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1

Bipartite-matching markets pair agents on one side of a market with agents, items, or contracts on the opposing2

side. Prior work addresses online bipartite-matching markets, where agents arrive over time and are dynami-3

cally matched to a known set of disposable resources. In this paper, we propose a new model, Online Matching4

with (offline) Reusable Resources under Known Adversarial Distributions (OM-RR-KAD), in which resources5

on the offline side are reusable instead of disposable; that is, once matched, resources become available again6

at some point in the future. We show that our model is tractable by presenting an LP-based non-adaptive algo-7

rithm that achieves an online competitive ratio of 1
2 − ϵ for any given constant ϵ > 0. We also show that no8

adaptive algorithm can achieve a ratio of 1
2 + o(1) based on the same benchmark LP. Through a data-driven9

analysis on a massive openly-available dataset, we show our model is robust enough to capture the application10

of taxi dispatching services and ride-sharing systems. We also present heuristics that perform well in practice.11
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1 INTRODUCTION17

In bipartite-matching problems, agents on one side of a market are paired with agents, contracts,18

or transactions on the other. Classical matching problems—assigning students to schools, papers to19

reviewers, or medical residents to hospitals—take place in a static setting, where all agents exist at20

the time of matching, are simultaneously matched, and then the market concludes. In contrast, many21

matching problems are dynamic, where one side of the market arrives in an online fashion and is22

matched sequentially to the other side.23
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Online bipartite-matching problems are primarily motivated by Internet advertising. In the basic24

version of the problem, we are given a bipartite graph G = (U ,V ,E) where U represents the of-25

fline vertices (advertisers) and V represents the online vertices (keywords or impressions). There26

is an edge e = (u,v) if advertiser u bids for a keyword v. When a keyword v arrives, a central27

clearinghouse must make an instant and irrevocable decision to either reject v or assign v to one28

of its “neighbors” u in G and obtain a profit we for the match e = (u,v). When an advertiser u is29

matched, it is no longer available for matches with other keywords (in the most basic case) or its30

budget is reduced. The goal is to design an efficient online algorithm such that the expected total31

weight (profit) of the matching obtained is maximized. Following the seminal work of Karp et al.32

[29], there has been a large body of research on related variants (overviewed by Mehta [40]). One33

particular flavor of problems is online-matching with known identical independent distributions34

(OM-KIID) [14, 21, 26, 28, 36]. In this context, agents arrive over T rounds, and their arrival distri-35

butions are assumed to be identical and independent over allT rounds; additionally, this distribution36

is known to the algorithm beforehand.37

Apart from the Internet-advertising application, online bipartite-matching models have been used38

to capture a wide range of online resource allocation and scheduling problems. Typically we have39

an offline and an online party representing, respectively, the service providers (SP) and online users;40

once an online user arrives, we need to match it to an offline SP immediately. In many cases, the41

service is reusable in the sense that once an SP is matched to a user, it will be gone for some time, but42

will then rejoin the system afterwards. Besides that, in many real settings the arrival distributions of43

online users do change from time to time (i.e., they are not i.i.d.). Consider the following motivating44

examples.45

Taxi Dispatching Services and Ride-Sharing Systems. Traditional taxi services and ride-sharing46

systems such as Uber and Didi Chuxing match drivers to would-be riders [30, 31, 50, 55]. Here, the47

offline SPs are different vehicle drivers. Once an online request (potential rider) arrives, the system48

matches it to a nearby driver instantly such that the rider’s waiting time is minimized. In most cases,49

the driver will rejoin the system and can be matched again once she finishes the service. Addition-50

ally, the arrival rates of requests changes dramatically across the day. Consider the online arrivals51

during peak hours and off-peak hours for example: the arrival rates in the former case can be much52

larger than the latter. Though our model is primarily motivated by taxi-dispatching services and53

ride-sharing platforms, we acknowledge that it does not address the full generality of these applica-54

tions. In particular, our work focuses on the temporal components of rideshare; spatial components55

such as match-specific driver movement are not modeled [17, 18, 33]. Since we make the simpli-56

fying assumption that the stochastic process that determines the parameters in the environment is57

independent of the algorithm’s decisions, this may not fully capture the scenario where requests58

are heterogenous with vastly-different ride times. One potential direction to extend this model is to59

consider correlated reusable rates, which makes the theory much more challenging.60

Organ Allocation. Chronic kidney disease affects tens of millions of people worldwide at great61

societal and monetary cost [43, 49]. Organ donation—either via a deceased or living donor—is a62

lifesaving alternative to organ failure. In the case of kidneys, a donor organ can last up to 15 years63

in a patient before failing again. Various nationwide organ donation systems exist and operate under64

different ethical and logistical constraints [12, 20, 37], but all share a common online structure: the65

offline party is the set of patients (who reappear every 5 to 15 years based on donor organ longevity),66

and the online party is the set of donors or donor organs, who arrive over time. Similarly, in some67

blood or plasma donation settings, donors might reappear after some number of weeks.68

Similar scenarios can be seen in other areas such as wireless network connection management69

(SPs are different wireless access points) [59] and online cloud computing service scheduling [42,70
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60]. Inspired by the above applications, we generalize the model of OM-KIID in the following two71

ways.72

Reusable Resources. Once we assignv tou,u will rejoin the system afterCe rounds with e = (u,v),73

where Ce ∈ {0, 1, . . . ,T } is an integral random variable with known distribution. In this paper, we74

call Ce the occupation time of u w.r.t. e. In fact, we show that our setting can directly be extended75

to the case when Ce is time sensitive: when matching v to u at time t , u will rejoin the system76

after Ce,t rounds. This extension makes our model adaptive to nuances in real-world settings. For77

example, consider the taxi dispatching or ride-sharing service: the occupation time of a driver u78

from a matching with an online user v does depend on both the user type of v (such as destination)79

and the time when the matching occurs (peak hours can differ significantly from off-peak hours).80

