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Abstract

We consider column-sparse covering integer programs, a generalization of set cover, which
have a long line of research of (randomized) approximation algorithms. We develop a new
rounding scheme based on the Partial Resampling variant of the Lovász Local Lemma developed
by Harris & Srinivasan (2019).

This achieves an approximation ratio of 1+ ln(∆1+1)
amin

+O
(

log(1+
√

log(∆1+1)
amin

)
)

, where amin is

the minimum covering constraint and ∆1 is the maximum `1-norm of any column of the covering
matrix (whose entries are scaled to lie in [0, 1]). When there are additional constraints on the
variable sizes, we show an approximation ratio of ln ∆0 +O(log log ∆0) (where ∆0 is the maxi-
mum number of non-zero entries in any column of the covering matrix). These results improve
asymptotically, in several different ways, over results of Srinivasan (2006) and Kolliopoulos &
Young (2005).

We show nearly-matching inapproximability and integrality-gap lower bounds. We also show
that the rounding process leads to negative correlation among the variables, which allows us to
handle multi-criteria programs.

1 Introduction

We consider covering integer programs (CIPs), which are a class of optimization problems with n
variables x1, . . . , xn ∈ Z≥0 and m covering constraints of the form:∑

i

Akixi ≥ ak for k = 1, . . . ,m

By appropriate scaling, we assume that each Ak is a vector in [0, 1]n. We may optionally have
constraints on the size of the variables, namely, that we require xi ≤ di for some given values
di ∈ Z≥0 ∪ {∞}; these are referred to as the multiplicity constraints. Our goal is to minimize C • x
subject to these constraints for some given vector C ∈ Rn≥0, where • represents the dot product.
The optimal solution for the given instance is denoted by OPT.

This generalizes the set cover problem, which can be viewed as a special case with ak = 1 and
Aki ∈ {0, 1}. Since solving set cover exactly is NP-hard [16], we aim instead for an approximation
algorithm. Here, there are at least three types of approximations we can use:
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1. the solution x may violate the optimality constraint: i.e., C • x > OPT.

2. x may violate the multiplicity constraint: i.e., xi > di for some i;

3. x may violate the covering constraints: i.e.,
∑

iAkixi < ak for some k.

For our purposes, we will demand that our solution x exactly satisfies the covering constraints,
and we seek to satisfy the multiplicity constraints and optimality constraint as closely as possible.
For the optimality constraint, we will ensure that

C • x ≤ β ×OPT

for some parameter β ≥ 1 referred to as the approximation ratio.
Many approximation algorithms for set cover and its extensions give approximation ratios as a

function of the total number of constraints m: e.g., the greedy algorithm has approximation ratio
(1− o(1)) lnm [23]. We often prefer a scale-free approximation ratio, that does not depend on the
problem size but only on its structural properties. Two cases of particular interest are when the
matrix A is row-sparse (each constraint involves a bounded number variables); or column-sparse
(each variable appears in a bounded number of constraints.) In this paper, we will be concerned
solely with the column-sparse setting; this corresponds to set-cover instances where each set is
small. The row-sparse setting, which generalizes problems such as vertex cover, typically leads to
very different types of algorithms.

Two important parameters used to measure the column sparsity of such systems are the maxi-
mum `0 and `1-norms of the columns; that is,

∆0 = max
columns i

#rows k with Aki > 0 , ∆1 = max
columns i

∑
rows k

Aki

Since the entries of A have been normalized to the range [0, 1], we have ∆1 ≤ ∆0; it is also possible
that ∆1 � ∆0.

Approximation algorithms for column-sparse CIPs typically fall into two main classes. First,
there are greedy algorithms which start by setting x = 0, then increment xi in some manner which
“looks best” in a myopic way for the residual problem. These were first developed by [7, 15, 19]
for set cover, and later analysis (see [10]) showed that they give essentially optimal approximation
ratios for set cover. These were extended to CIPs in [11, 8] with approximation ratio 1 + ln ∆1.

An alternative, and often more flexible, class of approximation algorithms is based on LP
relaxation. The simplest relaxation, which we call the basic LP, has the same covering constraints
as the original CIP, but replaces the constraint x ∈ Zn≥0 with the weaker constraint x ∈ Rn≥0. The
optimal fractional solution x̂ to this polytope satisfies C • x̂ ≤ OPT. It thus suffices to turn the
solution x̂ into a integral solution x with C • x ≤ β(C • x̂). We will also see some stronger LP
formulations, such as the Knapsack-Cover (KC) inequalities. These relaxations can be solved using
general-purpose LP solvers, or faster, specialized algorithms tailored for CIP (such as [4, 27, 28]).
Alternatively, in some cases the basic LP has a generic solution, for example by setting x to be a
constant vector.

We will mostly ignore the issue of how to solve the LP relaxation, and focus on how to transform
it into an integral solution. Randomized rounding is often employed for this step. The simplest
scheme, first applied to this context by [22], is to simply draw xi as independent Bernoulli(αx̂i),

for some α > 1. This leads to an approximation ratio of 1 + O
(

logm
amin

+
√

logm
amin

)
. As is typical of

randomized rounding algorithms, the conversion from the fractional to the integral solution does
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not depend on the specific objective function. In this sense, it is “oblivious”, yielding a good
expected value for any objective function.

In [24], Srinivasan gave an alternative randomized rounding algorithm with an approximation

ratio of 1 + O
(

log ∆0)
amin

+
√

log amin
amin

+ log ∆0

amin

)
for systems without multiplicity constraints. The ran-

domization argument in this construction, which is based on the FKG inequality and some proof
ideas behind the Lovász Local Lemma (LLL). only shows that the desired approximation ratio holds
with some exponentially small (but positive) probability. There is an additional derandomization
step, using the method of conditional expectations, to turn it into an efficient algorithm.

In [17], Kolliopoulos & Young adapted the algorithm of [24] for multiplicity constraints. Their
main algorithm meets the multiplicity constraints exactly with approximation ratio O(log ∆0).
They also have an alternate algorithm which violates each multiplicity constraint “xi ≤ di” to at
most “xi ≤ d(1 + ε)die” for arbitrary input parameter ε; we refer to this situation as ε-respecting
multiplicity. In this case, the approximation ratio is O

(
1 + log ∆0

amin ε2

)
.

Finally, we note that since the original version of this paper, subsequent work of Chekuri &
Quanrud [5] has developed algorithm based on novel methods of solving and rounding the KC linear
program. In addition, their algorithm can be derandomized efficiently.

1.1 Our contributions

We present new randomized rounding schemes, based on a variant of the LLL developed in [13].
(See Appendix A for a more detailed comparison between this algorithm and the LLL.) The ap-
proximation ratios for our algorithms will be stated in terms of the key parameter γ defined as

γ =
ln(∆1 + 1)

amin

where we define amin = max(0,mink ak). Formally, we show the following result:

Theorem 1.1. Let x̂ be a fractional solution for the basic LP. Our randomized algorithm runs
in expected linear time, and generates a solution x ∈ Zn≥0 satisfying the covering constraints with
probability one, and with

E[xi] ≤ x̂i
(
1 + γ + 10 ln(1 +

√
γ)
)
, xi ≤

⌈
x̂i ·

2γ

ln(1 + γ)

⌉
with probability one

This automatically implies that E[C • x] ≤ βC • x̂ ≤ β × OPT for β = 1 + γ + 10 ln(1 +
√
γ).

Our algorithm has several advantages over previous techniques.

1. We get approximation ratios in terms of ∆1, the maximum `1-norm of the columns of A.

2. When ∆1 is small, our approximation ratio is asymptotically smaller than that of [24]. In

particular, we avoid the
√

log amin
amin

term in our approximation ratio.

3. When ∆1 is large, then our approximation ratio is roughly γ; this is asymptotically optimal
(including having the correct coefficient), and improves on [24].

4. This algorithm is quite efficient, essentially as fast as reading in the matrix A.

5. The algorithm is oblivious to the objective function — although it achieves a good approxi-
mation factor for any objective C, the algorithm itself does not use C in any way.
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To briefly explain the role of parameter γ, note that CIP problems coming from set cover have
amin = 1 and ∆0 = ∆1, and that the hardness of approximation is roughly ln ∆0. Furthermore, for
general CIP instances, the matrix A and vector a can be rescaled by a constant; to compensate for
this scaling, the approximation factor should be inversely proportional to amin. Overall, this means
that the approximation ratio should be roughly equal to γ (at least up to first-order terms).

Our partial resampling algorithm can be modified so that multiplicity constraints are satisfied
or nearly-satisfied, at the cost of a worsened approximation ratio. These results, which improve in
all cases over the corresponding approximation ratios of [17], are summarized as follows:

Theorem 1.2. There is a randomized polynomial-time algorithm to obtain a solution x ∈ Zn≥0

which satisfies the covering and multiplicity constraints, and which has

C • x ≤ (ln ∆0 +O(log log ∆0))OPT

Theorem 1.3. Let x̂ be a fractional solution for the basic LP. For any given ε ∈ (0, 1], there is
a rounding algorithm which generates a solution x ∈ Zn≥0 satisfying the covering constraints, and
which has

E[xi] ≤ x̂i(1 + ε+ 4γ/ε), xi ≤ dx̂i(1 + ε)e with probability one

We show a number of nearly-matching lower bounds. The formal statements of these results
contain numerous qualifiers and technical conditions, but we summarize these here.

1. Any polynomial-time algorithm for CIP with multiplicity constraints must have approxima-
tion ratio ln ∆0 −O(log log ∆0).

2. Any polynomial-time algorithm for CIP without multiplicity constraints, whose approxima-
tion ratio is a function f(γ), must have f(γ) ≥ max(γ, 1 + γ/2).

