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Abstract
Restless and collapsing bandits are often used to
model budget-constrained resource allocation in
settings where receiving the resource increases
the probability that an arm will transition to, or
remain in, a desirable state. However, SOTA
Whittle-index-based approaches to this planning
problem either do not consider fairness among
arms, or incentivize fairness without guaranteeing
it. We introduce PROBFAIR, an algorithm which
finds the best (reward-maximizing) policy that: (a)
satisfies the budget constraint; and (b) enforces
bounds [ℓ, u] on the probability of being pulled
at each timestep. We evaluate our algorithm on a
real-world application, where interventions sup-
port continuous positive airway pressure (CPAP)
therapy adherence among patients, as well as on
a broader class of synthetic transition matrices.
PROBFAIR preserves utility while providing fair-
ness guarantees.

1. Introduction
Restless multi-armed bandits (RMABs) are used to model
budget-constrained resource allocation tasks in which a
decision-maker must select a subset of arms (e.g., projects,
patients, assets) to receive a beneficial intervention at each
timestep, while the state of each arm evolves over time in an
action-dependent, Markovian fashion. Such problems are
common in healthcare, where clinicians may be tasked with
monitoring large, distributed patient populations and deter-
mining which individuals to expend scarce resources on to
maximize total welfare. RMABs have been proposed to pri-
oritize which inmates should receive hepatitis C treatment
in U.S. prisons (Ayer et al., 2019), and which tuberculosis
patients should receive medication adherence support in
India (Mate et al., 2020).
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Current SOTA approaches to solving RMAB problems rely
on the indexing work introduced by Whittle (1988). While
the Whittle index solves an otherwise PSPACE-complete
problem in an asymptotically optimal fashion by decou-
pling arms (Weber & Weiss, 1990), it fails to provide any
guarantees about how pulls will be distributed among arms.

Though the intervention is canonically assumed to be benefi-
cial for every arm, the marginal benefit (i.e., relative increase
in the probability of a favorable state transition) varies in
accordance with each arm’s underlying state transition func-
tion. Consequently, Whittle index-based maximization of
total expected reward without regard for distributive fair-
ness empirically allocates all available interventions to a
small subset of arms, ignoring the rest (Prins et al., 2020).
We observe that this distributive outcome may be perceived
as unfair by arms who fail to receive any pulls, as well as
ethically unacceptable by decision-makers who must bal-
ance utilitarian welfare maximization with arm-level con-
siderations such as beneficence. Relatedly, while purely
egalitarian policies such as ROUND-ROBIN do guarantee
individual fairness with respect to receipt of the intervention,
they do not maximize the probability of beneficial outcomes
and therefore incur a large loss of total welfare.

We find that it is intractable to modify the Whittle index in
order to guarantee distributive fairness. We thus introduce
PROBFAIR, a state-agnostic policy that maps each arm to a
fairness-constraint satisfying, stationary probability distribu-
tion over actions that takes the arm’s transition matrix into
account. At each timestep, we use a dependent rounding
algorithm (Srinivasan, 2001) to sample from this distribu-
tion to produce a budget-constraint satisfying discrete action
vector. We present empirical results in Appendix E.

2. Restless Multi-Armed Bandit Model
A restless multi-armed bandit consists ofN ∈N independent
arms, each of which evolves over a finite time horizon T ∈N,
according to an associated Markov Decision Process (MDP).
Each arm’s MDP is characterized by a 4-tuple (S,A, P, r)
where S represents the state space, A represents the action
space, P represents an |S|× |A|× |S| transition matrix,
and r : S → R represents a local reward function that
maps states to real-valued rewards. Appendix A summarizes
notation; note that [N ] denotes the set {1, 2, . . . , N}.
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States, actions, and observability: We specifically con-
sider a discrete two-state system S := {0, 1} where 1 (0)
represents being in the “good” (“bad”) state, and a set of
two possible actions A := {0, 1} where 1 represents the
decision to select (“pull”) arm i ∈ [N ] at time t ∈ [T ],
and 0 represents the choice to be passive (not pull). In the
general RMAB setting, each arm’s state sit is observable.
We consider the partially-observable extension introduced
by Mate et al. (2020), where each arm’s state is replaced
with the probabilistic belief bit ∈ [0, 1] that it is in state 1.
Partial observability captures uncertainty regarding patient
status and treatment efficacy associated with outpatient or
remotely-administered interventions.

Transition matrices: Each arm i is characterized by a set
of transition matrices P , where P a

s,s′ denotes the probability
of transitioning from state s to state s′ when action a is
taken. We assume P to be (a) static and (b) known by the
agent at planning time. Assumptions (a) and (b) are likely
to be violated in practice; however, they provide a useful
foundation, and can be modified to incorporate additional
uncertainty, such as the requirement that transition matrices
must be learned (Ortner et al., 2012; Jung & Tewari, 2019;
Jung et al., 2019). Researchers often use longitudinal data
to construct risk-adjusted transition matrices that encode
cohort-specific transition probabilities to guide patient-level
decision-making (Steimle & Denton, 2017).

