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Abstract

Metric clustering is fundamental in areas ranging from Com-
binatorial Optimization and Data Mining, to Machine Learn-
ing and Operations Research. However, in a variety of situ-
ations we may have additional requirements or knowledge,
distinct from the underlying metric, regarding which pairs
of points should be clustered together. To capture and ana-
lyze such scenarios, we introduce a novel family of stochas-
tic pairwise constraints, which we incorporate into several
essential clustering objectives (radius/median/means). More-
over, we demonstrate that these constraints can succinctly
model an intriguing collection of applications, including
among others Individual Fairness in clustering and Must-link
constraints in semi-supervised learning. Our main result con-
sists of a general framework that yields approximation al-
gorithms with provable guarantees for important clustering
objectives, while at the same time producing solutions that
respect the stochastic pairwise constraints. Furthermore, for
certain objectives we devise improved results in the case of
Must-link constraints, which are also the best possible from a
theoretical perspective. Finally, we present experimental evi-
dence that validates the effectiveness of our algorithms.

1 Introduction
In a generic metric clustering problem, there is a set of points
C, requiring service from a set of locations F , where both C
and F are embedded in some metric space. The sets C,F
do not need to be disjoint, and we may very well have C =
F . The goal is then to choose a set of locations S ⊆ F ,
where S might have to satisfy additional problem-specific
requirements and an assignment φ : C 7→ S, such that a
metric-related objective function over C is minimized.

However, in a variety of situations there may be external
and metric-independent constraints imposed on φ, regarding
which pairs of points j, j′ ∈ C should be clustered together,
i.e., constraints forcing a linkage φ(j) = φ(j′). In this work,
we generalize this deterministic requirement, by introducing
a novel family of stochastic pairwise constraints. Our input
is augmented with multiple sets Pq of pairs of points from
C (Pq ⊆

(C
2

)
for each q), and values ψq ∈ [0, 1]. Given

these, we ask for a randomized solution, which ensures that
in expectation at most ψq|Pq| pairs of Pq are separated in the
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returned assignment. In Sections 1.1-1.2, we discuss how
these constraints have enough expressive power to capture
a wide range of applications such as extending the notion
of Individual Fairness from classification to clustering, and
incorporating elements of Semi-Supervised clustering.

Another constraint we address is when C = F and every
chosen point j ∈ S must serve as an exemplar of the clus-
ter it defines (the set of all points assigned to it). The subtle
difference here, is that an exemplar point should be assigned
to its own cluster, i.e., φ(j) = j for all j ∈ S. This con-
straint is highly relevant in strict classification settings, and
is trivially satisfied in vanilla clustering variants where each
point is always assigned to its nearest point in S. However,
the presence of additional requirements on φ makes its sat-
isfaction more challenging. Previous literature, especially in
the context of fairness in clustering (Anderson et al. 2020;
Esmaeili et al. 2020; Bera et al. 2019; Bercea et al. 2019),
does not address this issue, but in our framework we explic-
itly offer the choice of whether or not to enforce it.

1.1 Formal Problem Definitions
We are given a set of points C and a set of locations F ,
in a metric space characterized by the distance function
d : C ∪ F × C ∪ F 7→ R≥0, which satisfies the triangle in-
equality. Moreover, the input includes a concise description
of a set L ⊆ 2F , that captures the allowable configurations
of location openings. The goal of all problems we consider,
is to find a set S ⊆ F , with S ∈ L, and an efficiently-
sampleable distribution D over assignments C 7→ S, such
that for a randomly drawn φ ∼ D we have: (i) an objective
function being minimized, and (ii) depending on the variant
at hand, further constraints are satisfied by φ. We study two
types of additional constraints imposed on φ.
• Stochastic Pairwise Constraints (SPC): We are given a

family of sets P = {P1, P2, . . .}, where each Pq ⊆(C
2

)
is a set of pairs of points from C, and a sequence

ψ = (ψ1, ψ2, . . .) with ψq ∈ [0, 1]. We then want∑
{j,j′}∈Pq

Prφ∼D[φ(j) 6= φ(j′)] ≤ ψq|Pq|, ∀Pq ∈ P .

• Centroid Constraint (CC): When this is imposed on any
of our problems, we must first have C = F . In addition,
we should ensure that Prφ∼D[φ(i) = i] = 1 for all i ∈ S.

Special Cases of SPC: When each Pq ∈ P has |Pq| = 1,
we get two interesting resulting variants.



• ψq = 0,∀q: For each Pq =
{
{j, j′}

}
we must ensure

that j, j′ have Prφ∼D[φ(j) = φ(j′)] = 1, and hence we
call such constraints must-link (ML). Further, since there
is no actual randomness involved in these constraints, we
assume w.l.o.g. that |D| = 1, and only solve for a single
φ : C 7→ S instead of a distribution over assignments.

• ψq ≥ 0,∀q: For each Pq =
{
{j, j′}

}
we must have

Prφ∼D[φ(j) 6= φ(j′)] ≤ ψq , and therefore we call this
constraint probabilistic-bounded-separation (PBS).

The objective functions we consider are:
• L-center/L-supplier: Here we aim for the minimum τ

(“radius”), such that Prφ∼D[d(φ(j), j) ≤ τ ] = 1 for all
j ∈ C. Further, in the L-center setting, we have C = F .