Known Adversarial Distributions (KAD). Suppose we have T rounds and that for each round81

t ∈ [T ] 1, a vertex v is sampled from V according to an arbitrary known distribution D where82

the marginal for v is {pv,t } such that
!
v ∈V pv,t ≤ 1 for all t . Also, the arrivals at different times83

are independent (and according to these given distributions). The setting of KAD was introduced84

by [4, 5] and is known as Prophet Inequality matching.85

We call our new model Online Matching with (offline) Reusable Resources under Known Adver-86

sarial Distributions (OM-RR-KAD, henceforth). Note that the OM-KIID model can be viewed as a87

special case when Ce is a constant (with respect to T ) and {pv,t |v ∈ V } are the same for all t ∈ [T ].88

Competitive Ratio. Let E[ALG(I,D)] denote the expected value obtained by an algorithm ALG89

on an input I and arrival distribution D. Let E[OPT(I)] denote the expected offline optimal value,90

which refers to the optimal solution when we are allowed to make choices after observing the entire91

sequence of online arrival vertices. Then, the competitive ratio is defined as minI,D
E[ALG(I,D)
E[OPT(I)] . It is92

a common technique to use an LP optimal value to upper bound E[OPT(I)] (called the benchmark93

LP) and hence get a valid lower bound on the resulting competitive ratio.94

Adaptive vs. non-adaptive algorithms. An online algorithm ALG is called non-adaptive if the95

strategy for all time-steps t , denoted by ALG(t), is pre-computed before the realizations of the96

online process. In contrast, adaptive algorithms can choose the strategy for time-step t after seeing97

the random realizations of all the random processes (e.g., random seeds used in the algorithm,98

arrivals of online requests and occupation times of drivers) in steps 1, 2, . . . , t − 1.99

1.1 Our Contributions100

First, we propose the new model of OM-RR-KAD to capture a wide range of real-world applica-101

tions related to online scheduling, organ allocation, rideshare dispatch, among others. We claim that102

this model is tractable enough to obtain good algorithms with theoretically provable guarantees and103

general enough to capture many real-life instances. Our model assumptions take a significant step104

forward from the usual assumptions in the online-matching literature where the offline side is as-105

sumed to be single-use or disposable. This leads to a larger range of potential applications which106

can be modeled by online-matching. The first part of the paper focusses on the abstract model and107

though the experiments are motivated using ride-share, we do not get into the application-specific108

assumptions/issues one may run into. For specific discussion on issues that arise when applied to109

ride-share, we defer to Section 5.110

Second, we show how this model can be cleanly analyzed under a theoretical framework. We111

first construct a linear program (LP henceforth) LP (1) which we show is a valid upper bound on112

the expected offline optimal value (note that the latter is hard to characterize). Next, we propose113

1Throughout this paper, we use [N ] to denote the set {1, 2, . . . , N }, for any positive integer N .
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an efficient non-adaptive algorithm that achieves a competitive ratio of 1
2 − ϵ for any given con-114

stant ϵ > 0. This algorithm solves the LP and obtains an optimal fractional solution. It uses this115

optimal solution as a guide in the online phase. Using Monte-Carlo simulations (called simulations116

henceforth), and combining with this optimal solution, our algorithm makes the online decisions. In117

particular, Theorem 1 describes our first theoretical results formally.118

THEOREM 1. LP (1) is a valid benchmark for OM-RR-KAD. There exists a non-adaptive on-119

line algorithm that achieves an online competitive ratio of 1
2 − ϵ for any given ϵ > 0 against the120

benchmark LP (1).121

Third, we show that the online-competitive analysis of the non-adaptive algorithm is tight with122

respect to the choice of our benchmark LP. Specifically, we show that when restricted to LP (1), no123

adaptive algorithm can achieve a competitive ratio better than 1
2 (Theorem 2), and no non-adaptive124

algorithm can beat 1
2 even when all Ce are deterministic and equal (Theorem 3).125

THEOREM 2. No adaptive algorithm can achieve a competitive ratio better than 1
2 +o(1) against126

the benchmark LP (1). Here, o(1) is a vanishing term when T is sufficiently large.127

THEOREM 3. No non-adaptive algorithm can achieve a competitive ratio better than 1
2 + o(1)128

against the benchmark LP (1) even when allCe are deterministic and equal. Here, o(1) is a vanishing129

term when both of Ce and T /Ce are sufficiently large.130

Finally, through a data-driven analysis on a massive openly-available dataset we show that our131

model is robust enough to capture the setting of taxi hailing/sharing at least. Additionally, we pro-132

vide certain simpler heuristics which also give good performance. Hence, we can combine these133

theoretically grounded algorithms with such heuristics to obtain further improved ratios in practice.134

Section 5 provides a detailed qualitative and quantitative discussion.135

1.2 Other Related Work136

In addition to the arrival assumptions of KIID and KAD, there are several other important, well-137

studied variants of online-matching problems. Under adversarial ordering, an adversary can arrange138

the arrival order of all items in an arbitrary way (e.g., online-matching [29, 53] and AdWords [16,139

41]). Under a random arrival order, all items arrive in a random permutation order (e.g., online-140

matching [35] and AdWords [24]). Finally, under unknown distributions, in each round, an item is141

sampled from a fixed but unknown distribution. (e.g., [19]). For each of the categories above, we142

list only a few examples considered under that setting. For a more complete list, please refer to the143

book by Mehta [40].144

Despite the fact that our model is inspired by online bipartite-matching, it also overlaps with145

stochastic online scheduling problems (SOS) [38, 39, 52]. We first restate our model in the language146

of SOS: we have |U | nonidentical parallel machines and |V | jobs; at every time-step a single job v147

is sampled from V with probability pv,t ; the jobs have to be assigned immediately after its arrival148

