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Abstract
Kidney exchanges allow patients with end-stage re-
nal disease to find a lifesaving living donor by way
of an organized market. However, not all patients
are equally easy to match, nor are all donor organs
of equal quality—some patients are matched within
weeks, while others may wait for years with no
match offers at all. We propose the first decision-
support tool for kidney exchange that takes as input
the biological features of a patient-donor pair, and
returns (i) the probability of being matched prior
to expiry, and (conditioned on a match outcome),
(ii) the waiting time for and (iii) the organ quality
of the matched transplant. This information may
be used to inform medical and insurance decisions.
We predict all quantities (i, ii, iii) exclusively from
match records that are readily available in any kid-
ney exchange using a quantile random forest ap-
proach. To evaluate our approach, we developed
two state-of-the-art realistic simulators based on
data from the United Network for Organ Sharing
that sample from the training and test distribution
for these learning tasks—in our application these
distributions are distinct. We analyze distributional
shift through a theoretical lens, and show that the
two distributions converge as the kidney exchange
nears steady-state. We then show that our approach
produces clinically-promising estimates using sim-
ulated data. Finally, we show how our approach,
in conjunction with tools from the model explain-
ability literature, can be used to calibrate and detect
bias in matching policies.

1 Introduction
Renal disease affects millions of people worldwide, with a so-
cietal burden comparable to diabetes [Neuen et al., 2013]. A
patient with end-stage renal failure requires one of two treat-
ments to stay alive: frequent and costly filtration and replace-
ment of their blood (dialysis), or the reception of an organ
transplant from a donor with one or more healthy kidneys.
The latter option is often preferable due to increased quality
of life and other health outcomes [Santos et al., 2015]. Donor
kidneys are obtained from one of three sources: the deceased

donor waiting list, where cadaveric kidneys are harvested
from deceased donors with still-healthy kidneys; ad-hoc ar-
rangements between a compatible living donor and a patient;
and, recently, kidney exchanges – an organized market where
patients swap willing donors with other patients [Roth et al.,
2004; Roth et al., 2005a; Roth et al., 2005b]. Kidney ex-
changes, while still quite new, result in increased numbers
and quality of transplants [Sönmez et al., 2017];

The act of getting a kidney transplant is time-sensitive, and
affects healthcare and lifestyle decisions; furthermore, the ex-
pected quality of the kidney—if any—received by a patient
affects the decision to accept or reject a particular match of-
fer. Thus, decision-support systems that incorporate donor
and patient features and quantify or predict the value of a cur-
rent or future offered kidney are valuable to practitioners. The
Kidney Donor Profile Index (KDPI) [Rao et al., 2009] and
the Living Kidney Donor Profile Index (LKDPI) [Massie et
al., 2016] are well-known and used to assess deceased- and
living-donor kidneys, respectively. However, no correspond-
ing method (nor system) currently exists for future kidney ex-
change offers.

Although all transplants in kidney exchange systems are
living-donor transplants, the LKDPI metric may not be ap-
plied directly in this domain, as unlike in standard ad-hoc
living-donor donation, the features of the end donor are un-
known and are generated through a stochastic matching pro-
cess. Indeed, this stochasticity plays a large role in determin-
ing the value of a future kidney offer. Patients may or may
not be matched due to random causes. Further, even if one
conditions on a match outcome, the waiting time and quality
of the transplant a patient ends up receiving is highly stochas-
tic due to reasons we outline in Section 2. Thus, a success-
ful decision-support system for kidney exchange must also
quantify the variation that a patient should expect to face as
opposed to simply giving point estimates.

We present four principal contributions in this paper.
• We give a random forest-based approach that takes as input

features of a patient and their paired donor, and estimates (i)
the probability of obtaining a match, and gives an estimate
and prediction interval (e.g., 95% CI) for (ii) the quality of
the match, and (iii) the waiting time of the match condi-
tioned a match outcome. We validate our approach on real
data from one of the largest fielded exchanges in the world.