• L-median (p = 1)/L-means (p = 2): Here the goal is to
minimize (

∑
j∈C Eφ∼D[d(φ(j), j)p])1/p.

There are four types of location specific constraints that
we study in this paper. In the first, which we call unre-
stricted, L = 2F and hence any set of locations can serve
our needs. In the second, we have L = {S ⊆ F | |S| ≤ k}
for some given positive integer k. This variant gives rise
to the popular k-center/k-supplier/k-median/k-means ob-
jectives. In the third, we assume that each i ∈ F has an
associated cost wi ≥ 0, and for some given W ≥ 0 we
have L = {S ⊆ F |

∑
i∈S wi ≤ W}. In this case the

resulting objectives are called knapsack-center/knapsack-
supplier/knapsack-median/knapsack-means. Finally, if the
input also consists of a matroid M = (F , I), where I ⊆
2F the family of independent sets of M, we have L =
I, and the objectives are called matroid-center/matroid-
supplier/matroid-median/matroid-means.

To specify the problem at hand, we use the notation Ob-
jective-List of Constraints. For instance, L-means-SPC-
CC is the L-means problem, where we additionally impose
the SPC and CC constraint. We could also further specify L,
by writing for example k-means-SPC-CC. Moreover, ob-
serve that when no constraints on φ are imposed, we get
the vanilla version of each objective, where the lack of any
stochastic requirement implies that the distribution D once
more has support of size 1, i.e., |D| = 1, and we simply
solve for just an assignment φ : C 7→ S.

1.2 Motivation
In this section we present a wide variety of applications, that
can be effectively modeled by our newly introduced SPCs.

Fairness: With machine-learning clustering approaches
being ubiquitous in everyday decision making, a natural
question that arises and has recently captured the interest of
the research community, is how to avoid clusterings which
perpetuate existing social biases.

The individual approach to fair classification introduced
in the seminal work of (Dwork et al. 2012) assumes that
we have access to an additional metric, separate from the
feature space, which captures the true “similarity” between
points (or some approximation of it). This similarity metric
may be quite different from the feature space d (e.g., due to
redundant encodings of features such as race), and its ulti-
mate purpose is to help “treat similar candidates similarly”.

Note now that the PBS constraint introduced earlier, can suc-
cinctly capture this notion. For two points j, j′, we may have
ψj,j′ ∈ [0, 1] as an estimate of their true similarity (with 0
indicating absolute identity), and interpret unfair treatment
as deterministically separating these two points in the final
solution. Hence, a fair randomized approach would cluster j
and j′ apart with probability at most ψj,j′ .

A recent work that explores individual fairness in cluster-
ing is (Anderson et al. 2020). Using our notation, the authors
in that paper require a set S ∈ L, and for all j ∈ C a distri-
bution φj that assigns j to each i ∈ S with probability φi,j .
Given that, they seek solutions that minimize the clustering
objectives, while ensuring that for given pairs j, j′, their as-
signment distributions are statistically similar based on some
metric D that captures distributional proximity (e.g., total
variation and KL-divergence). In other words, they interpret
individual fairness as guaranteeingD(φj , φj′) ≤ pj,j′ for all
provided pairs {j, j′} and values pj,j′ . Although this work
is interesting in terms of initiating the discussion on individ-
ual fair clustering, it has a significant modeling issue. To be
more precise, suppose that for j, j′ the computed φj , φj′ are
both the uniform distribution over S. Then according to that
paper’s definition a fair solution is achieved. However, the
actual probability of placing j, j′ in different clusters (hence
treating them unequally) is almost 1 if we do not consider
any correlation between φj and φj′ . On the other hand, our
definition which instead asks for a distribution D over as-
signments φ : C 7→ S, always provides meaningful results,
since it bounds the quantity that really matters, i.e., the prob-
ability of separating j and j′ in a random φ ∼ D.

Another closely related work in the context of individ-
ual fair clustering is (Brubach et al. 2020). The authors
of that paper study a special case of PBS, where for each
j, j′ ∈ C we have ψj,j′ = d(j, j′)/τ∗, with τ∗ the objective
value of the optimal solution. They then provide a log k-
approximation for the k-center objective under the above
constraints. Compared to that, our framework 1) can handle
the median and means objectives as well, 2) can incorpo-
rate further requirements on the set of chosen locations (un-
restricted/knapsack/matroid), 3) allows for arbitrary values
for the separation probabilities ψj,j′ , and 4) provides smaller
constant-factor approximations for the objective functions.

Semi-Supervised Clustering: A common example of
ML constraints is in the area of semi-supervised learn-
ing (Wagstaff et al. 2001; Basu, Davidson, and Wagstaff
2008; Zhu 2006). There we assume that pairs of points have
been annotated (e.g., by human experts) with additional in-
formation about their similarity (Zhang and Yan 2007), or
that some points may be explicitly labeled (Zhu, Ghahra-
mani, and Lafferty 2003; Bilenko, Basu, and Mooney 2004),
allowing pairwise relationships to be inferred. Then these
extra requirements are incorporated in the algorithmic set-
ting in the form of ML constraints. Further, our SPCs cap-
ture the scenario where the labeler generating the constraints
is assumed to make some bounded number of errors (by as-
sociating each labeler with a set Pq and an accuracy ψq),
and also allow for multiple labelers (e.g., from crowdsourc-
ing labels) with different accuracies. Similar settings have
been studied by (Chang et al. 2017; Luo et al. 2018) as well.



