
Algorithmica (2018) 80:3225–3252
https://doi.org/10.1007/s00453-017-0383-4

Improved Bounds in Stochastic Matching
and Optimization

Alok Baveja1 · Amit Chavan2 · Andrei Nikiforov3 ·
Aravind Srinivasan2 · Pan Xu2

Received: 15 July 2016 / Accepted: 12 October 2017 / Published online: 23 October 2017
© Springer Science+Business Media, LLC 2017

Abstract Real-world problems often have parameters that are uncertain during the
optimization phase; stochastic optimization or stochastic programming is a key
approach introduced by Beale and byDantzig in the 1950s to address such uncertainty.
Matching is a classical problem in combinatorial optimization. Modern stochastic ver-
sions of this problem model problems in kidney exchange, for instance. We improve
upon the current-best approximation bound of 3.709 for stochastic matching due to
Adamczyk et al. (in: Algorithms-ESA 2015, Springer, Berlin, 2015) to 3.224; we also
present improvements on Bansal et al. (Algorithmica 63(4):733–762, 2012) for hyper-
graph matching and for relaxed versions of the problem. These results are obtained by
improved analyses and/or algorithms for rounding linear-programming relaxations of
these problems.

B Pan Xu
panxu@cs.umd.edu

Alok Baveja
baveja@rutgers.edu

Amit Chavan
amitc@cs.umd.edu

Andrei Nikiforov
andnikif@camden.rutgers.edu

Aravind Srinivasan
srin@cs.umd.edu

1 Department of Supply Chain Management, Rutgers Business School, Rutgers, The State
University of New Jersey, Piscataway, NJ 08854, USA

2 Department of Computer Science, University of Maryland, College Park, MD 20742, USA

3 School of Business, Rutgers, The State University of New Jersey, Camden, NJ 08102, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0383-4&domain=pdf

3226 Algorithmica (2018) 80:3225–3252

Keywords Stochastic optimization · Linear programming · Approximation
algorithms · Randomized algorithms

1 Introduction

Stochastic optimization deals with problemswhere there is uncertainty in the input: we
aim at optimizing or well-approximating the expected value of an objective function
that involves random input parameters. This area dates back to the classical works
of Beale [6] and Dantzig [9] from the 1950s; we refer the reader to works including
Birge and Louveaux [7], Ruszczynski and Shapiro [20], Shapiro et al. [22] and the
references therein for modern treatments of this topic. In stochastic optimization, we
postulate a probability distribution over the uncertain input parameters, and compute a
(two-stage or a multi-stage) solution that optimizes the expected value of the objective
function: the uncertain data are revealed over the two or more stages, and later stages
may adaptively use the values revealed in earlier stages. This approach has been
very fruitful for a range of problems, in areas including network design, inventory
control, facility location, e-commerce, and kidney exchange (see, e.g., [1,5,8,10,14–
19,23,24]).

More generally, a key issue in stochastic optimization is how the probability distri-
bution on the uncertain data is represented. There is a spectrum of possibilities for this
distribution, with one tractable and concrete model being that the uncertain parameters
are independent with known distributions, while an abstract approach assumes very
little about the distribution, except that we can sample independently multiple times
from a black-box representing the distribution. We make progress on fundamental
problems at both of these settings, with approximation bounds and algorithms being
a key theme, as they are in the applications cited above. Let us review our notions of
approximation next.

Owing to the computational intractability (known, conjectured, or otherwise) of
problems in combinatorial optimization, a powerful approach that has developed over
more than four decades is that of approximation algorithms, wherewe aimat efficiently
computing solutions that are within a guaranteed factor of optimal; see, e.g., the text-
books [25,26]. For maximization problems with a non-negative objective function, a
ρ-approximation algorithm, for ρ ≥ 1, is a polynomial-time algorithm that always
delivers a solution of value at least 1/ρ times optimal; for randomized algorithms, the
expected solution-value output should be at least 1/ρ times optimal, where this expec-
tation is over the internal randomization of the algorithm. In the context of stochastic
optimization (maximization), we need to be a little more careful, since the objec-
tive function value is random due to the randomness in the stochastic input; letting
OPT denote the maximum-possible expected objective-function value over all possi-
ble terminating algorithms with no constraint on the running time, a ρ-approximation
algorithm is one that outputs a solution of expected value at least OPT/ρ, where the
expectation is over the uncertainty of the input, and over any internal randomization of
the algorithm. This will be the notion of approximation employed in Sect. 2, where we
discuss our approximation algorithms for stochastic matching in a model that posits
the uncertain data as being independent with known distributions.

123

Algorithmica (2018) 80:3225–3252 3227

2 Related Work and Main Contributions

Matching is well-known to be a bedrock of combinatorial optimization—a problem
that has also played a key role in the advancement of new algorithmic paradigms
including parallel algorithms, randomized algorithms, and, more recently, online algo-
rithms in sponsored-search advertising. However, we do not yet have a full algorithmic
understanding even for various basic stochastic versions of the problem, which are
motivated by applications, e.g., in kidney exchange and online dating [8]. We advance
this goal by improving upon the bounds of Bansal et al. [5] and Adamczyk et al. [2]
for stochastic-matching problems in graphs and in uniform hypergraphs.

Informally, the basic stochastic-matching problem is as follows [5,8]. We are given
a graph G = (V, E) with a weight we ≥ 0 and a probability pe ∈ [0, 1] for each edge
e; each vertex v also has a positive integral “patience” tv . Our goal is to construct a
matching of maximum weight; however, there are a few catches. First, the edges are
only present probabilistically: each edge e is present independently with probability
pe, and the presence (or lack thereof) of any edge e can only be ascertained by probing
for it—adaptively, in any order we choose. However, if we choose to probe e = (u, v)

and find that it is present, we are forced to add it to ourmatching: in particular, all edges
incident on e are removed immediately if e is found to be present. Furthermore, the
edges incident upon any vertex v can only be probed for up to tv times; i.e., we cannot
exceed the hard constraint of the patience of any vertex. Under these constraints, the
goal is to find amatching of maximum expected weight, where the expectation is taken
both over the stochastic existence of the edges, and over any internal randomization
of our algorithm. (In online dating, for instance, a pair of people can be matched
for a date only if they are available; the possible match can only be ascertained by
setting up a date; and participants may have limits on the number of unsuccessful
dates they are willing to participate in. Similarly for kidney exchange.) Intriguingly,
it is not yet known if it is N P-hard to obtain the optimal expected solution efficiently,
and therefore the focus has been on approximation algorithms. The state of the art in
terms of approximation is from the work of Adamczyk et al. [2]: 2.845- and 3.709-
approximations for bipartite and general graphs respectively, improving upon Bansal
et al [5] (who had presented 3- and 4-approximations respectively). We present the
following two improvements for the general graphs, with Theorem 2 being a bicriteria
result that allows the patience constraints to be violated by at most 1:

Theorem 1 There is a 3.224-approximation algorithm for the weighted stochastic
matching problem on a general graph.

Theorem 2 There is a 2.675-approximation algorithm for the weighted stochastic
matching on a general graph if the patience constraints are allowed to be violated by
an additive error of 1.

In essence, the LP-based approach of Bansal et al. [5] uses a dependent-rounding
algorithmofGandhi et al [13] tofirst guarantee that the patience constraints are satisfied
with probability one within the context of their randomized algorithm; the probing is
done on top of this setup. In contrast, we randomly permute the edges and then probe
them in this order, with probing probabilities suggested by the LP—of course, not

123

3228 Algorithmica (2018) 80:3225–3252

probing infeasible edges in the process. An edge is infeasible if a neighboring edge
has already been placed in the matching, or if one of the two end-points has had its
patience exhausted. While it is not too hard to incorporate the matching constraints
here, the patience constraints are far more complex to handle well: e.g., direct use of
Chernoff-type bounds will not help. We work to identify extremal input-instances for
our algorithm and combine this with rigorous computer-aided calculations in order to
conduct our analyses. Theorem 2 follows from a new attenuation idea. The algorithms
themselves are quite simple to implement; the main feature of our work is a detailed
analysis of the worst-case settings for our algorithms.

Theorems 3 and 4 of Sect. 6 improve upon the (k + 1)-approximation of Bansal et
al. [5] for weighted matching in k-uniform hypergraphs.
NotationAs usual, we let “ln” denote the natural logarithm; wewill in some places use
exp(x) to denote ex . Also, “w.l.o.g.” will be shorthand for “without loss of generality”.

3 Preliminaries

We will often consider a uniformly random permutation π on a set of items I =
{e1, e2, . . . , e�}. We can assume that π is chosen as follows: for each item e, we pick
independently and uniformly at random a real number π(e) = ae ∈ [0, 1], and then
sort these in increasing order to obtain π . Note that we abuse notation by letting π

denote both the permutation and the reals chosen; however, this choice will be clear
from the context.

