results.
Firstly, compared to the LP optimal solution, our LP-based
algorithms have a competitive ratio in the range of 0.5 to
0.7. We believe this is because of our experimental setup. In
particular, we have that the rates are high (> 0.1) only in
a few time-steps while in all other time-steps the rates are
very close to 0. This means that it resembles the structure of
the theoretical worst case example we showed in Section 4.
In future experiments, running our algorithms during peak
periods (where the request rates are significantly larger than
0) may show that competitive ratios in those cases approach
1. Secondly, it is surprising that our algorithm is fairly robust
to the actual distributional assumption we made. In particular,
from Figures 2 and 3 it is clear that the difference between
the assumption of normal distribution versus power-law dis-
tribution for the unavailability of cars is negligible. This is
important since it might not be easy to learn the exact distribu-
tion in many cases (e.g., cases where the sample complexity
is high) and this shows that a close approximation will still
be as good.

6 Conclusion and Future Directions
In this work, we provide a model that captures the applica-
tion of assignment in ride-sharing platforms. One key aspect
in our model is to consider the reusable aspect of the of-
fline resources. This helps in modeling many other important
applications where agents enter and leave the system mul-
tiple times (e.g., organ allocation, crowdsourcing markets
(Ho and Vaughan 2012), and so on). Our work opens sev-
eral important research directions. The first direction is to
generalize the online model to the batch setting. In other
words, in each round we assume multiple arrivals from V .
This assumption is useful in crowdsourcing markets (for
example) where multiple tasks—but not all—become avail-
able at some time. The second direction is to consider a
Markov model on the driver starting position. In this work,
we assumed that each driver returns to her docking position.
However, in many ride-sharing systems, drivers start a new
trip from the position of the last-drop off. This leads to a
Markovian system on the offline types, as opposed to the
assumed static types in the present work. Finally, pairing
our current work with more applied stochastic optimization
and reinforcement learning approaches would be of practi-
cal interest to policymakers running taxi and bikeshare ser-
vices (Singhvi et al. 2015; O’Mahony and Shmoys 2015;
Lowalekar, Varakantham, and Jaillet 2016; Verma et al. 2017;
Ghosh et al. 2017).

References
Adamczyk, M.; Grandoni, F.; and Mukherjee, J. 2015. Improved
approximation algorithms for stochastic matching. In ESA-15.
Alaei, S.; Hajiaghayi, M.; and Liaghat, V. 2012. Online prophet-
inequality matching with applications to ad allocation. In EC-12.