3. For large γ, the integrality gap between the basic LP and integral solutions which ε-respect
multiplicity, is of order Ω(γ/ε).

4. The basic LP has integrality gap at least max(γ, 1 + γ/2).

Finally, we show that the values of xi generated by our algorithm have a form of negative
correlation. This allows us to solve CIP instances with multiple objective functions C1, . . . , Cr “for
free” — due to concentration, each ` satisfies C` •x ≈ C` • x̂ with high probability and in particular
there is a good probability that C` • x ≈ C` • x̂ simultaneously for all `.

Theorem 1.4 (Informal). Suppose that a CIP instance with fractional solution x̂ has r objective
functions C1, . . . , Cr, whose entries are in [0, 1] and such that C` • x̂ ≥ Ω(log r) for all ` = 1, . . . , r.
Then, with probability at least 1/2, the solution x generated by the rounding algorithm satisfies

∀` C` • x ≤ β(C` • x̂) +O(
√
β(C` • x̂) log r)

where β = 1 + γ + 10 ln(1 +
√
γ).

1.2 Outline

In Section 2, we develop a randomized rounding algorithm, which takes a solution x̂ for the basic
LP and generates a vector x ∈ Zn≥0 satisfying E[xi] ≤ ρx̂i for a (rather complicated) approximation
factor ρ. The precise formula will be described later.
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In Section 3, we simplify our approximation ratios for CIP without multiplicity constraints in
terms of the key parameter γ = ln(∆1+1)

amin
.

In Section 4, we extend these results to respect the multiplicity constraint. This requires
parameterizing in terms of ∆0, and uses the stronger KC relaxation.

In Section 5, we show a number of lower bounds for approximation ratios, showing that the
approximation ratios developed in Section 3 are essentially optimal for most parameters ranges
(particularly when ln ∆1 � amin). We show both algorithmic hardness results and integrality gaps
of the basic LP.

In Section 6, we show that our randomized rounding scheme obeys a negative correlation prop-
erty. This allows us to show concentration bounds for the objective functions C` • x, which in turn
allows us to give approximation schemes in the presence of multiple objective functions.

1.3 Notation

We write [t] for the set {1, . . . , t}. We use Iverson notation, where for a Boolean predicate P we
have [[P]] = 1 if P is true and zero otherwise. For vectors x, y we write x ≤ y if xi ≤ yi for all
indices i; otherwise, we write x 6≤ y. Note that, with this notation, our goal for solving a CIP
instance is to satisfy Ax ≥ a.

The number of non-zero entries in A is denoted by nnz(A); in general, we can store and process
A in O(nnz(A)) time.

2 The rounding algorithm

We first consider, in Section 2.1, the case when all the values of x̂ are small; this will turn out to
be the critical case for understanding the approximation ratio. Section 2.2 will extend the analysis
to arbitrary values of x̂ by a deterministic quantization method.

2.1 The case when all entries of x̂ are small

For the purposes of Section 2.1, we assume that we have fixed certain parameters σ ∈ [0, 1] and

α > − ln(1−σ)
σ ; we will discuss later how to set these parameters. We also assume that x̂ ∈ [0, 1/α]n

and Ax̂ ≥ a. Under these assumptions, we use Algorithm 1, named RELAXATION :

Algorithm 1 The RELAXATION algorithm

1: function relaxation(x̂, A, a, σ, α)
2: for i = 1, . . . , n do xi ∼ Bernoulli(αx̂i)
3: while Ax 6≥ a do . The covering constraints are not all satisfied
4: Let k be minimal such that Ak • x < ak
5: for i from 1, . . . , n do
6: if xi = 0 then xi ∼ Bernoulli(σAkiαx̂i)

7: return x

Note that our size assumptions imply that lines 2 and 6 are valid probability distributions, i.e.
αx̂i ∈ [0, 1] and σAkiαx̂i ∈ [0, 1]. The RELAXATION algorithm only increments the variables xi,
and so the algorithm terminates with probability one. Our main technical result will be to show
that the expected value of the variable xi at the termination is not much larger than the fractional
solution value x̂i. Formally, we will show the following:
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Theorem 2.1. Suppose that our assumptions on the parameters x̂, α, σ are satisfied. Then for any
i ∈ [n], the probability that xi = 1 at the conclusion of the RELAXATION algorithm is at most

Pr(xi = 1) ≤ αx̂i
(

1 + σ
∑
k

Aki
eσαAk•x̂(1− σ)ak − 1

)
We will need many intermediate results before we prove this theorem. Throughout this section,

we define pi = αx̂i and qi = 1− pi.
Whenever we encounter an unsatisfied constraint k and draw new values for the variables (line

6), we refer to this as resampling the constraint k. There is an alternative and equivalent view
of the resampling procedure, which seems counter-intuitive but will be crucial for our analysis.
Instead of setting each variable xi = 1 with probability σAkiαx̂i, we instead imagine selecting a
subset Z ⊆ [n], where each i currently satisfying xi = 0 goes into Z independently with probability
σAki. Then, for each variable i ∈ Z, we draw xi ∼ Bernoulli(pi). In this interpretation, we say
that Z is the resampled set for constraint k, and if i ∈ Z we say that variable i is resampled.

Lemma 2.2. Let Z1, . . . , Zj be subsets of [n]. The probability that the first j resampled sets for

constraint k are respectively Z1, . . . , Zj is at most
∏j
`=1 fk(Z`), where we define

fk(Z) = (1− σ)−ak
( ∏
i∈[n]−Z

1−Akiσ
)(∏

i∈Z
qiAkiσ

)
The proof of Lemma 2.2 is based on an intricate induction argument; let us first provide some

high-level intuition for the formula.1 Consider the probability of resampling sets Z1, . . . , Zj for
constraint k. At the `th resampling of constraint k, the following events will need to hold:

1. All the variables i ∈ Z` must have xi = 0; the probability this occured the last time they
were resampled (or were sampled initially) is

∏
i∈Z` qi.

2. All the variables i ∈ Z` must have been selected to go into the resampled subset; this has
probability

∏
i∈Z` σAki.

3. All the variables i /∈ Z` with xi = 0 must not be selected to go into the resampled set. This
has probability

∏
i:xi=0(1− σAkiσ).

The first two terms here contribute
∏
i∈Z` qiAkiσ. We also know that, since constraint k was

violated, we must have
∑

iAkixi < ak. Using this fact, we can show that the third term is at most
(1 − σ)−ak

∏
i∈[n]−Z` 1 − Aki. Overall, multiplying the three terms, we see that the probability of

resampling Z` at time ` is at most fk(Z`).

Proof of Lemma 2.2. For any integer T ≥ 0, any list of sets Z1, . . . , Zj ⊆ [n] and any vector
v ∈ {0, 1}n, we define the following random process and the following event E(T ;Z1, . . . , Zj ; v):
instead of drawing x ∼ Bernoulli(αx̂i) as in line 2 of RELAXATION, we set x = v, and we
continue the remaining steps of the RELAXATION algorithm until done. We say that, in this
process, event E(T ;Z1, . . . , Zj ; v) has occurred if:

1. There are less than T total resamplings,

1The structure of this proof is similar to analyses in [13, 12] for certain variants of the Moser-Tardos algorithm
for the LLL. Intuitively, the list of sets Z1, . . . , Zj should be thought of as part of a “witness tree” for the event
that xi = 1. Each such witness tree provides a history of all relevant resamplings for that variable i. To bound the
probability of a bad event, we thus take a union bound over witness trees. See Appendix A for further details.
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2. There are at least j resamplings of constraint k,

3. The first j resampled sets for constraint k are respectively Z1, . . . , Zj .

We claim now that for any Z1, . . . , Zj , and v ∈ {0, 1}n, and any integer T ≥ 0, we have

Pr(E(T ;Z1, . . . , Zj ; v)) ≤
∏j
`=1 fk(Z`)∏
i∈Z1∪···∪Zj qi

(1)

We shall prove Eq. (1) by induction on T . The base case T = 0 holds trivially, because
E(T ;Z1, . . . , Zj ; v) is impossible (there must be at least 0 resamplings), and so the LHS of Eq. (1)
is zero while the RHS is non-negative. We move on to the induction step.

If Av ≥ a, then there are no resamplings. Thus, if j ≥ 1, then event E(T, j, Z1, . . . , Zj ; v) is
impossible and again Eq. (1) holds. On the other hand, if j = 0, then the RHS of (1) is equal to
one, and again this holds vacuously. So we suppose Av 6≥ a and j ≥ 1; let k′ be minimal such that
Ak′ • v < ak′ . Then the first step of RELAXATION is to resample constraint k′. Let the random
variable x′ denote the value of the variables after this resampling.

If vi = 1 for any i ∈ Z1 ∪ · · · ∪ Zj , then the event E(T ;Z1, . . . , Zj , v) is impossible. This is
because we only resample variables which are equal to zero; thus variable i can never be resampled
for the remainder of the RELAXATION algorithm. In this case Eq. (1) holds vacuously. So we
may assume that vi = 0 for all i ∈ Z1 ∪ · · · ∪ Zj .

Now, suppose that k′ 6= k. Then after the first resampling, the event E(T ;Z1, . . . , Zj ; v) becomes
equivalent to the event E(T − 1;Z1, . . . , Zj , x

′). By our inductive hypothesis, if we condition on a
fixed value of x′ we have

Pr(E(T ;Z1, . . . , Zj ; v) | x′) = Pr(E(T − 1;Z1, . . . , Zj , x
′)) ≤

∏j
`=1 fk(Z`)∏
i∈Z1∪···∪Zj qi

.