Consistent with previous literature, we assume strictly posi-
tive transition matrix entries, and impose four structural con-
straints: (a) P 0

0,1 < P 0
1,1; (b) P 1

0,1 < P 1
1,1; (c) P 0

0,1 < P 1
0,1;

(d) P 0
1,1 < P 1

1,1 (Liu & Zhao, 2010; Mate et al., 2020;
2021; Ou et al., 2022). These constraints are application-
motivated, and imply that arms are more likely to remain in
a “good” state than change from a bad state to a good one,
and that a pull is helpful when received. In the absence of
such constraints, receiving the intervention would be either
superfluous or harmful, rather than desirable.

Objective and constraints: In the canonical RMAB setting,
the agent’s goal is to find a policy π∗ that maximizes total
expected reward—i.e., argmaxπ Eπ[R(r(s))], while satis-
fying a budget constraint, k ≪ N ∈ N, which allows the
agent to select at most k arms at each timestep. Our objec-
tive function, which is applied to the entire cohort, rewards
arms in the “good” state. Specifically, we consider a cumu-
lative reward function R(·) :=

∑
i∈[N ]

∑
t∈[T ] β

t−1r(sit),
for discount rate β ∈ [0, 1], and non-decreasing r(s).

We extend this model by introducing a Boolean-valued,
distributive fairness-motivated constraint, which may take
one of two general forms:

1. Time-indexed: A function g
(
∪t∈[T ]{a⃗t}

)
which is sat-

isfied if each arm is pulled at least once within each
user-defined time interval ν ≤ T (e.g., at least once
every seven days), or a minimum fraction ψ ∈ (0, 1)

of times over the entire time horizon (Li et al., 2019).

2. Probabilistic: A function g′(p⃗i |⃗at ∼ p⃗i ∀t) which oper-
ates on the stationary probability vector p⃗i, from which
discrete actions are drawn, by requiring the probabil-
ity that each arm receives a pull at any given t to fall
within an interval [ℓ, u] where 0 < ℓ ≤ k

N ≤ u ≤ 1.

3. Background, Motivation, and Related Work
3.1. Background: Whittle Index-based Policies

Pre-computing the optimal policy for a given set of restless
or collapsing arms is PSPACE-hard in the general case (Pa-
padimitriou & Tsitsiklis, 1994). However, as established by
Whittle (1988) and formalized by Weber & Weiss (1990), if
a set of arms are indexable, we can decouple the arms and ef-
ficiently solve the problem using an asymptotically-optimal
heuristic index policy.

Mechanics: The Whittle index represents the subsidy, m,
required to make the agent indifferent between pulling and
not pulling arm i at time t. (Per Section 2, b denotes the
probabilistic belief that an arm is in state s = 1; for restless
arms, bit = sit ∈ {0, 1}.)

W (bit) = inf
m

{
m | Vm(bit, a

i
t = 0) ≥ Vm(bit, a

i
t = 1)

}
(1)

The value function Vm(b) represents the maximum expected
discounted reward under passive subsidy m and discount
rate β for arm i with belief state bit ∈ [0, 1] at time t:

Vm(bit) = max


m+ r(bit) + βVm

(
bit+1

)
passive

r(bit) + β
[
bitVm

(
P 1
1,1

)
+ (1− bit)Vm

(
P 1
0,1

)]
active

(2)
Once the Whittle index has been computed for each arm,

the agent sorts the indices, and the k arms with the greatest
index values receive a pull at time t, while the remaining
N − k arms are passive. Weber & Weiss (1990) give suffi-
cient conditions for indexability:

Definition 3.1. An arm is indexable if the set of beliefs for
which it is optimal to be passive for a given m, B∗(m) =
{b | ∀π ∈ Π∗

m, π(b) = 0}, monotonically increases from ∅
to the entire belief space as m increases from −∞ to +∞.
An RMAB is indexable if every arm is indexable.

Indexability is often difficult to establish in practice, and
computing the Whittle index can be complex (Liu & Zhao,
2010). Prevailing approaches rely on proving the optimal-
ity of a threshold policy for a subset of transition matri-
ces (Niño-Mora, 2020). A forward threshold policy pulls
an arm when its state is at or below a given threshold, and
makes the arm passive otherwise; the converse is true for a
reverse threshold policy. Mate et al. (2020) give such con-
ditions for this RMAB setting, when r(b) = b, and provide
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an algorithm, THRESHOLD WHITTLE, that is asymptoti-
cally optimal for forward threshold-optimal arms. Mate
et al. (2021) expand on this for any non-decreasing r(b) and
present the RISK-AWARE WHITTLE algorithm. As far as we
are aware, no algorithm exists for reverse threshold-optimal
arms.