• Our approach exclusively makes use of match records that



are routinely collected in any kidney exchange. One con-
sequence that arises from using this data for prediction is
that we encounter distributional shift – the features of pa-
tients who have exited the exchange may differ from those
who have entered the exchange. We analyze this shift with
a theoretical lens, and prove that it becomes negligible as
the kidney exchange nears steady-state.

• We show how our approach may be adapted to provide kid-
ney exchanges with a principled method for understanding
how the current matching policy affects different types of
patients. The economics literature suggests that certain pa-
tients may never be matched in a fully efficient matching
due to their biological features (e.g. [Ashlagi and Roth,
2014; Toulis and Parkes, 2015]), motivating the design of
fair policies. We use the Shapley Additive Explanation
(SHAP) framework [Lundberg and Lee, 2017] to adapt our
approach to provide consistent explanations for the vari-
ation in match outcomes as a function of the input fea-
tures. Although SHAP analysis can be computationally in-
tractable in the general case, a polynomial-time algorithm
to compute SHAP values exists for RF models [Lundberg
et al., 2018]. Thus, our approach allows kidney exchanges
to understand which populations are being treated unfairly
by the current matching policy and by how much, and may
therefore be used to calibrate patient prioritization.

• We provide a new state-of-the-art kidney exchange sim-
ulation framework capable of generating synthetic match
records (a running list of the patients that have exited the
exchange, along with their match outcomes), and patient
trajectories (match outcomes for a specified patient upon
being added to a specified pool). We believe that our frame-
work can enable the research community to better under-
stand the behavior of kidney exchanges, while protecting
patient privacy, by providing a source of realistic synthetic
data.

2 Preliminaries
The most-used model represents a kidney exchange as a di-
rected graph that evolves over time G(T ) := (V (T ), E(T )),
called a compatibility graph. Here, each patient and their
paired donor who enter the pool are represented as a single
vertex v ∈ F belonging to some feature space F . Then, a di-
rected edge is drawn from vertex vi to vertex vj if the patient
at vertex vj wants the donor kidney of vertex vi. Edges are
weighted by a function w : F×F → R that returns the utility
of an individual kidney transplant represented by a directed
edge (vi, vj) in terms of the features of the source and target
nodes. In practice, these weights are used to (de)prioritize
specific classes of patient [Dickerson et al., 2014; UNOS,
2015].

Kidney exchanges rely on one of two types of structures to
match patients: cycles and chains. First, a k-cycle c consists
of exactly k patient-donor pairs (vertices), each connected
by an edge in a cycle; here, each pair in c receives the kid-
ney from the previous pair. Second, a k-chain begins with a
non-directed donor, also known as an altruist, who enters the
pool without a patient and gives their kidney to a patient with
a paired donor, who gives to another patient with a paired

donor, and so on k times.1
A matching M is a set of disjoint cycles and chains in a

compatibility graph G(T ); M ∈ M(T ), the set of all legal
matchings at time T ∈ [0,∞). No donor can give more than
one of her kidneys, necessitating the disjointness of cycles
and chains. Given the set of all legal matchings M(T ), the
clearing problem finds the matching M∗(T ) that maximizes
utility function u : M(T ) → R (e.g., for maximum weighted
matching, u(M) =

∑
c∈M

∑
(vi,vj)∈c w(vi, vj)). Formally:

M∗ ∈ argmaxM∈M(T ) u(M). In practice, an integer pro-
gram (IP) is used to compute M∗(T ) – these details and ad-
ditional background on the kidney exchange can be found in
Appendix A.