OTU Clustering: The field of metagenomics involves an-
alyzing environmental samples of genetic material to ex-
plore the vast array of bacteria that cannot be analyzed
through traditional culturing approaches. A common prac-
tice in the study of these microbial communities is the
de novo clustering of genetic sequences (e.g., 16S rRNA
marker gene sequences) into Operational Taxonomic Units
(OTUs) (Edgar 2013; Westcott and Schloss 2017), that ide-
ally correspond to clusters of closely related organisms. One
of the most ubiquitous approaches to this problem involves
taking a fixed radius (e.g., 97% similarity based on string
alignment (Stackebrandt and Goebel 1994)) and outputting a
set of center sequences, such that all points are assigned to a
center within the given radius (Edgar 2013; Ghodsi, Liu, and
Pop 2011). In this case, we do not know the number of clus-
ters a priori, but we may be able to generate pairwise con-
straints based on a distance/similarity threshold as in (West-
cott and Schloss 2017) or reference databases of known se-
quences. Thus, the “unrestricted” variant of our framework
is appropriate here, where the number of clusters should be
discovered, but radius and pairwise information is known or
estimated. Other work in this area has considered conspecific
probability, a given probability that two different sequences
belong to the same species (easily translated to PBS) and ad-
verse triplets; sets of ML constraints that cannot all be satis-
fied simultaneously (an appropriate scenario for a set Pq as
defined in Section 1.1)(Edgar 2018).

Community Preservation: There are scenarios where
clustering a group/community of points together is benefi-
cial for the coherence and quality of the final solution. Ex-
amples of this include assigning students to schools such
that students living in the same neighborhood are not placed
into different schools, vaccinating people with similar de-
mographics in a community (e.g., during a pandemic), and
drawing congressional districts with the intent to avoid the
practice of gerrymandering. Given such a group of pointsG,
we let PG =

(
G
2

)
, and set a tolerance parameter ψG ∈ [0, 1].

Then, our SPCs will make sure that in expectation at most
ψG|G| pairs from G are separated, and thus a (1−ψG) frac-
tion of the community is guaranteed to be preserved. Finally,
Markov’s inequality also gives tail bounds on this degree of
separation for all G.

1.3 Our Contribution
In Section 2 we present our main algorithmic result, which
is based on the two-step approach of (Bercea et al. 2019;
Chierichetti et al. 2017). Unlike previous works utilizing this
technique, the most serious technical difficulty we faced was
not in the LP-rounding procedure, but rather in the formu-
lation of an appropriate assignment-LP relaxation. Letting
PL be any problem in {L-center,L-supplier,L-median,L-
means} and L any of the four location settings, we get:
Theorem 1. Let τ∗ the optimal value of a PL-SPC in-
stance, and ρ the best approximation ratio for PL. Then our
algorithm chooses a set SPL and constructs an appropri-
ate distribution over assignments D, such that SPL ∈ L,∑
{j,j′}∈Pq

Prφ∼D[φ(j) 6= φ(j′)] ≤ 2ψq|Pq| ∀Pq ∈ P , and

1. PL is L-center(α = 1)/L-supplier(α = 2): Here we get

Prφ∼D[d(φ(j), j) ≤ (α+ ρ)τ∗] = 1, for all j ∈ C.
2. PL is L-median(p = 1)/L-means(p = 2): Here we get

(
∑
j∈C Eφ∼D[d(φ(j), j)p])1/p ≤ (2 + ρ)τ∗.

Finally, sampling a φ ∼ D can be done in polynomial time.
Given that the value ρ is a small constant for all variations

of PL that we consider, we see that our algorithmic frame-
work gives indeed good near-optimal guarantees. Moreover,
a tighter analysis when L = 2F yields the next result.
Theorem 2. When L = 2F , our algorithm has the same
guarantees as those in Theorem 1, but this time the cost of
the returned solution for Punrestricted-SPC is at most τ∗.

Although imposing no constraint on the set of chosen lo-
cations yields trivial problems in vanilla settings, the pres-
ence of SPCs makes even this variant NP-hard. Specifically,
we show the following theorem (full version Appendix).
Theorem 3. The problem unrestricted-O-SPC is NP-hard,
where O ∈ {center, supplier, median, means}.

In Section 3 we consider settings where each j ∈ S must
serve as an exemplar of its defining cluster. Hence, we in-
corporate the Centroid constraint in our problems. As men-
tioned earlier, previous work in the area of fair clustering
had ignored this issue. Our first result follows.
Theorem 4. Let τ∗ the optimal value of a k-center-SPC-
CC instance. Then our algorithm chooses Sk ⊆ C and con-
structs a distribution D, such that sampling φ ∼ D can
be done efficiently, |Sk| ≤ k,

∑
{j,j′}∈Pq

Prφ∼D[φ(j) 6=
φ(j′)] ≤ 2ψq|Pq| ∀Pq ∈ P , Prφ∼D[d(φ(j), j) ≤ 3τ∗] = 1
for all j ∈ C, and Prφ∼D[φ(i) = i] = 1 for all i ∈ Sk.