In the context of such a randomly-chosen permutation π of our set I , the FKG
inequality [11] will be quite useful to us, as follows. A Boolean function f : {0, 1}t →
{0, 1} is termed increasing if for each input x = (x1, x2, . . . , xt) ∈ {0, 1}t , turning
any xi from 0 to 1 cannot change the value of f (x) from 1 to 0; i.e., the value
of f either remains unchanged by this bit-flip, or increases from 0 to 1. Similarly,
g : {0, 1}t → {0, 1} is decreasing if for each x = (x1, x2, . . . , xt) ∈ {0, 1}t , turning
any xi from 1 to 0 cannot change the value of g(x) from 1 to 0. The FKG inequality
states that if we have independent random bits R1, R2, . . . , Rt , then for all k and for
all increasing or all decreasing f1, f2, . . . , fk that map {0, 1}t to {0, 1},

Pr

[
k∧

i=1

(
fi (R1, R2, . . . , Rt) = 1

)]
≥

k∏
i=1

E
[
fi (R1, R2, . . . , Rt)

];

In our analyses, we will often condition on an event A of the form “π(e) = x” (where
π is our random permutation as above and x ∈ [0, 1]), and will need to lower-bound

certain probabilities of the form Pr
[∧k

i=1 Bi
∣∣ A]

; the FKG inequality is quite useful

if these events Bi have a certain structure [5,21]. For all f ∈ I such that f �= e, define
a random bit R f that is 1 if π(f) ≤ x , and 0 otherwise; note that even conditional
on the event A, these R f are all independent. Now, if the Bi are Boolean functions of
the tuple of bits R f such that the Bi are all increasing or all decreasing, then the FKG

123

Algorithmica (2018) 80:3225–3252 3229

inequality applied to the space where we condition on A, yields

Pr

[
k∧

i=1

Bi
∣∣ A

]
≥

k∏
i=1

Pr[Bi
∣∣ A]. (1)

We will also make use of the following form of the Chernoff-Hoeffding bound [3]:

Definition 1 (Chernoff-Hoeffding Bound) Let X1, . . . , Xn be n independent random
variables with 0 ≤ Xi ≤ 1. Let X = X1 + . . . + Xn and μ = E[X]. Then for any
ε > 0,

Pr[X ≥ (1 + ε)μ] ≤ exp

(
− ε2

2 + ε
μ

)
, and

Pr[X ≤ (1 − ε)μ] ≤ exp

(
−ε2

2
μ

)

Notation We will refer to a value z ∈ [0, 1] as floating if z ∈ (0, 1). We let Pois(λ)

denote the Poisson distribution with mean λ. Also, “R ∼ D” will denote that random
variable R is sampled from distribution D.

4 Stochastic Matching

We consider the following stochastic matching problem. The input is an undirected
graphG = (V, E)with a weightwe and a probability value pe on each edge e ∈ E . In
addition, there is an integer value tv—the patience—for each vertex v ∈ V . Initially,
each vertex v ∈ V has patience tv . At any step in the algorithm, only an edge e(u, v) ∈
E such that tu > 0 and tv > 0 can be probed. Upon probing such an edge e, one of
the following happens: (1) with probability pe, e exists; u and v get matched and are
removed from G along with their incident edges, or (2) with probability (1 − pe), e
does not exist; e is removed, and tu and tv are reduced by 1. (All these edge-existence
events are independent.) We seek to find an adaptive strategy for probing edges; its
performance is measured by the expected weight of the matched edges. We prove
Theorem 1 now.

Consider the following natural LP relaxation [5]: for any vertex v ∈ V , ∂(v) denotes
the edges incident to v. The LP variable ye denotes the probability that edge e(u, v)

gets probed in the adaptive strategy, and hence ye pe is the probability that e gets
matched in the strategy.

Maximize
∑
e∈E

we ye pe (2)

Subject to
∑

e∈∂(v)

ye pe ≤ 1 ∀v ∈ V (3)

123

3230 Algorithmica (2018) 80:3225–3252

∑
e∈∂(v)

ye ≤ tv ∀v ∈ V (4)

0 ≤ ye ≤ 1 ∀e ∈ E (5)

Lemma 1 [5] The optimal value for the LP (2) is an upper bound on the performance
of any adaptive algorithm for stochastic matching.

For notational convenience, we use {ye} to denote the optimal solution to the LP in
Eq. (2). For an edge e(u, v), it is called safe at the time it is considered if: (1) neither
u nor v is matched, and (2) tu > 0 as well as tv > 0. Our algorithm, denoted by SM1,
first fixes a uniformly random permutation π on the set of edges E . It then inspects
the edges one by one in the order of π . If an edge e is safe, the algorithm probes it
(independently) with probability ye, otherwise it skips to the next one. Note that SM1
is actually a special case of the algorithm presented in Bansal et al. [4] even though
their analysis yields only a 5.75-approximation ratio. For ease of analysis, we state
our algorithm SM1 in a slightly different but equivalent way in Algorithm 1.

Algorithm 1: SM1 : Stochastic Matching
1 Choose a random permutation π on E .
2 For each edge e ∈ E , generate a random bit Ye = 1 independently with probability ye . Let E ′ be the
set of edges with Ye = 1.

3 Follow the random order π to inspect edges in E ′
4 If an edge e is safe, then probe it; otherwise, skip it.

To analyze the performance of our algorithm,we conduct an edge-by-edge analysis.
Recall that ye pe is the probability that e is matched in the LP (2), and the optimal value
of the LP is exactly

∑
e∈E we pe ye. The expected weight of the matching found by

our algorithm is E[SMa] = ∑
e∈E we pe · Pr[e ∈ E ′] · Pr[e gets probed|e ∈ E ′],

which is
∑

e∈E we pe ye · Pr[e gets probed|e ∈ E ′] ≥ ∑
e∈E we pe yeλ, assuming

Pr[e gets probed|e ∈ E ′] ≥ λ. This gives us a λ-approximation algorithm.
The subsequent discussion focuses on how to lower-bound the value of λ. Consider

a specific edge e = e(u, v), and let E(u) be the set of edges incident to u excluding
e itself, i.e. E(u) = ∂(u)\{e}. Let π(e) = x, 0 < x < 1. Conditioned on π(e) = x ,
with 0 < x < 1, and Ye = 1, let Pu be the probability that e is not blocked by any of
the edges in E(u) in the algorithm SM1. We say that e is blocked by some edge f in
E(u) if f gets matched or the patience constraint of u gets tight resulting from probing
f (i.e. tu = 0). We assume without loss of generality that |E(u)| ≥ tu , otherwise the
patience constraint for node u is redundant.

A little thought gives us the following lower bound on Pu :

Pu ≥ Pu =
∑

S⊆E(u),|S|≤tu−1

x |S| ∏
f ∈S

y f (1 − p f)
∏
f /∈S

(1 − xy f) (6)

To see why this is true, let Y ′
f (for any f ∈ E(u)) be the indicator random variable

that is 1 if and only if f gets matched when probed, i.e., Pr[Y ′
f = 1] = p f . For each

123

Algorithmica (2018) 80:3225–3252 3231

S ⊆ E(u) such that |S| ≤ tu − 1, we associate an event AS that happens when both of
the following conditions are met: (1) Each edge f ∈ S falls before e in π with Y f = 1
and Y ′

f = 0; and (2) each edge f /∈ S either falls after e in π or Y f = 0. We can see
that this event guarantees that e will not be blocked by any edge of S. Thus,Pu should
be at least the probability that one or more of AS happen, which is exactly Pu .

Next, we focus on adversarial configurations of E(u), i.e, how are the edges
in E(u) arranged so as to minimize the value of Pu subject to the constraints: (1)∑

f ∈E(u) y f p f ≤ 1, (2)
∑

f ∈E(u) y f ≤ tu and (3) 0 ≤ y f , p f ≤ 1 for each f ∈ E(u).
Here we view x as a (given) parameter. We denote such adversarial configurations of
E(u) as the worst-case structure (WS) of E(u). Notice that we give the (hypotheti-
cal) adversary extra power of manipulating the values of p f and number of edges in
E(u), both of which are actually part of the input.

Lemma 2 In WS, there will be at most one edge with p f = 1 and at most one edge
with 0 < p f < 1. All other edges must have p f = 0.

Proof We prove by contradiction. Assume there are two edges, say p1 = p2 = 1
in WS. Then, y1 + y2 ≤ 1 since

∑
i yi pi ≤ 1. We perturb the current configuration

as follows: merge the two edges into a single edge e3 where y3 = y1 + y2 and
p3 = 1. After this perturbation, both values,

∑
f ∈E(u) y f p f and

∑
f ∈E(u) y f , remain

unchanged. Thus, both the matching and patience constraints are maintained at u, and
our perturbation gives a feasible configuration.

The change brought by this perturbation to the value Pu is as follows: for each
non-zero term in Pu associated with some S ⊆ E(u) where e1 /∈ S, e2 /∈ S, the term
(1− xy1)(1− xy2) will be replaced with (1− x(y1 + y2)), which results in a strictly
lower value of Pu . This is a contradiction.

Now assume there are two edges a, b with 0 < pa, pb < 1 in WS. Consider the
following perturbation: for some small ε �= 0, set p′

a = pa+ε/ya and p′
b = pb−ε/yb.

After this perturbation, both of
∑

f ∈E(u) y f p f and
∑

f ∈E(u) y f remain unchanged
and the perturbed configuration is still feasible.

Let f (ε) be the value of Pu after this update. In the expression of Pu , the terms
contributing to ε2 must be those associated with S where a, b ∈ S. Notice that

(1 − p′
a)(1 − p′

b) = (1 − pa − ε/ya)(1 − pb + ε/yb)

has a negative coefficient of ε2, implying that the second derivative f ′′ is negative.
Therefore we can always find a non-zero value of ε to make Pu strictly smaller. Again
a contradiction. ��

Let E1(u) and E0(u) be the set of edges in WS which have p f = 1 and p f = 0
respectively. Let a be the potential edge taking a floating value, 0 < pa < 1. Lemma
2 tells us E1(u) contains at most one such edge in the WS. Let A = ∑

f ∈E1(u) y f .
Based on Lemma 2, we can update the expression of Pu as

Pu = (1−x A)(1−xya)Pr[Zu ≤ tu−1]+(1−x A)xya(1− pa)Pr[Zu ≤ tu−2] (7)

where Zu = ∑
f ∈E0(u) Z f and the (Z f : f ∈ E0(u)) are independent Bernoulli

random variables with Pr[Z f = 1] = xy f ,∀ f ∈ E0(u). (We are abusing notation in

123

3232 Algorithmica (2018) 80:3225–3252

the equation Zu = ∑
f ∈E0(u) Z f by reusing the symbol Z for the l.h.s. and the r.h.s.;

this will not cause any confusion as the identity of Z will always be clear from the
context.)

