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ABSTRACT
The Magician Problem (MP) and its generalization, the Generalized
Magician Problem (GMP), were introduced by Alaei et al. (APPROX-
RANDOM 2013) and Alaei (SICOMP 2014) and have been used as

powerful ingredients in online-algorithm design for many hard

problems such as the k-choice prophet inequality, mechanism de-

sign in Bayesian combinatorial auctions, and the generalized as-

signment problem. The adversarial model here is essentially that

of an oblivious adversary.

In this paper, we introduce generalizations of GMP (MP) under

two different arrival settings (by making the adversary stronger):

unknown independent identical distributions (UIID) and unknown

adversarial distributions (UAD). Different adversary models capture

a range of arrival patterns. For GMP under UIID, we show that a

natural greedy algorithm Greedy is optimal. For the case of MP

under UIID, we show that Greedy has an optimal performance

of 1 − BB
B!eB ≥ 1 − 1√

2πB
, where B is the budget, and show an

application to online B-matching with stochastic rewards. For GMP

under UAD, we present a simple algorithm, which is near-optimal

among all non-adaptive algorithms. We consider the simple case of

MP under UADwith B = 1, and give an exact characterization of the

respective optimal adaptive and optimal non-adaptive algorithms

for any finite time horizon. We offer an example of MP under UAD

on which there is a provable gap between the classical MP under

adversarial order and MP under UAD even with a time horizon

T = 4.
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1 INTRODUCTION
Several “prophet” and “magician” problems have been studied in-

tensively over the last several years, motivated by online problems
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in E-commerce. The generalized magician problem (GMP) was in-

troduced by Alaei et al. [4] to model several online problems. The

formal description is as follows.

Generalized Magician Problem: Suppose we have a budget of
B and that at each time

1 t = 1, 2, . . ., an item Yt will arrive where
Yt is an independent random variable taking values from [0, 1].

Here are Three Rules to follow: (1) once the item Yt arrives, its
distribution (but not its value) is revealed to us and we need to

make an instant and irrevocable decision – either to accept it or

reject; (2) we can accept Yt only when we have at least one unit

budget remaining (referred to as “being safe”); (3) once the item

Yt is accepted, a realization yt ∈ [0, 1] of Yt sampled from Yt ’s
distribution is revealed to us and our budget will be reduced by

yt accordingly. The adversary can choose an arbitrary sequence

of items subject to the constraint that

∑
t E[Yt ] ≤ B, before the

arrivals start; thus, the model is that of an oblivious adversary [7].

Note that the distribution of each item Yt is unknown until its

arrival and that the Yt ’s are independent. We know B upfront and

our task is to design an online algorithm to maximize the value

γ such that each item will be accepted with probability at least

γ . When all items are restricted to be Bernoulli random variables,

GMP is reduced to the classical Magician Problem (MP), which was

first introduced by Alaei [1]. The main results regarding MP and

GMP are summarized as follows.

Theorem 1.1 (Alaei [2]). For a given budget B, there exists an
algorithm which accepts each arriving item with probability at least
1 − 1√

B
and 1 − 1√

B+3
for GMP and MP respectively.

Here are several applications of GMP and MP presented in

[1, 4]. Alaei [1] considered a generalization of prophet inequal-

ities, where both the gambler and the prophet are allowed to pick

B numbers and each to receive a reward equal to their sum, called

the B-choice prophet inequality, which was first introduced by Ha-

jiaghayi et al. [22]. These works designed a randomized strategy

for the gambler invoking MP as blackbox, which achieves at least a

fraction of 1− 1√
B+3

of the reward obtained by the prophet. Further-

more, Alaei [1] presented a general framework for approximately

reducing the mechanism design problem for multiple agents to

single-agent subproblems in the context of Bayesian combinatorial

auctions. Alaei et al. [4] introduced the online generalized assign-

ment problem (GAP), which can be viewed as a generalization of

Prophet-Inequality Matching (PIM) [3] with each item having a

random size. Both GAP and PIM capture applications in ad allo-

cation arising from cellular networks [5]. Alaei et al. [4] designed

a near-optimal algorithm for the online GAP invoking GMP as a

blackbox, which results in an online competitive ratio of 1 − 1√
B
.

1
We use “time” and “round” exchangeably throughout this paper.



The arrival assumption considered by GMP (MP) in [1, 4] is

called adversarial order, i.e., the whole arrival sequence is unknown
and fixed. This is driven by theoretical interest whereas in prac-

tical cases, two other common arrival settings, called known and

unknown distributions, have received far more attention. The basic

setting is: We now have a setX of items, and in each round, an item

is sampled from X according to a fixed but known or unknown dis-

tribution. These two arrival settings are commonly used to capture

several stochastic online arrival patterns naturally emerging in the

real world: keywords in the online advertising business [29], work-

ers in online crowdsourcing markets [33, 34] and queries in online

mobile advertising systems [5], just to name a few. As for known

distributions, there is a long line of research in the context of online

bipartite matching, see, e.g. [6, 9, 19, 21, 24, 28]. For the setting of
unknown distributions, a notable special case, called unknown i.i.d.,
refers to the scenario when the sampling distribution is assumed

unknown but the same and independent over each round. There

are several works considering this setting in the domain of online

bipartite matching and Adwords
2
, see, e.g. [15, 16, 25, 27]. Studies

of [15, 16] introduced the unknown adversarial arrival model for

the Adwords problem (they called it adversarial stochastic input
there). It can be viewed as a generalization of unknown i.i.d.: in
each round a keyword is sampled from a fixed but unknown distri-

bution, which can change over time. Inspired by these works above,

we introduce a similar “unknown distributions” generalization of

GMP as follows: One of our applications is an improved analysis of

the algorithm for online B-matching with stochastic rewards (see

the full version). As seen below, this generalization also models

fairness in online algorithms for stochastic bin packing. Let [k]
denote the set {1, 2, . . . ,k } for any positive integer k .

GMP (MP) under unknown distributions: Suppose we have T
rounds and a set of items X = {X1,X2, . . . ,Xn }, where each Xi is
a random variable taking values from [0, 1]. During each round

t ∈ [T ], an item i is sampled (we also say i arrives) with probability

pi,t for each i ∈ [n] such that

∑
i ∈[n] pi,t ≤ 1. In other words, with

probability 1−
∑
i ∈[n] pi,t , no item will be sampled at t . In addition,

each time when an item Xi arrives, its index i and distribution

are revealed to us. Let P = {pi,t |i ∈ [n], t ∈ [T ]} be the arrival
distributions over the T rounds, which are independent round-by-

round. For a given budget B, an instance I = (T ,X,P) is called
feasible iff

∑
t ∈[T ]

∑
i ∈[n] pi,t · E[Xi ] ≤ B. Let IB be the set of

all feasible instances with respect to B. Note that only B is known
in advance while P and X are never revealed to us: the adversary
can choose an arbitrary unknown feasible instance I from IB before
observing our strategy. The sameThreeRules shown in the original
GMP apply here as well.