(or rejected right away); additionally each job v can be processed non-preemptively on a specific149

subset of machines; once we assign v to u, we get a profit of we and u will be occupied for Ce150

rounds with e = (u,v), whereCe is a random variable with known distribution. Observe that the key151

difference between our model and SOS is in the objective: the former is to maximize the expected152

profit from the completed jobs, while the latter is to minimize the total or the maximum completion153

time of all jobs. In a recent concurrent work [22], they consider the dynamic assortment of reusable154

resources. In their context, the offline side is the set of reusable resources, while the online side is155

the set of consumers. They consider the arrival setting of KAD (which they call the Bayesian model156

with non-identical distributions). The critical difference is that they assume that in each round, on157
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the arrival of an online customer, the algorithm should assign her a set of offline resources, where158

each offline resource has a given budget. The benchmark LP has an exponential number of variables,159

which is not solvable in polynomial time. They overcome this by assuming an offline oracle, that160

returns an optimal solution to the benchmark LP for any given arrival sequence of online customers.161

They design a similar simulation-based online policy that achieve a competitive ratio of 1/2.162

Research in ridesharing platforms and similar allocation problems is an active area of research163

within multiple fields, including computer science, operations research and transportation engineer-164

ing. State-independent policies were studied previously using theory from control and queuing sys-165

tems [11, 13, 46]. The role of pricing in the dynamics of drivers in ridesharing platforms is also an166

active area of research in computational economics and AI/ML (e.g., [2, 10, 17, 33, 44, 47, 58]). Our167

problem is a form of online-matching in dynamic environments, which is an active area of research168

within the AI/ML community. In particular, [20, 31, 54, 55] have studied algorithms for matching in169

various dynamic bipartite markets such as kidney exchange, spatial crowdsourcing, labor markets,170

and so on. A similar line of work on general graphs is also prominent in the literature (e.g., [3, 6–8]).171

2 MAIN MODEL172

In this section, we present a formal statement of our main model. Suppose we have a bipartite graph173

G = (U ,V ,E) where U and V represent the offline and online parties respectively. We have a finite174

time horizon T (known beforehand) and for each time t ∈ [T ], a vertex v will be sampled (we use175

the term v arrives) from a known probability distribution {pv,t } such that
!
v ∈V pv,t ≤ 12 (noting176

that such a choice is made independently for each round t). The expected number of times v arrives177

across the T rounds,
!

t ∈[T ] pv,t , is called the arrival rate for vertex v. Once a vertex v arrives,178

we need to make an irrevocable decision immediately: either to reject v or assign v to one of its179

neighbors in U . For each u, once it is assigned to some v, it becomes unavailable for Ce rounds180

with e = (u,v), and subsequently rejoins the system. Here Ce is an integral random variable taking181

values from {0, 1, . . . ,T } and the distribution is known in advance. Each assignment e is associated182

with a weight we and our goal is to design an online assignment policy such that the total expected183

weights of all assignments made is maximized. Following prior work, we assume |V | ≫ |U | and184

T ≫ 1. Throughout this paper, we use edge e = (u,v) and assignment of v to u interchangeably.185

For an assignment e, let xe,t be the probability that e is chosen at t in any offline optimal algo-186

rithm. For each u (likewise for v), let Eu (Ev ) be the set of neighboring edges incident to u (v). We187

use the LP (1) as a benchmark to upper bound the offline optimal. We now interpret the constraints.188

For each round t , once an online vertex v arrives, we can assign it to at most one of its neighbors.189

Thus, we have: if v arrives at t , the total number of assignments for v at t is at most 1; if v does not190

arrive, the total is 0. The LHS of (2) is exactly the expected number of assignments made at t for v.191

It should be no more than the probability that v arrives at t , which is the RHS of (2). Constraint (3)192

is the most novel part of our problem formulation. Consider a given u and t . In the LHS, the first193

term (summation over t ′ < t and e ∈ Eu ) refers to the probability that u is not available at t while194

the second term (summation over e ∈ Eu ) is the probability that u is assigned to some driver at t ,195

which is no larger than probability u is available at t . Thus, the sum of the first term and second196

term on LHS is no larger than 1.3 This argument implies that the LP forms a valid upper-bound on197

the offline optimal solution and hence we have the first part of Lemma 4.198

LEMMA 4. The optimal value to LP (1) is a valid upper bound for the offline optimal. Moreover,199

suppose for some δ ≥ 0, we have an estimate f (e,y) of Pr[Ce > y] for all edges e and y ≥ 0 , where200

2Thus, with probability 1 −!
v∈V pv,t , none of the vertices from V will arrive at t .

3We would like to point out that our LP constraint (3) on u is inspired by Ma [34]. The proof is similar to that by Alaei et al.
[4] and Alaei et al. [5].

ACM Transactions on Economics and Computation, Vol. 0, No. 0, Article 0. Publication date: January 2018.



0:6 Dickerson et al.

maximize
"
t ∈[T ]

"
e ∈E

wexe,t (1)

subject to
"
e ∈Ev

xe,t ≤ pv,t ∀v ∈ V , t ∈ [T ] (2)

"
t ′<t

"
e ∈Eu

xe,t ′ Pr[Ce > t − t ′] +
"
e ∈Eu

xe,t ≤ 1 ∀u ∈ U , t ∈ [T ] (3)

0 ≤ xe,t ≤ 1 ∀e ∈ E, t ∈ [T ] (4)

f (e,y)/Pr[Ce > y] always lies in [1/(1 + δ ), 1 + δ ]. Then, by using f (e, t − t ′) in the LP instead201

of Pr[Ce > t − t ′] and scaling down the resultant vector x by (1 + δ ), we only get a further loss of202