To address all objective functions under the Centroid con-
straint, we demonstrate (again in Section 3) a reassignment
procedure that gives the following result.
Theorem 5. Let λ the approximation ratio for the objective
of PL-SPC achieved in Theorem 1. Then, our reassignment
procedure applied to the solution produced by the algorithm
mentioned in Theorem 1, gives an approximation ratio 2λ
for PL-SPC-CC, while also preserving the SPC guarantees
of Theorem 1 and satisfying the CC, when L = 2C or L =
{S′ ⊆ C : |S′| ≤ k} for some given positive integer k.

As for ML constraints, since they are a special case of
SPCs, our results for the latter also address the former. How-
ever, in Section 4 we provide improved approximation algo-
rithms for a variety of problem settings with ML constraints.
Our main result is summarized in the following theorem.
Theorem 6. There exists a 2/3/3/3-approximation al-
gorithm for k-center-ML/knapsack-center-ML/k-supplier-
ML/knapsack-supplier-ML. This algorithm is also the best
possible in terms of the approximation ratio, unless P =
NP . In addition, it satisfies without any further modifica-
tions the Centroid constraint.

Although ML constraints have been extensively stud-
ied in the semi-supervised literature (Basu, Davidson, and
Wagstaff 2008), to the extent of our knowledge we are the
first to tackle them purely from a Combinatorial Optimiza-
tion perspective, with the exception of (Davidson, Ravi, and
Shamis 2010). This paper provides a (1 + ε) approximation
for k-center-ML, but only in the restricted k = 2 setting.



1.4 Further Related Work
Clustering problems have been a longstanding area of re-
search in Combinatorial Optimization, with all important
settings being thoroughly studied (Hochbaum and Shmoys
1986; Gonzalez 1985; Harris et al. 2017; Byrka et al. 2017;
Ahmadian et al. 2017; Chakrabarty and Negahbani 2019).

The work that initiated the study of fairness in clustering
is (Chierichetti et al. 2017). That paper addresses a notion
of demographic fairness, where points are given a certain
color indicating some protected attribute, and then the goal
is to compute a solution that enforces a fair representation of
each color in every cluster. Further work on similar notions
of demographic fairness includes (Bercea et al. 2019; Bera
et al. 2019; Esmaeili et al. 2020; Huang, Jiang, and Vishnoi
2019; Backurs et al. 2019; Ahmadian et al. 2019).

Finally, a separation constraint similar to PBS is found in
(Davidson, Ravi, and Shamis 2010). In that paper however,
the separation is deterministic and also depends on the un-
derlying distance between two points. Due to their stochastic
nature, our PBS constraints allow room for more flexible so-
lutions, and also capture more general separation scenarios,
since the ψp values can be arbitrarily chosen.

1.5 An LP-Rounding Subroutine
We present an important subroutine developed by (Klein-
berg and Tardos 2002), which we repeatedly use in our re-
sults, and call it KT-Round. Suppose we have a set of el-
ements V , a set of labels L, and a set of pairs E ⊆

(
V
2

)
.

Consider the following Linear Program (LP).∑
l∈L

xl,v = 1, ∀v ∈ V (1)

ze,l ≥ xl,v − xl,w, ∀e = {v, w} ∈ E, ∀l ∈ L (2)
ze,l ≥ xl,w − xl,v, ∀e = {v, w} ∈ E, ∀l ∈ L (3)

ze =
1

2

∑
l∈L

ze,l, ∀e = {v, w} ∈ E (4)

0 ≤ xl,v, ze, ze,l ≤ 1, ∀v ∈ V,∀e ∈ E,∀l ∈ L (5)

Theorem 7. (Kleinberg and Tardos 2002) Given a feasible
solution (x, z) of (1)-(5), there exists a randomized rounding
approach KT-Round(V,L,E, x, z), which in polynomial ex-
pected time assigns each v ∈ V to a φ(v) ∈ L, such that:

1. Pr[φ(v) 6= φ(w)] ≤ 2ze, ∀e = {v, w} ∈ E
2. Pr[φ(v) = l] = xl,v, ∀v ∈ V, ∀l ∈ L

2 A General Framework for Approximating
Clustering Problems with SPCs

In this section we show how to achieve approximation al-
gorithms with provable guarantees for L-center-SPC/L-
supplier-SPC/L-median-SPC/L-means-SPC using a gen-
eral two-step framework. At first, let PL denote any of the
vanilla versions of the objective functions we consider, i.e.,
PL ∈ {L-center,L-supplier,L-median,L-means}.

To tackle a PL-SPC instance, we begin by using on it any
known ρ-approximation algorithm APL for PL. This gives
a set of locations SPL and an assignment φPL , which yield

an objective function cost of τPL for the corresponding PL
instance. In other words, we drop the SPC constraints from
the PL-SPC instance, and simply treat it as its vanilla coun-
terpart. Although φPL may not satisfy the SPCs, we are go-
ing to use the set SPL as our chosen locations. The second
step in our framework would then consist of constructing the
appropriate distribution over assignments. Toward that end,
consider the following LP, where P ′ = ∪Pq∈PPq .∑
i∈SPL

xi,j = 1 ∀j ∈ C (6)

ze,i ≥ xi,j − xi,j′ ∀e = {j, j′} ∈ P ′, ∀i ∈ SPL (7)

ze,i ≥ xi,j′ − xi,j ∀e = {j, j′} ∈ P ′, ∀i ∈ SPL (8)

ze =
1

2

∑
i∈SPL

ze,i ∀e ∈ P ′ (9)