Integrating out x′ immediately gives Eq. (1).
Next, suppose that k = k′. Observe that the following are necessary events for E(T ;Z1, . . . , Zj , v):

(A1) The first resampled set Y for constraint k′ = k is equal to Z1.

(A2) For any i ∈ Z1 ∩ (Z2 ∪ · · · ∪ Zj), in the first resampling step (which includes variable i), we
draw xi = 0.

(A3) E(T − 1;Z2, Z3 . . . , Zj ;x
′)

The condition (A2) follows from the observation, made earlier, that E(T − 1;Z2, Z3 . . . , Zj ;x
′)

is impossible if x′i = 1 for i ∈ Z2 ∪ · · · ∪ Zj hold. Any such i ∈ Z1 must be resampled (due to
condition (A1)), and it must be resampled to become equal to zero.

Let us first bound the probability of the condition (A1). Since vi = 0 for all i ∈ Z1, we have

Pr(Y = Z1) =
∏
i∈Z1

Akiσ
∏
i/∈Z1
vi=0

(1−Akiσ) =
∏

i∈[n]−Z1

(1−Akiσ)
∏
i∈Z1

Akiσ
∏
i:vi=1

(1−Akiσ)−1

By definition of k′, we have Ak • v < ak and so
∏
i:vi=1(1 − Akiσ)−1 ≤ (1 − σ)−ak , further

implying:

Pr(Y = Z1) ≤ (1− σ)−ak
∏

i∈[n]−Z1

(1−Akiσ)
∏
i∈Z1

Akiσ
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Next, let us consider the probability of (A2). For each i ∈ Y we draw xi ∼ Bernoulli(pi); thus,
the total probability of event (A2), conditional on (A1), is at most

∏
i∈Z1∩(Z2∪···∪Zj) qi.

For (A3), note that the event E(T − 1;Z2, Z3 . . . , Zj ;x
′) is conditionally independent of events

(A1) and (A2), given x′. We integrate over x′ and use the induction hypothesis to get:

Pr((A3) | (A1), (A2)) =
∑

v′∈{0,1}n
Pr(E(T − 1;Z2, . . . , Zj ; v

′)) Pr(x′ = v′)

≤
∑

v′∈{0,1}n

∏j
`=2 fk(Z`)∏
i∈Z2∪···∪Zj qi

Pr(x′ = v′) =

∏j
`=2 fk(Z`)∏
i∈Z2∪···∪Zj qi

As (A1), (A2), and (A3) are necessary conditions for E(T, j, Z1, . . . , Zj , v), this shows that

Pr(E(T, j, Z1, . . . , Zj , v)) ≤ (1− σ)−ak
∏

i∈[n]−Z1

(1−Akiσ)
∏
i∈Z1

Akiσ
∏

i∈Z1∩(Z2∪···∪Zj)

qi ×
∏j
`=2 fk(Z`)∏
i∈Z2∪···∪Zj qi

= (1− σ)−ak
∏

i∈[n]−Z1

(1−Akiσ)
∏
i∈Z1

Akiσ
∏
i∈Z1

qi ×
∏j
`=2 fk(Z`)∏
i∈Z1∪···∪Zj qi

= fk(Z1)×
∏j
`=2 fk(Z`)∏
i∈Z1∪···∪Zj qi

and the induction claim again holds.
Thus Eq. (1) holds for given sets Z1, . . . , Zj , and v ∈ {0, 1}n, and any integer T ≥ 0. Let us

define the event E(Z1, . . . , Zj ; v) to be the event that, if we start the RELAXATION algorithm
with x = v, then the first j resampled sets for constraint k are respectively Z1, . . . , Zj ; we make
no condition on the total number of resamplings. The events E(T ;Z1, . . . , Zj ; v) form an increasing
chain with E(Z1, . . . , Zj ; v) =

⋃∞
T=0 E(T ;Z1, . . . , Zj ; v). So by countable additivity of probability,

Pr(E(Z1, . . . , Zj ; v)) = lim
T→∞

Pr(E(T ;Z1, . . . , Zj ; v)) ≤
∏j
`=1 fk(Z`)∏
i∈Z1∪···∪Zj qi

So far, we have computed the probability of having Z1, . . . , Zj be the first j resampled sets
for constraint k, given that x is fixed to an arbitrary initial value v. We now can compute the
probability that Z1, . . . , Zj are the first j resampled sets for constraint k given that x is drawn as
independent Bernoulli(pi).

In the first step of the RELAXATION algorithm, we claim that a necessary event for Z1, . . . , Zj
to be the first j resampled sets is to have xi = 0 for each i ∈ Z1 ∪ · · · ∪ Zj ; the rationale for this
is equivalent to that for (A2). This event has probability

∏
i∈Z1∪···∪Zj qi. Subsequently the event

E(j, Z1, . . . , Zj ;x) must occur.
The probability of E(Z1, . . . , Zj ;x), conditional on xi = 0 for all i ∈ Z1 ∪ · · · ∪ Zj , is at most∏j
`=1 fk(Z`)∏

i∈Z1∪···∪Zj
qi

(by a similar argument to that of computing the probability of (A3) conditional on

(A1), (A2)). Thus, the overall probability that the first j resampled sets for constraint k are
Z1, . . . , Zj is at most ∏

i∈Z1∪···∪Zj

qi ×
∏j
`=1 fk(Z`)∏
i∈Z1∪···∪Zj qi

=

j∏
`=1

fk(Z`)

Using this formula, we get the following useful estimates:
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Proposition 2.3. For each constraint k, define the quantity

sk = (1− σ)−ake−σαAk•x̂ < 1.

For each k ∈ [m] there holds
∑
Z⊆[n]

fk(Z) ≤ sk,

For each k ∈ [m] and i ∈ [n] there holds
∑
Z⊆[n]
Z3i

fk(Z) ≤ skAkiσ.

Proof. Since Ax̂ ≥ a, we have sk = (1− σ)−ake−σαAk•x̂ < (1− σ)−ake−σak
− ln(1−σ)

σ = 1.
For the first sum, we have∑

Z⊆[n]

fk(Z) =
∑
Z⊆[n]

(1− σ)−ak
∏

i∈[n]−Z

(1−Akiσ)
∏
i∈Z

qiAkiσ = (1− σ)−ak
∏
i∈[n]

(1−Akiσ) + (qiAkiσ)

= (1− σ)−ak
∏
i∈[n]

(1−Akipiσ) ≤ (1− σ)−ake−σ
∑
i Akipi = (1− σ)−ake−σαAk•x̂

For the second sum, we have:∑
Z⊆[n]
Z3i

fk(Z) =
∑
Z⊆[n]
Z3i

(1− σ)−ak
∏

`∈[n]−Z

(1−Ak`σ)
∏
`∈Z

q`Ak`σ

= (1− σ)−akqiAkiσ
∏

`∈[n]−{i}

(1−Ak`p`σ)

≤ (1− σ)−akqiAkiσe
σAkipie−σα(Ak•x̂) = sk(1− pi)AkiσeσAkipi

Now note that Aki ≤ 1, σ ≤ 1 and hence (1− pi)eσAkipi ≤ 1.

We are now prepared to prove Theorem 2.1.

Proof of Theorem 2.1. There are two possible ways to have xi = 1: either xi = 1 at the initial
sampling, or xi first becomes equal to one during the jth resampling of constraint k. The former
event has probability pi. If the latter event occurs, there must be sets Z1, . . . , Zj such that:

(B1) The first j resampled sets for constraint k are respectively Z1, . . . , Zj

(B2) i ∈ Zj

(B3) During the jth resampling of constraint k, we set xi = 1.

For any sets Z1, . . . , Zj and k ∈ [m], Lemma 2.2 shows that the probability that Z1, . . . , Zj
satisfy (B1) is at most fk(Z1) · · · fk(Zj). Since (B3) occurs after (B1), (B2) are determined, it has
probability of pi conditional on (B1), (B2). Thus, for any fixed Z1, . . . , Zj , the probability that
events (B1)–(B3) hold is at most pifk(Z1) · · · fk(Zj).

Thus, by a union bound over all k ∈ [m] and sequences of sets Z1, . . . , Zj ⊆ [n] with i ∈ Zj , we
have:

Pr(xi = 1) ≤ pi
(

1 +
m∑
k=1

∞∑
j=1

∑
Z1,...,Zj⊆[n],Zj3i

fk(Z1) · · · fk(Zj)
)

9



≤ pi
(

1 +
m∑
k=1

skAkiσ
∞∑
j=1

sj−1
k

)
(Proposition 2.3)

= pi

(
1 +

∑
k

Akiσ

1− sk

)
= αx̂i

(
1 + σ

∑
k

Aki
eσαAk•x̂(1− σ)ak − 1

)
as sk < 1

We can also use these estimates to bound the algorithm running time.

Proposition 2.4. The expected number of resamplings of constraint k made by the algorithm
RELAXATION is at most 1

eσαAk•x̂(1−σ)ak−1
.

Proof. Using Lemma 2.2 and Proposition 2.3, we get:

Pr(≥ r resamplings) ≤
∑

Z1,...,Zr⊆[n]

Pr(Z1, . . . , Zr are first resampled sets for constraint k)

≤
∑

Z1,...,Zr⊆[n]

fk(Z1) · · · fk(Zr) ≤ srk

The expected number of resamplings is thus at most
∑∞

r=1 s
r
k = 1

1/sk−1 = 1
(1−σ)akeσαAk•x̂−1

.