For an algorithm (strategy) ALG, let σi be the expected number

of acceptances of item i (over the randomness ofALG and the online

arrivals through theT rounds). Define the fairness achieved by ALG

over an instance I as γ (ALG, I ) � mini ∈[n]

(
σi∑
t pi,t

)
, where the

denominator refers to the expected number of arrivals of item i over
the T rounds. Let γ (ALG,B) = inf I ∈IB γ (ALG, I ) be the fairness
achieved by ALG with respect to budget B. Our goal is to design an

2Unknown i.i.d is typically studied together with another closely-related variant, called

random arrival order.

algorithm such that the fairness achieved is maximized. A natural

application of the above is in fair online algorithms for stochastic

bin packing. As is common in Internet advertising [29], each Xi
denotes a “type” of item – e.g., type of job submitted to a server,

such as data-intensive, highly-parallel, low-variance runtime, etc. –

before a job is accepted, we only have distributional information

about it. Maximizing γ is a natural fairness objective in this type of

stochastic bin-packing problem. We can define MP under unknown

distributions in a same way by just adding one more constraint for

the adversary: all Xi are required to be Bernoulli random variables.

Remarks on the adversarial model. Note that our model of ad-

versary is more powerful than that of an oblivious adversary (which

will have to decide on the arrival sequence upfront) [7]. On the

other hand, our adversary has less power than, say, adaptive online

adversaries [7]: indeed, our approach is to strengthen the oblivi-

ous adversary by adding an ingredient of randomness (the pi,t ),
the realizations of which the adversary has no control over. This

is an attempt to model non-completely-adversarial, yet random

and hence unpredictable, arrival models, as in the case of random

item-types in the above-seen online bin-packing problem (where

item sizes are also stochastic). Indeed, as shown in Example 1.2,

our adversarial model is provably (strictly) stronger than the obliv-

ious adversary of the classical GMP and MP. See, e.g. [11, 13, 31]
for additional works on online algorithms under different types of

adversaries.

A notable special case is when the arrival distributions are the

same throughout theT rounds (not necessarily the same among the

n items), i.e., for each i ∈ [n],pi,t = pi for all t ∈ [T ].We refer to this

as GMP under unknown independent identical distributions (UIID).
For the general case where the arrival distributions are allowed to

change over time, we refer to it as GMP under unknown adversarial
distributions (UAD) instead. Similarly we can define MP under UIID

and UAD respectively when all items are restricted to be Bernoulli

random variables. We refer to the original GMP (MP) introduced in

[1, 4] as GMP (MP) under (oblivious) adversarial order or simply as

GMP (MP) when the context is clear.

We can view GMP as a special case of GMP under UAD: for any

instance {Y1,Y2, . . .}, just take pt,t = 1 for all t ; we can verify that

for a given ALG and instance I , the minimum acceptance probabil-

ity γ over all items in I is exactly the fairness achieved by ALG on

I . For GMP, recall that the adversary’s strategy is fixed in advance,

obliviously of our strategy; thus, at any time t , we know the adver-

sary’s choices for the full distributions at times 1, 2, . . . , t − 1. This
key assumption is not valid for GMP under UAD since P or X is

never revealed to us, causing significantly more algorithmic chal-

lenges. Take the “γ -conservative” strategy for example as shown

in [1, 4]. The main idea is to adaptively compute a sequence of

thresholds {τt ≥ 1} at each time t and the corresponding strategy

at t as follows: add the arriving item Xt with probability 1 and

0 respectively if the remaining budget Rt (at the beginning of t )
satisfies Rt > τt or Rt < τt ; add Xt with probability βt if Rt = τt .
The sequence of thresholds {τt ≥ 1} and βt are computed in an

interesting manner in [1, 4] such that

Pr[Rt > τt ] + Pr[Rt = τt ] · βt = γ , ∀t ∈ [T ]. (1)

Note that in GMP, the distribution of Rt can be computed from

our previous strategies, together with previous observed inputs.

Thus, theoretically for each given targetγ , we can sequentially solve



τt and βt from (1) at t . However, this idea fails in the GMP under
UAD since we are not informed of P or X and thus the distribution of
Rt is not computable just from our previous strategies and observed
inputs. This is seen in the following example.

Example 1.2. Consider MP with B = 1. Consider the following

simple algorithm ALG. Step (1): For time t = 1, accept X1 with

probability
1

2
; Step (2): Let E[X1] = µ1 and thus, we see that we are

safe (i.e., we have at least one unit budget) at t = 2 with probability

α2 = 1 −
µ1
2
≥ 1

2
. For any arriving item X2 at t = 2, ALG will do

the following: if we are not safe, then stop; otherwise accept X2

with probability
1

2α2

≤ 1. Note that both X1 and X2 are accepted

by ALG with probability equal to
1

2
; Step (3): For a general time

t = 3, 4, . . ., let all previously-arrived items be Bernoulli random

variables with respective means µ1, . . . , µt−1. Suppose each arrived

item at t ′ < t is accepted with probability equal to
1

2
in ALG. We

can compute the probability that we are safe at t as follows:

αt = 1 −
1

2

t−1∑
t ′=1

µt ′ ≥
1

2

,

since

∑t−1
t ′=1 µt ′ ≤ 1 by the definition of a feasible instance. ALG can

continue a similar strategy as outlined in Step (2) at t : if safe, then
accept Xt with probability

1

2

1

αt ≤ 1. In this way Xt is accepted by

ALGwith probability again equal to 1

2
. We can thus verify that ALG

accepts all items with probability equal to
1

2
for MP with B = 1.