(1 + δ ) in the competitive ratio.203

PROOF. Fix any offline optimal algorithm OPT. For each assignment e = (u,v) and t , let Xe,t204

denote an indicator random variable for the event that e is matched at t in OPT, which includes the205

event that v arrives at time t . Let E[Xe,t ] = xe,t . Therefore, by linearity of expectation, the expected206

performance of OPT is E[OPT] = !
t
!

e wexe,t . Now we justify that the solution {xe,t } is feasible207

to all constraints in LP (1).208

In constraint (2), the LHS denotes the probability thatv is matched at t , which should be no larger209

than the probability that vertex v arrives at time t . In constraint (3), the first part210 !
t ′<t

!
e ∈Eu xe,t ′ Pr[Ce > t −t ′] denotes the probability that u is occupied due to assignments made211

prior to t while the second part
!

e ∈Eu xe,t is the probability that an assignment incident tou is made212

at time t . Thus, the sum of these two parts should be no larger than 1. Constraint (4) is satisfied since213

{xe,t } are all probability values. Therefore, we have shown that the values {xe,t } is feasible to all214

constraints in LP (1), which implies that the optimal value of LP (1) is a valid upper bound for the215

performance of any offline optimal.216

The second part follows directly from the fact that x is scaled down by a factor (1 + δ ) and hence217

the objective is scaled down by a factor (1 + δ ). □218

3 SIMULATION-BASED ALGORITHM219

In this section, we present a simulation-based algorithm. We will first give a gentle introduction to220

simulation-based algorithms, that has been developed and used in prior works ([1] and [15]).221

Simulation-based algorithms. We use the term simulation throughout this paper to refer to Monte222

Carlo simulation and the term simulation-based attenuation to refer to the simulation and attenua-223

tion techniques as shown in [1] and [15]4. At a high level, suppose we have a randomized algorithm224

such that for some event E (i.e., u is available at t) we have Pr[E] ≥ c, then we modify the algorithm225

as follows: (i) We first use simulation to estimate a value Ê that lies in the range [Pr[E], (1+ϵ) Pr[E]]226

with probability at least 1 − δ . (ii) By “ignoring" E (i.e., attenuation, in a problem-specific manner)227

with probability ∼ 1 − c/Ê, we can ensure that the final effective value of Pr[E] is arbitrarily close228

to c, i.e., in the range [c/(1+ ϵ), c] with probability at least 1−δ . This simple idea of attenuating the229

probability of an event to come down approximately to a certain value c is what we term simulation-230

based attenuation. The number of samples needed to obtain the estimate Ê is Θ( 1
cϵ 2 · log(

1
δ )) via a231

standard Chernoff-bound argument. In our applications, we will take ϵ = 1/poly(N ) where N is the232

problem-size, and the error ϵ will only impact lower-order terms in our approximations.233

4This is called “dumping factor” in [1]. See Appendix B in [1] for a formal treatment.
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We adapt the above simulation-based attenuation technique to our setting. Let x∗ denote an opti-234

mal solution to LP (1). Suppose we aim to develop an online algorithm achieving a ratio ofγ ∈ [0, 1].235

In particular, for every edge e ∈ E, we want to ensure that the Pr[e is matched ] ≥ γ . Consider an236

assignment e = (u,v) when some v arrived at time t . Let SFe,t be the event that e is safe at t ,237

i.e., u is available at t . Using Monte-Carlo simulations we obtain an approximate estimate βe,t of238

the quantity Pr[SFe,t ]. Note that to obtain βe,t , we need the estimates βe,t ′ for every t ′ < t . With the239

estimated quantity βe,t , we match a safe edge e at time t with probability
x ∗
e,t

pv,t
γ
βe,t

. This is a valid240

probability (i.e., not exceeding 1), if and only if γ ≤ βe,t . We denote an algorithm ADAP(γ ) to be241

valid if and only if for every e ∈ E and every t ∈ [T ] we have γ ≤ βe,t .242

When the condition γ ≤ βe,t is satisfied for all e ∈ E and t ∈ [T ], we have that the probability an243

edge e = (u,v) is matched conditioned on the event that v arrives and u is available is at least γx∗e,t .244

Thus, using linearity of expectation this immediately implies that the expected reward obtained by245

the algorithm is at least γ
!

t ∈[T ]
!

e ∈E wex
∗
e,t . Therefore, the competitive ratio is at least γ .246

At the outset, this looks similar to the Inverse Propensity Scoring (IPS) used in the multi-armed247

bandit literature [9]. However, there is a key difference between IPS estimates and our estimates. In248

the bandit literature, one usually scales the value by the probability of playing an action, since this249

is the cost of observing only bandit feedback. However, here we scale by a quantity that depends250

on the probability of a certain event happening during the run of the algorithm, because of playing251

other actions. The linear program gives a distribution over the edges assuming that all the neighbors252

are available. Hence this scaling can be interpreted as the cost the algorithm needs to incur when253

some neighbors are already matched.254

The simulation-based attenuation technique has been used previously for other problems, such as255

stochastic knapsack [34] and stochastic matching [1]. Throughout the analysis, we assume that we256

know the exact value of βe,t := Pr[SFe,t ] for all t and e. (It is easy to see that the sampling error can257

be folded into a multiplicative factor of (1−ϵ) in the competitive ratio by standard Chernoff bounds258

and hence, ignoring it leads to a cleaner presentation.). The formal statement of our algorithm,259

denoted by ADAP(γ ), is as follows. For each v and t , let Ev,t be the set of safe assignments for v at260

t .261

ALGORITHM 1: A simulation-based adaptive algorithm ADAP(γ )
For each time t , let v denote the request arriving at time t .

If Ev,t = ∅, then reject v; otherwise choose e ∈ Ev,t with probability
x ∗
e,t

pv,t
γ
βe,t

where e = (u,v).