2.2 Extension to the case where x̂i is large

In this section, we extend the rounding algorithm to an arbitrary vector x̂ ∈ Rn≥0, removing our
assumption that x̂i ≤ 1/α. We will construct a randomized process generating a vector x ∈ Zn≥0,
with the property that

E[xi] ≤ αx̂i
(

1 + σ
∑
k

Aki
eσαak(1− σ)ak − 1

)
(2)

If our goal is solely to achieve Eq. (2), without regard to the size of xi, then there is a straight-
forward method: given a variable i, and a solution to the LP with fractional value x̂i, we sub-divide
it into N new variables y1, . . . , yN with fractional values ŷi = xi/N , for some arbitrarily large value
N ; we then set xi = y1 + · · ·+ yN .

Unfortunately, with this subdivision step we may have xi as large as N . We also want to bound
the maximum (not just expected) size of xi. To achieve this, we use a more careful subdivision
step: we subdivide a variable i into two components, ŷ1, ŷ2, where ŷ2 ∈ [0, 1/α]n and ŷ1 is large.
We then deterministically form y1 by setting y1 = γŷ1, for some appropriate multiplier γ and form
y2 by running RELAXATION on the residual problem (after removing the contribution of y1).

For the formal construction, suppose now we are given some vector x̂ ∈ Rn≥0. For each variable
i, let vi = bx̂i/θc, where we define the critical threshold value

θ =
− ln(1− σ)

ασ

We also define Fi = x̂i − viθ = x̂i mod θ and Gi = [[Fi ≥ 1/α]] for each i.
We can form a residual problem by setting a′k = ak −

∑
iAki(Gi + vi) and x̂′i = Fi(1−Gi); in

particular, this satisfies the condition x̂′ ∈ [0, 1/α]n. We then run the RELAXATION algorithm
on the residual problem. This is summarized in Algorithm 2, ROUNDING.

Algorithm 2 The ROUNDING algorithm

1: function ROUNDING(x̂, A, σ, α)
2: Compute a′k = ak −

∑
iAki(Gi + vi) for all k, and associated vector x̂i = Fi(1−Gi)

3: Compute x′ = RELAXATION(x̂′, A, a′, σ, α)
4: Return x = G+ v + x′

10



The solution vector returned by the ROUNDING algorithm clearly satisfies the covering con-
straints Ax ≥ a. We also note the following useful properties:

Proposition 2.5. For any i ∈ [n] we have x̂i − viθ −Giθ ≤ x̂′i ≤ x̂i − viθ −Gi/α

Proof. If Gi = 0, then both of the bounds hold with equality. So suppose Gi = 1. In this case,
1/α ≤ x̂i−viθ ≤ θ. So x̂i−viθ−Gi/α ≥ θ−1/α ≥ 0 and x̂i−viθ−Giθ ≤ θ−θ = 0 as required.

Proposition 2.6. For any constraint k, we have (1− σ)a
′
keσαAk•x̂

′ ≥ (1− σ)akeσαak .

Proof. Let r =
∑

iAki(Gi + vi), so that a′k = ak − r. By Proposition 2.5, we have Ak • x̂′ =∑
iAkix̂

′
i ≥

∑
iAki(x̂i − viθ − Giθ) = ak − rθ. Then (1 − σ)a

′
keσαAk•x̂

′
= (1 − σ)ak−reσαAk•x̂

′ ≥
(1− σ)ak−reσα(ak−rθ) = (1− σ)−ake−σαak .

We summarize our analysis of the ROUNDING algorithm:

Theorem 2.7. Let σ ∈ [0, 1], α > − ln(1−σ)
σ . Suppose that Ax̂ ≥ a for a vector x̂ ∈ Rn≥0. Then at

the end of the ROUNDING algorithm, for each i ∈ [n] we have

E[xi] ≤ αx̂i
(

1 + σ
∑
k

Aki
eσαak(1− σ)ak − 1

)
, and xi ≤

⌈
x̂i ·

ασ

− ln(1− σ)

⌉
with probability one,

The expected number of resamplings for the RELAXATION algorithm is at most
∑

k
1

eσαak (1−σ)ak−1 .

Proof. For the first bound, define Ti = 1 + σ
∑

k
Aki

eσαak (1−σ)ak−1 . By Theorem 2.1 and Proposi-
tion 2.6, we have

Pr(x′i = 1) ≤ αx̂′i
(

1 + σ
∑
k

Aki

(1− σ)a
′
keσαAk•x̂′ − 1

)
≤ αx̂′iTi.

So, using Proposition 2.5, we estimate E[xi] by:

E[xi] = vi +Gi + E[x′i] ≤ vi +Gi + αx̂′iTi ≤ vi +Gi + α(x̂i − θvi −Gi/α)Ti

≤ vi(1− αθ) + αx̂iTi ≤ αx̂iTi as αθ =
− ln(1− σ)

σ
≥ 1

The bound on the expected number of resamplings is similar.
For the first bound, we must show that xi ≤ dx̂i/θe. If x̂i is not a multiple of θ, then xi =

x′i + Gi + bx̂i/θc. If Gi = 1, then x̂′i = 0 which implies that x′i = 0. So Gi + x′i ≤ 1 and hence
xi ≤ 1 + bxi/θc = dxi/θe. If x̂i is a multiple of θ, then Gi = x̂′i = 0 and xi = bx̂i/θc = dx̂i/θe.

3 Bounds in terms of amin and ∆1

Theorem 2.7 has been stated to give bounds on the ROUNDING algorithm which are as general
as possible. We can simplify the formula by reducing it to the two parameters ∆1, the maximum
`1-norm of any column of A, and amin, the minimum value of ak. Recall also that we have defined
γ = ln(∆1+1)

amin
. Before describing our results, we note a useful clean-up step to pre-process problem

instances.

Theorem 3.1. Given a covering system A, a, there is an algorithm running in time O(nnz(A)) to
generate a modified system A′, a′ which satisfies the following properties:

11



1. The integral solutions of A, a are precisely the same as the integral solutions of A′, a′;

2. a′min ≥ 1 and ∆′1 ≥ 1 and
ln(∆′1+1)
a′min

≤ ln(∆1+1)
amin

.

3. nnz(A′) ≤ nnz(A).

Proof. If ∆1 < 1, then we can scale up both A, a by 1/∆1. If any constraint has ak ≤ 0, then
we drop the constraint. If any entry Aki has Aki > ak, we replace it with Aki = ak. Finally, if
ak ∈ (0, 1) for some k, then we replace row Ak with A′k = Ak/ak and replace ak with a′k = 1.

If ∆1 ≥ 1, then the first transformation changes amin to 1 and ∆ to 1, thus yielding
ln(∆′1+1)
a′min

=

ln 2
amin/∆1

≤ ln(∆1+1)
amin

. The second two transformations only decrease ∆1 and do not change amin.

Finally, the third transformation scales ∆1 by at most 1/amin, so that
ln(∆′1+1)
a′min

= ln( ∆1
amin

+ 1) ≤
ln(∆1+1)
amin

.

After this pre-processing step, we may run ROUNDING algorithm, getting our main algorithmic
results. Recall that we have defined

Theorem 3.2. Consider a CIP system A with ∆1, amin ≥ 1, and a solution x̂ to its basic LP. With
appropriate choices of σ, α the ROUNDING algorithm yields a solution x ∈ Zn≥0 satisfying

E[xi] ≤ x̂i
(
1 + γ + 10 ln(1 +

√
γ)
)
, xi ≤

⌈
x̂i ·

2γ

ln(1 + γ)

⌉
with probability one

The expected running time of this algorithm is O(nnz(A)).

Proof. Set σ = 1− 1/α and α = 1 + γ + 4 ln(1 +
√
γ) > 1. Note that − ln(1−σ)

σ = α · lnα
α−1 < α. For

the bound on the size of xi, Theorem 2.7 gives:

xi ≤
⌈
x̂i ·

γ + 4 ln(1 +
√
γ)

ln(1 + γ + 4 ln(1 +
√
γ))

⌉
;

and simple analysis shows that this
γ+4 ln(1+

√
γ)

ln(1+γ+4 ln(1+
√
γ)) ≤

2γ
ln(1+γ) .

For its expected value, Theorem 2.7 gives:

E[xi] ≤ x̂iα
(
1 + σ

∑
k

Aki
(1− σ)akeσαak − 1

)
= x̂iα

(
1 + (1− 1/α)

∑
k

Aki
eak(α−1)α−ak − 1

)
≤ x̂iα

(
1 + (1− 1/α)

∑
k

Aki
eamin(α−1)α−amin − 1

)
≤ x̂i

(
α+ (α− 1)

∆1

eamin(α−1)α−amin − 1

)
≤ x̂i

(
1 + γ + 10 ln(1 +

√
γ)
)

(by Proposition B.1, noting that ∆1 = eaminγ − 1)

Next, let us analyze the runtime. The initial steps of rounding and forming the residual can be
done in time O(nnz(A)). From Theorem 2.7 and some simple analysis, we see that the expected
number of resamplings corresponding to constraint k is at most

1

eak(α−1)α−ak − 1
≤ 1

eamin(α−1)α−amin − 1
≤ 1

(∆1 + 1)
(α−1)−lnα

γ − 1
≤ 1

In each resampling step, we must draw a new random value for all the variables. Resampling
constraint k takes time O(nnz(Ak)), and thus, the overall expected time for all resamplings is at
most

∑
k O(nnz(Ak)) = O(nnz(A)).
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Corollary 3.3. For a CIP instance without multiplicity constraints, there is an algorithm to gen-
erate a feasible solution x ∈ Zn≥0 in expected polynomial time with

C • x ≤
(
1 + γ +O(ln(1 +

√
γ))
)
OPT

Proof. First apply Theorem 3.1 to ensure that ∆1, amin ≥ 1; the resulting CIP has a parameter

γ′ =
ln(∆′1+1)
a′min

≤ γ ≤ ln(1 +m). Next, find an optimal solution z ∈ Rn≥0 to the corresponding basic

LP, of value Z = C • z. Clearly Z ≤ OPT since Z is a relaxation.
Now apply Theorem 3.2, and denote the resulting solution by x ∈ Zn≥0. This satisfies E[C •x] ≤

(1 + γ′ + 10 ln(1 +
√
γ′))Z ≤ (1 + γ + 10t)Z where we define t = ln(1 +

√
γ). Also, since x satisfies

all the covering constraints, then x is also a solution to the linear program Z; this implies that
C • x ≥ Z with probability one.