Alaei, S.; Hajiaghayi, M.; and Liaghat, V. 2013. The online stochas-
tic generalized assignment problem. In APPROX-RANDOM-13.
Bertsimas, D.; Farias, V. F.; and Trichakis, N. 2013. Fairness, effi-
ciency, and flexibility in organ allocation for kidney transplantation.
Operations Research 61(1).
Brubach, B.; Sankararaman, K. A.; Srinivasan, A.; and Xu, P. 2016.
New algorithms, better bounds, and a novel model for online stochas-
tic matching. In ESA-16.
Buchbinder, N.; Jain, K.; and Naor, J. S. 2007. Online primal-dual
algorithms for maximizing ad-auctions revenue. In ESA-07.
Devanur, N. R.; Jain, K.; Sivan, B.; and Wilkens, C. A. 2011. Near
optimal online algorithms and fast approximation algorithms for
resource allocation problems. In EC-11.
Dickerson, J. P., and Sandholm, T. 2015. FutureMatch: Combining
human value judgments and machine learning to match in dynamic
environments. In AAAI-15.
Feldman, J.; Mehta, A.; Mirrokni, V.; and Muthukrishnan, S. 2009.
Online stochastic matching: Beating 1-1/e. In FOCS-09.
Ghosh, S.; Varakantham, P.; Adulyasak, Y.; and Jaillet, P. 2017. Dy-
namic repositioning to reduce lost demand in bike sharing systems.
Journal of Artificial Intelligence Research (JAIR) 58:387–430.
Goel, G., and Mehta, A. 2008. Online budgeted matching in random
input models with applications to adwords. In SODA-08.
Haeupler, B.; Mirrokni, V. S.; and Zadimoghaddam, M. 2011.
Online stochastic weighted matching: Improved approximation al-
gorithms. In WINE-11.
Ho, C.-J., and Vaughan, J. W. 2012. Online task assignment in
crowdsourcing markets. In AAAI-12.
Jaillet, P., and Lu, X. 2013. Online stochastic matching: New
algorithms with better bounds. Mathematics of Operations Research
39(3).
Karp, R. M.; Vazirani, U. V.; and Vazirani, V. V. 1990. An optimal
algorithm for on-line bipartite matching. In STOC-90.
Lee, D.-H.; Wang, H.; Cheu, R.; and Teo, S. 2004. Taxi dispatch
system based on current demands and real-time traffic conditions.
Transportation Research Record: Journal of the Transportation
Research Board (1882).
Lowalekar, M.; Varakantham, P.; and Jaillet, P. 2016. Online spatio-
temporal matching in stochastic and dynamic domains. In AAAI-16.
Ma, W. 2014. Improvements and generalizations of stochastic
knapsack and multi-armed bandit approximation algorithms. In
SODA-14.
Mahdian, M., and Yan, Q. 2011. Online bipartite matching with
random arrivals: an approach based on strongly factor-revealing lps.
In STOC-11.
Manshadi, V. H.; Gharan, S. O.; and Saberi, A. 2012. Online stochas-
tic matching: Online actions based on offline statistics. Mathematics
of Operations Research 37(4).
Mattei, N.; Saffidine, A.; and Walsh, T. 2017. Mechanisms for
online organ matching. In IJCAI-17.
Megow, N.; Uetz, M.; and Vredeveld, T. 2004. Stochastic online
scheduling on parallel machines. In WAOA-04.
Megow, N.; Uetz, M.; and Vredeveld, T. 2006. Models and algo-
rithms for stochastic online scheduling. Mathematics of Operations
Research 31(3).
Mehta, A.; Saberi, A.; Vazirani, U.; and Vazirani, V. 2007. Adwords
and generalized online matching. Journal of the ACM (JACM)
54(5).

Mehta, A. 2012. Online matching and ad allocation. Theoretical
Computer Science 8(4).
Miller, M. 2008. Cloud computing: Web-based applications that
change the way you work and collaborate online. Que publishing.
Neuen, B. L.; Taylor, G. E.; Demaio, A. R.; and Perkovic, V. 2013.
Global kidney disease. The Lancet 382(9900).
O’Mahony, E., and Shmoys, D. B. 2015. Data analysis and opti-
mization for (citi) bike sharing. In AAAI-15.
Saran, R.; Li, Y.; Robinson, B.; Ayanian, J.; Balkrishnan, R.; Bragg-
Gresham, J.; Chen, J.; Cope, E.; Gipson, D.; He, K.; et al. 2015. US
renal data system 2014 annual data report: Epidemiology of kidney
disease in the United States. American Journal of Kidney Diseases
65(6 Suppl 1).
Seow, K. T.; Dang, N. H.; and Lee, D.-H. 2010. A collaborative
multiagent taxi-dispatch system. IEEE Transactions on Automation
Science and Engineering 7(3).
Singhvi, D.; Singhvi, S.; Frazier, P. I.; Henderson, S. G.; O’Mahony,
E.; Shmoys, D. B.; and Woodard, D. B. 2015. Predicting bike usage
for new york city’s bike sharing system. In AAAI-15 Workshop on
Computational Sustainability.
Skutella, M.; Sviridenko, M.; and Uetz, M. 2016. Unrelated ma-
chine scheduling with stochastic processing times. Mathematics of
operations research 41(3).
Sun, X.; Zhang, J.; and Zhang, J. 2016. Near optimal algorithms
for online weighted bipartite matching in adversary model. Journal
of Combinatorial Optimization.
Tong, Y.; She, J.; Ding, B.; Chen, L.; Wo, T.; and Xu, K. 2016a.
Online minimum matching in real-time spatial data: experiments
and analysis. Proceedings of the VLDB Endowment 9(12).
Tong, Y.; She, J.; Ding, B.; Wang, L.; and Chen, L. 2016b. Online
mobile micro-task allocation in spatial crowdsourcing. In ICDE-16.
Verma, T.; Varakantham, P.; Kraus, S.; and Lau, H. C. 2017. Aug-
menting decisions of taxi drivers through reinforcement learning for
improving revenues.
Yiu, M. L.; Mouratidis, K.; Mamoulis, N.; et al. 2008. Capacity
constrained assignment in spatial databases. In SIGMOD-08.
Younge, A. J.; Von Laszewski, G.; Wang, L.; Lopez-Alarcon, S.;
and Carithers, W. 2010. Efficient resource management for cloud
computing environments. In International Green Computing Con-
ference.