As the edges and edge weights are determined by the ver-
tices in the pool through the weighting function w, the dy-
namics of the kidney exchange are driven by the dynam-
ics of the vertex set V (T ). We may write these dynamics
as V (T ) = (V (T − 1) ∪A(T )) \ D(T ) =

⋃T
t=1 A(t) \⋃T

t=1 D(t) for T ∈ [1,∞) with the initial condition V (0) =
∅, where A(T ) ⊂ F and D(T ) ⊂ V (T ) ∪ A(T ) denote the
arrivals and departures at time T . The arrivals A(T ) consist
of the new patients that entered the kidney exchange at time
T , and the departures consist of patients that exited the pool
at time T . Patients may exit the pool after a successful match,
due to competition from other methods for receiving a kidney,
or death (among other reasons). For every vertex v ∈ D(T ),
we let the match outcome O(v) ∈ {0, 1} denote whether or
not the vertex was matched (O(v) = 1) or exited for other
reasons (O(v) = 0). For any v ∈ D(T ) such that O(v) = 1,
we let W (v) = T − min {t ∈ [0, T ] | v ∈ V (t)} denote the
waiting time for the vertex. We similarly define Q(v) ∈ R
for such vertices as the LKDPI of the received transplant, as
defined in Appendix A. The outcomes (O,W,Q) constitute
the central learning targets in this paper.

In practice, the sets A(T ) and D(T ) are determined highly
stochastically. In addition to the complexity introduced by
the IP, in fielded kidney exchanges, matches are made with-
out detailed knowledge of compatibility between a donor and
patient. More-thorough physical crossmatch tests are done
after an algorithmic match, but before the actual transplan-
tation event, to ensure that a matched donor can donate to a
paired patient. Even one failure of an edge in a cycle inval-
idates the entire cycle; similarly, given the incremental ex-
ecution of chains, all potential transplants located after the
first edge failure in a chain are invalidated. We simulate this
complex dynamic process in our work; additional details are
given in Section 4. This stochasticity, in addition to the dy-
namic nature of the kidney exchange, motivates the necessity
to forecast the noise about patient outcomes.

3 Learning from Match Records
We aim to construct prediction intervals for the match out-
come O(v) in addition to the waiting time W (v) and qual-

1In fielded kidney exchanges, cycles are limited in size to, typi-
cally, 3; all surgeries in a cycle must be executed simultaneously, so
longer cycles are nearly impossible to plan. Chains, however, can be
much longer (or effectively endless) in practice.



ity Q(v) conditioned on a match for a patient-donor pair that
has just arrived in the pool. Every kidney exchange routinely
keeps track of the patients who have arrived thus far in addi-
tion to the patients who have departed and their outcomes.
Our central focus in this paper is demonstrating, both ex-
perimentally and theoretically, that this information can be
used to forecast patient outcomes. Formally, we call this
dataset RT :=

⋃T
t=1 D(t), in conjunction with the outcomes

O(v),W (v), Q(v) for each v ∈ RT the match record at time
T , and we aim to predict the outcomes O(v),W (v), Q(v) for
new vertices v ∈ A(T + 1) that are about to arrive. Thus,
there is an inherent distributional shift present in this learning
task as the test distribution is given by the arrivals, but the
training distribution is given by the departures, which have
been filtered by the matching mechanism. We study the em-
pirical and theoretical nature of this shift in subsequent sec-
tions.

3.1 Features and Categorical Encoding
We briefly describe the features we use for learning in our
experiments. Our features correspond to the feature space F
used by the United Network for Organ Sharing, and should be
adapted to correspond to the feature space of the target kidney
exchange. Table 1 lists these features by data type.

Categorical Donor/Patient Blood Type, Donor/Patient HLA
Boolean Donor/Patient Sex† , Donor Race, Donor Cigarette Use†

Integer Pool Size at Entry, Donor/Patient Age, Patient CPRA
Float Donor/Patient Weight‡ , Donor eGFR‡ , Donor BMI, Donor Systolic BP

Table 1: Data types of features used for prediction. Features la-
beled by † are synthetically generated independently of other fea-
tures. Features labeled by ‡ are synthetically generated, but drawn
conditionally based on a combination of other synthetically gener-
ated and real features. All other features are generated from real
data.