By applying Markov’s inequality to the non-negative random variable C • x− Z, we see that

Pr
(
C • x ≥ (1 + γ + 20t)Z

)
≤ γ + 10t

γ + 20t
≤ 1− Ω(1/t) ≤ 1− Ω(1/ logm)

So after O(logm) expected repetitions of this process, we get an integral solution x which satisfies
the covering constraints and where C • x ≤ (1 + γ + 20t)Z ≤ (1 + γ +O(ln(1 +

√
γ)))OPT.

Corollary 3.3 requires solving the basic LP exactly, which may be slow (although it can be done
in polynomial time). By using a faster approximate LP solver, we can improve the overall runtime.

Corollary 3.4. For a CIP instance A without multiplicity constraints, there is an algorithm that
obtains a feasible solution x ∈ Zn≥0 in Õ(nnz(A)/δ) time satisfying

C • x ≤
(
1 + δ

)(
1 + γ +O(ln(1 +

√
γ))
)
OPT

(The Õ factor here hides polylogarithmic terms.)

Proof. By applying Theorem 3.1, we may assume without loss of generality that ∆1 ≥ 1, amin ≥ 1.
Wang et al. [27] gave an algorithm with runtime Õ(nnz(A)/δ) to get a solution x̂ to the

basic LP satisfying C • x̂ ≤ (1 + δ)OPT. Theorem 3.2 applied to x̂ yields a solution x with
E[C •x] ≤ (1 + δ)(1 +γ+ 10 ln(1 +

√
γ)). By Markov’s inequality, after O(1/δ) expected iterations,

we achieve an integral solution which has C•x ≤ (1+2δ)(1+γ+10 ln(1+
√
γ)). Since each application

of Theorem 3.2 takes time O(nnz(A)), the rounding process takes O(nnz(A)/δ) time.

Theorem 3.2 can also be modified to ε-respect the multiplicity constraint.

Theorem 3.5. Consider a CIP system A with ∆1, amin ≥ 1, and a solution x̂ to its basic LP. Let
ε ∈ [0, 1] be given. Then, with an appropriate choice of σ, α the ROUNDING algorithm yields a
solution x ∈ Zn≥0 satisfying

E[xi] ≤ x̂i(1 + ε+ 4γ/ε), xi ≤ dx̂i(1 + ε)e with probability one

The expected running time of this algorithm is O(nnz(A)).

Proof. Set α = −(1+ε) ln(1−σ)
σ , where σ ∈ (0, 1) is a parameter to be determined. Then by The-

orem 2.7, we have xi ≤ dx̂i(1 + ε)e at the end of the ROUNDING algorithm. We clearly have

α ≥ − ln(1−σ)
σ and so by Theorem 2.7:

E[xi] ≤ αx̂i
(

1 + σ
∑
k

Aki
(1− σ)akeσαak − 1

)
≤ αx̂i

(
1 + σ

∆1

(1− σ)−aminε − 1

)
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Now set σ = 1− e−γ/ε, which is in the range (0, 1). Substituting in this value gives

E[xi] ≤ x̂i
(
ε−1
(
2 +

1

eγ/ε − 1

)
(1 + ε)γ

)
Simple calculus shows ε−1(2 + 1

eγ/ε−1
)(1 + ε)γ ≤ 1 + ε+ (2 + 2/ε)γ, which is at most 1 + ε+ 4γ/ε by

our assumption that ε ∈ [0, 1]. The bound on runtime follows the same lines as Theorem 3.2.

4 Respecting multiplicity constraints

We next describe a rounding algorithm to exactly preserve the multiplicity constraints. This fol-
lows the approach of [3, 17] based on a stronger linear program called the knapsack-cover (KC)
inequalities.

Definition 4.1 (The KC residual problem). For a given CIP problem instance and any set X ⊆ [n],
we define the KC-residual for X, denoted R(X), to be a new CIP problem obtained by setting xi = di
for all i ∈ X, and then applying Theorem 3.1 to the resulting system.

Proposition 4.2 ([17],[3]). Let ∆0 be the maximum `0-column norm of A. For any X ⊆ [n], the
constraint system R(X) has a′min ≥ 1 and ∆′1 ≤ ∆0. Furthermore, any integral solution to the
original CIP also satisfies R(X).

Using this relaxation, we get the following algorithm:

Theorem 4.3. There is an expected-polynomial time algorithm to find a feasible solution x ∈ Zn+
for a CIP instance with

C • x ≤
(
ln ∆0 +O(log log ∆0)

)
OPT,

Proof. Let γ0 = ln(∆0 + 1) and let δ = 2γ0
ln(1+γ0) . We begin by finding a fractional solution x̂ which

minimizes C • x̂, subject to the conditions that x̂i ∈ [0, di] and such that x̂ satisfies R(X) for the
set X = {i | x̂i ≥ di/δ}. This can be done via cut-or-solve using the ellipsoid method: given some
putative x̂, one can form X and R(X) and determine which constraint in it, if any, is violated.
(See [17] for more details.)

We now get our integral solution x by setting xi = di for i ∈ X and using the ROUNDING
algorithm on x̂ with respect to the system R(X).

This clearly gives xi ≤ di for i ∈ X. By Proposition 4.2, R(X) has parameter γ′ =
ln(∆′1+1)
a′min

≤ γ0.

So for i /∈ X, we have xi ≤ dδx̂ie; this is at most ddie = di by definition of X. So x satisfies the
multiplicity constraints.

Also, we have E[xi] ≤ di ≤ x̂iδ ≤ xi(γ0 + O(1)) for i ∈ X and Theorem 3.2 shows E[xi] ≤
x̂i(1 + γ′ + 10 ln(1 +

√
γ′)) ≤ x̂i(1 + γ0 + 10 ln(1 +

√
γ0)) for i /∈ X. Combining these two cases, we

have
E[C • x] ≤ (1 + γ0 + c ln(1 +

√
γ0))C • x̂

By Proposition 4.2, this implies that C • x̂ ≤ (1 + γ0 + c ln(1 +
√
γ0))OPT. Since x satisfies

the covering constraints and multiplicity constraints, we have C • x ≥ OPT with probability one.
Applying Markov’s inequality to the non-negative random variable (C • x)−OPT and noting that
γ0 ≤ O(logm), we see that after O(logm) expected repetitions of this process, we achieve a solution
x satisfying all the multiplicity constraints as well as

C • x ≤ (1 + γ0 + 2c ln(1 +
√
γ0))OPT ≤ (ln ∆0 +O(log log ∆0))OPT.
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5 Lower bounds on approximation ratios

We now provide lower bounds on CIP approximation ratios. These bounds fall into two categories:
computational hardness (which follows from inapproximability of set cover), and integrality gaps
for the basic LP. The formal statements of these results contain numerous qualifiers and technical
conditions. We summarize these informally here:

1. Under the hypothesis P 6= NP , any polynomial-time algorithm to solve the CIP without
multiplicity constraints must have approximation ratio at least max(γ, 1 + γ/2). Likewise,
the basic LP has integrality gap at least max(γ, 1 + γ/2).

2. Under the hypothesis P 6= NP , any polynomial-time algorithm to solve the CIP with multi-
plicity constraints must have approximation ratio ln ∆0 −O(ln ln ∆0).

3. The gap between solutions to the basic LP, and integral solutions which ε-respect the multi-
plicity constraints, can be as large as Ω(γ/ε).

We contrast these lower bounds with the upper bounds achieved by our algorithms:

1. For CIP without multiplicity constraints, Theorem 3.2 gives an approximation ratio close to
γ (for large γ) and of order 1 +O(

√
γ) (for small γ).

2. For multiplicity constraints, Theorem 4.3 gives approximation ratio ln ∆0 +O(log log ∆0).

3. For ε-respecting multiplicity constraints, Theorem 3.5 gives approximation ratio O(γ/ε).

5.1 Hardness results

Set cover is a well-studied special case of CIP. A number of precise hardness results are known,
based on a construction of Feige [10] relating approximation of set cover to exactly solving SAT. A
closely related construction of Trevisan [25] applies to instances where the sets have bounded size.
We quote a crisp formulation of this result given in [6] as follows:

Theorem 5.1 ([25, 6]). There is an absolute constant c > 0 with the following property. Assuming
P 6= NP , any polynomial-time algorithm to approximate set cover on instances where the sets have
size at most B, must have an approximation ratio of at least lnB − c ln lnB.

This can be immediately adapted to hardness of CIP:

Proposition 5.2. Assuming P 6= NP , there is an absolute constant c > 0 with the following
property. For any polynomial-time algorithm A to approximate CIP and any integer value d ≥ 2
there exist problem instances with ∆0 ≤ d where A has approximation ratio at least ln d− c ln ln d.

Proof. A set cover instance in which the sets have size at most d can be encoded as a CIP with
∆0 ≤ d. To do so, let xj be an indicator variable that the set Sj appears in the cover. Each item
i ∈ [n] gives a constraint

∑
j:i∈Sj xj ≥ 1. The `0-column norm corresponding to a variable xj is

|Sj | ≤ d. Thus, the result follows from Theorem 5.1.