Remarks. Our simulation-based adaptive algorithm described above is non-adaptive according262

to our definition. Assume ADAP is valid with respect to a given γ ∈ (0, 1). We can first solve263

the benchmark LP (1) and get an optimal solution {x∗e,t }e ∈E,t ∈[T ]. Then by simulating the random264

arrivals of online agents according to known distributions {pv,t }v ∈V ,t ∈[T ] and ADAP(γ ) itself se-265

quentially from t = 1, 2, . . . ,T , we can get an arbitrarily accurate estimate of βe,t for each e and t .266

All these procedures can be done in an offline manner (i.e., before the online process).267

LEMMA 5. ADAP(γ ) is a valid algorithm (i.e., γ ≤ βe,t for every e ∈ E and t ∈ [T ]) when γ = 1
2 .268

PROOF. Essentially we need to show that βe,t ≥ γ = 1
2 for all e and t . We prove it by induction269

on t as follows.270

When t = 1, βe,t = 1 for all e = (u, ∗). Therefore, we are done. Assume for all t ′ < t , βe,t ′ ≥ 1/2271

and ADAP(γ ) is valid for all rounds t ′. In other words, we assume each e is assigned with probability272

exactly equal to x∗e,t ′ · 1
2 for all t ′ < t . Now consider a given e = (u,v). Observe that e is unsafe at t273

ACM Transactions on Economics and Computation, Vol. 0, No. 0, Article 0. Publication date: January 2018.



0:8 Dickerson et al.

iff u is assigned with some v ′ at t ′ < t such that the assignment e ′ = (u,v ′) makes u unavailable at274

t . Therefore,275

1 − βe,t = 1 − Pr[SFe,t ] =
"
t ′<t

"
e ∈Eu

x∗e,t ′

2
Pr[Ce > t − t ′] ≤ 1

2
.

The last inequality above is due to Constraint (3) in the benchmark LP (1). Therefore, we have276

βe,t ≥ 1/2 and we are done. □277

The main Theorem 1 follows directly from Lemmas 4 and 5.278

Extension from Ce to Ce,t . Consider the case when the occupation time of u from e is sensitive to279

t . In other words, each u will be unavailable for Ce,t rounds from the assignment e = (u,v) at t .280

We can accommodate the extension by simply updating the constraints (3) on u in the benchmark281

LP (1) to the following. We have that ∀u ∈ U , t ∈ [T ],282

"
t ′<t

"
e ∈Eu

xe,t ′ Pr[Ce,t ′ > t − t ′] +
"
e ∈Eu

xe,t ≤ 1 (5)

The rest of our algorithm remains the same as before. We can verify that (1) LP (1) with con-283

straints (3) replaced by (5) is a valid benchmark; (2) ADAP achieves a competitive ratio of 1
2 − ϵ for284

any given ϵ > 0 for the new model based on the new valid benchmark LP. The modifications to the285

analysis transfer through in a straightforward way and for brevity we omit the details here.286

4 TIGHTNESS OF ONLINE ANALYSIS AGAINST THE BENCHMARK LP287

In this section we prove the main result as stated in Theorem 2. Consider the following example.288

EXAMPLE 1. Consider a star graph G = (U ,V ,E), where U consists of one single node u and289

V = {v1,v2}. Set T = N + 1. For j = 1, 2 and t ∈ [T ], let pj,t denote the arrival probability of the290

vertex of type vj at time t . For t = 1, p11 = 1 and p21 = 0. For 2 ≤ t ≤ T , p1,t = 0 and p2,t = 1/N . In291

other words, with probability 1 − 1/N , no vertex will arrive (or we can assume a dummy node will292

arrive) during round t ≥ 2. Let w1 ! w(u,v1) = 1 − 1/N and w2 ! w(u,v2) = 1. For C1 ! C(u,v1), it293

takes value of T and 1 with respective probabilities 1 − 1/N and 1/N . For C2 ! C(u,v2), it takes the294

value 1 with probability 1.295

LEMMA 6. The benchmark LP (1) has an optimal value of 2 − 1/N on Example 1.296

PROOF. For ease of exposition, let xt and yt denote the probabilities that e = (u,v1) and e =297

(u,v2) get chosen at time t in any offline optimal, respectively. Thus, the updated benchmark LP is298

as follows:299

maximize
"
t ∈[T ]

(1 − 1/N )xt +
"
t ∈[T ]

yt (6)

s.t. x1 ≤ 1,y1 ≤ 0 (7)

xt ≤ 0,yt ≤ 1/N ∀t ≥ 2 (8)

x1(1 − 1/N ) + yt ≤ 1 ∀t ≥ 2 (9)

0 ≤ xt ,yt ≤ 1 ∀t ∈ [T ] (10)

We can verfiy that the optimal solution to the above LP is as follows: x1 = 1 and yt = 1/N for all300

t ≥ 2, all the rest are zeros. Therefore, the optimal value is (1−1/N )+ (1/N ) · (T −1) = 2−1/N . □301

LEMMA 7. The optimal (adaptive) online algorithm has an expected performance of 1+ 1/N on302

Example 1.303
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PROOF. Let ALG be an optimal online algorithm and suppose that it matches the edge e = (u,v1)304

with probability α ∈ [0, 1] at t = 1. Let E[ALG] be the expected total weight of all matches achieved305

by ALG. Thus,306

E[ALG] = α
#
1 + (1/N ) · (1/N ) · N

$
+ (1 − α) · (1/N ) · N = 1 + α/N .