3.2. Motivation: Individual Welfare Under Whittle

Bimodal allocation: Existing theory does not offer any
guarantees about how the sequence of actions will be dis-
tributed over arms under Whittle index-based policies, nor
about the probability with which a given arm can expect
to be pulled at any particular timestep. Prins et al. (2020)
demonstrate that Whittle-based policies tend to allocate all
pulls to a small number of arms, neglecting most of the
population. We present similar findings in Appendix B.

Ethical implications: This zero-valued lower bound on the
number of pulls an arm can receive aligns with a utilitarian
approach to distributive justice, in which the decision-maker
seeks to allocate resources so as to maximize total expected
utility (Bentham, 1781; Marseille & Kahn, 2019). This
may be incompatible with competing pragmatic and ethical
desiderata, including egalitarian and prioritarian notions
of distributive fairness, in which the decision-maker seeks
to allocate resources equally among arms (e.g., ROUND-
ROBIN), or prioritize arms considered to be worst-off under
the status quo, for some quantifiable notion of worst-off
that induces a partial ordering over arms (Rawls, 1971;
Scheunemann & White, 2011). We consider the worst off
arms to be those who would be deprived of algorithmic
attention (e.g., not receive any pulls), or, from a probabilistic
perspective, would have a zero-valued lower bound on the
probability of receiving a pull at any given timestep.

Why algorithmic attention? This choice is motivated by
our desire to improve equality of opportunity (i.e., access to
the beneficial intervention) rather than equality of outcomes
(i.e., observed adherence). The agent directly controls who
receives the intervention, but has only indirect control (via
actions) over the sequence of state transitions an arm ex-
periences. Additionally, proclivity towards adherence may
vary widely in the absence of restrictive assumptions about
cohort homogeneity, and focusing on equality of outcomes
could thus entail a significant loss of total welfare.

Distributive fairness and algorithmic acceptability: To re-
alize the benefits associated with an algorithmically-derived
resource allocation policy, practitioners tasked with imple-
mentation must find the policy to be acceptable and potential
beneficiaries must find participation to be rational (i.e., to
yield an increase in expected time in the adherent state, rela-
tive to non-participation). Providing fairness-aware decision
support can improve acceptability (Rajkomar et al., 2018;
Kelly et al., 2019) and minimize the loss of reward associ-

ated with ethically-motivated deviation to a sub-optimal but
equitable approach such as ROUND-ROBIN (De-Arteaga
et al., 2020; Dietvorst et al., 2015).

3.3. Time-indexed Fairness and Indexability

In Appendix C.1, we demonstrate that it is not possible to
modify the Whittle index to guarantee time-indexed fairness
while preserving our ability to decouple arms.

3.4. Additional Related Work

Multi-armed bandit optimization problems are canonically
framed from the perspective of the decision-maker; interest
in individual and group fairness in this setting is a relatively
recent phenomenon (Joseph et al., 2016). To the extent
that fairness among arms has been considered, existing ap-
proaches either: (1) do not consider restless arms (Chen
et al., 2020; Li et al., 2019); (2) redistribute pulls without
providing arm-level guarantees (Mate et al., 2021; Killian
et al., 2021); or (3) provide time-indexed fairness guarantees
without optimality guarantees (Prins et al., 2020).

4. PROBFAIR: a Probabilistically Fair Policy
We now introduce PROBFAIR, a state-agnostic policy that
maximizes reward subject to the satisfaction of both budget
and probabilistic fairness constraints. PROBFAIR maps each
arm i to an arm-specific, stationary probability distribution
over atomic actions, such that for each timestep t, P [ait =
1] = pi and P [ait = 0] = 1 − pi, where pi ∈ [ℓ, u] for
all i ∈ [N ] and

∑
i pi = k. Here, ℓ and u are user-defined

fairness parameters satisfying 0 < ℓ ≤ k
N ≤ u ≤ 1, per

Section 2. In Section 4.1, we describe how to construct the
pi’s so as to efficiently approximate our constrained reward-
maximization objective within a multiplicative factor of
(1− ϵ), for any given constant ϵ > 0.

To build intuition as to why the state-agnostic mapping
from arms to probability distributions over atomic actions
is consistent with constrained reward maximization, ob-
serve that when we take the union of each arm’s station-
ary probability vector, we obtain a system-level policy,
πPF : {i | i ∈ N} → [1− pi, pi]N . Regardless of
the system’s initial state, repeated application of this policy
will result in convergence to a steady-state distribution in
which (WLOG) arm i is in the adherent state (i.e., state 1)
with probability xi ∈ [ℓ, u], and the non-adherent state (i.e.,
state 0) with probability 1− xi ∈ [0, 1]. By definition, for
any arm i, xi will satisfy the equation
xi

[
(1− pi)P

0
1,1 + piP

1
1,1

]
+(1−xi)[(1−pi)P 0

0,1+piP
1
0,1] = xi.