Thus, when ∆0 is large, the approximation ratio of Theorem 4.3 is optimal up to first-order.
We next show inapproximability as a function of ∆1 and amin. This construction depends on a
combinatorial result of [2] on the independent sets in hypergraphs, which we defer to the appendix.
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Proposition 5.3. Assuming P 6= NP , there is any absolute constant c > 0 with the following
property. For any polynomial-time algorithm A to approximate CIP without multiplicity constraints,
and any integers d ≥ 2, a ≥ 2, there exist problem instances with ∆1 ≤ d, amin ≥ a for which A has
approximation ratio at least

ln d− c ln ln d

a(1− (ed)−1/(a−1))

Proof. Let us fix d, a, and consider some algorithm A guaranteeing approximation ratio r. Consider
a set cover instance with sets of size at most d on domain [n]. Form a CIP instance, which has a
constraint for each i ∈ [n] given by

∑
j:i∈Sj xj ≥ a. This CIP has ∆1 ≤ d and amin = a.

Suppose the set cover instance has an optimal solution S with |S| = k. Then the CIP has
a corresponding solution of value ak derived by setting xj = a[[Sj ∈ S]]. The algorithm A then
generates an integral solution x with

∑
j xj ≤ rak. Consider now the multi-set S ′ with xj copies of

each set Sj . Every i ∈ [n] appears in at least a sets of S ′, and |S ′| ≤ rak. (These are both counted
with multiplicity). As we show in Proposition B.2, there is a polynomial-time algorithm to find a
set cover S ′′ ⊆ S ′ of size at most

|S ′′| ≤ rak
(
1− (ed)−1/(a−1)

)
Here, S ′′ is a solution to the original set cover instance. So by Theorem 5.1 we must have

ra
(
1− (ed)−1/(a−1)

)
≥ ln d− c ln ln d.

Corollary 5.4. Assuming P 6= NP , suppose that a polynomial-time algorithm to approximate
CIP without multiplicity constraints guarantees an approximation ratio f(γ) for some increasing
function f . Then for all γ > 0 we have

f(γ) ≥ γ

1− e−γ

Proof. For every integer a ≥ 2 and d = beaγc, Proposition 5.3 shows

f(γ) ≥ f
( ln d

a

)
≥ ln d− c ln ln d

a
(
1− (ed)−1/(a−1)

) ≥ ln(eaγ − 1)− c ln ln(eaγ)

a
(
1− (eaγ+1)−1/(a−1)

)
Since this holds for every integer a ≥ 2, f(γ) must be at least equal to the limit of the RHS as

a→∞, which is γ
1−e−γ .

Note that f(γ) ≥ max(1+γ/2, γ). To our knowledge, this is the first non-trivial hardness result
in the regime γ ≈ 0; previous works show, for instance, approximation ratios or integrality gaps
of the form Ω(γ), which is of course vacuous when γ ≈ 0. Note in particular that the bound of
Theorem 3.2 is optimal to first order (as a function of γ) as γ → ∞, and is off by a polynomial
factor (as a function of γ) as γ → 0.

5.2 Integrality gaps for the basic LP

Formally, the integrality gap is the ratio between the optimum feasible fractional solution to the
basic LP and the optimum feasible integral solution to the underlying CIP instance. We use here
a folklore randomized construction for the integrality gap of set cover.

Theorem 5.5 (Folklore). For any δ > 0 and m sufficiently large, there are set cover instances on
ground set [m] where the basic LP has integrality gap (1− δ) lnm.
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Please also see [26] for an explicit construction with integrality gap Ω(lnm). For the sake of
completeness, we show the following more precise form of Theorem 5.5, along with a brief proof.

Theorem 5.6. For any m ≥ m0, where m0 is some universal constant, there is a set cover S
instance on ground set [m], with |S| = n = m, and with integrality gap at least lnm− 10 ln lnm.

Proof. Let us set m = n; for each value i ∈ [m], select exactly s = dpne positions a1, . . . , as
uniformly at random in [n] without replacement, and add element i to the sets Sa1 , . . . , Sas . Here
parameter p satisfies p→ 0 as a function of m. As each element i ∈ [m] appears in exactly s sets,
setting x̂j = 1/s for every j = 1, . . . , n gives a valid fractional solution. Thus, the optimal fractional
solution value T̂ satisfies T̂ ≤ n/s ≤ 1/p.

Now, consider a putative integral solution x of weight t. Each i ∈ [m] has a probability of(
n−t
s

)
/
(
n
s

)
that it is not covered by x. So the total probability that x is a valid solution is at most

(1−
(
n−t
s

)
/
(
n
s

)
)m ≤ e−m

(
n−t
s

)
/
(
n
s

)
≤ e−m(

n−s−(t−1)
n

)t ≤ e−m(1−p−t/n)t

Tasking a union bound over all possible solutions x, we have

Pr(S has a solution of weight t) ≤
(
n
t

)
e−m(1−p−t/n)t ≤ et lnn−m(1−p)t+mt2/n

If this expression is smaller than one, then with positive probability all integral solutions satisfy
T > t. Simple analysis shows that this approaches 0 when t = lnm(lnm − 10 ln lnm) and p =
1/ lnm. Thus, for sufficiently large m, we have T/T̂ ≥ t

1/p = lnm− 10 ln lnm.

Using this as a starting point, we show integrality gaps for the basic LP.

Proposition 5.7. For any integer a ≥ 2 and m ≥ m0, where m0 is a sufficiently large constant,
there is a CIP instance on m constraints which share a common RHS value a, for which the basic
LP has integrality gap at least

lnm− 10 ln lnm

a(1− (em)−1/(a−1))

Proof. Consider the set cover instance S of Theorem 5.6, with optimal integral solution T and
optimal fractional solution T̂ such that T/T̂ ≥ lnm − 10 ln lnm. Form the corresponding CIP
instance I where the RHS value is set to a instead of 1. The optimal fractional solution value is
precisely T̂ ′ = aT̂ .

Suppose that I has an optimal integral solution S ′ of weight T ′. This solution can be viewed
as a multi-set which covers every element in the ground set at least a times. Since each set in S
clearly has size at most m, Proposition B.2 shows that S has a subcover of size at most

t = T ′
(

1− 1

1− (em)−1/(a−1)

)
Since T ≤ t, this implies that

T ′/T̂ ′ ≥ T

(1− (em)−1/(a−1))aT̂
≥ lnm−O(ln lnm)

a(1− (em)−1/(a−1))

We remark that for fixed γ and a = ln(m+1)
γ , this implies that the integrality gap goes to

γ
1−e−γ ≥ max(1 + γ/2, γ) as m→∞.
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Proposition 5.8. Let ε ∈ (0, 1) and let a be a positive integer. For any δ > 0 and m sufficiently
large, there is a CIP instance on m constraints with common RHS value a and a parameter d ≥ 0
such that the fractional solution x̂ ∈ [0, d]n has objective value T̂ , the optimal integral solution in
x ∈ {0, 1, . . . , d(1 + ε)de}n has objective value T , and

T/T̂ ≥ lnm−O(ln lnm)

aε
≥ Ω(γ/ε)

Proof. Let S = {S1, . . . , Sn} be the set cover instance of Theorem 5.5 on ground set [m]. Form the
CIP instance A on n+m variables, wherein for each k ∈ [m] we have a constraint

a

K(1 + ε) + 1
xn+k +

n∑
i∈[n],Si3k

xi ≥ a

We use objective function C • x =
∑n

i=1 xi. We set di =∞ for i = 1, . . . , n and we set di = K
for i = m + 1, . . . ,m + n; here K is an arbitrarily large integer parameter. (In particular, for K
sufficiently large, all the coefficients in this constraint are in the range [0, 1].)

Suppose now that ẑ1, . . . , ẑn is an optimal fractional solution to the basic LP corresponding to
S. Then let v = a(1+εK)

1+(1+ε)K and consider the fractional solution x̂ defined by setting x̂i = vẑi for
i ≤ n and x̂i = K for i > n. For any constraint k, this gives

a

K(1 + ε) + 1
x̂m+k +

∑
Si3k

x̂i =
a

K(1 + ε) + 1
K + v

∑
Si3k

ẑi ≥
a

K(1 + ε) + 1
K + v = a

and so x̂ is a valid fractional solution to A; its objective function is T̂ ≤
∑n

i=1 vx̂i = vT̂ ′, where T̂ ′

is the optimal fractional solution to the basic LP of S.
On the other hand, consider an integral solution x to A. As xm+k ≤ d(1+ε)Ke, every constraint

k has a
K(1+ε)+1(1 + ε)K +

∑
Si3k xi ≥ a, which implies that

∑
Si3k xi > 0. Since x is integral, it

is a solution to S. Thus, T ≥ T ′, where T ′ is the optimal integral solution to S. So we see that
T/T̂ ≥ T ′

vT̂ ′
≥ lnm−O(ln lnm)

v . Taking the limit as K →∞, the integrality gap is at least lnm−O(ln lnm)
aε

for K sufficiently large.