Thus, the optimal online algorithm will choose α = 1 and the resultant expected performance is307

1 + 1/N . □308

Proof of Theorem 2.309

PROOF. Combining the two lemmas above, we see that the optimal algorithm can achieve a310

competitive ratio of (1 + 1/N )/(2 − 1/N ) on Example 1 w.r.t. to benchmark LP (1). This completes311

the proof. □312

4.1 The special case of deterministic Ce being a constant313

Consider a complete bipartite graph G = (U ,V ,E) where |U | = K , |V | = n2. Suppose we have314

T = n rounds and pv,t =
1
n2 for each v and t . In other words, in each round t , each v is sampled315

uniformly from V . For each e, let Ce be deterministically equal to K , which implies that each u316

will be unavailable for a constant K rounds after each assignment. Assume all assignments have a317

uniform weight (i.e., we = 1 for all e). Split the whole online process of n rounds into n − K + 1318

consecutive windows W = {Wℓ} such thatWℓ = {ℓ, ℓ+1, . . . , ℓ+K −1} for each 1 ≤ ℓ ≤ n−K +1.319

The benchmark LP (1) then reduces to the following.320

max
"
t ∈[T ]

"
e ∈E

xe,t (11)

s.t.
"
e ∈Ev

xe,t ≤
1
n2

∀v ∈ V , t ∈ [T ] (12)

"
t ∈Wℓ

"
e ∈Eu

xe,t ≤ 1 ∀u ∈ U , 1 ≤ ℓ ≤ n − K + 1 (13)

0 ≤ xe,t ≤ 1 ∀e ∈ E, t ∈ [T ] (14)

We can verify that an optimal solution to the above LP is as follows: x∗e,t = 1/(n2K) for all e and321

t with the optimal objective value of n. We investigate the performance of any optimal non-adaptive322

algorithm. Notice that the expected arrivals of any v in the full sequence of online arrivals is 1/n.323

Thus for any non-adaptive algorithm NADAP, it needs to specify the allocation distribution Dv for324

each v during the first arrival. Consider a given NADAP parameterized by {αu,v ∈ [0, 1]} for each325

v and u ∈ Ev such that
!
u ∈Ev αu,v ≤ 1 for each v. In other words, NADAP will assign v to u with326

probability αu,v when v comes for the first time and u is available.327

Let βu =
!
v ∈Eu αu,v ∗ 1

n2 , which is the probability that u is matched in each round if it is safe at
the beginning of that round, when running NADAP. Hence,"

u ∈U
βu =

"
u ∈U

"
v ∈Eu

αu,v · 1
n2
=

"
v ∈V

"
u ∈Ev

αu,v · 1
n2

≤ 1

Consider a givenu with βu and let γu,t be the probability thatu is available at t . Then the expected328

number of matches of u after the n rounds is
!

t βuγu,t . We have the recursive inequalities on γu,t329

as in Lemma 8, with γu,t = 1, t = 1.330
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LEMMA 8. ∀1 < t ≤ n, we have331

γu,t + βu
"

t−K+1≤t ′<t
γu,t ′ = 1

PROOF. The inequality for t = 1 is due to the fact that u is safe at t = 1. For each time t > 1, Let
SFu,t be the event thatu is safe at t andAu,t be the event thatu is matched at t . Observe that for each
window of K time slots, {SFu,t ,Au,t ′, t − K + 1 ≤ t ′ < t} are mutually exclusive and collectively
exhaustive events. Therefore,

1 = Pr[SFu,t ] +
"

t−K+1≤t ′<t
Pr[Au,t ′]

= γu,t + βu
"

t−K+1≤t ′<t
γu,t ′

□332

Note that the OPT of our benchmark LP is n while the performance of NADAP is
!
u
!

t βuγu,t .333

The resulting competitive ratio achieved by an optimal NADAP is captured by the following maxi-334

mization problem.335

max
!
u
!

t βuγu,t
n

(15)

s.t.
"
u ∈U

βu ≤ 1 (16)

γu,t + βu
"

t−K+1≤t ′<t
γu,t ′ = 1 ∀1 < t ≤ n,u ∈ U (17)

βu ≥ 0,γu,1 = 1 ∀u ∈ U (18)

We prove the following Lemma which implies Theorem 3.336

LEMMA 9. The optimal value of the program (15) is at most 1
2−1/K + K/n.337

PROOF. Focus on a given vertex u ∈ U . Notice that γu,t + βu
!

t−K+1≤t ′<t γu,t ′ = 1 for all338

1 ≤ t ≤ n. Summing both sides over t ∈ [n], we have the following.339 #
1 + βu (K − 1)

$ "
t ∈[n]

γu,t = n + βu (K − 1)γu,n + βu (K − 2)γu,n−1 + · · · + βuγu,n−K+2

≤ n + K − 1

Therefore we have,340

"
t ∈[n]

γu,t ≤
n

1 + βu (K − 1) +
K − 1

1 + βu (K − 1) ≤ n

1 + βu (K − 1) +
1
βu

Define Hu !
!

t βuγu,t . From the above analysis, we have that Hu ≤ nβu
1+βu (K−1) + 1. Thus the341

objective value in the program (15) can be upper-bounded as follows.342 !
u
!

t βuγu,t
n

=
"
u ∈U

Hu

n
≤

"
u ∈U

βu
1 + βu (K − 1) +

K

n
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We claim that the optimal value to the program (15) can be upper bounded by the following343

maximization program.344

%&&'
&&(
max

"
u ∈[U ]

βu
1 + βu (K − 1) +

K

n
:
"
u ∈U

βu = 1, βu ≥ 0,∀u ∈ U

)&&*
&&+

According to our assumption K = o(n), the second term can be ignored. Let д(x) = x/(1 +345

x(K − 1)). For any K ≥ 2, it is a concave function, which implies that maximization of д subject to346 !
u βu = 1 will be achieved when all βu = 1/K . The resultant value is 1

2−1/K + o(1). Thus we are347

done. □348

Hardness against the ex-post optimal solution. Here we show a hardness result against the ex-349

post optimal solution. Manshadi et al. [36] prove that for the online-matching problem under known350

IID distributions (but disposable offline vertices), no algorithm can achieve a ratio better than 0.823.351