(3)
Thus, xi = fi(pi), where

fi(pi) =
(1− pi)P

0
0,1 + piP

1
0,1

1− (1− pi)P 0
1,1 − piP 1

1,1 + (1− pi)P 0
0,1 + piP 1

0,1

.

(4)

We seek the policy which maximizes total expected reward.
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Thus, PROBFAIR is defined as:

πPF = argmax
pi∈[ℓ,u]

∑
i

fi(pi) s.t.
∑
i

pi ≤ k (5)

Solving this constrained maximization problem is thus con-
sistent with maximizing the expected number of timesteps
each arm will spend in the adherent state, subject to satisfy-
ing the budget and fairness constraints, since each fi takes
into account arm i’s underlying transition probabilities.

4.1. Computing the pi’s: Algorithmic Approach

To construct πPF (Eq. 5), we: (1) partition the arms based
on the shapes of their respective fi functions (Eq. 4); (2)
perform a grid search over possible ways to allocate the
budget, k, between the two subsets of arms; (2a) solve each
sub-problem to produce a probabilistic policy for the arms
in that subset; (2b) compute the total expected reward of the
policy; (3) take the argmax over this set of grid search values
to determine the approximately optimal budget allocation;
and (4) form πPF by taking the union over the policies pro-
duced by evaluating each sub-problem at its approximately
optimal share of the budget. Figure 5 visualizes. We begin
by introducing two theorems (see Appendix D for proofs):

Theorem 4.1. For every arm i ∈ [N ], fi(pi) is either
concave or strictly convex in all of pi ∈ [0, 1].

Theorem 4.2. For each arm i ∈ [N ], the structural con-
straints introduced in Section 2 ensure that fi(pi) is mono-
tonically non-decreasing in pi over the interval [0, 1].

Our algorithm takes these monotonicity and shape proper-
ties of the fi’s into account and splits the problem into two
disjoint subproblems based on the concavity of the arms
(Theorem 4.1). Since f ′i(pi) ≥ 0 for all arms i per The-
orem 4.2, our budgetary constraint

∑
i pi ≤ k becomes

an equality,
∑

i pi = k. Let X = {i | fi is concave} and
Y = N \ X = {i | fi is strictly convex}, and let:

(P1) maximize
∑

i∈X fi(pi) subject to: pi ∈ [ℓ, u] for all
i ∈ X , and

∑
i∈X pi = z

(P2) maximize
∑

i∈Y fi(pi) subject to: pi ∈ [ℓ, u] for all
i ∈ Y , and

∑
i∈Y pi = k − z

Then, πPF is the union of the solutions to P1 and P2 at the
optimal grid search value z∗ = argmaxz

∑
i∈X fi(pi) +∑

i∈Y fi(pi). Algorithm 1 provides pseudocode.

P1 is a concave-maximization problem that can be solved
efficiently via gradient descent. The computational com-
plexity is O

(
|X |
ε2

)
(Nesterov et al., 2018). To solve P2, we

begin by introducing a lemma that we prove in Appendix D:

Lemma 4.3. P2 has an optimal solution in which pi ∈ (ℓ, u)
for at most one i ∈ Y .

Algorithm 1 PROBFAIR

1: procedure PROBFAIR([N ], k, ϵ, ℓ, u)
2: X ← {i |fi is concave in all of pi ∈ [0, 1]}
3: Y ← {i |fi is strictly convex in all of pi ∈ [0, 1]}
4: grid search vals← {ϵj | j ∈ [0, k − ℓ|Y|]}
5: for z ∈ grid search vals do
6: πX ,z ← SOLVEP1(X , k, z, ℓ, u)
7: πY,z ← SOLVEP2(Y, k, z, ℓ, u)
8: Vz ←

∑
pi∈πX ,z

fi(pi) +
∑

pi∈πY,z
fi(pi)

9: z∗ ← argmaxz Vz
10: πPF ← πX ,z∗ ∪ πY,z∗

11: return πPF

Given this structure, an optimal solution {p∗i | i ∈ Y} will
set some number of arms γ ∈ Z+ to ℓ, at most one arm to
p′ ∈ (ℓ, u], and the remaining |Y| − γ − 1 arms to u. We
represent these subsets by Y1,Y2, and Y3, respectively. Let
γ =

⌊
|Y|u−(k−z)

u−ℓ

⌋
, and p′ = k−z−|Y1|ℓ−|Y3|u ∈ (ℓ, u].

With the cardinality of each subset thus established, per
Theorem 4.4 (see below), we use Algorithm 2 to optimally
partition the arms in Y .