6 Negative correlation for RELAXATION

We will show that the values of x produced by the RELAXATION algorithm obey a type of negative
correlation property. Our main result will be the following:

Theorem 6.1. Suppose x ∈ [0, 1/α)n and α > − ln(1−σ)
σ . For any R ⊆ [n], we have

Pr
(∧
i∈R

xi = 1
)
≤
∏
i∈R

ρi

where the vector ρ ∈ Rn≥0 is defined as

ρi = αx̂i

(
1 + σ

∑
k

Aki
(1− σ)akeσαAk•x̂ − 1

)
We show this via a “witness” construction similar to Lemma 2.2; however, instead of providing

a witness for the event that xi = 1, we provide a witness for the event that xi1 = · · · = xis = 1. A
few details of the proof here which are identical to Lemma 2.2 will be omitted for clarity.
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For any variable i, exactly one of the following three cases holds: xi = 1 at the initial sampling,
xi first becomes equal to one during some resampling of a constraint k, or xi = 0 at the end of the
algorithm. If xi = 1 for the first time at the jth resampling of constraint k, we say i turns at (k, j).
If xi = 1 initially, we say that i turns at 0.

Consider a set I ⊆ [n] and a collection of sets Z = 〈Zk,j〉 for k = 1, . . . ,m and j = 1, . . . , Jk(Z),
for integers Jk(Z) ≥ 0. We define prefix(Z) to be the set of all pairs (k, j) where 1 ≤ j ≤ Jk(Z)
and we define the event E(I, Z) to be the following:

1. The first Jk(Z) resampled sets for each constraint k are respectively Zk,1, . . . , Zk,Jk(Z)

2. Each i ∈ I turns at 0 or at some (k, j) ∈ prefix(Z).

Proposition 6.2. For any x̂ ∈ [0, 1/α)n, I ⊆ [n], and list of sets Z, we have

Pr(E(I, Z)) ≤
∏
i∈I

αx̂i
∏
(k,j)

fk(Zk,j)

Proof. Let us define D =
⋃

(k,j) Zk,j ; here, and in the remainder of the proof, the list of pairs (k, j)
is implicitly taken to range over prefix(Z). We also write Jk as shorthand for Jk(Z) and pi = αx̂i
and qi = 1− pi throughout.

For any v ∈ {0, 1}n, define E(I, Z, v) to be the event E(I, Z) occurs if we start the RELAX-
ATION algorithm by setting x = v, and we also define E(T, I, Z, v) to be the event that E(I, Z, v)
occurs and the RELAXATION algorithm terminates in less than T resamplings. We prove by
induction on T that for any T ≥ 0 and any v ∈ {0, 1}n we have

Pr(E(T, I, Z, v)) ≤
∏

i∈I∩D
pi

∏
(k,j) fk(Zk,j)∏

i∈D qi
(3)

Let k be minimal with Ak •x < ak. If J` ≥ 1 for any ` < k then event E(T, I, Z, v) is impossible
and we are done. If Jk = 0, then E(T, I, Z, v) is equivalent to E(T −1, I, Z, x′) where x′ is the value
of the variables after a resampling; for this we use the induction hypothesis and we are done.

So suppose Jk ≥ 1. In this case, the following are necessary events for E(T, I, Z, x):

(C1) Zk,1 is selected as the resampled set for constraint k

(C2) The event E(T − 1, I ′, Z ′, x′) occurs, where x′ is the value of the variables after resampling,
where I ′ = I∩D′ and D′ =

⋃
(k′,j′)6=(k,1) Zk′,j′ , and Z ′ is derived by setting Z ′k,1, . . . , Z

′
k,Jk−1 =

Zk,2, . . . , Z
′
k,Jk

(and all other entries remain the same)

(C3) For all i ∈ (Zk,1 −D′) ∩ I we resample xi = 1

(C4) For all i ∈ Zk,1 ∩D′ we resample xi = 0

The rationale for (C3) is that we require i ∈ I to turn at some (k′, j′) ∈ prefix(Z), and in addition
Zk′,j′ is the j′th resampled set for constraint k′. This would imply that i ∈ Zk′,j′ . However, there
is only one such (k′, j′), namely (k′, j′) = (k, 1). Thus, i must be resampled to xi = 1.

The rationale for (C4) is the same as in Lemma 2.2: if we resample xi = 1, then xi can never
be resampled again. In particular, we cannot have i in any future resampled set. Thus if x′i = 1
but i ∈ Zk,1 ∩D′, then the event (C2) is impossible.

As in Lemma 2.2, the event (C1) has probability ≤ (1− σ)−ak
∏
i∈[n](1−Akiσ)

∏
i∈Zk,1

Akiσ
1−Akiσ .

Event (C3), conditional on (C1), has probability
∏
i∈(Zk,1−D′)∩I pi.
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Event (C4), conditional on (C1), (C3), has probability
∏
i∈Zk,1∩D′ qi.

By induction hypothesis, event (C2), conditional on (C1), (C3), (C4), has probability

Pr((C2)) ≤
∏

i∈I′−D′
pi ×

∏
i∈D′

qi ×
∏

(k′,j′)∈prefix(Z′)

fk′(Zk′,j′)

Multiplying these terms, after some rearrangement, gives Eq. (3). This completes the induction,
giving us

Pr(E(I, Z, v)) = lim
T→∞

Pr(E(T, I, Z, v)) ≤
∏

i∈I∩D
pi ×

∏
(k,j) fk(Zk,j)∏

i∈D qi

Finally, for the bound on Pr(E(I, Z)), observe that if i ∈ D, then xi must be equal to zero
during the initial sampling and likewise if i ∈ I − D, then xi must be equal to one during the
initial sampling. These events have probability

∏
i∈I−D pi

∏
i∈D qi. Conditional on this event,

Pr(E(I, Z, x)) ≤
∏
i∈I∩D pi ×

∏
(k,j) fk(Zk,j)∏

i∈D qi
. Thus, multiplying the probabilities together,

Pr(E(I, Z)) ≤
∏
i∈I

pi
∏
(k,j)

fk(Zk,j)

Proof of Theorem 6.1. We first claim that, in order to have xi = 1 for all i ∈ R, there must be a set
R′ ⊆ R, an injective function h : R′ → [m] and a list of sets Zk,j satisfying the following properties:

(D1) For each k = h(i) we have Jk(Z) ≥ 1 and i ∈ Zk,Jk(Z)

(D2) Each k /∈ h(R′) has Jk(Z) = 0

(D3) Each i ∈ R turns at either 0 or at some (k, j) ∈ prefix(Z).

To show this, let S0 ⊆ R denote the set of variables i ∈ R which turn at 0. For each k = 1, . . . ,m
let Sk ⊆ R denote the variables i ∈ R which turn at constraint k, where each i ∈ Sk turns at (k, Li).
The sets S0, S1, . . . , Sm partition R. For each constraint k we set Zk,1, . . . , Zk,j to be the first j
resampled sets for k where j = maxi∈Sk Li. To form R′ and h, we select for each k ∈ [m] with
Sk 6= ∅ an arbitrary i ∈ Sk which turns at (k, Jk(Z)); this value i is placed into R′ with h(i) = k.
Each i ∈ Sk must turn at (k, Li) thus (D3) is satisfied. For k = h(i) we then have i ∈ Zk,Jk(Z), so
(D1) is satisfied.

Thus, to show an upper bound on Pr(
∧
i∈R xi = 1), we take a union bound over R′, h, Zk,j

satisfying properties (D1), (D2), (D3). Lemma 6.2 shows that if a list of sets Z satisfies (D1), (D2),
then condition (D3) holds with probability at most

∏
i∈R pi

∏
(k,j) fk(Zk,j). Thus, we have

Pr
(∧
i∈R

xi = 1
)
≤

∑
R′,h,Z

satisfying (D1), (D2)

∏
i∈R

pi
∏
(k,j)

fk(Zk,j) (4)

To enumerate over R′, h, Z satisfying (D1), (D2), suppose we fix R′ and h. In this case, for each
value k = h(i) we can choose arbitrary parameter Jk ≥ 1 and sets Zk,1, . . . , Zk,Jk with i ∈ Zk,Jk .
Summing over possible values for Z gives:

∑
Z satisfying
(D1),(D2)

∏
(k,j)

fk(Zk,j) =
∏
i∈R′

(∑
Jk≥1

∑
Zk,1,...,Zk,Jk⊆[n]

i∈Zk,Jk

Jk∏
`=1

fk(Zk,`)
)
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By Proposition 2.3, and noting that k = h(i) in this expression, this is at most∏
i∈R′

sh(i)Ah(i),iσ ×
∑
j′≥0

sj
′

h(i) =
∏
i∈R′

sh(i)Ah(i),iσ

1− sh(i)

Summing over R′ ⊆ R and injective h : R′ → [m] gives:∑
R′,h,Z

satisfying (D1), (D2)

∏
i∈R

pi
∏
(k,j)

fk(Zk,j) ≤
∏
i∈R

pi
∑
R′⊆R

injective h : R′ → [m]

∏
i∈R′

sh(i)Ah(i),iσ

1− sh(i)

≤
∏
i∈R

pi
∑
R′⊆R

h:R′→[m]

∏
i∈R′

sh(i)Ah(i),iσ

1− sh(i)
=
∏
i∈R

pi(1 +
m∑
k=1

skAk,iσ

1− sk
) =

∏
i∈R

ρi

6.1 Multiple objective functions

The CIP framework can be extended to have multiple linear objective functions C1 • x, . . . , Cr • x
instead of just the single objective C • x. There may also be some over-all objective function D
which combines them, for example, D = max`C` • x or D =

∑
`(C` • x)2.

We note that the greedy algorithm, which is powerful for set cover, is not obviously useful in this
case. Depending on the precise form of the function D, it may be possible to solve the fractional
relaxation to optimality; for example, if D = max`C` •x, then this amounts to a linear program of
the form min t subject to C1 • x ≤ t, . . . , Cr • x ≤ t.

For our purposes, the algorithm used to solve the fractional relaxation is not relevant. Suppose
we are given some solution x̂. We now want to find a solution x such that simultaneously C` • x ≈
C` • x̂ for all `. Showing bounds on the expectations alone is not sufficient for this purpose.