Since our setting generalizes this, their hardness result directly applies to our problem as well.352

It is worth noting that the gap between the LP relaxation (1) and the ex-post optimal solution is353

currently unknown. Thus, either the hardness result can be improved or the algorithm can use a354

tighter relaxation of the offline optimal solution.355

5 EXPERIMENTS356

To validate the approaches presented in this paper, we use the New York City Yellow Cabs dataset,5357

which contains the trip records for trips in Manhattan, Brooklyn, and Queens for the year 2013. The358

dataset is split into 12 months. For each month we have numerous records each corresponding to a359

single trip. Each record has the following structure. We have an anonymized license number which360

is the primary key corresponding to a car. For privacy purposes a long string is used as opposed to361

the actual license number. We then have the time at which the trip was initiated, the time at which362

the trip ended, and the total time of the trip in seconds. This is followed by the starting coordinates363

(i.e., latitude and longitude) of the trip and the destination coordinates of the trip.364

Assumptions. We make two assumptions specific to our experimental setup. Firstly, we assume that365

every car starts and ends at the same location, for all trips that it makes. Initially, we assign every car366

a location (potentially the same) which corresponds to its docking position. On receiving a request,367

the car leaves from this docking position to the point of pick-up, executes the trip and returns to this368

docking position. Secondly, we assume that occupation time distributions (OTD) associated with369

all matches are identically (and independently) distributed, i.e., {Ce } follow the same distribution.370

Note that this is a much stronger assumption than what we made in the model, and is completely371

inspired by the dataset (see Section 5.2). We test our model on two specific distributions, namely a372

normal distribution and a power-law distribution (see Figure 5). The docking position of each car373

and parameters associated with each distribution are all learned from the training dataset (described374

below in the Training discussion).375

5.1 Experimental Setup376

For our experimental setup, we randomly select 30 cabs (each cab is denoted byu). We discretize the377

Manhattan map into cells such that each cell is approximately 4 miles (increments of 0.15 degrees378

in latitude and longitude). For each pair of locations, say (a,b), we create a request type v, which379

represents all trips with starting and ending locations falling into a and b respectively. In our model,380

we have |U | = 30 and |V | ≈ 550 (variations depending on day to day requests with low variance).381

5http://www.andresmh.com/nyctaxitrips/
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We focus on the month of January 2013. We split the records into 31 parts, each corresponding to a382

day of January. We choose a random set of 12 parts for training purposes and use the remaining for383

testing purposes.384

The edge weight we on e = (u,v) (i.e., edge from a car u to type v) is set as a function of two385

distances in our setup. The first is the trip distance (i.e., the distance from the starting location to the386

ending location ofv, denoted L1) while the second is the docking distance (i.e., the distance from the387

docking position ofu to the starting/ending location ofv, denoted L2). We setwe = max(L1−αL2, 0),388

where α is a parameter capturing the subtle balance between the positive contribution from the trip389

distance and negative contribution from the docking distance to the final profit. We set α = 0.5 for390

the experiments. We consider each single day as the time horizon and set the total number of rounds391

T = 24∗60
5 = 288 by discretizing the 24-hour period into a time-step of 5 minutes. Throughout this392

section, we use time-step and round interchangeably.393

Training. We use the training dataset of 12 days to learn various parameters. As for the arrival rates394

{pv,t }, we count the total number of appearances of each request type v at time-step t in the 12395

parts (denote it by cv,t ) and set pv,t = cv,t/12 under KAD (Note that cv,t is at most 12 and hence396

this value is always less than 1). When assuming KIID, we set pv = pv,t = (cv/12)/T where we397

have cv =
!

t ∈[T ] cv,t (i.e., the arrival distributions are assumed the same across all the time-steps398

for each v). The estimation of parameters for the two different occupation time distributions are399

processed as follows. We first compute the average number of seconds between two requests in the400

dataset (note this was 5 minutes in the experimental setup). We then assume that each time-step of401

our online process corresponds to a time-difference of this average in seconds. We then compute the402

sample mean and sample variance of the trip lengths (as number of seconds taken by the trip divided403

by five minutes) in the 12 parts. Hence we use the normal distribution obtained by this sample mean404

and standard deviation as the distribution with which a car is unavailable. We assign the docking405

position of each car to the location (in the discretized space) in which the majority of the requests406

were initiated (i.e., starting location of a request) and matched to this car.407

5.2 Justifying The Two Important Model Assumptions408

Fig. 1. OTD is normal distribution under KIID Fig. 2. OTD is normal distribution under KAD

Known Adversarial Distributions. Figure 4 plots the number of arrivals of a particular type at var-409

ious times during the day. Notice the significant increase in the number of requests in the middle of410

the day as opposed to the mornings and nights. This justified our arrival assumption of KAD which411
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Fig. 3. OTD is power law distribution under KAD
Fig. 4. The number of requests of a given type
at various time-steps. x-axis: time-step, y-aixs:
number of requests

Fig. 5. Occupation time distribution of all cars. x-
axis: number of time-steps, y-axis: number of re-
quests

Fig. 6. Occupation time distribution of two dif-
ferent cars. x-axis: number of time-steps, y-axis:
number of requests

assumes different arrival distributions at different time-steps. Hence the LP (and the correspond-412

ing algorithm) can exploit this vast difference in the arrival rates and potentially obtain improved413

results compared to the assumption of Known Identical Independent Distributions (KIID). This is414

confirmed by our experimental results shown in Figures 1 and 2.415

Identical-Occupation-Time Distribution. We assume each car will be available again via an in-416

dependent and identical random process regardless of the matches it received. The validity of our417

assumptions can be seen in Figures 5 and 6, where the x-axis represents the different occupation418

time and the y-axis represents the corresponding number of requests in the dataset responsible for419

each occupation time. It is clear that for most requests the occupation time is around 2-3 time-steps420

and dropping drastically beyond that with a long tail. Figure 6 displays occupation times for two421

representative (we chose two out of the many cars we plotted, at random) cars in the dataset; we422

see that the distributions roughly coincide with each other, suggesting that such distributions can be423

learned from historical data and used as a guide for future matches.424

ACM Transactions on Economics and Computation, Vol. 0, No. 0, Article 0. Publication date: January 2018.