We encode the categorical features as follows. We make
two Boolean features REC A and REC B to encode the patient’s
blood type, where REC A indicates whether the patient can re-
ceive A-type blood, and REC B indicates whether the patient
can receive B-type blood. We similarly make the features
DON A and DON B to encode the donor’s blood type, where
DON A indicates whether the donor can donate A-type blood,
and DON B indicates whether the donor can donate B-type
blood. Our encoding for the donor and patient HLA is more
complex. Rather than using a collection of Boolean features,
we instead use collections of integer features corresponding
to the frequency of the antigen in the observed match record
RT . This encoding, in addition to other training/model de-
tails, is outlined in Appendix B.

3.2 A Random Forest Approach
We propose a simple random forest approach to predicting
these quantities. In addition to the fact that random forests
do not require extensive parameter tuning and are computa-
tionally efficient to train, they may also be interpreted effi-
ciently using the SHAP framework [Lundberg and Lee, 2017;
Lundberg et al., 2018] – we explore this in more detail in Sec-
tion 7. We aim to produce more than just point estimates for

O(v), W (v), and Q(v), as there can be considerable noise
about these quantities due to the stochastic nature of the kid-
ney exchange. We may accomplish this for classification task
of predicting the outcome by training a random forest classi-
fier to predict O, and subsequently returning a positive class
probability Ô generated by the statistics of the constituent
trees. We may apply a similar approach to produce 95% pre-
diction intervals Ŵ95 and Q̂95 for the waiting time and qual-
ity using quantile regression forests [Meinshausen and Ridge-
way, 2006]. In the remainder of this paper, we build a theo-
retical and empirical framework to justify this approach.

4 Simulation
As alluded to in previous sections, we evaluate our approach
through simulation. Our simulation framework consists of
two simulators—the batch simulator and the trajectory sim-
ulator: these generate the training and test data respectively.
To our knowledge, our simulators are the first to use real data
from a kidney exchange. We are working to make our frame-
work open-source, as we believe that it can serve as a use-
ful source of realistic synthetic data for researchers aiming to
study other applications of learning to the domain of kidney
exchange.

4.1 Pool Generation
Both of our simulators make use of a pool generator that sim-
ulates the arrival of new vertices into the pool. We model the
arrival of vertices in the pool by letting each patient-donor
pair have features independently and identically distributed
by some joint distribution fP on the feature space F . Each
altruist similarly has i.i.d features drawn from a distribution
fA. We let the number of patient-donor pairs and altruists
that arrive each iteration be Poisson distributed with arrival
rates λP and λA. We justify this assumption in Figure 4 in
Appendix C.

The Organ Procurement and Transplantation Network
(OPTN) Kidney Paired Donation Datasets for Researchers
contains the running match record for the OPTN Kidney
Paired Donation Pilot Program run by the United Network for
Organ Sharing. The record contains data from the program’s
inception in October 2010 through November 2017. We ap-
proximate fP and fA by extracting the features of the roughly
3000 patient-donor pairs and altruists. To support computa-
tion of the LKDPI metric, we augmented the data by adding
extra features – these are outlined in Table 1. Donor/Patient
sex and donor/patient weight were drawn jointly using statis-
tics from [Saidman et al., 2006]. Donor eGFR was computed
using the well-known MDRD GFR Equation [Levey et al.,
1999] given the donor creatinine, race, and age, which were
provided in the OPTN dataset, in conjunction with donor sex,
which was generated synthetically. We find that in the OPTN
exchange, λP ≈ 4.77 and λA ≈ 0.15. In our experiments, we
modify λP to simulate kidney exchanges of different sizes.