For MP under unknown distributions with B = 1, ALG fails. We

cannot do the same as stated in Step (2) for MP to compute α2, the
probability that we are safe at t = 2. In fact, after running Step
(1) here, the updated value α2 = 1 −

∑
i pi,1 · µi ·

1

2
, which is not

evaluable since {pi,1} and the majority of {µi } are not revealed to

us (only one single µi is revealed during t = 1). We can rigorously

show that no (adaptive) algorithm can achieve a fairness equal to

1

2
for MP under unknown distributions. See the details in 5.2. ■

Our Contributions: We give a high-level summary of our contri-

butions followed by the details. The first contribution is the new

adversary model, which we hope is useful for non-adversarial yet

random arrival issues in, say, E-commerce and cloud computing; we

give a concrete example showing that this model is strictly stronger

than the classical GMP and MP under adversarial order [2, 4]. This

also models fairness for certain models of, e.g., online stochastic

bin packing. We show a simple greedy algorithm for GMP under

UIID, prove that it is optimal, and explicitly describe its (optimal)

fairness; as an application, we obtain improved competitive analysis

for online B-matching with stochastic rewards under known IID.

For the general GMP under UAD, we present a simple non-adaptive

algorithm and prove that it is near-optimal over all non-adaptive

algorithms. Adaptive algorithms are harder to reason about: for the

special case of budget B = 1, we present an exact characterization of

the optimal adaptive and optimal non-adaptive algorithms. Overall,

our algorithms are simple, and the optimality/hardness results are

more challenging. We next present further details of our results.

First we consider the GMPunder UIID and show that Algorithm 1,

referred to as Greedy, is optimal (Section 3).

Theorem 1.3. For GMP under UIID, Greedy is optimal. Further-
more, for MP under UIID, Greedy achieves an optimal fairness γ ∗ =
1 − BB

B!eB ≥ 1 − 1√
2πB

.

One consequence is that we can use MP under UIID as a black-

box to re-analyze the performance of the algorithm presented in

[9]. Our result shows that for “online B-matching with stochastic

rewards under known IID” [9], Greedy achieves an online com-

petitive ratio of 1 − 1√
2πB

(1 + o(1)), strictly better than the ratio

of (1 − B−1/2+ϵ ) as shown in [9]. Our analysis also implies that

this improved competitive ratio is applicable to a more general

online-bipartite-matching scenario where each offline vertex u has

capacity at least B: see more details in the full version.

For the general case of GMP under UAD, we restrict our attention

to all non-adaptive algorithms. Generally speaking, an algorithm

ALG is called non-adaptive, if it can be characterized by {βt ∈
[0, 1]|t ∈ [T ]} such that at each time t , ALG will accept the arriving

item non-adaptively with probability βt iff we are safe. Notice that

Greedy is a special non-adaptive when βt = 1 for all t ∈ [T ]. Our
second contribution is a near-optimal algorithm among all non-
adaptive algorithms, denoted byNAdap(B,δ∗), for GMP under UAD

(Section 4.1).

Theorem 1.4. For GMP under UAD with budget B, NAdap(B,δ∗)

achieves a fairness at least 1 − 2δ∗, where δ∗ =
√
ln B√
B

(1 + o(1)) and
o(1) is a vanishing term when B → ∞. Moreover, no non-adaptive
algorithm can achieve a fairness better than 1 − δ∗ even for GMP.

Recall that GMP is a special case of GMP under UAD. Thus

Theorem 1.4 implies that NAdap(B,δ∗) achieves a near-optimal

fairness among all non-adaptive algorithms for GMP under UAD.

Finally, we consider a special case of MP under UAD with B = 1.

We offer exact characterizations for the optimal adaptive and opti-

mal non-adaptive algorithms (Section 5.1). We consider a concrete

example of MP under UAD with T = 4 and show that the opti-

mal fairness achieved by any algorithm is strictly less than
1

2
. This

contrasts with the fact that there is an algorithm which achieves a

fairness of
1

2
for the classical MP with B = 1 for all T [2].

2 RELATEDWORK
Based on different arrival assumptions, online problems can be

divided into the following four categories. The first is Adversarial:

the arrival sequence is unknown but fixed. See, e.g., Online match-

ing [26, 35], Adwords [10, 30]). The MP and GMP introduced in

[1] and [4] fall into this class. The classical prophet inequality also

assumes this arrival setting but oblivious adversarial. The second is

random arrival order: the set of items is unknown but fixed, and the

arrival sequence is a random permutation over all items. See, e.g.,
online matching [25, 27], Adwords [14, 20], and prophet inequal-

ity [12, 17]. The third is unknown distributions: the set of items is

unknown but fixed; each round, an item is sampled from a fixed but

unknown distribution. If the sampling distributions are required

to be the same during each round, we refer to it as unknown i.i.d.
(UIID) (e.g., [15, 16]); otherwise, we call it unknown adversarial
distributions (UAD). See, e.g., [15])3. The fourth is known distribu-

tions: in each round, an item is sampled from a known distribution.

Similarly, we have known i.i.d. (KIID) (e.g., [9, 19, 21, 23, 24, 28])
3
In [15, 16], this is referred to as adversarial stochastic input.



and known adversarial distributions (KAD) (e.g., [3, 4, 8]), depending
on if the sampling distributions are allowed to be different over

time. Note that Huang and Shu [23] studied the setting of Poisson

arrivals that share the essence with KIID.

Among all variants of online bipartitematching, onlineB-matching

(also known as Display Ads) might be the most relevant model for

GMP (MP). A typical setting is as follows: we have a bipartite graph

G = (U ,V ,E), and in each round, a vertexv ∈ V arrives (while all of

U is “offline” – i.e., already available) and we need to either discard

v or assign it to one of its neighbors from U right away. Each u
has a capacity of cu ≥ B, i.e., it can be assigned at most cu times.

The goal is to design an online allocation policy such that the total

expected weight of the assignment is maximized. Feldman et al.

[18] considered Display Ads under adversarial order with a “free

disposal” assumption and showed an algorithm achieving an online

ratio of 1−1/e when all cu → ∞. Alaei et al. [3] introduced Display
Ads under known adversarial distributions as Prophet Inequality

Matching, where the arrival distributions change over time. They

gave an algorithm achieving an online ratio of 1 − 1√
B+3

. Brubach

et al. [9] introduced online B-matching under known IID with sto-

chastic rewards, where each e = (u,v ) is present independently
with a known probability pe ; this models the user v’s click-rate for
the ads u. The online generalized assignment problem (GAP) intro-

duced by Alaei et al. [4] considered all features together and can be

viewed as online B-matching under known adversarial distributions

such that each assignment e = (u,v ) has a random time-sensitive

cost of Su,v,t ∈ [0, 1] for u. For the online GAP, the analysis in [4]

actually implies that the standard LP-based online algorithm has

an online ratio of γ , when provided with an oracle achieving a ratio

of γ for GMP.