The following lemma is proved in the “Appendix”.

Lemma 3 In WS, pa = 0.

From Lemma 3, we can claim that there is no edge f which has p f ∈ (0, 1). Thus,
we can further simplify the expression of Pu in Eq. (7) as

Pu = (1 − x A)Pr[Zu ≤ tu − 1]. (8)

Lemma 4 reveals additional structure of the WS.

Lemma 4 In WS, we have A = 1 and Zu ∼ Pois(x(tu − 1)).

Proof We show A = 1 by contradiction. Assume A < 1 in WS. Notice that E0(u)

is non-empty since E[Zu] = ∑
f ∈E0(u) E[Z f] = x(tu − A) > 0. Next, consider an

arbitrary edge f ∈ E0(u) with y f ∈ (0, 1]. Let Z ′
u = Zu − Z f . Then,

Pu = (1 − x A)Pr[Zu ≤ tu − 1]
= (1 − x A)

(
Pr[Z ′

u ≤ tu − 2] + (1 − y f x)Pr[Z ′
u = tu − 1])

= (1 − x A)Pr[Z ′
u ≤ tu − 2] + (1 − (y f + A)x + y f Ax

2)Pr[Z ′
u = tu − 1].

We have two cases:

(i) A < y f . In this case, Pu can be decreased by interchanging the values A and y f .
(ii) A ≥ y f . In this case, Pu can be decreased by perturbing as A′ = A + ε and
y′
f = y f − ε for some small ε > 0.

Notice that in case (i), after interchanging the values A and y f , the value∑
f ∈E(u) y f p f will change from A to y f and thus is at most 1, since y f ≤ 1 for

each f ∈ E . As for case (ii), the value
∑

f ∈E(u) y f p f will change from A to A + ε.
Since A < 1, we can always find a ε > 0 such that A+ ε ≤ 1 such that the constraint∑

f ∈E(u) y f p f ≤ 1 is maintained. Thus, the value (A+ y f) remains unchanged after
perturbation in both cases and the constraint

∑
f ∈E(u) y f ≤ tu is maintained. In either

case, we end up at a feasible configuration in which Pu is strictly lower than that in
WS. This yields a contradiction.

The second part of the lemma, that Zu ∼ Pois(x(tu − 1)), is proved in Lemma 11
in the “Appendix”. ��

At this point, we have all the ingredients to prove Theorem 1.

Proof We have Pr[e gets probed |Ye = 1] = ∫ 1
0 PuPvdx ≥ ∫ 1

0 Pu Pvdx , i.e., at least

H(tu, tv)
.=

∫ 1

0
(1 − x)2 Pr[Zu ≤ tu − 1]Pr[Zv ≤ tv − 1]dx,

123

Algorithmica (2018) 80:3225–3252 3233

where Zu ∼ Pois(x(tu − 1)) and Zv ∼ Pois(x(tv − 1)). We verified that the above
expression has a minimum value of 0.31016 = 1/3.224 at tu = tv = 2. All our
numerical computations were done on Mathematica 10 with precision at least up
to the fourth digit after the decimal point. We split the whole verifications into the
following three cases: (1) 1 ≤ tu, tv ≤ 20; (2) tu, tv ≥ 20 and (3) 1 ≤ tu ≤ 20
while tv ≥ 20. Notice that H(tu, tv) is symmetric in the two variables and thus our
verifications are complete.

– For 1 ≤ tu, tv ≤ 20,we can numerically verify that H(tu, tv) achieves itsminimum
value of 0.31016 = 1/3.224 at tu = tv = 2.

– For tu, tv ≥ 20, the Chernoff bound fromDefinition 1 implies that H(tu, tv) should
be at least

∫ 1

0
(1 − x)2

[
1 − exp

(− ε2x(tu − 1)

2 + ε

)] [
1 − exp

(− ε2x(tv − 1)

2 + ε

)]
dx,

where ε = ε(x) = 1
x − 1; by plugging in tu = tv = 20, we can verify numerically

that this integral is at least 0.316324.
– Similarly, for 1 ≤ tu ≤ 20 while tv ≥ 20, we can verify numerically (by checking
all integers 1 ≤ tu ≤ 20) that with ε = 1

x − 1,

H(tu, tv) ≥
∫ 1

0
(1 − x)2 Pr(Zu ≤ tu − 1)

[
1 − exp

(− ε2x(20 − 1)

2 + ε

)]
dx,

which is at least 0.312253.

This establishes the key claim that Pr[e gets probed |Ye = 1] ≥ 0.3101 for each
e ∈ E . ��

5 Stochastic Matching with Relaxed Patience

In this section, we consider the variant of the stochastic matching problem in which
the patience constraints are allowed to be violated by at most 1, and prove Theorem 2.
From the analysis in Sect. 4, we observe that edges with a large ye pe value are probed
with a much higher probability than those with small ones. This indicates that small
edges (those having a “small” ye pe value) are the ones that are the bottleneck for the
performance of our algorithm. Our high level idea here is to attenuate “large” edges
in order to improve the performance of the small ones. The process of attenuation
carefully calculates a value he ∈ (0, 1], called the attenuation factor, for each e ∈ E .
Thereafter, instead of probing an edge e with probability ye as in algorithm SM1, our
algorithm probes it with probability heye. We will show that such a strategy balances
the performance of large and small edges and improves the overall performance of
SM1.

The overall picture of our algorithm, denoted SM2, is as follows. First we label
each edge e ∈ E as “large” if ye pe > 1/2 and “small” if ye pe ≤ 1/2. Similar to SM1,
we follow a random permutation π on the set of edges E to inspect each edge. If an

123

3234 Algorithmica (2018) 80:3225–3252

edge e is safe when considered, we probe it with probability heye; otherwise we skip
it. Here he = h if e is large and he = 1 otherwise, where h ≥ 1/2 is a parameter that
we optimize later. For ease of analysis, we state the algorithm SM2 in an alternative
but essentially equivalent way in Algorithm 2.

Algorithm 2: SM2 : Stochastic matching with relaxed patience
1 Choose a random permutation π of E .
2 For each edge e ∈ E , set he = h if ye pe > 1/2, set he = 1 otherwise.
3 For each edge e ∈ E , generate a random bit Ye = 1 with probability he ye . Let E ′ be the set of edges
with Ye = 1.

4 Follow the random order π to inspect edges in E ′
5 If an edge e is safe, probe it; otherwise, skip it.

In the spirit of Sect. 4, we focus on analyzing the performance of an edge e(u, v)

in SM2. However, this analysis is more involved and we present only the main results
in this section. For detailed proofs, please refer to the “Appendix”. All notation used
in this section is consistent with those introduced in Sect. 4.

As before, we can write the expression for the lower bound Pu for Pu in (6) as
follows:

Pu ≥ Pu =
∑

S⊆E(u),|S|≤tu

x |S| ∏
f ∈S

h f y f (1 − p f)
∏
f /∈S

(1 − xh f y f) (9)

Notice that WS for a small edge e happens when ye pe = 0. In other words, we give
the adversary power to set

∑
f ∈E(u) y f p f = 1. For a large edge ewith ye pe > 1/2,we

re-define the WS by setting the constraints on the adversary as (1)
∑

f ∈E(u) y f p f ≤
1/2, (2)

∑
f ∈E(u) y f ≤ tu−1/2 and (3) 0 ≤ y f ≤ 1 for each f ∈ E(u). The following

lemma specifies the structure of the WS for a small edge and large edge respectively.

Lemma 5 For tu ≥ 2, the WS at E(u) is as follows:

– WS for a small edge can be characterized as either Q1 = (A = 1, ya = 0, Zu ∼
Pois(x(tu − 1)) or Q2 = (A = 1/2, ya = B − 1/2, pa = 1/(2ya), Zu ∼
Pois(x(tu − B)) for some 1 ≤ B ≤ 3/2. The expression for Pu at Q1 and Q2 can
be updated as below.

Pu(Small1) = (1 − xh)Pr[Zu ≤ tu]
Pu(Small2) =

(
1 − 1

2
x

) ((
1 − 1

2
x

)
Pr[Zu ≤ tu − 1]

+
(
1 − x

(
B − 1

2

))
Pr[Zu = tu]

)

123

Algorithmica (2018) 80:3225–3252 3235

– WS for a large edge can be characterized as (A = 0, ya = B, pa = 1
2B , Zu ∼

Pois(x(tu − B − 1/2)) for some 1/2 ≤ B ≤ 1. The updated expression for Pu is:

Pu(Large) =
(
1 − 1

2
x

)
Pr[Zu ≤ tu − 1] + (1 − x B)Pr[Zu = tu]

Lemma 6 The value Pu of the WS when tu = 1 is at least as large as its value when
tu = 2.

We prove Lemmas 5 and 6 in the “Appendix”. Here we present the proof of Theo-
rem 2 using these Lemmas.