4.2 Batch and Trajectory Simulation
We develop two simulators in this paper. The batch simu-
lator is the first of these two, and is used to generate match



records that we use as training data. It takes as input the num-
ber of days D to simulate, and draws a sample record RT

where T := D
η denotes the number of match iterations to run,

and η denotes the match frequency. In the OPTN exchange,
η ≈ 5.8. The trajectory simulator is used to draw samples
from the test distribution, and takes as input the compatibil-
ity graph G(T ) after batch simulation. It samples S vertices
v∗1 , . . . , v

∗
S from the pool generator, and draws τ values from

the distribution of the outcomes O(v∗i ),W (v∗i ), , Q(v∗i ) given
that v∗i ∈ A(T + 1). We implement the trajectory simulator
by making τS parallel calls to the SampleSimulator algo-
rithm, which draws a single match outcome given the fea-
tures of the sample. Both of our simulators make use of a
fairly complex core subroutine StepPool which takes as in-
put the pool generator and the current state of the pool G(t),
and steps the pool forward by one iteration. The pseudo-code
for each of these algorithms in addition to other simulation
details can be found in Appendix C.

5 Distributional Shift and Steady-State
Kidney Exchanges

D REC A REC B DON A DON B

1000 0.32 0.21 0.78 0.54
50000 0.22 0.15 0.78 0.48
Test 0.24 0.17 0.79 0.50

Table 2: Observed Distributional Shift. The average values of
four features used for prediction from the simulated match record of
a pool that is (i) 1000 days old (ii) 50000 days old, and (iii) the test
distribution.

In this section, we look more closely at the distributional
shift in our learning task. Recall that although we aim to
predict outcomes O(v), W (v), and Q(v) for a vertex v ∈
A(T + 1) that has just arrived, we only have as data the out-
comes of vertices u ∈ RT =

⋃T
t=1 D(t) of vertices that have

exited the pool. As the matching mechanism may tend to
match certain types of vertices over others, these distributions
are not equal. However, in Table 2 we observe an interesting
phenomenon where the distributional shift seemingly disap-
pears in kidney exchanges that have been running for a long
time. This is not simply a consequence of having a better
estimate for the average due to more training data (i.e., that
|RT1 | > |RT0 | if T1 > T0); we control for differences in
the sizes of the match records by aggregating many match
records for the pool of age 1000 so that both empirical distri-
butions have the same sample size of roughly 6000. We give
a strong theoretical justification for why this shift disappears
in terms of the steady-state behavior of kidney exchanges.

5.1 Steady-State Exchanges
Although only a few theoretical results exist in simplified
models [Toulis and Parkes, 2015; Anderson et al., 2017], it is
well-known that many fielded exchanges are in steady-state –
that is, the number of arrivals is roughly the number of depar-
tures |A(T )| ≈ |D(T )|. We define the steady-state parameter
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Figure 1: Kidney Exchanges Approaching Steady-State. On the
left, we plot the steady-state parameter ζ(T ) for simulated kidney
exchanges of varying size for 10,000 days. On the right, we extend
the plot for the smallest exchange (for computational reasons) to
50,000 days.

at iteration T as

ζ(T ) :=

∣∣∣⋃T
t=1 D(t)

∣∣∣∣∣∣⋃T
t=1 A(t)

∣∣∣ =
∑T

t=1 |D(t)|∑T
t=1 |A(t)|

(1)

For simplicity, we define AT :=
∑T

t=1 |A(t)| and DT :=∑T
t=1 |D(t)|. Note that ζ(T ) ∈ [0, 1]. A kidney exchange

in steady-state should have ζ(T ) ≈ 1, as the total number
of departures should approach the total number of arrivals.
Although extremely intractable to study analytically, Figure
1 shows that the stochastic function ζ(T ) follows a highly
well-behaved lower-bound, no matter the size of exchange.
Interestingly, as shown in the right plot of Figure 1, ζ(T )
suddenly appears to become much-less noisy after it passes
the inflection point of this lower bound.