Algorithm 2 SOLVEP2
Note: all sorts are ascending; arrays are zero-indexed.
1: procedure SOLVEP2(Y ⊆ N, k, z, ℓ, u)
2: γ ←

⌊
|Y|u−(k−z)

u−ℓ

⌋
3: p′ ← k − z − γℓ− (|Y| − 1− γ)u
4: if |Y| − γ − 1 > 0 then
5: ∆Y = sort([fi(u)− fi(ℓ) ∀i ∈ Y])
6: Y3 ← {(∆Y) [(|Y| − γ − 1) :]}
7: else Y3 ← ∅
8: ∆Y\Y3

= sort([fi(p
′)− fi(ℓ) ∀i ∈ Y \ Y3])

9: Y1 ← {(∆Y\Y3
) [: γ]}

10: Y2 ← {(∆Y\Y3
) [γ]}

11: πY := i 7→ ℓ for i ∈ Y1; p
′, for i ∈ Y2;u, for i ∈ Y3

12: return πY

Theorem 4.4. Alg. 2 yields the mapping from arms in Y to
subsets in {Y1,Y2,Y3} which maximizes

∑
i∈Y fi(pi) s.t.∑

i∈Y pi = k− z. (See Appendix D for the complete proof).

Corollary 4.5. Alg. 2 has time complexity O(|Y| log |Y|).

With our solutions to P1 and P2 so defined, the cost of
finding our in this way is O

(
(k−ℓ|Y|

ε

(
|X |
ε2 + |Y| log|Y|

))
,

which is at worst O
(
kN
ϵ3

)
when all N arms are in X .

4.2. Sampling Approach

We use a linear-time algorithm introduced by Srinivasan
(2001) and detailed in Appendix D.2 to sample from πPF

at each timestep, such that: (1) with probability one, we
satisfy the budget constraint by pulling exactly k arms; and
(2) any given arm i is pulled with probability pi. Formally,
each time we draw a vector of binary random variables
(X1, X2 . . . XN ) ∼ πPF , Pr [|i : Xi = 1| = k] = 1 and
∀i,Pr[Xi = 1] = pi.
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5. Empirical Evaluation and Future Work
We present empirical results in Appendix E. Next steps
include: (1) extending PROBFAIR for larger state or action
spaces; (2) considering the online version of this problem
where transitions are unknown, and (3) relaxing the station-
arity condition in the construction of πPF .
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des Séances de l’Académie des Sciences (Paris), 254:
1192–1194, 1962.

Hirschman, A. O. National Power and the Structure of
Foreign Trade, volume 105. Univ of California Press,
1980.

Joseph, M., Kearns, M., Morgenstern, J. H., and Roth, A.
Fairness in Learning: Classic and Contextual Bandits. In
Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems 29, pp. 325–333. Curran Associates, Inc.,
2016. URL http://papers.nips.cc/paper/
6355-fairness-in-learning-classic-
and-contextual-bandits.pdf.

Jung, Y. H. and Tewari, A. Regret Bounds for Thompson
Sampling in Episodic Restless Bandit Problems. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-
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A. Notation
In Table 1, we present an overview of the notation used in the paper. [N ] denotes the set {1, 2, . . . , N}.

Table 1: Notation used in our model and notes on their interpretation.

MDP Variables Here, timestep t ∈ [T ] = {1, 2, . . . T} (subscript) and arm index i ∈ [N ] = {1, 2, . . . N} (superscript) are implied.

State space s ∈ S = {0, 1} s =

{
1 arm is in the ‘good’ state.
0 else

Belief space

b ∈ B = [0, 1]

bt+1 =

{
st+1 if known
btP

0
1,1 + (1− bt)P 0

0,1 else

If an arm’s true state is unknown,
the recursively computed belief state approximates it.

Action space a ∈ A = {0, 1} a =

{
1 pull arm (i.e., provide intervention)
0 else, don’t pull

MDP Functions

Transition function
P : S ×A× S → [0, 1]

st, at, st+1 7→ Pr(st+1 | st, at)

The probability of an arm
going from state st to st+1, given action at.
Equivalent (matrix) notation: P at

st,st+1
.

Reward function r : S or B → R r(b) is used in computing the Whittle index.

Policy function π : S → A
A policy for actions.
The set of optimal policies is π∗ ∈ Π∗.

RMAB Variables

Timestep {t ∈ N | t ≤ T} This timestep is implicit in the MDP.

Arm index i ∈ {1, 2, . . . , N}
Each arm can represent a patient.
k arms can be pulled at any timestep t.

Objective Functions The objective is to find a policy π∗ = maxπ Eπ[R(·)].

Discounted reward function
Rπ

β : SN → R

s10, s
2
0, . . . , s

N
0 7→

∑
i∈[N ]

∑
t∈[T ]

βt−1r(sit)
β ∈ [0, 1] is some discount parameter.

Fairness-motivated Constraint Functions

Integer periodicity
⌈T

ν ⌉∧
j=0

(j+1)ν∑
t=jν+1

ait ≥ 1

A form of time-indexed fairness.
Guarantees arm i is pulled at least once
within each period of ν timesteps.