Proof Lemma 6 implies that we can ignore the case tu = 1. Depending on whether e
is large or small, the probability that e gets probed in algorithm SM2 in WS is:
(a) If e is a large edge:

Pr[e gets probed]/ye = h Pr[e gets probed |Ye = 1]
≥

(
h

∫ 1

0
Pu(Large)Pv(Large)dx

)
.= IL

(b) If e is a small edge, then we see
Pr[e gets probed]/ye = Pr[e gets probed |Ye = 1], which is at least

IS
.= min

(∫ 1

0
Pu(Small1)Pv(Small1)dx,∫ 1

0
Pu(Small1)Pv(Small2)dx,

∫ 1

0
Pu(Small2)Pv(Small2)dx

)

The approximation ratio of algorithm SM2 is determined by min(IL , IS). We can
numerically verify that this minimum is maximized at h = 0.7, the value is 0.373799,
and the configuration is (ye pe = 0, tu = tv = 5, B1 = B2 = 1.4984). All the
numerical details can be seen in the “Appendix”. ��

6 Stochastic Hypergraph Matching

We now consider stochastic matching in a k-uniform hypergraph, i.e., a hypergraph
where all edges have size exactly k. However, unlike before, we do not consider
patience constraints (the work of Bansal et al. [5] proceeds similarly). The following
LP can be obtained by naturally extending the LP in (2), where ∂(v) denotes the set
of hyperedges incident to v:

max
∑
e∈E

we ye pe subject to
∑

e∈∂(v)

ye pe ≤ 1,∀v ∈ V ; 0 ≤ ye ≤ 1,∀e ∈ E (10)

123

3236 Algorithmica (2018) 80:3225–3252

Theorems 3 and 4 improve upon the (k + 1)-approximation of Bansal et al. [5]
for weighted matching in k-uniform hypergraphs. Both of these algorithms classify
the hyperedges as “small” or “large” based on the LP values, and treat each group
separately. The difference is as follows. The algorithm of Theorem 3 attenuates the
small edges to boost the performance of large edges; the algorithm of Theorem 4 uses
a “weighted permutation” of the hyperedges such that each large edge has a higher
chance to fall behind a small edge. Although Theorem 4 is asymptotically better, we
present both theorems since their ideas can be useful elsewhere.

Note that the LP-based methods of Bansal et al. [5] and ours cannot in general do
better than k − 1+ 1/k [12]; hence, we are close to optimal for LP-based approaches.

Theorem 3 There is a (k + 1
2 + o(1))-approximation algorithm for the stochastic

matching problem on a k-uniform hypergraph, where the “o(1)” term is a function of
k that goes to zero as k becomes large.

Theorem 4 For any given ε > 0, there is a (k + ε + o(1))-approximation algorithm
for the stochastic matching problem on a k-uniform hypergraph, where the “o(1)”
term is a function of k that goes to zero as k becomes large.

We next present the algorithms and proofs for these two theorems.

6.1 An Algorithm Achieving a (k + 1/2+ o(1)) Approximation Ratio

For notational convenience, let {ye} be an optimal solution to LP (10). At a high level,
our algorithm proceeds according to the outline below. Let c ≥ 1/2 be a parameter,
which will be optimized at 1/2 later.

1. Divide the edges into two sets, the “small” edge set ES = {e|ye pe ≤ c}, and the
“large” edge set EL = E \ ES .

2. Choose a random permutation π of ES .
3. Sample each edge e ∈ ES with probability ye, independent of other edges. Let E ′

S
be the set of sampled edges.

4. Follow the order π to inspect if each (small) edge e ∈ E ′
S is safe or not. If e is safe,

probe it with probability he; otherwise, skip it. Here 0 < he ≤ 1 is a parameter to
be determined later.

5. After inspecting all small edges, remove all the unsafe large edges from EL , and
probe others with probability 1 (in arbitrary order).

Roughly speaking, an edge e being “safe” means that none of the edges in the
neighborhood of e are matched. Later, we will give a definition that is both stronger
and exactly computable. Based on the new definition, we compute an attenuation
factor he for each e ∈ ES , such that at the end of the algorithm, e is probed with
probability exactly equal to ye/λ. Here, λ ≥ 1 is our target approximation ratio. All
that remains is to analyze the performance of each large edge e ∈ EL and show that
e is probed with probability at least ye/λ. This, then, will give us a λ-approximation
algorithm.

We redefine the notion of a small edge e being safe. Suppose π is the random
order on ES and π(e) = x, 0 < x < 1. Let NS[e] be the set of small edges in the

123

Algorithmica (2018) 80:3225–3252 3237

neighborhood of e. For each f ∈ NS[e], let X f ,Y f , Z f be three random variables
such that: X f = 1 if f falls before e in π , Y f = 1 if f ∈ E ′

S and Z f = 1 if f
exists in the hypergraph when probed. Note that the collection of random variables
{X f ,Y f , Z f | f ∈ NS[e]} are mutually independent. For each f ∈ NS[e], let A f be
the event that (X f + Y f + Z f ≤ 2) and Se = ∧ f ∈NS [e]A f . We define e to be safe
iff Se happens. Lemma 7 computes the probability that a small edge e is safe in our
algorithm.

Lemma 7

Pr[Se] =
∫ 1

0
Pr[Se|π(e) = x]dx =

∫ 1

0

∏
f ∈NS [e]

(1 − xy f p f)dx . (11)

Proof By definition, Pr[X f = 1|π(e) = x] = x . Note that Pr[Y f = 1] = y f ,
Pr[Z f = 1] = p f , and that these two random variables are independent of π(e).
Thus, given π(e) = x , A f will occur with probability (1− xy f p f). Since the A f are
independent for f ∈ NS[e], the proof is completed. ��

Here are two interesting points for the event Se: (1) When Se happens, e must
be safe according to our initial definition, i.e., none of the edges in its neighborhood
get matched; the contrary is not true. Thus the new definition is more strict. (2) On
checking e in the algorithm,wemight not know ifSe occurs or not due to somemissing
Z f for f ∈ NS[e]. For instance, suppose some f ∈ NS[e] gets blocked by some small
edge f ′ ∈ NS[f] while X f = Y f = 1. In this case, we do not know the value of Z f

since f will not be probed. In order to continue our algorithm, we simulate Z f by
generating a random bit Z f = 1 with probability p f and Z f = 0 otherwise. Notice
that if Z f = 1, we will view e as not safe and will not probe it, even though it might
be safe according to our initial definition.

The full picture of algorithm SM3 can be seen in Algorithm 3.

6.2 Analysis of SM3

We first analyze the performance of a small edge. For each edge e ∈ ES ,

Pr[e gets probed] = yehe Pr[e is safe|Ye = 1] = yehe Pr[Se].

To ensure that each small edge e ∈ ES is probed with probability equal to ye/λ, we
can set he = 1/(λPr[Se]) if we can ensure that Pr[Se] ≥ 1/λ. The following lemma
states that this goal is achievable. Recall that c ≥ 1/2 is the threshold such that an
edge e is small iff ye pe ≤ c.

Lemma 8

Pr[Se] ≥ 1 − (1 − c)k/c+1

k + c

123

3238 Algorithmica (2018) 80:3225–3252

Algorithm 3: SM3: Stochastic Matching on a k-uniform hypergraph
1 Initially all edges are safe.
2 Split the edges into two sets, the “small” edge set ES = {e|ye pe ≤ c} and the “large” edge set

EL = E \ ES where c ≥ 1/2.
3 Choose a random permutation π on ES .
4 For each e ∈ ES , generate a random bit Ye = 1 with probability ye . Let E ′

S be the set of (small)
edges with Ye = 1.

5 Follow the random order π to check if Se happens or not for each e ∈ E ′
S .

6 if Se happens then
7 Probe e with probability he .
8 if e is matched (exists) then
9 Set Ze = 1 and mark all its neighboring large edges as unsafe.

10 else
11 Set Ze = 0.

12 else
13 Generate a random bit Ze = 1 with probability pe .

14 Probe each safe large edge with probability 1 in an arbitrary order.

Proof Consider a small edge e, say e = (v1, v2, · · · , vk) and πe = x . Let E(vi) be
the set of edges incident to vi excluding e itself. Notice that NS[e] = ∪k

i=1E(vi).
Therefore by Lemma 7, we have

Pr[Se|π(e) = x] =
∏

f ∈NS [e]
(1 − xy f p f) ≥

k∏
i=1

∏
f ∈E(vi)

(1 − xy f p f)

From the proof of Lemma 10, we see that
∏

f ∈E(vi)
(1− xy f p f) ≥ (1− xc)1/c for

each 1 ≤ i ≤ k. Thus by an application of the FKG inequality as in (1), we get that
Pr[Se|π(e) = x] ≥ (1 − xc)k/c.

Integrating over [0, 1], we get

Pr[Se] =
∫ 1

0
Pr[Se|π(e) = x] ≥ 1 − (1 − c)k/c+1

k + c
dx .

��
At this point, we have all the ingredients to prove Theorem 3.

Proof For small edges, Lemma 8 gives us a sufficient condition to guarantee that each
small edge is probed with probability exactly equal to ye/λ, i.e.,

Pr[Se] ≥ 1 − (1 − c)k/c+1

k + c
≥ 1

λ
. (12)

We now analyze the performance of large edges in SM3. For each e ∈ EL , let Se

be the event that e is safe when considered in SM3, i.e., none of small edges in the
neighbor of e gets matched. Since each small edge f gets matched with probability

123

Algorithmica (2018) 80:3225–3252 3239

equal to
y f p f

λ
, we have that for each large item e ∈ EL , Pr[Se] ≥ 1 − (1−c)k

λ
by

applying the union bound.
In order to ensure that each large edge gets probed with probability at least ye

λ
, it

suffices to set

Pr[Se] ≥ 1 − (1 − c)k

λ
≥ 1

λ
(13)

Observe that for a small edge e, the lower bound of Pr[Se] from (12) is a decreasing
function of c, while for a large edge e, the lower bound in (13) is an increasing function
of c. Thus to find the optimal value for λ, we choose c that maximizes the minimum
of the two,

1 − (1 − c)k

λ
= 1 − (1 − c)k/c+1

k + c
= 1

λ

The solution above is c = 1
k+1 + o(1

k+1). However, this is not feasible because by

assumption, c ≥ 1/2. Thus the optimal c∗ equals 1/2, in which case 1
λ

= 1
k+1/2 −

O(1/(k4k)), and each small edge is safe to probe with probability 1
λ
while each large

edge is safe with probability 1
2 + o(1/k). ��

6.3 An Algorithm Achieving a (k + ε + o(1)) Approximation Ratio

In this section, we present a simple randomized algorithm that achieves an approx-
imation ratio of (k + ε + o(1)) for stochastic matching on a k-uniform hypergraph,
where ε > 0 is a given constant.