5.2 Relating Distributional Shift to the
Steady-State Parameter

We now show how the distributional shift can be bounded
in terms of ζ(T ). Let RT = {u1, . . .uDT

} be the set
of vertices in the match record. We further have that
RT ⊆

⋃T
t=1 A(t) := {v1, . . . ,vAT

}. To make the analy-
sis tractable, we assume that the feature space F = Rd is
continuous, and that the distribution over the features of any
arrival vi ∼ fP = N (µ,Σ) are jointly Gaussian with mean
µ and full-rank covariance Σ. We measure the distributional
shift by considering shifted directions – directions in which
the training data differs statistically from the test distribution.
Formally, we say that a unit vector z ∈ Rd is δ-shifted if

sup
x∈R

∣∣∣∣∣ 1

DT

DT∑
i=1

1
[
zT (ui − µ) ≤ x

]
− Φ

(
x√

zTΣz

)∣∣∣∣∣ > δ

(2)
Here Φ refers to the CDF of a standard normal variable.

This definition basically requires that the Kolmogorov dis-
tance between the empirical CDF of the projected data from
the match record and the true CDF of the projected arrivals
exceeds δ. We say that RT is (γ, δ)-shifted if there is a set of
δ-shifted directions that have uniform measure γ (or in other
words, Prz∼N (0,I)

[
z

∥z∥2
is δ-shifted

]
> γ). We show that

when ζ(T ) ≈ 1, RT is not (γ, δ)-shifted with high proba-
bility – that is, if the kidney exchange is at steady-state, the



match record cannot be shifted in too many directions. As
RT ⊆

⋃T
t=1 A(t) is a (perhaps even adversarially/arbitrarily

chosen) subset of the arrivals, its entries are not distributed
as N (µ,Σ). We can, however, upper bound the probability
that RT is (γ, δ)-shifted by taking the union bound over all
fixed coalitions of size DT in

⋃T
t=1 A(t). If ζ(T ) is large,

then there cannot be too many of these coalitions. This sim-
plification is useful, as the features of any fixed coalition of
vertices in

⋃T
t=1 A(t) are normally distributed as N (µ,Σ).
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Figure 2: Shifted Directions. On the left, we consider a multivari-
ate isotropic Gaussian (in blue) that has been shifted by mixing the
distribution with a one-dimensional Gaussian (in orange). On the
right, we plot the empirical CDFs given by projecting the data onto
the green and red directions. The data remains unshifted in the green
direction, but is 0.2615-shifted in the red direction, as shown in ma-
genta.

Using standard tools from empirical process theory
(namely the DKWM inequality. restated as Lemma D.1),
we show using a probabilistic approach that RT is a (γ, δ)-
shifted with low probability:

Theorem 5.1. Let RT =
⋃T

t=1 D(t) denote the match record
at time T , and let any vertex vi ∈

⋃T
t=1 A(t) have features

that are normally distributed as N (µ,Σ) where Σ is full
rank. Then,

Pr [RT is (γ, δ)-shifted] ≤
(

e

1− ζ(T )

)AT (1−ζ(T ))

︸ ︷︷ ︸
Number of coalitions

Probability that a fixed coalition is shifted︷ ︸︸ ︷
2⌈γd⌉ exp

(
−2AT ζ(T )⌈γd⌉δ2

)

The full proof of Theorem 5.1 can be found in Appendix
D. Figure 3 shows how our bounds vary with ζ(T ), AT , and
d. If the feature space is lower dimensional (e.g., d ≈ 10), we
find that our bound produces trivial results when ζ(T ) ⪅ 0.8.
Immediately after this threshold, however, the probability that
the match record is shifted becomes astronomically small. In-
terestingly, as the dimensionality d of the feature space in-
creases, the well-known “curse of dimensionality” in fact be-
haves as a blessing. High dimensional space contains many
directions, and it is difficult for an adversary to shift the dis-
tribution in a constant fraction of these at once. This is re-
flected in our bound, as we see that the probability decreases
exponentially in d. We visualize this phenomenon in Figure
3 – even small exchanges (corresponding to a small value for
AT ) that are not in steady-state (i.e., ζ(T ) ≈ 0) remain un-
shifted when the dimension d exceeds 30.