∑
e∈Pq

ze ≤ ψq|Pq| ∀Pq ∈ P (10)

0 ≤ xi,j , ze, ze,i ≤ 1 ∀i ∈ SPL ,∀j ∈ C,∀e ∈ P ′ (11)

The variable xi,j can be interpreted as the probability of
assigning point j to location i ∈ SPL . To understand the
meaning of the z variables, it is easier to think of the in-
tegral setting, where xi,j = 1 iff j is assigned to i and 0
otherwise. In this case, ze,i is 1 for e = {j, j′} iff exactly
one of j and j′ are assigned to i. Thus, ze is 1 iff j and j′
are separated. We will later show that in the fractional set-
ting ze is a lower bound on the probability that j and j′ are
separated. Therefore, constraint (6) simply states that every
point must be assigned to a center, and given the previous
discussion, (10) expresses the provided SPCs.

Depending on which exact objective function we opti-
mize, we must augment LP (6)-(11) accordingly.
• L-center (α = 1)/L-supplier (α = 2): Here we assume

w.l.o.g. that the optimal radius τ∗SPC of the original PL-
SPC instance is known. Observe that this value is always
the distance between some point and some location, and
hence there are only polynomially many alternatives for
it. Thus, we execute our algorithm for each of those, and
in the end keep the outcome that resulted in a feasible
solution of minimum value. Given now τ∗SPC , we add the
following constraint to the LP.

xi,j = 0, ∀i, j : d(i, j) > τPL + α · τ∗SPC (12)

• L-median (p = 1)/L-means (p = 2): In this case, we
augment the LP with the following objective function.

min
∑
j∈C

∑
i∈SPL

xi,j · d(i, j)p (13)

The second step of our framework begins by solving the
appropriate LP for each variant of PL, in order to acquire a
fractional solution (x̄, z̄) to that LP. Finally, the distribution
D over assignments C 7→ SPL is constructed by running
KT-Round(C, SPL , P ′, x̄, z̄). Notice that this will yield an
assignment φ ∼ D, where D results from the internal ran-
domness of KT-Round. Our overall approach for solving
PL-SPC is presented in Algorithm 1.



Algorithm 1: Approximating PL-SPC
1 (SPL , φPL)← APL(C,F ,L);
2 Solve LP (6)-(11) with (12) for L-center/L-supplier,

and with (13) for L-median/L-means, and get a
fractional solution (x̄, z̄);

3 φ← KT-Round(C, SPL , P ′, x̄, z̄);

Theorem 8. Let τ∗SPC the optimal value of the given PL-
SPC instance. Then Algorithm 1 guarantees that SPL ∈ L,∑
{j,j′}∈Pq

Prφ∼D[φ(j) 6= φ(j′)] ≤ 2ψq|Pq| ∀Pq ∈ P and

1. PL is L-center(α = 1)/L-supplier(α = 2): Here we get
Prφ∼D[d(φ(j), j) ≤ α · τ∗SPC + τPL ] = 1, for all j ∈ C.

2. PL is L-median(p = 1)/L-means(p = 2): Here we get
(
∑
j∈C Eφ∼D[d(φ(j), j)p])1/p ≤ 2τ∗SPC + τPL .

Since PL is a less restricted version of PL-SPC, the opti-
mal solution value τ∗PL for PL in the original instance where
we dropped the SPCs, should satisfy τ∗PL ≤ τ∗SPC . There-
fore, because APL is a ρ-approximation algorithm for PL,
we get τPL ≤ ρ · τ∗SPC . The latter implies the following.

Corollary 9. The approximation ratio achieved through Al-
gorithm 1 is (ρ + 1) for L-center-SPC, and (ρ + 2) for L-
supplier-SPC/L-median-SPC/L-means-SPC.

Tighter analysis for the unrestricted (L = 2F ) case: For
this case, a more careful analysis leads to the following.

Theorem 10. When L = 2F , Algorithm 1 achieves an ob-
jective value of at most τ∗SPC for all objectives we study
(center/supplier/median/means).

3 Addressing the Centroid Constraint
In this section we present results that incorporate the Cen-
troid Constraint (CC) to a variety of the settings we study.
Moreover, recall that for this case C = F , and hence the
supplier objective reduces to the center one.

3.1 Approximating k-center-SPC-CC
Our approach for solving this problem heavily relies on Al-
gorithm 1 with two major differences.

The first difference compared to Algorithm 1 lies in the
approximation algorithm Ak used to tackle k-center. For k-
center there exists a 2-approximation which given a target
radius τ , it either returns a solution where each j ∈ C gets
assigned to a location ij with d(ij , j) ≤ 2τ , or outputs an
“infeasible” message, indicating that there exists no solution
of radius τ ((Hochbaum and Shmoys 1986)).

Recall now that w.l.o.g. the optimal radius τ∗C for the k-
center-SPC-CC instance is known. In the first step of our
framework we will use the variant of Ak mentioned earlier
with τ∗C as its target radius, and get a set of chosen locations
Sk. The second step is then the same as in Algorithm 1, with
the addition of the next constraint to the assignment LP:

xi,i = 1, ∀i ∈ Sk (14)

The overall process is presented in Algorithm 2.