Let (x, y) be an optimal solution to the LP (10). Assume w.l.o.g. 1/ε = L where N
is an integer. Let a be a constant such that 1−1/L < a < 1.We say an edge e is “large”
if ye pe > 1/L; otherwise we call e “small”. For each small edge e, we draw a random
real number xe uniformly from [0, 1]. For each large edge e, we draw a random real
number xe from [0, δ] with density a and from (δ, 1] with density (1 − aδ)/(1 − δ),
where δ = min(1, L(1−a1/(L−1)). Thenwe derive a random permutationπ by sorting
{xe, e ∈ E} in increasing order. Assuming L is sufficiently large, the value δ is at most
1/L+o(1/L). Notice that L , a and δ are all fixed constants. Based onπ , we sketch our
randomized algorithm as follows. Here we say an edge is safe iff none of its neighbors
gets matched.

Algorithm 4: SM4: Stochastic Matching on a k-uniform hypergraph
1 Initially all edges are safe.
2 Follow the random order π to check each edge e ∈ E if it is safe or not.
3 If e is safe, then probe it with probability ye; otherwise, skip it.

The lemmas below are useful for the proof of Theorem 4.

123

3240 Algorithmica (2018) 80:3225–3252

Lemma 9 For any c > 1/L and 0 < x < δ, we have

1 − axc > (1 − x/L)cL

Proof Define F(x) = 1− axc− (1− x/L)cL . We can verify that: (1) F(0) = 0, and
(2) F ′(x) > 0 for any 0 ≤ x < δ. This gives the desired result. ��

For each edge e, define

ce = ye pe.

Consider an edge e = (v1, v2, · · · , vk). Suppose ye pe = ce < 1 − 1/L and xe =
x, 0 < x < δ. For each 1 ≤ i ≤ k, let E(vi) denote the set of edges incident to vi
excluding e itself. Denote by Si the event that none of the edges in E(vi) come before
e and get matched.

Lemma 10

Pr[Si] ≥ (1 − x/L)(1−ce)L .

Proof From LP (10), we see
∑

f ∈E(vi)
y f p f ≤ 1 − ce. Let A and B be the set of

small edges and large edges in E(vi) respectively. Observe that

Pr[Si] ≥
∏
f ∈A

(1 − xc f)
∏
f ∈B

(1 − axc f). (14)

Now we investigate how an adversary can minimize the RHS of (14) subject to
the constraint

∑
f ∈E(vi)

y f p f ≤ 1− ce. By Lemma 9, the adversary will not put any
large edge f in B: otherwise it could further decrease the RHS by splitting f into c f L
copies of small edges f ′ with each c f ′ = 1/L while maintaining the constraint. Thus
the adversary aims to minimize

∏
f ∈A(1 − xc f) subject to

∑
f ∈E(vi)

c f ≤ 1 − ce
with 0 ≤ c f ≤ 1/L for each f . By applying a local perturbation as in Lemma 2, the
RHS will be minimized when there are (1 − ce)L small edges in A, with each such
small edge f having c f = 1/L . ��

We next prove Theorem 4.

Proof We consider two cases.

1. Consider a small edge e, say e = (v1, v2, · · · , vk) and xe = x . From Lemma 10,
we see Pr[Si] ≥ (1 − x/L)L for each 1 ≤ i ≤ k. Thus by applying the FKG
inequality (1), we get Pr

[∧
i Si

] ≥ (1 − x/L)kL , which is followed by

Pr[e is checked as safe] ≥
∫ δ

0
(1 − x/L)kLdx = 1

k + 1/L
− O

(
kk0/k

)
,

where k0 = (1 − δ/L)L < 1 is bounded away from 1.

123

Algorithmica (2018) 80:3225–3252 3241

2. Consider a large edge e, say e = (v1, v2, · · · , vk) and xe = x . From Lemma 10,
we see Pr[Si] ≥ (1 − x/L)L−1 for each 1 ≤ i ≤ k. Thus by applying FKG, we
see when x ≤ δ, Pr

[∧
i Si

] ≥ (1 − x/L)k(L−1), which is followed by

Pr[e is checked as safe] ≥
∫ δ

0
a(1 − x/L)k(L−1)dx

≥ aL

L − 1

1

k + 1/(L − 1)
− O

(
kk1/k

)
>

1

k

where k1 = (1 − δ/L)L−1 < 1 is bounded away from 1; we use the fact that
a > 1 − 1/L to get the last inequality above.

��

7 Conclusion

We have considered randomized approximation algorithms for stochastic-matching
problems. The algorithms themselves are quite simple to describe and implement.
Several open questions remain, some of which are as follows.

In the context of stochastic matching, is the basic problem N P-hard? This would be
interesting to ascertain even for the bipartite case. Assuming such hardness, it would
be fruitful to determine the optimal approximation guarantee achievable in polynomial
time: this could conceivably be 2. More generally, as compared to the mature body of
work on optimal approximation thresholds in deterministic combinatorial optimiza-
tion, such thresholds are ripe for understanding in the stochastic setting; stochastic
matching would be an excellent start.

Acknowledgements Apreliminary version of this paper appears as part of a paper in theProc. International
Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2015. We
thank R. Ravi and the referees for their valuable comments regarding the details as well as context of this
work. The research of the first author is partially supported in part by grants from British Council’s UKIERI
program and the United States Department of Transportation’s UTRC Region II consortium (RF # 49198-
25-26). The research of the fourth author is partially supported in part by NSF Awards CNS-1010789,
CCF-1422569 and CCF-1749864, and by research awards from Adobe, Inc. The research of the last author
is supported in part by NSF Awards CNS 1010789 and CCF 1422569.

Appendix A: Proofs for Sect. 4

A.1 Proof of Lemma 3

Proof Let B = A + ya ≤ 2 be an arbitrary but a fixed feasible value; we now
investigate how A and ya are arranged in WS. A moment’s reflection tells us that in
WS we will have

∑
f ∈E(u)

y f p f = A + ya pa = 1 ⇒ B = A + ya ≥ 1, ya(1 − pa) = B − 1

123

3242 Algorithmica (2018) 80:3225–3252

Recall that the update expression of Pu as shown in Equation (7) is as follows:

Pu = (1 − x A)(1 − xya)Pr[Zu ≤ tu − 1] + (1 − x A)xya(1 − pa)Pr[Zu ≤ tu − 2]

Note that inWS, the values of Pr[Zu ≤ tu −1] and Pr[Zu ≤ tu −2] are functions of
B and can be ignored (since inWS,E[Zu] = x(tu −B)). For the rest of the expression,
we have

(1 − x A)(1 − xya) ≥ (1 − x B + x2(B − 1)) and

(1 − x A)xya(1 − pa) ≥ (1 − x)x(B − 1)

The two terms are together minimized when A = 1, ya = B − 1 and pa = 0. Note
that in this configuration,

∑
f ∈E(u) y f p f = A + ya pa = 1, and thus the matching

constraint is maintained. Since B = A + ya is fixed, the patience constraint is main-
tained as well. Therefore, for any fixed value B, Pu will be minimized at the following
feasible configuration: A = 1, ya = B − 1 and pa = 0. This completes our proof.

��

A.2 Statement of Lemma 11 and its Proof

Lemma 11 Let Z be the sum of a finite collection of independent Bernoulli random
variables with E[Z] = μ. For any A > μ, A ∈ Z, we have Pr[Z ≤ A] ≥ Pr[Y ≤ A],
where Y ∼ Pois(μ).

Lemma 11 follows directly from the following two propositions: Propositions 2
and 3. The proofs of the two propositions will both invoke Proposition 1 below, which
we will show first.
Notation We let B(N , μ/N) denote the Binomial distribution with parameters
(N , μ/N).

Proposition 1 Let Zx ∼ B(N , μ/N) where � ≤ N , � ∈ Z and μ < N
N+1 (� + 1).

Then we have Pr[Zx = �] > Pr[Zx = � + 1].
Proof The result becomes trivial when � = N . We assume � ≤ N − 1.

Pr[Zx = �] =
(
N

�

) (μ

N

)� (
1 − μ

N

)N−�

Pr[Zx = � + 1] =
(

N

� + 1

) (μ

N

)�+1 (
1 − μ

N

)N−�−1

We get that

Pr[Zx = �]
Pr[Zx = � + 1] > 1 ⇔ (� + 1)(N − μ)

(N − �)μ
> 1

⇔ μ <
N

N + 1
(� + 1)

��

123

Algorithmica (2018) 80:3225–3252 3243

Proposition 2 considers the casewhen Z is a sumof atmost N independentBernoulli
random variables, each having a mean value that lies in (0, 1]. Subject to this “at most
N” restriction and the constraint that E[Z] = μ for some given μ, it is easy to see that
the problem of minimizing Pr[Z ≤ A], where A is a positive integer that is at most
N − 1, is that of minimizing a continuous function over a closed set (which in fact
is a polytope); thus, this problem has a minimum (as opposed to an infimum). In the
following paragraphs, we will repeatedly use the term “optimal configuration”, which
refers to any configuration of Zi s under which Pr[Z ≤ A] achieves its minimumvalue;
also recall that we refer to a value z ∈ [0, 1] as “floating” if z ∈ (0, 1).

Proposition 2 For any given positive integers A and N ≥ A + 1, let Z be the sum of
at most N independent Bernoulli random variables Zi with E[Z] = μ, where μ < A.
Then there exists an optimal configuration where each Bernoulli random variable Zi

has the same mean value, which, furthermore, is floating.