In practice, many fielded exchanges have been observed to
be at or near steady-state [Biró et al., 2019], and matching

policies tend to make use of at least 20–30 features [OPTN,
2021]. However, as demonstrated in Section 7, only 10–20
are highly relevant for prediction. Thus, we obtain some
benefits from the dimensionality, but perhaps not enough to
eliminate the distributional shift in kidney exchanges far from
steady-state.

6 Experiments
We now evaluate our random forest approach on simulated
match data. For varying arrival rates λP corresponding to
kidney exchanges of different sizes, we use the batch sim-
ulator described in Section 4.2 to generate simulated match
records RT . We generate test data for each of these pools
by running the trajectory simulator with S = 300 samples
and τ = 500 trajectories. Trajectory simulation is very com-
putationally intensive, taking about a week to terminate on
an HPC cluster. We set T = 259, which corresponds to
D = 1500 days (or roughly 4 years), to prevent pool sizes
for the larger exchanges we tested from becoming too large.
We also tested our two smallest exchanges setting D = 4000
days (or roughly 11 years), and our smallest exchange set-
ting D = 50000 days (or roughly 136 years) to understand
the performance of our approach on older kidney exchanges.
The OPTN exchange is now 11 years old, so our experiments
for D = 4000 (in addition to those for D = 1500) do cor-
respond to benchmarks for realistic exchanges. With the ex-
ception of the D = 50000 experiment, we re-run all exper-
iments in a federated learning setting where 5 exchanges of
the same age aggregate their match records together for pre-
diction. When we aggregate the match records of similar ex-
changes together, we increase the size of the training dataset
while keeping the steady state parameter ζ (and thus the dis-
tributional shift) roughly the same. Thus, these experiments
allow us to understand whether poor performance is due to
insufficient data or distributional shift.

As described in Section 3, we use a random forest clas-
sifier to predict the outcome O(v), and we use quan-
tile regression forests to produce 95% prediction intervals
for the waiting time W (v) and quality Q(v) conditioned
on a match. Letting v∗1 , . . . , v

∗
S denote the S samples

drawn by the trajectory simulator, we evaluate our classi-
fier by computing the mean absolute error MAE

(
Ô
)

:=

1
S

∑S
i=1

∣∣∣Ô(v∗i )− Pr [O(v∗i ) = 1]
∣∣∣. We evaluate the predic-

tion intervals Ŵ95 and Q̂95 using the mean intersection over
union (IOU), which computes the length of the intersection
of the intervals divided by the length of the union of the inter-

vals IOU(Ŵ95) = 1
S

∑S
i=1

|Ŵ95(v
∗
i )∩W95(v

∗
i )|

|Ŵ95(v∗
i )∪W95(v∗

i )|
. We estimate

the true parameters Pr [O(v∗i ) = 1], W95(v
∗
i ), and Q95(v

∗
i )

from the τ sampled trajectories.
Table 3 shows our experimental results. We consider MAE

scores less than 0.2 and IOU scores greater than 0.5 as good
performance. The classifier performance MAE(Ô) seems to
primarily be determined by the dataset size. This is especially
evident in the federated setting, where aggregating multiple
match records together always improved performance by as
much as 7.6%. Performance for waiting time prediction, on
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Figure 3: Steady-State Exchanges are Unshifted. We plot the log of our bound from Theorem 5.1 on a log scale as ζ(T ) varies from 0 to
1 for six values of AT , fixing γ = δ = 0.3. From left to right, we vary the dimension d from 10 to 40 in increments of 10. We plot in black
the trivial upper bound of 1 on the probability to show when our bounds produce nontrivial results.