3 GMP UNDER UIID
In this section, we consider the case when all pi,t = pi for each
i ∈ [n]. Please see the example below which inspires us to design

an optimal algorithm. Throughout this paper, we say “we are safe

at t” iff at the beginning of time t , we still have at least one unit
budget left.

Example 3.1. Let B = 1,n = 1, i.e., there is only one item X .
Assume that for each time t , the single item arrives with probability

pt = 1 and that Xt is Bernoulli(1/T ). Observe that the expected
number of arrivals of X is T and recall – from the definition of

fairness for GMP under IID (or under UAD) – that our objective

is reduced to maximizing E[Z ]/T where Z is the total number of

acceptances of X .

Consider any optimal algorithm OPT and let γt = Pr[Zt =
1] where Zt indicates if X is accepted at t in OPT. Thus E[Z ] =∑
t E[Zt ]. Let Ht = Zt ·Xt indicate if we use the one unit budget B

or not. Observe that {Ht |t ∈ [T ]} are mutually exclusive events and

that Pr[Ht = 1] =
γt
T . Therefore we are safe at t with probability

equal to Pr[

∧
t ′<t (Ht ′ = 0)] = 1 −

∑
t ′<t γt ′/T . Thus, OPT can be

viewed as choosing the values {γt |t ∈ [T ]} in order to maximize

E[Z ] =
∑
t γt subject to γt ≤ 1 −

∑
t ′<t

γt ′
T for each t . (These

constraints are valid since for each time t , the probability that X is

accepted by OPT should be at most the probability that we are safe

t .) Therefore we obtain the following LP:

max

∑
t ∈[T ]

γt : 0 ≤ γ1 ≤ 1, 0 ≤ γt ≤ 1 −
∑
t ′<t

γt ′

T
,∀t ≥ 2.

We can verify that the optimal solution is γ ∗t = (1 − 1/T )t−1 for
each t . This suggests that OPT will accept X whenever we are safe

at each time t , i.e., OPT is essentially greedy. ■

Inspired by the above example, we present a formal description

of our greedy algorithm, denoted by Greedy, as follows.

Algorithm 1: Greedy

1 For each time t , we accept the arriving item if we are safe, i.e.,
we still have at least one unit budget.

Observe that under UIID, the constraint

∑
t
∑
i E[Xi ]pi,t ≤ B is

reduced to

∑
i E[Xi ]pi ≤ B/T .Greedy treats each item in a uniform

way and accepts any item as long as we are safe. For Greedy, the
online arrival process can be viewed in the following way: in each

round t ∈ [T ], a single random variable X =
∑
i Ii · Xi arrives with

probability 1, where Ii is a Bernoulli random variable with mean

pi indicating if Xi comes each round. Notice that (1) {Ii |i ∈ [n]}
are independent of {Xi |i ∈ [n]} and (2) X takes values from [0, 1]

with E[X ] =
∑
i piE[Xi ] ≤ B/T . Let Yt indicate if we are safe at t

when we run Greedy on X , and Y =
∑
t ∈[T ] Yt which denotes the

(random) number of rounds after which we become unsafe.

Note that the distribution of each Yt is completely determined

by X . For a given B and T , suppose the adversary tries to mini-

mize E[Y ]/T =
∑
t ∈[T ] E[Yt ]/T by constructing a proper random

variable X = X ∗ with X ∗ ∈ [0, 1] and E[X ∗] ≤ B/T . Let γ ∗ be the
resultant optimal objective value for the adversary. We prove that:

Theorem 3.2. For any given B and T , Greedy will achieve a fair-
ness equal to γ ∗. Furthermore, no algorithm can achieve a fairness
better than γ ∗, i.e., Greedy is optimal.

Proof. Consider a given input X = {X1, . . . ,Xn } and focus on

an item Xi . Let Zt indicate that Xi comes and is accepted at t in
Greedy and Yt indicate if we are safe at t when we run Greedy
on X. Thus Pr[Zt = 1] = Pr[Yt = 1]pi . The fairness achieved

by Greedy for item i will be γi =
∑
t E[Zt ]/(Tpi ) =

∑
t E[Yt ]/T .

By the definition of γ ∗, we see γi ≥ γ ∗. Thus we see that Greedy
achieves a fairness at least γ ∗.

Now we show that no algorithm can achieve a fairness better

than γ ∗. Consider an input I where X consists of one single item

X = X ∗ andX comes with probability 1 in each of theT rounds. Let

Z be the number of acceptances of X in any given algorithm ALG.
Since Greedy acceptsX whenever we are safe, we see that the num-

ber of acceptances of X in any ALG should be no larger than that

of Greedy. Thus we claim Z ≤ Y , where Y is the number of accep-

tances when Greedy runs on I . Therefore, E[Z ]/T ≤ E[Y ]/T = γ ∗.
Note that E[Z ]/T is exactly the fairness achieved by ALG for the

item X . Thus we have proven our claim. □

3.1 MP under UIID
We now consider a special case: MP under UIID, i.e., all the Xi are
Bernoulli variables, and give an asymptotically tight expression for

γ ∗ when B ≫ 1.



Theorem 3.3. The fairness achieved byGreedy for MP under UIID
with input B is γ ∗ = 1 − BB

B! e
−B ≈ 1 − 1√

2πB
.

In the case when all Xi are Bernoulli, we see that X =
∑
i IiXi

is also a Bernoulli random variable with mean E[X ] ≤ B/T . For a
given B and T , the adversary will hence arrange X ∗ ∼ Ber(B/T ) to
ensure that γ = E[Y ]/T is minimized, where Y ≤ T is the number

of rounds after which we become unsafe. Consider the random

process where we have a bin with capacity of B and where, in each

round, we independently receive a ball with probability B/T . Let
Y ′ be the number of rounds after which we exhaust the capacity.

Observe that E[Y ′] = T and Y = min(Y ′,T ). Note that our problem
is different from that raised and solved in [16, 36] for Adwords:

they are concerned with min(Y ′′,B) where Y ′′ is the number of

balls received after T rounds.

Notice that for each given t ≥ B,

Pr[Y ′ = t ] =
( B
T

)B (
t − 1
B − 1

) (
1 −

B
T

)t−B
=

( B
T − B

)B (
t − 1
B − 1

) (
1 −

B
T

)t
.