Proof Wefirst show that there exists anoptimal configurationwhere for some (possibly
empty) subset S ⊆ {1, 2, . . . , N }, (i) all Zi with i ∈ S have mean value 1 each, and
(ii) all Zi with i /∈ S have the same floating mean value.

Consider an optimal configuration where there are two of our Bernoulli random
variables, say Z1 and Z2, with different floating means. Let E[Z1] = z1,E[Z2] = z2
and Zx be the sum of all the Zi ’s excluding Z1 and Z2. Assume 0 < z1 < z2 < 1.
Notice that

Pr[Z ≤ A] = Pr[Zx ≤ A − 2] + Pr[Zx = A − 1](1 − z1z2)

+Pr[Zx = A](1 − z1)(1 − z2),

and observe that the coefficient of z1z2 is Pr[Zx = A]−Pr[Zx = A−1]. We consider
the following two cases:

– Pr[Zx = A] − Pr[Zx = A − 1] > 0. Then the value Pr[Z ≤ A] can be strictly
reduced by the perturbation: z1 ← z1 − ε, z2 ← z2 + ε.

– Pr[Zx = A] − Pr[Zx = A − 1] < 0. Then the value Pr[Z ≤ A] can be strictly
reduced by the perturbation: z1 ← z1 + ε, z2 ← z2 − ε.

Each of the above two cases will lead to a contradiction and thus we conclude Pr[Zx =
A] − Pr[Zx = A − 1] = 0 in the original optimal configuration. Since the coefficient
of the nonlinear term z1z2 in the expression of Pr[Z ≤ A] is zero, we see that our
configuration remains optimal after resetting z′1 = z1 + z2, z′2 = 0 if z1 + z2 ≤ 1
or z′1 = 1, z′2 = z1 + z2 − 1 if z1 + z2 > 1. After this change, we can successfully
reduce the number of summands with a floating mean value; applying this strategy
repeatedly, we reach a scenario where all floating means are the same.

Now we show that S must be empty in any optimal configuration obtained from
the above routine. Assume w.l.o.g. that |S| = 1 (if |S| > 1, just iterate the argument
for |S| = 1). Say Z1 = 1 deterministically and all other Zi have a floating mean value
0 < p < 1. We arbitrarily select one random variable with floating mean, say Z2, and
let Zx be the sum of all the other Zi (i.e., all Zi other than Z1 and Z2). Note that

Pr[Z ≤ A] = Pr[Zx+Z2 ≤ A−1] = Pr[Zx ≤ A−2]+Pr[Zx = A−1](1−p) (15)

123

3244 Algorithmica (2018) 80:3225–3252

where μx = E[Zx] = μ − 1 − p = N ′ p with N ′ being the number of variables in
Zx .

Consider the following perturbation to Z1 and Z2: replace Z1 and Z2 by two i.i.d.
Bernoulli random variables Z0, Z ′

0 such that E[Z0] = (1 + p)/2 = q. After this
perturbation, we get a replacement Z ′ for Z such that

Pr[Z ′ ≤ A] = Pr[Z0 + Z ′
0 + Zx ≤ A] (16)

= Pr[Zx ≤ A − 2] + (1 − q2)Pr[Zx = A − 1] + (1 − q)2 Pr[Zx = A] (17)

To apply Proposition 1 for Zx , we set � = A−1. Note that for Zx ∼ B(N ′, μx/N ′),
we have

μx = N ′ p = N ′

N ′ + 1
(μ − 1) <

N ′

N ′ + 1
(� + 1)

Thus we get Pr[Zx = A − 1] > Pr[Zx = A]; plugging this into (17) yields

Pr[Z ′ ≤ A] < Pr[Zx ≤ A − 2] + ((1 − q2) + (1 − q)2)Pr[Zx = A − 1]
= Pr[Z ≤ A],

where the final equality follows from (15). This contradicts the assumption that the
original configuration is optimal; thus, S must be empty. ��

Let Pr(A, μ, N) be the minimum value of Pr[Z ≤ A] under the restriction that the
number of Bernoulli random variables with positive mean is at most N .

Proposition 3 For any N ≥ A + 1, we have Pr(A, μ, N) > Pr(A, μ, N + 1).

Proof From Proposition 2, we know Pr(A, μ, N) can be achieved when Z follows a
Binomial distribution with some parameters N ′ ≤ N and μ/N ′. Arbitrarily choose
a random variable, Z1, from Z . Let E[Z1] = z = μ/N ′ and Zx = ∑N ′

i=2 Zi . Notice

that μx = E[Zx] = N ′−1
N ′ μ.

Consider perturbing the current configuration of Z as: replace Z1 with Z1a and Z1b
where E[Z1a] = E[Z1b] = z/2. Now consider Pr[Z ′ ≤ A] where Z ′ = Zx + Z1a +
Z1b. The new value is

Pr[Z ′ ≤ A] = Pr[Zx ≤ A − 2] +
(
1 − z2

4

)
Pr[Zx = A − 1]

+ (1 − z/2)2Pr [Zx = A]

Notice that Pr[Z ≤ A] = Pr[Zx ≤ A − 1] + Pr[Zx = A](1 − z). Therefore we
have

Pr[Z ≤ A] − Pr[Z ′ ≤ A] = 1

4
z2(Pr[Zx = A − 1] − Pr[Zx = A])

123

Algorithmica (2018) 80:3225–3252 3245

To apply Proposition 1 on Zx , set � = A − 1. Note that we have

μx = N ′ − 1

N ′ μ <
N ′ − 1

N ′ A = N ′ − 1

N ′ (� + 1)

Thus we conclude that Pr[Zx = A − 1] > Pr[Zx = A], which implies Pr[Z ≤
A] > Pr[Z ′ ≤ A]. Notice that after the perturbation, the number of random variables
with positive mean will be at most N ′ + 1 ≤ N + 1. Thus Pr(A, μ, N) = Pr[Z ≤
A] > Pr[Z ′ ≤ A] ≥ Pr(A, μ, N + 1). ��

Lemma 11 follows from the preceding two propositions.

Appendix B: Stochastic Matching with Relaxed Patience

B.1 Proof of Lemma 5

Lemma 5 mainly addresses the issue of the configuration of E(u) in the WS, subject
to the constraints: (1)

∑
f ∈E(u) y f p f ≤ 1 − ye pe, (2)

∑
f ∈E(u) y f ≤ tu − ye with

tu ≥ 2 and (3) 0 ≤ y f ≤ 1 for each f ∈ E(u). Notice that for any given pair (ye, pe),
part of the result shown in Lemma 2 still applies here: i.e., at most one edge in E(u)

takes a floating p f value. Recalling our previous notation from Sect. 4: (1) E1(u)

and E0(u) are the set of edges in WS which have p f = 1 and p f = 0 respectively;
(2) (ya, pa) is the unique potential edge that takes a floating 0 < pa < 1 value; and
(3) A = ∑

f ∈E1(u) y f , Zu = ∑
f ∈E0(u) Z f , where each Z f is a Bernoulli random

variable with mean x · y f and all the Z f ’s are independent.
Lemma 5 consists of the following three propositions; we assume tu ≥ 2, 1 > h ≥

1/2.

Proposition 4 Suppose e is a small edge and there is no large edge in E(u). Then

WS can be characterized as Q2 =
(
A = 1/2, ya = B − 1/2, pa = 1/(2ya), Zu ∼

Pois(x(tu − B))
)
for some 1 ≤ B ≤ 3/2.

Proposition 5 Suppose e is a small edge and there is a large edge in E(u). Then WS

can be characterized as Q1 =
(
A = 1, ya = 0, Zu ∼ Pois(x(tu − 1))

)
.

Proposition 6 Suppose e is a large edge. Then WS can be characterized as A =
0, ya = B, pa = 1/(2B), Zu ∼ Pois(x(tu − B − 1/2)) for some 1/2 ≤ B ≤ 1.

To prove the three propositions above, we will repeatedly apply local perturbation
techniques, similar to the one we used in Lemma 2.

Proof of Proposition 4

Proof A moment’s reflection shows that in WS the matching constraint will be tight,
i.e., A + ya pa = 1. Thus we have A ≥ 1/2 since ya pa ≤ 1/2. As a result, we know
for E1(u) in WS, there will be one edge with p = 1, y = 1/2 and another edge with

123

3246 Algorithmica (2018) 80:3225–3252

p = 1, y = A − 1/2. Therefore the lower bound Pu of Pu in WS can be updated as
follows:

Pu =
(
1 − 1

2
x

) (
1 −

(
A − 1

2

)
x

)
(1 − xya)Pr[Zu ≤ tu]

+
(
1 − 1

2
x

) (
1 −

(
A − 1

2

)
x

)
xya(1 − pa)Pr[Zu ≤ tu − 1]

Let B = A+ ya be fixed. Substituting A = 1− ya pa into B, we have ya(1− pa) =
B−1, implying B ≥ 1 and ya ≥ B−1. By applying the local perturbation argument,
we get that for any given B ≥ 1, in WS, (A, ya) will take one of the following two
(boundary) values: Q1 = (ya = B − 1, pa = 0, A = 1) where ya reaches the lower
bound and Q2 = (ya = B − 1/2, pa = 1

2ya
= 1

2B−1 , A = 1/2) if B ≤ 3/2 and
Q2 = (ya = 1, pa = 2 − B, A = B − 1) if B ≥ 3/2 where ya reaches the upper
bound.

Note that Q1 essentially states that inWS, there are two edges y1 = y2 = 1/2, p1 =
p2 = 1 while no edge takes a floating p f value. It can be viewed as a special case of
Q2 with B = 1 and thus can be ignored.