Arrival Rate D Federated |RT | ζ MAE
(
Ô
)

IOU
(
Ŵ95

)
IOU

(
Q̂95

)
λP = 1 1500 No 56 0.397 0.258 0.451 0.747
λP = 1 4000 No 246 0.953 0.191 0.644 0.761
λP = 1 50000 No 4888 0.984 0.130 0.653 0.632
λP = 2 1500 No 157 0.477 0.221 0.336 0.815
λP = 2 4000 No 752 0.882 0.212 0.620 0.809
λP = 3 1500 No 285 0.523 0.184 0.386 0.798

λP ≈ 4.77 (OPTN) 1500 No 593 0.509 0.164 0.503 0.812
λP = 1 1500 Yes 268 0.457 0.246* 0.232 0.816*
λP = 1 4000 Yes 1224 0.891 0.148* 0.590 0.800*
λP = 2 1500 Yes 807 0.550 0.145* 0.373* 0.816*
λP = 2 4000 Yes 3773 0.872 0.119* 0.775* 0.820*
λP = 3 1500 Yes 1434 0.488 0.115* 0.421* 0.815*

λP ≈ 4.77 (OPTN) 1500 Yes 2652 0.537 0.103* 0.449 0.812

Table 3: Experimental Results. We bold steady-state parameters
ζ > 0.8, MAE scores < 0.2, and IOU scores > 0.5. We aster-
isk any federated learning experiments that improve relative perfor-
mance.

the other hand, appears to be highly dependent on the steady-
state parameter. The IOU scores for waiting time can roughly
be sorted by ζ, and do not necessarily increase in the feder-
ated setting, indicating that distributional shift is likely af-
fecting the result. Predicting the organ quality appears to
be an easy task – every experiment produced good perfor-
mance, well exceeding our benchmark IOU of 0.5. This is
especially impressive, as the smallest exchange we tested had
a match record with only 56 entries. Federated learning im-
proved scores in all cases but one.

Overall, our experiments demonstrate that kidney ex-
changes of any size that are roughly 4000 days or older may
use existing match records to make clinically promising esti-
mates for O(v), W (v), and Q(v). Young exchanges that are
relatively large may not be able to able to produce good esti-
mates for waiting time, but can still estimate O(v) and Q(v)
reliably well. Young exchanges that are also small likely can-
not estimate the match outcome O(v) or the waiting time
W (v), but can still provide patients with good estimates for
the organ quality Q(v). Although highly exploratory in na-
ture, our experiments also suggest that federated learning can
improve performance – especially when predicting O(v).

7 Diagnosing Mechanism Behavior with
SHAP Analysis

In Sections 5 and 6, we demonstrated how, at least for rel-
atively older exchanges, it is possible to train random forest
models to produce good estimates for the match outcomes
O(v), W (v), and Q(v). These models may serve as decision-
support tools to help patients and healthcare workers with
medical and insurance decisions. We show how the utility
of these models extends beyond this domain – using Shap-

ley additive explanations (SHAP) to compute feature impor-
tances [Lundberg and Lee, 2017; Lundberg et al., 2018], in
addition to t-Distributed Stochastic Neighbor Embeddings (t-
SNE) [Van der Maaten and Hinton, 2008] for visualization,
we can use these models to help kidney exchange policy-
makers understand how the underlying matching mechanism
treats different groups of patients. In Appendix 7, we give
background on these techniques, an in-depth explanation of
our approach, and a demonstration of its use (and our find-
ings). Although we perform this analysis using data from
our simulated OPTN exchange, we emphasize that these tech-
niques may be readily applied to any fielded exchange as our
approach only makes use of data from existing match records.

8 Discussion
We proposed and validated a random forest approach to fore-
cast patient outcomes in kidney exchange. We provide strong
theoretical and experimental evidence in a state-of-the-art
kidney exchange simulation framework that the match out-
come O(v), the waiting time W (v), and the organ quality
Q(v) can be reliably estimated in older fielded exchanges of
any size. Further, W (v) can be estimated well in larger young
exchanges, and Q(v) can be estimated well even in smaller
young exchanges. As our approach exclusively makes use
of existing match records, it may be readily deployed as a
decision-support tool in exchanges across the world. Our tool
doubles as a principled method for detecting bias and policy
miscalibration, and may be used to inform kidney exchange
policy; we view this as one step towards increased agency and
transparency in kidney exchange.
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