Minimum selection fraction
∧

i∈[N ]

1

T

T∑
t=1

ait ≥ ψ
A form of time-indexed fairness.
Arm i should be pulled at least some
minimum fraction ψ ∈ (0, 1) of timesteps.

Probabilistic
∧

i∈[N ]

∧
t∈[T ]

Pr(ait = 1 | i, t) ∈ [ℓ, u] Pull each arm with probability pi ∈ [ℓ, u],
where ℓ ∈

(
0, k

N

]
and u ∈

[
k
N , 1

]
.
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B. Empirical Inequity in the Distribution of Actions under Whittle Index Policies
Here, we present numerical results confirming Prins et al. (2020)’s findings that THRESHOLD WHITTLE tends to allocate
pulls according to a bimodal distribution: a small subset of arms are pulled frequently, while others are largely ignored.

This bimodal distribution is a consequence of how the Whittle index prioritizes arms. Whittle favors arms for whom a pull is
most beneficial to achieving sustained occupancy in the “good” state, regardless of whether this results in the same subset
of arms repeatedly receiving pulls. While the structural constraints in Sec. 2 ensure that a pull is beneficial for every arm,
marginal benefit varies. Since reward is a function of each arm’s underlying state, arms whose trajectories are characterized
by a relative—but not absolute—indifference to receipt of the intervention are likely to be ignored.

Experimental Setup: For each iteration, we generate N = 2 forward threshold-optimal arms and run THRESHOLD
WHITTLE for a T = 365 horizon simulation, where the budget constraint k = 1. We run 1, 000 such iterations.

Results: In 515 out of 1,000 (51.5%) simulations, the arms’ Whittle indices never overlap, meaning that for any combination
of initial states, state transitions, and pulls, THRESHOLD WHITTLE would pull one arm for all timesteps t ∈ T and
completely ignore the second arm.
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Figure 1: The Whittle index values for Arm 1 and 2 can be
separated by a horizontal line, meaning that (WLOG) Arm
1 will always be chosen over Arm 2 because its index value
dominates.

We visualize one such case in Figure 1. Recall that
THRESHOLD WHITTLE precomputes the infimum sub-
sidy m per arm and belief combination. Since belief is
a function of last known state s ∈ {0, 1} and time-since-
seen u ∈ [T ] (using the notation of Mate et al. (2020)),
we plot the infimum subsidy of each arm-state combina-
tion with time-since-seen, u, on the x-axis. There exists
a horizontal line that divides the two arms, so arm i = 1
will be pulled for every timestep t ∈ T and arm i = 2
will never be pulled.

In order to modify the Whittle index to guarantee time-
indexed fairness constraint satisfaction, one would need
to ensure that no such horizontal line exists. Additionally,
if we consider a specific form of time-indexed fairness
known as an integer periodicity constraint, which allows
a decision-maker to guarantee that arm i is pulled at least
once within each period of ν days, the lines associated
with the arms in Figure 1 must cross before ν timesteps
elapse to guarantee fairness constraint satisfaction.

Another perspective we can take is to ask: what’s the
smallest interval νi for each arm i we could have specified
such that THRESHOLD WHITTLE would have satisfied
the integer periodicity constraint? Note that this is retro-
spective, as there is no way to enforce this constraint at
planning time.
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Figure 2: The smallest interval νi such that THRESHOLD
WHITTLE satisfies an integer periodicity definition of time-
indexed fairness, given N = 2 random arms. In over 50% of
iterations, no such fairness constraint satisfaction is possible
(i.e., ∃i s.t. νi > T ).

We visualize the minimum such νi in Figure 2. On the
far right, we see the 515 cases where (without loss of
generality) the second arm is never pulled—that is, the
minimum νi such that THRESHOLD WHITTLE satisfies
the hard integer periodicity constraint must be larger than
the horizon, T = 365. There is one case where arm i = 2
is pulled exactly once. In a majority of the remaining
simulations, THRESHOLD WHITTLE pulls each arm with
approximately equal frequency.
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C. Intractability of Alternative Approaches
In this section, we motivate the algorithmic design choices we have made when constructing PROBFAIR by discussing the
feasibility of possible alternatives, including: (1) direct modification of the Whittle index to guarantee time-indexed fairness
constraint satisfaction, and (2) a math programming-based approach.

C.1. Why not modify the Whittle index to guarantee time-indexed fairness constraint satisfaction?

In Section 3.3, we demonstrate that it is not possible to guarantee time-indexed fairness when arms are decoupled. If arms
cannot be decoupled, the tractability of a Whittle index-based approach breaks down. Here, we discuss this topic in greater
detail, and provide specific examples of possible Whittle index modifications. We also take this opportunity to emphasize
that our focus is on guaranteeing fairness rather than incentivizing it. Mate et al. (2021) provide an example of the latter,
which we discuss and include as a comparison algorithm in Section E.2.