Therefore, we have

T − E[Y ] = E[Y ′] − E[Y ]

=

∞∑
t=T+1

( B

T − B

)B (
t − 1

B − 1

) (
1 −

B

T

)t
(t −T )

=

( B

T − B

)B (
1 −

B

T

)T ∞∑
ℓ=1

(
T + ℓ − 1

B − 1

) (
1 −

B

T

)ℓ
ℓ

=
BB

B!

(
1 −

B

T

)T T (T − 1) · · · (T − B)

(T − B)B
.

Thus, we have

γ =
E[Y ]

T
= 1 −

BB

B!

(
1 −

B

T

)T (T − 1) · · · (T − B)

(T − B)B
� 1 − F (B,T ).

(2)

Lemma 3.4. For each given B ≥ 1, F (B,T ) is an increasing function
of T ≥ B and limT→∞ F (B,T ) = BB

B! e
−B .

Proof. Let T = B + k with k ≥ 0. Notice that

F (B,T ) =
BB

B!

( k

B + k

)k+1 (
k + 1

k + B
·
k + 2

k + B
· · · · ·

k + B − 1

k + B

)
.

which implies that F (B,T ) is an increasing function ofT ≥ B. When

T → ∞, we see that the limit of F (B,T ) is BB
B! e
−B

. □

Therefore for each given B, the adversary will arrange an in-

stance of MP under UIID with T → ∞ such that γ is minimized.

Plugging the result of Lemma 3.4 into (2) yields Theorem 3.3. By

combining the results of Theorems 3.2 and 3.3, we obtain Theo-

rem 1.3.

4 GMP UNDER UAD
In this section we consider the GMP under UAD. Recall that in this

case, the arrival distributions can change in different rounds.

4.1 A near-optimal non-adaptive algorithm
First, we show that Greedy can be arbitrarily bad for GMP under

UAD.

Example 4.1. Let X be the disjoint union of {X1, . . . ,Xn } and
{Xa ,Xb }. E[Xi ] = µi = 1 for all i ∈ [n] and E[Xa] = µa = 1 − ϵ
and E[Xb ] = µb = ϵ/(T − B). For t ∈ [B − 1], pi,t = 1/n for each

i ∈ [n] and pa,t = pb,t = 0. For t = B, pi,t = 0 for each i ∈ [n]
and pb,t = 0,pa,t = 1; for B < t ≤ T , pi,t = 0 for each i ∈ [n] and
pa,t = 0,pb,t = 1. Observe that

∑
t ∈[T ]

∑
i ∈[n]∪{a,b } pi,t µi = B.

Now suppose we run Greedy on X. First, the expected number of

arrivals is

∑
t ∈[T ] pb,t = T −B. Second, note that at the beginning of

t = B+ 1, we are safe with probability ϵ , implying that the expected

number of acceptances of Xb is at most ϵ (T − B). Thus, Greedy
achieves fairness at most ϵ for Xb . ■

Recall that for a given B, an instance X = {X1, . . . ,XT } of GMP

is called feasible iff each Xi lies in [0, 1] with
∑
t ∈[T ] E[Xi ] ≤ B. Let

{Yt |t ∈ [T ]} be T i.i.d. Bernoulli random variables with mean 1 − δ
each, where δ is a parameter. Set HX =

∑
t ∈[T ] Xt · Yt . For a given

δ and B, let F (B,δ ) = supX∈JB
Pr[HX > B − 1] where JB is the

set of all feasible instances of GMP with respect to B.
Let NALG be the set of all possible non-adaptive algorithms. For

an instance I of GMP and an algorithm ALG ∈ NALG, let γ (ALG, I )
be the minimum acceptance probability of ALG over all the items.

We can verify that this coincides with the fairness defined for GMP

under UAD. For a givenB, letγ ∗ (B) = supALG∈NALG inf I ∈JB γ (ALG, I ),
which refers to the fairness achieved by the optimal non-adaptive

algorithm for GMP with input B.

Theorem 4.2. Let δ∗ ∈ [0, 1] be the unique solution to the equation
F (B,δ ) = δ . Then, γ ∗ (B) ≤ 1 − δ∗.

Proof. Observe that F (B,δ ) is a non-increasing function of δ .
Also, we can verify that F (B, 0) = 1 and F (B, 1) = 0, which justifies

the existence of a unique solution in [0, 1] for the equation F (B,δ ) =
δ .

Let NOPT be an optimal non-adaptive algorithm for GMP with

input B. Suppose for a contradiction that the fairness achieved by

NOPT is γ ∗ (B) > 1 − δ∗. Let ϵ = (γ ∗ (B) − (1 − δ∗))/2. By the

definition of F (B,δ∗), we see that there exists a feasible instance
X′ = {X1,X2, . . . ,XT } such that Pr[HX′ > B − 1] > δ∗ − ϵ where
HX′ =

∑
t ∈[T ] Xt ∗ Yt with each Yt ∼ Ber(1 − δ∗). Consider the

instance X′′ = X′∪ {XT+1} where XT+1 is the last item with mean

0. Thus X′′ is still a feasible instance of GMP with respect to B.
Suppose we run NOPT on X′′ and define UT to be the usage of

the budget at the end of time T . Since the last item XT+1 can be

accepted with probability at least γ ∗ (B) by NOPT, we must have

Pr[UT > B − 1] ≤ 1 − γ ∗ (B).
Notice that in NOPT, each item in X′′ is accepted with prob-

ability at least γ ∗ (B) > 1 − δ∗ non-adaptively. Consider such a

non-adaptive ALG which accepts each item with probability ex-

actly equal to 1 − δ∗ whenever we are safe. Let U ′T be the expected

usage of budget for ALG at the end of T . We see that

Pr[U ′T > B − 1] = Pr[HX′ > B − 1] ≤ Pr[UT > B − 1] ≤ 1 − γ ∗ (B)

On the other hand, we have that Pr[HX′ > B−1] > δ∗−ϵ , which
implies that ϵ > δ∗ − (1 − γ ∗ (B)). This contradicts our assumption

that ϵ =
(
δ∗ − (1 − γ ∗ (B))

)
/2 > 0. □

Since GMP is a special case of GMP under UAD, we have the

following corollary.



Corollary 4.3. For GMP under UAD with budget B, no non-
adaptive algorithm can achieve a fairness better than 1 − δ∗.

We next present a simple non-adaptive algorithm, denoted by

NAdap(B,δ∗), for GMP under UAD with budget B:

Algorithm 2: NAdap(B,δ∗)

1 For each time t , we accept the arriving item with probability

1 − δ∗ (non-adaptively) whenever we are safe.