0:14 Dickerson et al.

5.3 Results425

Inspired by the experimental setup by [55, 56], we run five different algorithms on our dataset. The426

first algorithm is the ALG-LP. In this algorithm, when a request v arrives, we choose a neighbor u427

with probability x∗e,t/pv,t with e = (u,v) if u is available. Here x∗e,t is an optimal solution to our428

benchmark LP and pv,t is the arrival rate of type v at time-step t . The second algorithm is called429

ALG-SC-LP. Recall that Ev,t is the set of “safe" or available assignments with respect to v when the430

type v arrives at t . Let xv,t =
!

e ∈Ev,t x
∗
e,t . In ALG-SC-LP, we sample a safe assignment for v with431

probability x∗e,t/xv,t . The next two algorithms are heuristics oblivious to the underlying LP. Our432

third algorithm is called GREEDY which is as follows. When a request v comes, match it to the safe433

neighbor u with the highest edge weight. Our fourth algorithm is called UR-ALG which chooses one434

of the safe neighbors uniformly at random. Finally, we use a combination of LP-oblivious algorithm435

and LP-based algorithm called ϵ-GREEDY. In this algorithm when a typev comes, with probability ϵ436

we use the greedy choice and with probability 1− ϵ we use the optimal LP choice. In our algorithm,437

we optimized the value of ϵ and set it to ϵ = 0.1. We summarize our results in the following438

plots. Figures 1, 2, and 3 show the performance of the five algorithms and OPT (optimal value of439

the benchmark LP) under the different assumptions of the OTD (normal or power law) and online440

arrives (KIID or KAD). In all three figures the x-axis represents test data-set number and the y-axis441

represents average weight of matching.442

Discussion. From the figures, it is clear that both the LP-based solutions, namely ALG-LP and443

ALG-SC-LP, do better than choosing a free neighbor uniformly at random. Additionally, with dis-444

tributional assumptions the LP-based solutions outperform greedy algorithm as well. We would like445

to draw attention to a few interesting details in these results. Firstly, compared to the LP optimal446

solution, our LP-based algorithms have a competitive ratio in the range of 0.5 to 0.7. We believe this447

is because of our experimental setup. In particular, we have that the rates are high (> 0.1) only in a448

few time-steps while in all other time-steps the rates are very close to 0. This means that it resembles449

the structure of the theoretical worst case example we showed in Section 4. In future experiments,450

running our algorithms during peak periods (where the request rates are significantly larger than 0)451

may show that competitive ratios in those cases approach 1. Secondly, it is surprising that our algo-452

rithm is fairly robust to the actual distributional assumption we made. In particular, from Figures 2453

and 3 it is clear that the difference between the assumption of normal distribution versus power-law454

distribution for the unavailability of cars is negligible. This is important since it might not be easy455

to learn the exact distribution in many cases (e.g., cases where the sample complexity is high) and456

this shows that a close approximation will still be as good.457

Simulation based algorithm. We omit the results of the simulation based algorithm, since the per-458

formance was similar to the algorithm without the scaling (i.e., ALG-LP). Here we briefly describe459

the implementation details on performing the simulations efficiently in practice. The estimates are460

computed even before the start of the algorithm. We first simulate the entire sequence ofT requests,461

δ times. Using these δ samples we first compute the estimates for the first time-step. We now re-use462

the same δ samples and the computed estimates in the first time-step to obtain the estimates for the463

second time-step. Hence in a sequential manner, we compute estimates at time t using the samples464

from time-steps 1, 2, . . . , t − 1. The overall run-time of this implementation is O(δT + δTκ), where465

κ denotes the running time of ADAP in every time-step. Hence during the online phase, the running466

time of ADAP is same as that of ALG-LP.467
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6 CONCLUSION AND FUTURE DIRECTIONS468

In this work, we provide a model that captures the application of assignment in ride-sharing plat-469

forms. One key aspect in our model is to consider the reusable aspect of the offline resources.470

This helps in modeling many other important applications where agents enter and leave the system471

multiple times (e.g., organ allocation, crowdsourcing markets [27], etc.). Our work opens several472

important research directions. The first direction is to generalize the online model to the batch set-473

ting (e.g., this subsequent work ). In other words, in each round we assume multiple arrivals from474

V . This assumption is useful in crowdsourcing markets (for example) where multiple tasks—but475

not all—become available at some time. The second direction is to consider a Markov model on the476

driver starting position. In this work, we assumed that each driver returns to her docking position.477

However, in many ride-sharing systems, drivers start a new trip from the position of the last-drop478

off. This leads to a Markovian system on the offline types, as opposed to the assumed static types in479

the present work. Finally, pairing our current work with more-applied stochastic-optimization and480

reinforcement-learning approaches would be of practical interest to policymakers running taxi and481

bikeshare services [23, 31, 45, 51, 57]. Following the initial conference publication of this paper,482

subsequent work has appeared that addresses some of the aforementioned directions. The multi-483

capacitated version of the problem in the batch setting was studied in [32] where the authors devise484

an algorithm that has a competitive ratio of 0.317. Driver-rider matching in rideshare was modeled485

as a Markovian system [18]; they show that under a practical condition this system convergences to486

the stationary distribution very fast. The unweighted multi-capacity version of the problem consid-487

ered in this paper under the adversarial arrival model was studied in [25]. They proved an optimal488

competitive ratio 1 − 1/e improving over the ratio of 1/2 proved in [22, 48].489
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