To begin, recall that the efficiency of Whittle index-based policies stems from our ability to decouple arms when we are
only concerned with maximizing total expected reward (Whittle, 1988; Weber & Weiss, 1990). However, guaranteeing
time-indexed fairness (as defined in Section 2) in the planning setting requires time-stamped record keeping. It is no
longer sufficient to compute each arm’s infimum subsidy in isolation and order the resulting set of values. Instead, for an
optimal index policy to be efficiently computable, it must be possible to modify the value function (Equation 2) so as to
ensure that the infimum subsidy each arm would require in the absence of fairness constraints is minimally perturbed via
augmentation or “donation”, so as to maximize total expected reward while ensuring its own fairness constraint satisfaction
or the constraint satisfaction of other arms, respectively, without requiring input from other arms.

Plausible modifications include altering the conditions under which an arm receives the subsidy associated with passivity, m,
or introducing a modified reward function, r′(b) that is capable of accounting for an arm’s fairness constraint satisfaction
status in addition to its state at time t. For example, we might use an indicator function to “turn off” the subsidy until
arm i has been pulled at least once within the interval in question, or increase reward as an arm’s time-since-pulled value
approaches the interval cut-off, so as to incentivize a constraint-satisfying pull. When these modifications are viewed from
the perspective of a single arm, they appear to have the desired effect: if no subsidy is received, it will be optimal to pull for
all belief states; similarly, for a fixed m, as reward increases it will be optimal to pull for an increasingly large subset of the
belief state space.

Recall, however, that structural constraints ensure that when an arm is considered in isolation, the optimal action will always
be to pull. Whether or not arm i is actually pulled at time t depends on how the infimum subsidy, m, it requires to accept
passivity at time t compares to the infimum subsidies required by other arms. Thus, any modification intended to guarantee
time-indexed fairness constraint satisfaction must be able to alter the ordering among arms, such that any arm i which would
otherwise have a subsidy with rank > k when sorted in descending order will now be in the top-k arms. Even if we were
able to construct such a modification for a single arm without requiring system state, if every arm had this same capability,
then a new challenge would arise: we would be unable to distinguish among arms, and arbitrary tie-breaking could again
jeopardize fairness constraint satisfaction.

If it is not possible to decouple arms, then we must consider them in tandem. Papadimitriou & Tsitsiklis (1994) prove that
the RMAB problem is PSPACE-complete even when transition rules are action-dependent but deterministic, via reduction
from the halting problem.

C.2. Why not use a math-programming approach?

Our constrained maximization problem can be readily formulated as an integer program (IP) with a totally unimodular
(TU) constraint matrix. However, this approach is intractable because the objective function coefficients of this IP cannot
be efficiently enumerated. To support this intractability claim, we begin by presenting an integer program (IP) that
maximizes total expected reward under both budget and time-indexed fairness constraints, for problem instances with
feasible hyperparameters. We then prove that any problem instance with feasible hyperparameters yields a totally unimodular
(TU) constraint matrix, which ensures that the linear program (LP) relaxation of our IP will yield an integral solution. We
proceed to demonstrate that tractability issues arise because we incur an exponential dependency on the time horizon, T ,
when we construct the IP’s objective function coefficients. We conclude by comparing PROBFAIR to the IP for small values
of N and T .
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C.2.1. INTEGER PROGRAM FORMULATION

To leverage a math programming approach for our constrained reward maximization task, we seek to construct an integer
program (IP) whose solution is the policy x⃗ ∈ {0, 1}N |A|T . We require this policy to be reward-maximizing, subject
to the guaranteed satisfaction of both budget and time-indexed fairness constraints. To begin, let each decision variable
xi,a,t ∈ {0, 1} represent whether or not we take action a ∈ A = {0, 1} for arm i ∈ [N ] at time t ∈ [T ]. Then, let each
objective function coefficient ci,a,t represent the expected reward associated with an arm-action-timestep combination.

To formalize the objective function, recall that the agent seeks to maximize total expected reward, Eπ[R(·)]. For clarity of
exposition, we specifically consider the linear global reward function R(r(s)) =

∑N
i=1

∑T
t=0 s

i
t. Note that this implies the

discount rate, β = 1; however, the approach outlined here can be extended in a straightforward manner for β ∈ (0, 1). In
order to compute the expected reward associated with taking action a for arm i at time t, we must consider: (1) what state is
the arm currently in (i.e., what is the realized value of sit ∈ {0, 1})? (2) when the arm transitions from st to st+1 by virtue
of taking action a, what reward, r(·), should we expect to earn?