Algorithm 2: Approximating k-center-SPC-CC
1 (Sk, φk)← Ak(C,F ,L, τ∗C);
2 Solve LP (6)-(11) with (12), (14) and Sk as the

chosen locations, and get a solution (x̄, z̄);
3 φ← KT-Round(C, Sk, P ′, x̄, z̄);

Algorithm 3: Approximating PL-SPC-CC
1 Run Algorithm 1 to solve PL-SPC, and get S ⊆ C

and an assignment φ : C 7→ S in return;
2 while there exists i ∈ S with φ(i) 6= i do
3 S ← S \ {i};
4 i′ ← arg minj∈C:φ(j)=i d(i, j);
5 S ← S ∪ {i′};
6 for all j ∈ C with φ(j) = i do
7 φ(j)← i′;

Theorem 11. Let τ∗C the optimal value of the given k-
center-SPC-CC instance, and D the distribution over as-
signments given by KT-Round. Then Algorithm 2 guar-
antees |Sk| ≤ k,

∑
{j,j′}∈Pq

Prφ∼D[φ(j) 6= φ(j′)] ≤
2ψq|Pq| ∀Pq ∈ P , Prφ∼D[d(φ(j), j) ≤ 3τ∗C ] = 1 for all
j ∈ C, and Prφ∼D[φ(i) = i] = 1 for all i ∈ Sk.

3.2 A Reassignment Step for the Unrestricted and
k-Constrained Location Setting

We now demonstrate a reassignment procedure that can be
used to correct the output of Algorithm 1, in a way that sat-
isfies the CC. Again, let PL be any of the vanilla objective
functions, and consider Algorithm 3.

Theorem 12. Let λ the approximation ratio of Algorithm
1 for PL-SPC with respect to the objective function. Then,
Algorithm 3 gives an approximation ratio 2λ for the objec-
tive of PL-SPC-CC, while satisfying the CC and preserving
the guarantees of Algorithm 1 on SPCs, when L = 2C or
L = {S′ ⊆ C : |S′| ≤ k} for some integer k.

4 Improved Results for Problems with
Must-Link Constraints

Since must-link constraints (ML) are a special case of SPCs,
Algorithm 1 provides approximation results for the former
as well (also note that due to ψp = 0 ∀p, we have no pair-
wise constraint violation when using Algorithm 1 purely
for ML). However, in this section we demonstrate how
we can get improved approximation guarantees for some
of the problems we consider. Specifically, we provide a
2/3/3/3-approximation for k-center-ML/knapsack-center-
ML/k-supplier-ML/knapsack-supplier-ML, which consti-
tutes a clear improvement over the 3/4/5/5-approximation,
given when Algorithm 1 is executed using the best approxi-
mation algorithm for the corresponding vanilla variant.

First of all, recall that in the ML case we are only looking
for a set of locations S and an assignment φ : C 7→ S, and
not for a distribution over assignments. Also, notice that the



Algorithm 4: Approximating ML Constraints
1 C ← ∅, S ← ∅;
2 Initially all C1, C2, . . . , Ct are considered uncovered;
3 while there exists an uncovered Cq do
4 Pick an uncovered Cq;
5 Pick an arbitrary point jq ∈ Cq;
6 C ← C ∪ {jq};
7 Cq and all neighboring cliques Cp of it, are now

considered covered;
8 for all jq ∈ C do
9 if k-center/k-supplier then

10 iq ← arg mini∈F d(i, jq);
11 S ← S ∪ {iq};
12 if knapsack-center/knapsack-supplier then
13 iq ← arg mini∈F :d(i,jq)≤τ∗ wi;
14 S ← S ∪ {iq};

15 for all j ∈ C do
16 Let jq ∈ C the point whose clique Cq covered j’s

clique in the first while loop;
17 φ(j)← iq;

must-link relation is transitive. If for j, j′ we want φ(j) =
φ(j′), and for j′, j′′ we also require φ(j′) = φ(j′′), then
φ(j) = φ(j′′) is necessary as well. Given that, we view the
input as a partition C1, C2, . . . , Ct of the points of C, where
all points in Cq , with q ∈ {1, . . . , t}, must be assigned to the
same location of S. We call each part Ci of this partition a
clique. Finally, for the problems we study, we can once more
assume w.l.o.g. that the optimal radius τ∗ is known.
Definition 13. Two cliques Cq, Cp are called neighboring
if ∀j ∈ Cq, ∀j′ ∈ Cp we have d(j, j′) ≤ 2τ∗.

Algorithm 4 captures k-center-ML, knapsack-center-ML,
k-supplier-ML and knapsack-supplier-ML at once, yielding
improved approximations for each of them.
Theorem 14. Algorithm 4 is a 2/3/3/3-approximation al-
gorithm for k-center-ML/knapsack-center-ML/k-supplier-
ML/knapsack-supplier-ML.

Observation 15. Algorithm 4 is a 2/3-approximation for k-
center-ML-CC/knapsack-center-ML-CC. This directly fol-
lows from steps 10, 13 and 17 of it.
Observation 16. Due to known hardness results for the
vanilla version of the corresponding problems (Hochbaum
and Shmoys 1986), Algorithm 4 gives the best possible ap-
proximation ratios, assuming that P 6= NP .