Srinivasan [24] gave a randomized rounding scheme to provide this simultaneous approximation
guarantee. The randomized rounding, by itself, succeeded with exponentially small probability;
Srinivasan also described how to derandomize the process in nO(log r) time, albeit with some loss to
the approximation ratio.

Our strategy in this case will be to use the negative correlation to show that there is a good
probability that C` • x ≈ E[C` • x] for all ` = 1, . . . , r. Thus, our algorithm automatically gives
good approximation ratios for multi-criteria problems; the ratios are essentially the same as for the
single-criterion setting, and there is no extra computational burden. The concentration bounds we
use are related to Chernoff bounds, which we define next.

Definition 6.3 (The Chernoff upper-tail). For t ≥ µ with δ = δ(µ, t) = t/µ− 1 ≥ 0, the Chernoff

upper-tail bound is defined as F+(µ, t) =
(

eδ

(1+δ)1+δ

)µ
.

Theorem 6.4. Let C ∈ [0, 1]n, let x̂ ∈ Rn≥0 be a solution to the basic LP, and let α > − ln(1−σ)
σ for

σ ∈ [0, 1]. Then, after running the ROUNDING algorithm,

Pr(C • x > t) ≤ F+(C • ρ, t)

Proof. Letting vi, Gi, x̂
′
i, a
′
k, x
′ be the variables for the ROUNDING algorithm, we have

Pr(C • x > t) = Pr(C • (vθ +G+ x′) > t) = Pr(C • x′ > t− C • (vθ +G))
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Let ρ′ be the vector corresponding to the x̂′ ∈ [0, 1/α]n, i.e. ρ′i = αx̂′iT
′
i where we define

T ′i = 1 + σ
∑
k

Aki

(1− σ)a
′
keσαAk•x̂′ − 1

The value of C • x′ is a sum of random variables Cix
′
i, each of which is in the range [0, 1].

These random variables obey a negative-correlation property as shown in Theorem 6.1. As shown
in [21], this implies that they obey the same upper-tail Chernoff bounds as would a sum of random
variables Xi which are independent and satisfy E[Xi] = ρ′i. Therefore,

Pr(C • x′ > t− C • (vθ +G)) ≤ F+(C • ρ′, t− C • (vθ +G))

Thus Pr(C • x > t) ≤ F+

(
α
∑

iCix̂
′
iTi, t−C • (vθ+G)

)
. By Propositions 2.5 and 2.6, wee see

that x′iT
′
i ≤ (x̂i − viθ −Gi/α)Ti where we define Ti = 1 + σ

∑
k

Aki
(1−σ)akeσαak−1 .

Since function F+(µ, t) is always an increasing function of µ, we can thus calculate:

Pr(C • x > t) ≤ F+

(
α
∑
i

Ci(x̂i − viθ −Gi/α)Ti, t− C • (vθ +G)
)

≤ F+

(
(C • ρ)− (C • (vθ +G)), t− (C • (vθ +G))

)
≤ F+(C • ρ, t) (as F+(µ, t) ≤ F+(µ− x, t− x))

Corollary 6.5. Suppose we are given a covering system as well as a fractional solution x̂. Suppose
that the entries of C` are in [0, 1]. Then, with an appropriate choice of σ, α the ROUNDING
algorithm yields a solution x ∈ Zn≥0 such that

Pr(C` • x > t) ≤ F+(βC` • x̂, t)

for β = 1 + γ + 10 ln(1 +
√
γ). The algorithm has expected runtime O(nnz(A)).
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A Comparison with the Lovász Local Lemma

One rounding scheme that has been used for similar types of integer programs is based on a
probabilistic technique known as the Lovász Local Lemma (LLL) introduced in [9]; we contrast
this with our approach taken here.

In the basic form of randomized rounding, one must ensure that the probability of a “bad event”
(an undesirable configuration of a subset of the variables) — namely, that Ak • x < ak — is on
the order of 1/m; this ensures that, with high probability, no bad events occur. This accounts
for the term logm in the approximation ratio. The power of the LLL comes from the fact that
the probability of a bad event is not compared with the total number of events, but only with the
number of events it affects. At a heuristic level, the LLL should lead to scale-free approximation
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ratios for column-sparse CIP problems, since each variable only affects a limited number of bad
events. See, for example, [18] which applied the LLL in a similar way to packing integer programs.

In its classical form, the LLL is non-constructive since it only shows that there is a small positive
probability of avoiding all the bad events. In [20], Moser & Tardos solved this longstanding problem
by introducing a resampling-based algorithm. This algorithm initially samples all random variables
from the underlying probability space, and then continues to resample the variables involved in
any bad-events which remain currently true. Most applications of the LLL, such as [14], yield
polynomial-time algorithms using this framework.

One important technical limitation of the LLL is that it only depends on whether bad events
affect each other, not the degree to which they do so. For CIP instances, note that the entries of
Aki could all be extremely small yet non-zero, causing all the constraints to affect each other by
a tiny amount. Consequently, the LLL naturally leads to approximation ratios in terms of ∆0 as
opposed to ∆1. In [14], Harvey used a quantization scheme with iterative applications of the LLL
to address this issue for a related discrepancy problem. This multi-step process can lead to large
constant factors in the approximation ratio. (For packing problems with no constraint-violation
allowed, good approximations parametrized by ∆0, but not in general by ∆1, are possible [1].)

In the context of integer programming, the Moser-Tardos algorithm can be extended in ways
which go beyond the LLL itself. In [13], Harris & Srinivasan described a variant of the Moser-Tardos
algorithm based on “partial resampling”. In this scheme, when one encounters a bad event, one
only resamples a random subset of the variables. This process handles small-but-non-zero entries
of A in a more natural way, and leads to bounds in terms ∆1 for “assignment-packing” integer
programs with small constraint violation.

The RELAXATION algorithm can be viewed as a version of this partial resampling algorithm:
on encountering a violated constraint (a bad event), it resamples a random subset of variables
which currently cause that bad event. In our case, these are the variables which have xi = 0.
In particular, the list of sets Z1, . . . Zj for a constraint k in the RELAXATION algorithm can be
viewed as one “branch” of the witness tree for xi = 1.

There is one further optimization in how we count witness trees, which was developed in [12]:
we only need to keep track of when variables change values. This yields improved bounds for LLL
systems where the bad events are positively correlated. Because many different problem-specific
techniques and calculations are combined with a variety of LLL techniques, we view the connection
with the LLL as more an informal motivation than a technical guide.

B Some technical lemmas

Proposition B.1. For γ > 0 and a ≥ 1, we have

α+ (α− 1)
eaγ − 1

ea(α−1)α−a − 1
≤ 1 + γ + 10 ln(1 +

√
γ)

where α = 1 + γ + 4 ln(1 +
√
γ)

Proof. Let us first calculate eaγ

ea(α−1)α−a
:

eaγ

ea(α−1)α−a
=
(
eγ+lnα−(α−1)

)a
=
(
eln(1+γ+4 ln(1+

√
γ))−4 ln(1+

√
γ)
)a

Simple analysis shows that 1 + γ + 4 ln(1 +
√
γ) ≤ (1 +

√
γ)4, which (as a ≥ 1) in turn shows
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that this expression is less than one. Because of this fact, we can estimate

α+ (α− 1)
eaγ − 1

ea(α−1)α−a − 1
≤ α+ (α− 1)

eaγ

ea(α−1)α−a
= α+ (α− 1)

(
eln(1+γ+4 ln(1+

√
γ))−4 ln(1+

√
γ)
)a

≤ α+ (α− 1)eln(1+γ+4 ln(1+
√
γ))−4 ln(1+

√
γ)

≤ 1 + γ + 4 ln(1 +
√
γ) +

(1 + γ + 4
√
γ)(γ + 4

√
γ)

(1 +
√
γ)4

So it suffices to show that f(γ) ≤ 0 for the function f(γ) =
(1+γ+4

√
γ)(γ+4

√
γ)

(1+
√
γ)4

− 6 ln(1 +
√
γ).

Note that f(0) = 0. We can compute the derivative f ′(γ) as

f ′(γ) =
−1−√γ − 23γ − 14γ3/2 − 3γ2

(1 +
√
γ)5√γ

It can be algorithmically verified (e.g., by decidability of the first-order theory of real-closed
fields) that this expression is negative. So f(γ) ≤ f(0) = 0.

Proposition B.2. Consider a set cover instance S on ground set [m], where |S| = n, such that
the sets in S have size at most d, and every i ∈ [m] appears in at least a ≥ 2 sets. Then S has a
solution of size at most n(1− (ed)−1/(a−1)), which can be found in deterministic polynomial time.

Proof. The set cover instance can be viewed as a hypergraph H on vertex set [m] with edge set S.
A solution to S is precisely an edge cover for H, which is equivalent to a vertex cover of the dual
graph H ′, which in turn is the complement of an independent set of H ′.

The dual graph H ′ has n vertices, maximum degree d and minimum edge size a. Therefore, as
shown in [2], it has an independent set W of size |W | ≥ n

(d+
1
a−1
d

)
, which can be found in deterministic

polynomial time. Thus H ′ has a vertex cover of size n− |W |. To simplify this expression, we may
estimate: (

d+ 1
a−1

d

)
=
d+ 1/(a− 1)

d
× d− 1 + 1/(a− 1)

d− 1
× · · · × 1 + 1/(a− 1)

1

≤ e
1

d(a−1) e
1

(d−1)(a−1) . . . e
1

(a−1) = e
Hd
a−1 ≤ e

1+ln d
a−1 = (ed)

1
a−1
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