Theorem 4.4. AlgorithmNAdap(B,δ∗) achieves a fairness at least
(1 − δ∗)2 ≥ 1 − 2δ∗ for GMP under UAD with budget B.

Proof. Consider a given feasible instance I = {T ,X,P} of GMP

under UAD with budget B, where X = {Xi |i ∈ [n]} and P =
{pi,t |i ∈ [n], t ∈ [T ]}. Since NAdap(B,δ∗) is non-adaptive, we can
view the arrival process as follows: in each round t ∈ [T ] a single
random variable X ′t =

∑
i Ii,t ·Xi arriving with probability 1 where

Ii,t indicates that Xi comes at t , with E[Ii,t ] = pi,t ; we accept each
X ′t non-adaptively with probability 1−δ

∗
whenever we are safe. Let

{Yt |t ∈ [T ]} be i.i.d. Bernoulli random variables with mean 1 − δ∗

each. LetUt be the usage of the budget at the end of t when we run

NAdap(B,δ∗) over I ; thus, χ (Ut ≤ B − 1) indicates that we are safe
at time t + 1.

Observe that Pr[Ut > B − 1] = Pr[

∑
ℓ≤t X

′
ℓ
· Yℓ > B − 1]. Also

each X ′
ℓ
∈ [0, 1] and E[

∑
ℓ≤t X

′
ℓ
] ≤ B; thus, {X ′

ℓ
|ℓ ≤ t } itself can

be viewed as a feasible instance of GMP (under adversarial) with

respect to B. From the definition of F (B,δ∗), we see that for each t ,

Pr[Ut > B − 1] = Pr[

∑
t ′≤t

X ′t · Yt > B − 1] ≤ F (B,δ∗) = δ∗,

which implies that Pr[Ut ≤ B−1] ≥ 1−δ∗. Notice that for each given
Xi with i ∈ [n], the expected number of acceptances ofXi over theT
rounds is E[

∑
t χ (Ut ≤ B−1) ·Yt+1 · Ii,t+1] ≥ (1−δ∗)2

∑
t Ii,t while

its expected number of arrivals is

∑
t Ii,t . Thus from the definition

of fairness, NAdap(B,δ∗) achieves a fairness at least (1 − δ∗)2 on
the instance I . This completes the proof. □

4.2 Computation of δ ∗

By Theorem 4.4, we obtain a near-optimal non-adaptive algorithm

for GMP under UAD whenever δ∗ is known. In this section, we

assume B ≫ 1 and give an asymptotically tight form for δ∗.

Theorem 4.5. δ∗ = (1+ o(1))B−1/2
√
lnB, where o(1) is a vanish-

ing term as B increases.

4.2.1 A Lower Bound on δ∗. First we show a lower bound on

δ∗ as follows.

Lemma 4.6. δ∗ ≥ (1+o(1))B−1/2
√
lnB, where o(1) is a vanishing

term as B increases.

Proof. Consider the following instance of MP with respect to

B: X′ = {X1, . . . ,XT } where {Xt } are T i.i.d. Bernoulli random
variables with mean B/T each. Recall that HX =

∑
t ∈[T ] Xt · Yt

where {Yt |t ∈ [T ]} areT i.i.d. Bernoulli random variables with mean

1 − δ each, which are independent from {Xt }. For our instance X
′
,

we see that HX′ is a sum ofT i.i.d. Bernoulli random variables with

mean B (1 − δ )/T each. For each given B and δ , we have that HX′

follows a Poisson distribution with mean B (1−δ ), whenT → ∞. By

applying the Berry-Esseen Theorem [32], we see that
HX′−B (1−δ )√

B (1−δ )

can be approximated byN (0, 1) with error at most
1

2

√
B (1−δ )

. Thus

we have

Pr[HX′ > B − 1] = Pr



HX′ − B (1 − δ )√
B (1 − δ )

≥

√
Bδ

√
1 − δ


+O (

1

√
B
)

=
1

√
2π

∫ ∞

τ
e−x

2/2dx +O (
1

√
B
)

=
1

√
2π

exp(−τ 2/2)

τ
(1 − o(1)) +O

(
1

√
B

) (
τ �

√
Bδ

√
1 − δ

)
,

where the term o(1) in the last line vanishes when B → ∞ and lies

between 0 and 1/τ 2.
Consider the equation Pr[HX′ > B − 1] = δ , which is reduced to

1

√
2π

exp

(
−Bδ2

2(1 − δ )

)
(1 − o(1)) +O (δ ) =

δ2
√
1 − δ

√
B.

Solve this, we get that δ ′ = (1+o(1))B−1/2
√
lnB, whereo(1) is a van-

ishing term when B → ∞. Notice that F (B,δ ) = supX∈IB
Pr[HX >

B − 1] ≥ Pr[HX′ > B − 1]. In other words, if we view F (B,δ ) and
Pr[HX′ > B − 1] as two functions of δ for a given B, we see that
both are decreasing over δ ∈ [0, 1] and the graph of F (B,δ ) lies
above that of Pr[HX′ > B − 1]. Since δ∗ and δ ′ are respectively the

intersection points of y = δ and the two functions, we claim that

δ∗ ≥ δ ′. □

4.2.2 An Upper Bound on δ∗. Now we show an upper bound

on δ∗ as follows.

Lemma 4.7. δ∗ ≤ (1+o(1))B−1/2
√
lnB, where o(1) is a vanishing

term as B increases.

In this paper we use the following form of the Chernoff bound

to prove the above lemma.

Definition 4.8 (Chernoff Bound). LetX1, . . . ,Xn be n independent

random variables with 0 ≤ Xi ≤ 1. Let X = X1 + . . . + Xn and

µ = E[X ]. Then for any ∆ > 0,

Pr[X ≥ (1 + ∆)µ] ≤ exp

(
−

∆2

2 + ∆
µ

)
. (3)

Proof of Lemma 4.7. Consider a given B and a given feasible

instance X ∈ IB . Recall that HX =
∑
t ∈[T ] Xt · Yt where each

Xt ∈ [0, 1] andYt is Bernoulli random variable with mean 1−δ with∑
t ∈[T ] E[Xt ] ≤ B. Thus we can viewHX as a sum ofT independent

random variable each taking value from [0, 1] with total mean at

most B (1 − δ ). To apply the Chernoff bound shown in 4.8, we have

µ = B (1 − δ ) and ∆ = 1−1/B
1−δ − 1. Here we assume δ ≫ B−1. This is

alowed since B can be taken arbitrarily large.