5 Experimental Evaluation
We implement our algorithms in Python 3.8 and run our ex-
periments on AMD Opteron 6272 @ 2.1 GHz with 64 cores
and 512 GB 1333 MHz DDR3 memory. We focus on fair
clustering applications with PBS constraints, and demon-
strate that our algorithms outperform the existing methods
of (Anderson et al. 2020; Brubach et al. 2020). We com-
pare ourselves to (Anderson et al. 2020) using k-means-PBS

k 4 6 8 10

Adult Alg-1 3.65 7.95 17.57 28.83
ALG-IF 91.60 99.81 96.16 99.81

Bank Alg-1 0.29 1.13 0.86 1.49
ALG-IF 54.87 60.52 97.04 85.36

Credit Alg-1 1.85 15.28 20.53 31.08
ALG-IF 68.00 99.41 99.7 100.00

Table 1: Percentage of constraints that are violated on
average for metric F2

k 4 6 8 10

Adult Alg-1 1.81 2.36 3.12 3.53
ALG-IF 1.92 2.35 3.13 3.44

Bank Alg-1 2.30 3.34 4.07 5.13
ALG-IF 2.39 3.63 4.55 5.10

Credit Alg-1 1.86 2.22 2.53 2.53
ALG-IF 1.84 2.18 2.49 2.50

Table 2: Cost of fairness for metric F2

and to (Brubach et al. 2020) using k-center-PBS-CC, since
the algorithm of the latter paper also satisfies the CC con-
straint. Our code is publicly available at https://github.com/
chakrabarti/pairwise constrained clustering.

Datasets: We use 3 datasets from the UCI ML Repository
(Dua and Graff 2017): (1) Bank-4,521 points (Moro, Cortez,
and Rita 2014), (2) Adult-32,561 points (Kohavi 1996), and
(3) Creditcard-30,000 points (Yeh and Lien 2009).

Algorithms: In all of our experiments, C = F at first.
When solving k-means-PBS, we use Lloyd’s algorithm in
the first step of Algorithm 1 and get a set of points L. The set
of chosen locations S is constructed by getting the nearest
point in C for every point of L. This is exactly the approach
used in (Anderson et al. 2020), where their overall algorithm
is called ALG-IF. To compare Algorithm 1 to ALG-IF, we
use independent sampling for ALG-IF, in order to fix the
assignment of each j ∈ C to some i ∈ S, based on the
distribution φj produced by ALG-IF. For k-center-PBS-CC,
we use Algorithm 2 with a binary search to compute τ∗C .

Fairness Constraints: We consider three similarity met-
rics (F1, F2, F3) for generating PBS constraints. We use F1

for k-center-PBS-CC and F2, F3 for k-means-PBS. F1 is the
metric used for fairness in the simulations of (Brubach et al.
2020) and F2, F3 are the metrics used in the experimental
evaluation of the algorithms in (Anderson et al. 2020).
F1 involves setting the separation probability between a

pair of points j and j′ to 16 · d(j, j′)/RScr if 16 · d(j, j′) ≤
RScr, where RScr is the radius given by running the Scr
algorithm (Mihelic and Robic 2005) on the provided input.
F2 is defined so that the separation probability between

a pair j,j′ is given by d(j, j′), scaled linearly to ensure all
such probabilities are in [0, 1]. Adopting the approach taken
by (Anderson et al. 2020) when using this metric, we only
consider pairwise constraints between each j and its closest
m neighbors. For our experiments, we set m = 100.

Again in order to compare our Algorithm 1 with (Ander-
son et al. 2020), we need the metric F3. For any j ∈ C, let rj



k 4 6 8 10

Adult Alg-1 0.09 0.28 0.61 0.97
ALG-IF 8.16 6.09 7.54 9.80

Bank Alg-1 0.02 0.18 0.35 0.56
ALG-IF 3.84 4.23 7.02 6.45

Credit Alg-1 0.00 0.25 0.24 0.37
ALG-IF 1.01 4.05 4.66 4.07

Table 3: Percentage of constraints that are violated on
average for metric F3

k 4 6 8 10

Adult Alg-1 1.12 1.18 1.23 1.22
ALG-IF 1.13 1.18 1.24 1.23

Bank Alg-1 1.25 1.39 1.46 1.55
ALG-IF 1.32 1.63 1.70 1.91

Credit Alg-1 1.13 1.11 1.14 1.06
ALG-IF 1.11 1.11 1.14 1.06

Table 4: Cost of fairness for metric F3

the minimum distance such that |j′ ∈ C : d(j, j′) ≤ rj | ≥
|C|/k. Then the separation probability between j and any j′
such that d(j, j′) ≤ rj , is set to d(j, j′)/rj .

Implementation Details: As performed in (Anderson
et al. 2020; Brubach et al. 2020), we uniformly sample N
points from each dataset and run all algorithms on those sets,
while only considering a subset of the numerical attributes
and normalizing the features to have zero mean and unit
variance. In our comparisons with (Anderson et al. 2020)
we use N = 500, while in our comparisons with (Brubach
et al. 2020) N is set to 250. For the number of clusters k,
we study the values {4, 6, 8, 10} when comparing to (An-
derson et al. 2020), and {30, 40, 50, 60} when comparing
to (Brubach et al. 2020). Finally, to estimate the empirical
separation probabilities and the underlying objective func-
tion cost, we run 5000 trials for each randomized assignment
procedure, and then compute averages for the necessary per-
formance measures we are interested in.