Now consider Q2 with 3/2 ≤ B ≤ 2. Assume the WS does not fall at some
boundary value of B, i.e., 3/2 < B < 2. Then we perturb (A, yb) → (A+ ε, yb − ε),
where yb is an arbitrary edge in E0(u). We observe that the term involving ε2 included
in the expression of Pu after perturbation is

H(ε2) = (−x2ε2)(1 − x)Pr[Z ′
u = tu]

+ (−x2ε2)Pr[Z ′
u ≤ tu − 2] + ε2x3

(
1

2
+ yb − 2A

)

where Z ′
u = Zu−Zb and Zb is a Bernoulli random variable associated with yb. Notice

that yb < 1/2 and A = B − 1 > 1/2. Thus we get that H(ε2) < 0, implying that in
WS, B = 2 or 3/2. Again the case Q2 with B = 2 can be ignored since it is a special
case of Q2 with B = 1. Therefore theWS can only fall in Q2 with some 1 ≤ B ≤ 3/2.

��
Proof of Proposition 5

Proof We consider the following two cases.

– Consider the first case A > 1/2. Notice that in WS, the matching constraint
will be tight, i.e., A + ya pa = 1. Thus E1(u) must include the large edge since
ya pa < 1/2. For each A, the infimum value of

∏
f ∈E1(u)(1 − xy f) happens at a

configuration where E1(u) consists of a large edge y1 and at most one other light
edge. Thus we can rewrite

∏
f ∈E1(u)(1−xy f) as (1−xy1h)(1−(A− y1)x)where

1/2 < y1 ≤ A. Further, we observe that inWS, either y1 = A or y1 = 1/2+ε. The
latter is reduced to the case when all edges in E(u) are small, since the adversary
will set y1 = 1/2 and y1 will not be attenuated. Therefore we can update Pu as
follows:

Pu = (1 − x Ah)(1−xya)Pr[Zu ≤ tu] + (1 − x Ah)xya(1 − pa)Pr[Zu ≤ tu−1]

123

Algorithmica (2018) 80:3225–3252 3247

Let B = A+ ya be fixed with some value 1 ≤ B ≤ 2. Applying a similar analysis
as in Proposition 4, we get that in WS, (A, ya) take one of the two (boundary)
values, either Q1 = (A = 1, ya = B − 1, pa = 0) or Q2 = (A = 1/2 + ε, ya =
B−1/2− ε, pa = (1/2− ε)/ya) if B ≤ 3/2 or Q2 = (A = B−1, ya = 1, pa =
2 − B) if B > 3/2.
For Q1, the expression of Pu can be updated as

Pu = (1 − xh)Pr[Zu ≤ tu]

where Zu ∼ Pois(x(tu − 1)).
For Q2 with B ≤ 3/2, it can be reduced to the case when no large item is in E(u).
For Q2 with B ≥ 3/2, the expression of Pu can be updated as

Pu = (1 − x Ah)(1 − x)Pr[Zu ≤ tu] + (1 − x Ah)x A Pr[Zu ≤ tu − 1]

We know that for each B ≥ 3/2, Zu should follow a Poisson distribution with
mean x(tu − B). For simplicity, we assume each edge in E0 has a value of y f

which can be aribitrarily small. Select an edge, say yb in E0(u), and perturb as
A ← A+ ε, yb ← yb − ε. We get that the terms involving ε2 included in the final
expession of Pu after perturbation, sum to

H(ε2) = −x2hε2(1 − x)Pr[Z ′
u = tu] − x2hε2 Pr[Z ′

u ≤ tu − 2]
+ x2ε2(1 − h − 2x Ah + xhyb)Pr[Z ′

u = tu − 1]

where Z ′
u = Zu − Zb and Zb is a Bernoulli random variable associated with yb.

Notice that E[Z ′
u] ≤ x(tu − B) < tu − 1, from which we get Pr[Z ′

u = tu − 1] <

Pr[Z ′
u ≤ tu − 2]. Thus we have that for any h ≥ 1/2,

H(ε2) ≤ x2ε2(1 − 2h − 2x Ah + xhyb)Pr[Z ′
u = tu − 1] < 0

Therefore we claim that in WS, A should arrive at a boundary value, i.e., either
A = 1 or A = 1/2 + ε. Both of these two cases have been analyzed before.

– Consider the second case A ≤ 1/2. It implies that since ya pa ≥ 1/2, a should be
a large edge. We know that in WS, E1 should consist of a single edge and Pu has
the form:

Pu = (1 − x A)(1 − xhya)Pr[Zu ≤ tu] + (1 − x A)xhya(1 − pa)Pr[Zu ≤ tu − 1]

When B = A+ ya is fixed at some value 1 ≤ B < 3/2, we know (A, ya)must take
some (boundary) value inWS: either Q1 = (A = 1/2−ε, ya = B−1/2+ε, pa =
(1/2+ ε)/ya) or Q2 = (A = B − 1, ya = 1, pa = 2− B). Similarly, we see that
Q1 can be ignored since it can be reduced to the case when ya pa = 1/2 such that
it will not be attenuated.

123

3248 Algorithmica (2018) 80:3225–3252

Now we focus on the analysis of Q2 = (A = B − 1, ya = 1, pa = 2− B) where
1 ≤ B < 3/2. The value of Pu can be updated as:

Pu = (1 − x A)(1 − xh)Pr[Zu ≤ tu] + (1 − x A)x Ah Pr[Zu ≤ tu − 1]

Applying the same perturbation analysis as before, we get that inWS either A = 0
or A = 1/2 − ε. The instance of A = 0 is just the case of Q1 while the instance
of A = 1/2 − ε can be reduced to the situation without attenuation.

��
Proof of Proposition 6

Proof In this case, we consider a large edge e with ye pe > 1/2. Recall that in
WS, the adversary will try to minimize Pu subject to (1)

∑
f ∈E(u) y f p f ≤ 1/2,

(2)
∑

f ∈E(u) y f ≤ tu − 1/2 and (3) 0 ≤ y f ≤ 1 for each f ∈ E(u). In our context,
we have in WS, A + ya pa = 1/2 and A + ya + ∑

f ∈E0(u) y f = tu − 1/2.
Let A+ ya = B be some fixed value at 1/2 ≤ B ≤ 3/2. As before, we observe that

in the WS, (A, ya) should arrive at boundary points, either Q1 = (A = 1/2, ya =
B − 1/2, pa = 0) or Q2 = (A = 0, ya = B, pa = 1/(2B)) if B ≤ 1 and Q2 =
(A = B − 1, ya = 1, pa = 3/2 − B) if B > 1. Observe that Q1 is a special case of
Q2 with B = 1/2 and thus can be ignored.

For the instance Q2 = (A = B − 1, ya = 1, pa = 3/2 − B) with B ≥ 1. Pu can
be updated as

Pu = (1 − Ax)(1 − x)Pr[Zu ≤ tu] + (1 − Ax)x(A + 1/2)Pr[Zu ≤ tu − 1]

Notice that E[Zu] = x(tu − B − 1/2) ≤ tu − 1, implying that Zu ∼ Pois(x(tu −
B − 1/2)). Perturb in the same way as before: A ← A + ε and yb ← yb − ε where
yb is an arbitrary edge in E2(u). We get that the coefficient of ε2 is

H(ε2) ≤ −x3
(
yb − 1

2
− 2A

)
Pr [Z ′

u = tu − 1] < 0

Thus we claim that if WS arrives at Q2 = (A = B − 1, ya = 1, pa = 3/2 − B)

with some 1 ≤ B ≤ 3/2, then B must be at boundary points either B = 1 or B = 3/2.
Both of these two can be viewed as special instances of Q2 with 1/2 ≤ B ≤ 1, and
thus can be ignored. ��

B.2 Proof of Lemma 6

Proof We split our discussion into the following two cases.

– Consider the first case when e is small with ye pe = 0. Note that in WS, we have
A + ya + ∑

f ∈E0(u) y f = 1. Thus we can set pa = 1, since this does not violate
the matching constraint and potentially decreases the value of Pu . This means we
can assume in WS there is no floating edge.

After a similar analysis in Lemma 3, we find that inWS, either A = 1 or A = 1/2.

123

Algorithmica (2018) 80:3225–3252 3249

When A = 1, Pu = (1 − xh) which is larger or equal to that at Q1 when tu ≥ 2,
just as shown in Lemma 5.

When A = 1/2,

Pu =
(
1 − 1

2
x

)
Pr[Zu ≤ 1] =

(
1 − 1

2
x

) (
1 + 1

2
x

)
, Zu ∼ Pois

(
1

2
x

)

Consider the Pu in WS at Q2 with B = 1: just as shown in Lemma 5, we have

Pu ≤
(
1 − 1

2
x

)2

Pr[Zu ≤ tu] ≤
(
1 − 1

2
x

) (
1 + 1

2
x

)

Thus we claim that WS can not satisfy tu = 1 when ye pe = 0.
– Consider the second case when e is large with ye pe > 1/2. Similarly we assume
no floating edge in WS and A = 1/2. Therefore we have Pu = (1 − 1/2x).
Notice that when tu ≥ 2, in WS the bound on Pu in case Q2 shown in Lemma 5
is

Pu ≤ (1 − 1/2x)Pr[Zu ≤ tu] ≤ (1 − 1/2x)

since B ≥ 1/2. Thus we claim thatWS could not satisfy tu = 1 when ye pe > 1/2.

��

B.3 Numerical Verification Details in the Proof of Theorem 2:

The following numerical verifications are similar to those shown in the proof of The-
orem 1. All our numerical computations were done on Mathematica 10 with precision
at least up to the fourth digit after the decimal point.