Pr[HX > B − 1] ≤ exp

(
−

∆2

2 + ∆
µ

)

= exp
*.
,
−

B (1 − δ )

2 +
1−1/B
1−δ − 1

(
1 − 1/B

1 − δ
− 1

)
2+/
-

= exp

(
−
Bδ2

2

(1 + o(1))

)
,



where o(1) is a vanishing term when B → ∞. Solving the equation

exp

(
−Bδ

2

2
(1 + o(1))

)
= δ , we get that δ ′ = (1 + o(1))B−1/2

√
lnB.

Notice that X is an arbitrary feasible instance in IB , thus we claim

that F (B,δ ) ≤ exp

(
−Bδ

2

2
(1 + o(1))

)
. Again suppose we try to view

F (B,δ ) and exp

(
−Bδ

2

2
(1 + o(1))

)
as two decreasing functions of

δ ∈ [0, 1] while δ∗ and δ ′ are respectively the intersection points

of the line y = δ with the two functions. Therefore we have that

δ∗ ≤ δ ′ and we prove our claim. □

Theorem 4.5 directly follows from the results in Lemmas 4.6 and

4.7. The combination of results in Corollary 4.3 and Theorems 4.4

and 4.5 yields that NAdap is nearly an optimal non-adaptive algo-

rithm for GMP under UAD.

5 MP UNDER UADWITH B = 1

In this section, we consider the following special case: MP under

UAD with B = 1.

5.1 An optimal non-adaptive algorithm
Consider a given finite T . Let {βt |t ∈ [T ]} denote an optimal non-

adaptive algorithm, denoted by NOPT. In other words, NOPT will

accept the arriving item at t with probability βt whenever safe.

Now we discuss how to compute {βt |t ∈ [T ]} for a given T . For
each t ∈ [T ], let Jt be the set of all feasible instances of GMP with

B = 1 and time horizon t . In other words, Jt = {At ′ |1 ≤ t ′ ≤ t }
where {At ′ |t

′ ∈ [t]} are all independent random variables and each

takes a value from [0, 1] and
∑
t ′∈[t ] E[At ′] ≤ 1.

Lemma 5.1. NOPT achieves a fairness of γ for MP under UAD with
B = 1 iff for each 1 ≤ t ≤ T ,

γ ≤ E
[
βt

∏
t ′<t

(1 − βt ′At ′ )
]
,

for all possible {At ′ |t ′ < t } ∈ Jt−1.

Proof. We first show the necessity. Consider a given 1 ≤ t ≤ T
and a given set of {At ′ |t

′ < t } such that {At ′ } are all indepen-

dent random variables taking values from [0, 1] with total mean

at most 1. WLOG assume the union of support of At ′ is a finite

set S = {µ1, µ2, . . . , µn } and for each t ′ < t , Pr[At ′ = µi ] = qi,t ′ .
Consider the following instance I created by the adversary: X =

{X1,X2, . . . ,Xn } ∪ {Xn+1} such that Xi = Ber(µi ) for each i ∈ [n],
and Xn+1 = Ber(0). During each round of t ′ with t ′ < t , item Xi
comes with probability pi,t ′ for each i ∈ [n] and Xn+1 comes with

probability 0; during the round t , item Xn+1 comes with probability

1 and no one else will come; no item will come after round t . Note
that the sum of mean of At ′ is at most 1 implies that instance I
is feasible. We can verify that the fairness achieved by NOPT on

the item Xn+1 is exactly equal to E
[
βt

∏
t ′<t (1− βt ′At ′ )

]
. The fact

that NOPT achieves a fairness of γ justifies the constraint at t .
Now we show the sufficiency. Consider a given instance I =

(T ,X,P), where X = {X1, . . . ,Xn } and P = {pi,t }. Let µi = E[Xi ].
For each t ∈ [T ], define a random variable At such that Pr[At =
µi ] = pi,t for each i ∈ [n]. Observe that each At takes values from
[0, 1] with

∑
t ∈[T ] E[At ] ≤ 1. For each t ∈ [T ], we can verify that

we are safe with probability equal to E
[∏

t ′<t (1 − βt ′At ′ )
]
. This

implies that for each item Xi , the expected number of acceptances

should be∑
t ∈[T ]

pi,t · βt · E
[ ∏
t ′<t

(1 − βt ′At ′ )
]
≥ γ

∑
t ∈[T ]

pi,t .

Thus, we claim that NOPT achieves a fairness at least γ . □

To find a maximum γ satisfying all the constraints in Lemma 5.1,

we just need to solve the following maximization program.

max γ (4)

γ ≤ βt (1 − βt ′ ) ∀1 ≤ t ′ < t ≤ T

0 ≤ βt ≤ 1 ∀t ∈ [T ]

Lemma 5.2. An optimal solution {βt |1 ≤ t ≤ T } and γ to the
maximization program (4) can be solved from the following equations:

β1 = γ , βt =
γ

1 − βt−1
,∀1 < t < T ,γ = 1 − βT−1, βT = 1. (5)

Proof. Let {β∗} andγ ∗ be the unique solution to the program (5).

Ignore the equation γ = 1 − βT−1; each βt , t < T can be viewed as

an function of γ , which is strictly increasing over [0, 1]. Thus we

can get an unique solution γ ∗ from the last equation γ = 1 − βT−1.
The feasibility of {β∗} and γ ∗ to the maximization program (4)

can be verified straightforwardly. Now we show the proof of op-

timality. Suppose the optimal value to the program (4) is γ ′ > γ ∗

which is achieved on {β ′t } . Then we see that

β ′
1
≥ γ ′, β ′t ≥

γ ′

1 − β ′t−1
,∀1 < t < T , 1 − β ′T−1 ≥ γ ′.

By comparing the above inequalities to the equations in pro-

gram (5), we claim that β ′T−1 > β∗T−1, which is followed by γ ′ ≤
1 − β ′T−1 < 1 − β∗T−1 = γ

∗
. We get a contradiction. □

Let γ ∗ (T ) be the optimal value to the program (5). Numerically

we can verify that

γ ∗ (1) = 1, γ ∗ (2) =
1

2

, γ ∗ (3) =
3 −
√
5

2

∼ 0.3819, γ ∗ (4) =
1

3

.

Lemma 5.3. limT→∞ γ ∗ (T ) = 0.