7 Supplementary Materials
7.1 Proof of Lemma 2
We show by induction on t as follows. When t = 1, βe,t = 1 for all e = (u, ∗) and we are done since∑

e∈Ev,t

x∗e,t
pv,t

γ

βe,t
≤
∑
e∈Ev

x∗e,t
pv,t

γ ≤ 1

2

Assume for all t′ < t, βe,t′ ≥ 1/2 and ADAP(γ) is valid for all rounds before t. In other words, each e is made with
probability equal to x∗e,t′ ∗ 1

2 for all t′ < t. Now consider a given e = (u, v). Observe that e is unsafe at t iff u is assigned with
some v′ at t′ < t such that the assignment e′ = (u, v′) makes u unavailable at t. Therefore

1− βe,t = 1− Pr[SFe,t] =
∑
t′<t

∑
e∈Eu

x∗e,t′

2
Pr[Ce > t− t′]

Thus from the constraints (3) in our benchmark LP, we see

βe,t = 1−
∑
t′<t

∑
e∈Eu

x∗e,t′

2
Pr[Ce > t− t′] ≥ 1

2
+

1

2

∑
e∈Eu

x∗e,t ≥
1

2

Thus we are done since,
∑
e∈Ev,t

x∗e,t
pv,t

γ
βe,t
≤
∑
e∈Ev

x∗e,t
pv,t
≤ 1.

7.2 Proof of Lemma 3
The inequality for t = 1 is due to the fact that u is safe at t = 1. For each time t > 1, Let SFu,t be the event that u is safe at t
and Au,t be the event that u is matched at t. Observe that for each window of time slots K, {SFu,t, Au,t′ , t−K + 1 ≤ t′ < t}
are disjoint events. Therefore,

1 = Pr[SFu,t] +
∑

t−K+1≤t′<t

Pr[Au,t′]

= γu,t + βu
∑

t−K+1≤t′<t

γu,t

7.3 Proof of Lemma 4
Proof. Focus on a given u. Notice that γu,t + βu

∑
t−K+1≤t′<t γu,t′ = 1 for all 1 ≤ t ≤ n. Sum all equations over t ∈ [n], we

have (
1 + βu(K − 1)

) ∑
t∈[n]

γu,t = n+ βu(K − 1)γu,n + βu(K − 2)γu,n−1 + · · ·+ βuγu,n−K+2

≤ n+K − 1

Therefore we have ∑
t∈[n]

γu,t ≤
n

1 + βu(K − 1)
+

K − 1

1 + βu(K − 1)
≤ n

1 + βu(K − 1)
+

1

βu

DefineHu
.
=
∑
t βuγu,t. From the above analysis, we haveHu ≤ nβu

1+βu(K−1)+1. Thus the objective value in the program (10)
should be at most ∑

u

∑
t βuγu,t
n

=
∑
u∈U

Hu

n
≤
∑
u∈U

βu
1 + βu(K − 1)

+
K

n

We claim that the optimal value to the program (10) can be upper bounded by the below maximization program:max
∑
u∈[U]

βu
1 + βu(K − 1)

+
K

n
:
∑
u∈U

βu = 1, βu ≥ 0,∀u ∈ U

According to our assumption K = o(n), the second term can be ignored. Let g(x) = x/(1 + x(K − 1)). For any K ≥ 2, it

is a concave function, which implies that maximization of g subject to
∑
u βu = 1 will be achieved when all βu = 1/K. The

resultant value is 1
2−1/K + o(1). Thus we are done.