1. Consider a small edge e with ye pe = 0 where both E(u) and E(v) have WS at
Q2 just as shown in Lemma 5 with B = Bu and B = Bv respectively. In this case,
the Chernoff-Hoeffding bound is

Pu(Small2) ≥ La(tu) =
(
1 − 1

2
x

)2 [
1 − exp

(−ε2

2 + ε
x

(
tu − 3

2

))]

where ε = 1
x − 1.

We verify that:
– When tu, tv ≥ 150, we see

∫ 1

0
Pu(Small2)Pv(Small2)dx ≥

∫ 1

0
L2
a(150)dx = 0.374

– When 2 ≤ tu, tv ≤ 150, the integral
∫ 1
0 Pu(Small2)Pv(Small2)dx gets its

minimum value of 0.373799 at Bu = Bv = 1.4984, tu = tv = 5.

123

3250 Algorithmica (2018) 80:3225–3252

– When 2 ≤ tu ≤ 150 while tv ≥ 150, we see that

∫ 1

0
Pu(Small2)Pv(Small2)dx ≥

∫ 1

0
Pu(Small2)La(150)dx,

and that the latter integral gets its minimum value of 0.373899 at Bu =
1.48529, tu = 5.

2. Consider a large item ye pe = 1/2+ ε. In this case, the Chernoff-Hoeffding bound
is

Pu(Large) ≥ Lb(tu) =
(
1 − 1

2
x

) [
1 − exp

(−ε2

2 + ε
x

(
tu − 3

2

))]

where ε = 1
x − 1.

We verify that:
– When tu, tv ≥ 110, we see

∫ 1

0
Pu(Large)Pv(Large)dx ≥

∫ 1

0
L2
b(110)dx = 0.539476

– When 1 ≤ tu, tv ≤ 110, the integral
∫ 1
0 Pu(Large)Pv(Large)dx gets its min-

imum value of 0.54563 at tu = tv = 6, Bu = Bv = 1.
– When 2 ≤ tu ≤ 110, tv ≥ 110, we see that

∫ 1

0
Pu(Large)Pv(Large)dx ≥

∫ 1

0
Pu(Large)Lb(110)dx

and the latter integral gets its minimum value of 0.536973 at tu = 5, Bu = 1.
Thus to reach an approximation ratio of 0.373799, it suffices to set h ≥ 0.6961.

3. Consider a small item ye pe = 0 where both E(u) and E(v) have WS at Q1 just
as shown in Lemma 5 with h = 0.7.

The Chernoff-Hoeffding bound is,

Pu(Small1) ≥ Lc(tu) = (1 − hx)

[
1 − exp

(−ε2

2 + ε
x(tu − 1)

)]

with h = 0.7, ε = 1
x − 1.

We verify that:
– When tu, tv ≥ 100,

∫ 1

0
Pu(Small1)Pv(Small1)dx ≥

∫ 1

0
L2
c(100)dx = 0.442734

– When 2 ≤ tu, tv ≤ 100, the integral
∫ 1
0 Pu(Small1)Pv(Small1)dx gets its

minimum value of 0.445811 at tu = tv = 6.

123

Algorithmica (2018) 80:3225–3252 3251

– When 2 ≤ tu ≤ 100 and tv ≥ 100, we see that

∫ 1

0
Pu(Small1)Pv(Small1)dx ≥

∫ 1

0
Pu(Small1)Lc(100)dx

and the latter integral gets its minimum value of 0.441362 at tu = 5.
4. Now consider a small item ye pe = 0 where E(u) has WS at Q1 with h = 0.7

while E(v) has WS at Q2 with some Bv .

We verify that:
– When tu, tv ≥ 30,

∫ 1

0
Pu(Small1)Pv(Small2)dx ≥

∫ 1

0
Lc(30)La(30)dx = 0.383453

– When 1 ≤ tu, tv ≤ 30, the integral
∫ 1
0 Pu(Small1)Pv(Small2)dx gets its

minimum value of 0.40739 at tu = 6, tv = 6, Bv = 1.49814.
– When 2 ≤ tu ≤ 30 while tv ≥ 30,

∫ 1

0
Pu(Small1)Pv(Small2)dx ≥

∫ 1

0
Pu(Small1)La(30)dx

and the latter integral gets its minimum value of 0.389957 at tu = 4.
– When tu ≥ 30 while 2 ≤ tv ≤ 30,

∫ 1

0
Pu(Small1)Pv(Small2)dx ≥

∫ 1

0
Lc(30)Pv(Small2)dx

and the latter integral gets its minimum value of 0.404117 at tv = 5, B =
1.47987.

Thus we conclude that the bottleneck configuration is ye pe = 0, with both of E(u)

and E(v) having WS at Q2 with tu = tv = 5, Bu = Bv = 1.4984. The resultant
approximation ratio is 0.373799.

References

1. Abolhassani, M., Esfandiari, H., Hajiaghayi, M., Mahini, H., Malec, D., Srinivasan, A.: Selling tomor-
row’s bargains today. In: Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems,
pp. 337–345 (2015)

2. Adamczyk,M., Grandoni, F., Mukherjee, J.: Improved approximation algorithms for stochastic match-
ing. In: Bansal, N., Finocchi, I. (eds.) Algorithms—ESA 2015. Lecture Notes in Computer Science,
vol. 9294. Springer, Berlin, Heidelberg (2015)

3. Alon, N., Spencer, J.H.: Wiley interscience series in discrete mathematics and optimization. In: The
Probabilistic Method, vol. 6, pp. 85–96 (2008)

4. Bansal, N., Gupta, A., Nagarajan, V., Rudra, A.: When lp is the cure for your matching woes: approx-
imating stochastic matchings. arXiv preprint arXiv:1003.0167v1 [cs DS] (2010)

123

http://arxiv.org/abs/1003.0167v1

3252 Algorithmica (2018) 80:3225–3252

5. Bansal, N., Gupta, A., Li, J., Mestre, J., Nagarajan, V., Rudra, A.: When LP is the cure for your
matching woes: improved bounds for stochastic matchings. Algorithmica 63(4), 733–762 (2012)

6. Beale, E.M.: On minimizing a convex function subject to linear inequalities. J. Roy. Stat. Soc. B Met.
17, 173–184 (1955)

7. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)
8. Chen, N., Immorlica, N., Karlin, A.R., Mahdian, M., Rudra, A.: Approximating matches made in

heaven. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol. 5555.
Springer, Berlin, Heidelberg (2009)

9. Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1(3–4), 197–206 (1955)
10. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack problem: the benefit

of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)
11. Fortuin, C.M., Ginibre, J., Kasteleyn, P.N.: Correlational inequalities for partially ordered sets. Com-

mun. Math. Phys. 22, 89–103 (1971)
12. Füredi, Z., Kahn, J., Seymour, P.D.: On the fractional matching polytope of a hypergraph. Combina-

torica 13(2), 167–180 (1993)
13. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and its applications to

approximation algorithms. J. ACM (JACM) 53(3), 324–360 (2006)
14. Garg, N., Gupta, A., Leonardi, S., Sankowski, P.: Stochastic analyses for online combinatorial opti-

mization problems. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, Society for Industrial and Applied Mathematics, pp. 942–951 (2008)

15. Gupta, A., Kumar, A.: A constant-factor approximation for stochastic steiner forest. In: Proceedings
of the Forty-First Annual ACM Symposium on Theory of Computing, pp 659–668. ACM (2009)

16. Gupta, A., Ravi, R., Sinha, A.: LP rounding approximation algorithms for stochastic network design.
Math. Oper. Res. 32(2), 345–364 (2007)

17. Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.S.: On the costs and benefits of procrastination:
approximation algorithms for stochastic combinatorial optimization problems. In: Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied
Mathematics, pp 691–700 (2004)

18. Levi, R., Pál, M., Roundy, R.O., Shmoys, D.B.: Approximation algorithms for stochastic inventory
control models. Math. Oper. Res. 32(2), 284–302 (2007)

19. Ravi, R., Sinha, A.: Hedging uncertainty: approximation algorithms for stochastic optimization prob-
lems. Math. Program. 108(1), 97–114 (2006)

20. Ruszczynski, A.P., Shapiro, A.: Stochastic Programming, vol. 10. Elsevier, Amsterdam (2003)
21. Shachnai, H., Srinivasan, A.: Finding large independent sets in graphs and hypergraphs. SIAM J.

Discret. Math. 18, 488–500 (2004)
22. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming—Modeling and

Theory, vol. 16, 2nd edn. SIAM, Philadelphia (2014)
23. Shmoys, D.B., Swamy, C.: An approximation scheme for stochastic linear programming and its appli-

cation to stochastic integer programs. J. ACM (JACM) 53(6), 978–1012 (2006)
24. Srinivasan, A.: Approximation algorithms for stochastic and risk-averse optimization. In: Proceedings

of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 1305–1313. Society
for Industrial and Applied Mathematics (2007)

25. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2013)
26. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University

Press, Cambridge (2011)

123

	Improved Bounds in Stochastic Matching and Optimization
	Abstract
	1 Introduction
	2 Related Work and Main Contributions
	3 Preliminaries
	4 Stochastic Matching
	5 Stochastic Matching with Relaxed Patience
	6 Stochastic Hypergraph Matching
	6.1 An Algorithm Achieving a (k+1/2+o(1)) Approximation Ratio
	6.2 Analysis of SM3
	6.3 An Algorithm Achieving a (k+ε+o(1)) Approximation Ratio

	7 Conclusion
	Acknowledgements
	Appendix A: Proofs for Sect. 4
	A.1 Proof of Lemma 3
	A.2 Statement of Lemma 11 and its Proof

	Appendix B: Stochastic Matching with Relaxed Patience
	B.1 Proof of Lemma 5
	B.2 Proof of Lemma 6
	B.3 Numerical Verification Details in the Proof of Theorem 2:

	References