Proof. Consider a givenγ . Ignore the equationγ = 1−βT−1 and
view each βt , t < T as an increasing function of γ . Since βT−1 ≤ 1,

we claim that {β1, β2, . . . , βT−1}must converge to a value satisfying

the equation
γ

1−β = β when T → ∞. From the last equation, we

see γ = 1 − β , which implies β = 1,γ = 0. □

5.2 An optimal adaptive algorithm
In this section, we present an optimal adaptive algorithm, which is

denoted by OPT.

Lemma 5.4. The optimal adaptive strategy at t for the MP under
UAD with B = 1 just needs to adapt toUt−1 = (µ1, . . . , µt−1) subject
to being safe, where µt ′ is the mean of the arriving item at t ′ for each
t ′ < t . It need not adapt to the random outcomes of previous optimal
strategies and realizations of accepted items.



Proof. Consider a finite (known) T and suppose the worst un-

known but fixed input arranged by the adversary is I = (X,P),
where X = {X1,X2, . . . ,Xn } and P = {pi,t |i ∈ [n], t ∈ [T ]} with∑
i,t pi,tE[Xi ] ≤ 1 and each Xi is a Bernoulli random variable.

Consider a stateSt = (t ,B = 1,Ut )withUt = {µ1, . . . , µt−1, µt },
i.e., we are safe at time t and all observations so far are Ut =

{µ1, . . . , µt−1, µt } where µt ′ is the mean of the arriving item at

t ′ ∈ [t]. Let PATH be the set of all paths in the decision tree of OPT
ending at S. Notice that we can extract the same information from

each path P ∈ PATH for the future arrivals X and {pi,t ′ |t
′ > t }.

Thus we claim the optimal strategy should be the same if we end

at St following each path P ∈ PATH.
Let ft (Ut ) be the probability that OPT accepts the arrival item

Yt at t conditioning on we are safe at t and Ut . Now we show

further that ft (Ut ) has nothing to do with µt = E[Yt ]. Suppose
we run OPT and at time t , we are safe and observe an arriving

item Yt = Ber(µt ). Consider the following worst scenario for Yt
arranged by the adversary:Yt never comes before (its index revealed

to us is different from all previous) and it comes exclusively at t
with probability ϵ . Thus OPT achieving a fairness of γ over Yt is
equivalent to the property that for all µt ∈ [0, 1], we have

min

I (t−1)∈I1 (t−1)
EUt−1

[
Pr[OPT is safe at t | Ut−1]·ft (µ1, . . . , µt )

]
≥ γ ,

where (1) Ut−1 is a random vector of means of all arrival items

coming during the first t−1 roundswhose distribution is determined

by the unknown input projected into the first t − 1 rounds, denoted
by I (t−1); (2) I1 (t−1) is the set of all feasible instances of MP under

UAD with B = 1 and time horizon T = t − 1. Notice that neither of
the values Pr[OPT is safe at t |Ut−1] and I1 (t − 1) is connected to

µt , thus we claim that ft (µ1, µ2, . . . , µt ) inOPT has no dependence

on µt either. □

Consider a finiteT . From Lemma 5.4 we see thatOPT can be char-
acterized by { ft |t ∈ [T ]} where for each t ∈ [T ], ft : [0, 1]t−1 →

[0, 1] is such that ft (Ut−1) denotes the probability that OPT ac-

cepts the arriving item at t conditioning on being safe at t andUt−1.

The following lemma gives a sufficient and necessary condition

when OPT = { ft |t ∈ [T ]} achieves a fairness of γ . Recall that Jt
is the set of all feasible instances of GMP with B = 1 and a time

horizon of t .

Lemma 5.5. An OPT parameterized by { ft |t ∈ [T ]} achieves a
fairness of γ for MP under UAD with B = 1 and a time horizon of T
iff for each 1 ≤ t ≤ T ,

γ ≤ E
[
ft (A1,A2, . . . ,At−1)

∏
t ′<t

(
1 − ft ′ (A1, . . . ,At ′−1)At ′

)]
,

for all possible {At ′ |1 ≤ t ′ < t } ∈ Jt−1.

The proof of Lemma 5.5 is similar to that of Lemma 5.1. We omit

it here. For a given T , let γ̂ (T ) be the maximum value satisfying all

constraints in Lemma 5.5. It turns out to be much more challenging

than before to compute γ̂ (T ). Here we only consider the simple

case T = 4 and show γ̂ (4) < 1

2
. Note that for the classic MP with

B = 1 for an arbitrary T , Theorem 1.1 in [2] indicates that there is

an algorithm which achieves a fairness of
1

2
. This suggests that MP

under UAD is strictly harder than the classical MP under adversarial

order.

Lemma 5.6. For MP under UAD with B = 1 and T = 4, OPT
achieves a fairness of γ̂ (4) < 1

2
.

Proof. We prove by contradiction. Suppose γ̂ (4) ≥ 1/2. From

Lemma 5.5, we see that the optimal choice is f1 = γ , f2 (x ) =
1

1−γ x
for each x ∈ [0, 1] and f4 = 1. The key issue is to choose f3 � f .
The conditions stated in Lemma 5.5 for t = 3, 4 are reduced to the

following:

E
[
f (X1,X2)

(
1 − γ (X1 + X2)

)]
≥ γ ,

E
[(
1 − f (X1,X2)X3

) (
1 − γ (X1 + X2)

)]
≥ γ ,

(6)

for all possible {X1,X2} ∈ J2 and {Y1,Y2,Y3} ∈ J3. Consider these
two concrete examples: {X1,X2} are two i.i.d. Bernoulli random
variables with mean 1/2 while {Y1,Y2,Y3} are three i.i.d. Bernoulli
random variables with mean 1/3. Let a = ( f (1, 0) + f (0, 1))/2 and
b = f (0, 0). After simplification, the two inequalities in (6) on

these two examples with γ ≥ 1/2 are reduced to the following:

a + b ≥ 2, a + 2b ≤ 9

4
. Notice that both a and b take value in [0, 1]

and thus this linear system is infeasible. □

6 CONCLUSION AND FUTUREWORK
In this paper, we have considered a generalization of GMP (MP) as

introduced in [1, 4] and presented two near-optimal non-adaptive

online algorithms for unknown IID and the more-general unknown

adversarial distributions.

For GMP under UIID, we have proven that Greedy is optimal

while the exact optimal fairness is not known yet. We conjecture

that it should have the same performance as that of MP under

UIID, i.e., that the adversary will arrange all items as Bernoulli

random variables in the worst case. Another direct future direction

is to show some hardness results for GMP under UAD regarding

the optimal adaptive algorithm: is NAdap(B,δ∗) also near-optimal

among all adaptive algorithms for GMP under UAD?
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