Comparison with (Anderson et al. 2020): In Tables 1
and 3, we show what percentage of fairness constraints are
violated by ALG-IF and our algorithm, for the fairness con-
straints induced by F2 and F3, allowing for an ε = 0.05
threshold on the violation of a separation probability bound;
we only consider a pair’s fairness constraint to be violated
if the empirical probability of them being separated exceeds
that set by the fairness metric by more than ε. It is clear
that our algorithm outperforms ALG-IF consistently across
different values of k, different datasets, and both types of
fairness constraints considered by (Anderson et al. 2020).

In order to compare the objective value achieved by both
algorithms, we first compute the average connection costs
over the 5000 runs. Since the cost of the clustering returned
by Lloyd’s algorithm contributes to both Algorithm 1 and
ALG-IF, we utilize that as an approximation of the cost of
fairness. In other words, we divide the objective value of
the final solutions by the cost of the clustering produced
by Lloyd, and call this quantity cost of fairness. The cor-

k 30 40 50 60

Adult Alg-2 0.03 0.00 0.00 0.00
ALG-F 0.00 0.00 0.00 0.00

Bank Alg-2 0.00 0.04 0.06 0.07
ALG-F 0.00 0.00 0.00 0.00

Credit Alg-2 0.00 0.00 0.00 0.00
ALG-F 0.00 0.00 0.00 0.00

Table 5: Percentage of constraints that are violated on
average for metric F1

k 30 40 50 60

Adult Alg-2 0.23 0.20 0.17 0.16
ALG-F 0.46 0.46 0.43 0.42

Bank Alg-2 0.08 0.07 0.06 0.05
ALG-F 0.17 0.15 0.14 0.13

Credit Alg-2 0.25 0.24 0.21 0.19
ALG-F 0.43 0.43 0.41 0.41

Table 6: Objective achieved for metric F1

responding comparisons are presented in Tables 2, 4. The
cost of fairness for both algorithms is very similar, demon-
strating a clear advantage of Algorithm 1, since it dominates
ALG-IF in the percentage of fairness constraints violated.

Comparison with (Brubach et al. 2020): Before we
proceed with our analysis, we state that the reason for choos-
ing F1 for this set of comparisons, is that this particular met-
ric resulted in the best possible objective function values
in the simulations of (Brubach et al. 2020). In Table 5 we
show what percentage of fairness constraints are violated by
the algorithm of (Brubach et al. 2020) (named ALG-F) and
Algorithm 2, using an ε = 0; if the empirical probability
of separation of a pair exceeds the bound set by the fair-
ness metric by any amount, it is considered a violation. Both
ALG-F and our algorithm mostly lead to 0 violations, with
our algorithm producing a small number of violations in a
few cases, which are essentially negligible. In Table 6 we
show the cost of the clusterings produced by ALG-F and Al-
gorithm 2, measured in the normalized metric space by tak-
ing the average of the maximum radius of any cluster over
the 5000 runs. Our algorithm in all cases produces cluster-
ings with significantly lower objectives.

Runtime: The average runtime over all three datasets for
each of our metrics was k = 30: 140s / k = 40: 150s / k = 50:
160s / k = 60: 160s for F1, k = 4: 63s / k = 6: 20000s / k = 8:
32300s / k = 10: 41000s for F2, and k = 4: 83s / k = 6: 8400s
/ k = 8: 8900s / k = 10: 7600s for F3.

6 Conclusion
In this work, we introduced a general family of stochastic
pairwise constraints that can model a wide range of appli-
cations. For the corresponding computational problems that
incorporate these constraints, we provided approximation al-
gorithms with theoretical guarantees. Finally, in the case of
individually fair clustering, we demonstrated that our ap-
proach is not only theoretically stronger than all competi-
tors, but also exhibits better experimental performance.



Potential Ethical Impact of the Work
Our primary contribution is general and theoretical in na-
ture, so we do not foresee any immediate and direct nega-
tive ethical impacts of our work. That said, one use case of
our framework—that we highlight prominently both in the
general discussion of theoretical results as well as through
experimental results performed on standard and commonly-
used datasets—is as a tool to operationalize notions of fair-
ness in a broad range of clustering settings. Formalization of
fairness as a mathematical concept, while often grounded in
legal doctrine (see, e.g., Feldman et al. 2015; Barocas, Hardt,
and Narayanan 2019), is still a morally-laden and compli-
cated process, and one to which there is no one-size-fits-all
“correct” approach.

Our method supports a number of commonly-used fair-
ness definitions; thus, were tools built based on our frame-
work that operationalized those definitions of fairness, then
the ethical implications—both positive and negative—of
that decision would also be present. Our framework provides
strong theoretical guarantees that would allow decision-
makers to better understand the performance of systems built
based on our approach. Yet, we also note that any such guar-
antees should, in many domains, be part of a larger conver-
sation with stakeholders—one including understanding the
level of comprehension (e.g., Saha et al. 2020; Saxena et al.
2020) and specific wants of stakeholders (e.g., Holstein et al.
2019; Madaio et al. 2020).
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