Because we define r(s) = s, (2) can be reframed as: what is the probability p(st+1 = 1|sit, ait) that action a causes a
transition from st to the adherent state? Because each arm’s state at time t is stochastic, depending not only on the sequence
of actions taken in previous timesteps, but the associated set of stochastic transitions informed by the arm’s underlying MDP,
each coefficient of our objective function must be computed as the expectation over the possible values of st ∈ S:

c⃗ = Es[p(st+1 = 1|xi,a,t, st)] ∀i, a, t ∈ [N ]×A× [T ] (6)

=
1

2t

∑
s∈S

p(st = s)
∑
s′∈S

p(st+1 = s′|xi,a,t, st = s)r(s′) ∀i, a, t ∈ [N ]×A× [T ] (7)

=
1

2t

∑
s∈S

p(st = s)p(r(st+1) = 1|xi,a,t, st = s) ∀i, a, t ∈ [N ]×A× [T ] (8)

=
1

2t

∑
s∈S

p(st = s)p(st+1 = 1|xi,a,t, st = s) ∀i, a, t ∈ [N ]×A× [T ] (9)

Within the context of this IP, the time-indexed fairness constraint we introduce in Section 2 can be more specifically defined
as either an integer periodicity or minimum selection fraction constraint. We formalize each of these below:

The integer periodicity constraint allows a decision-maker to guarantee that arm i is pulled at least once within each period
of ν days. We define this constraint as a function g, over the vector of actions, a⃗i associated with arm i, and user-defined
interval length ν ∈ [1, T ]:

g(⃗ai) =

(j+1)ν∑
t=jν+1

ait ≥ 1 (10)

∀j ∈
{
0, 1, 2, . . .

⌈
T

ν

⌉}
; ∀i ∈ {1, 2, . . . N}

The minimum selection fraction constraint introduced by Li et al. (2019) forces the agent to pull arm i at least a minimum
fraction, ψ ∈ (0, 1), of the total number of steps, but is agnostic to how these pulls are distributed over time. We define this
constraint, g′, as a function over the vector of actions, a⃗i associated with arm i and user-defined ψ:

g′(⃗ai) =
1

T

T∑
t=1

ait ≥ ψ ∀i ∈ {1, 2, . . . N} (11)
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The resulting integer program is given by:

max cTx (12)

s.t.
|A|∑
a=1

xi,a,t = 1 ∀i ∈ [N ], t ∈ [T ] (a) Select exactly one action per
arm i at each t

if int. per:
∑
t∈Ij

xi,1,t ≥ 1 ∀j ∈
{
0, 1, . . .

T − ν
ν

}
(b.i) Pull each arm i at least once

during each interval of length ν

if min. sel:
1

T

T∑
t=1

xi,1,t ≥ ψ ψ ∈ (0, 1),∀i ∈ N (b.ii) Pull each arm i at least a
minimum fraction ψ of T rounds

N∑
i=1

xi,1,t = k ∀t ∈ [T ] (c) Pull exactly k arms at each t

xi,a,t ∈ {0, 1} ∀i ∈ [N ], a ∈ A, t ∈ [T ] (d) Each arm-action-timestep choice
is a binary decision variable

C.2.2. LP RELAXATION AND INTEGRALITY OF SOLUTION

We now prove that the IP we have formulated in Section C.2.1 has an attractive property: namely, any feasible problem
instance will produce a totally unimodular constraint matrix. Our proof leverages a theorem introduced by Ghouila-Houri
and restated below for convenience, which can be used to determine whether a matrix, A ∈ Rm×n is totally unimodular:

Lemma C.1. (Ghouila-Houri (1962)) A matrix A ∈ Zm×n is totally unimodular (TU) if and only if for every subset of the
rows R ⊆ [m], there is a partition R = R1 ∪R2 such that for every j ∈ [n],∑

i∈R1

Aij −
∑
i∈R2

Aij ∈ {−1, 0, 1} (13)

Theorem C.2. Within the context of the integer program outlined in Appendix C.2.1, any feasible problem instance will
produce a constraint matrix that is totally unimodular (TU).

Proof. To begin, we establish the dimensions of any such constraint matrix A and note the maximum possible column-wise
sum that each of its component submatrices may contribute. Note that the minimum selection fraction constraint (b.ii in
Equation 12), which requires the agent to pull each arm i at least a minimum fraction, ψ ∈ (0, 1), of T rounds, can be
thought of as a special case of the integer periodicity constraint, (b.i in Equation 12), where ν = T and each arm must be
pulled at least ⌈Tψ⌉ times. As such, we assume that at most one of the time-indexed fairness constraints can be selected,
and focus on the more general of the two, which is the integer periodicity constraint. For notational convenience, we refer
to constraints by their alphabetic identifiers. Let (b) represent the integer periodicity constraint, and define a function
φ : r ∈ R ⊆ A 7→ e ∈ {a, b, c} that maps each row to its corresponding constraint type.

First, recall that each xi,a,t represents a single binary decision variable, and corresponds to a column in A. There are
N × |A| × T such columns. Next, note that constraint (a) enforces the requirement that we select exactly one action per arm
per timestep. Formally, ∀i, t ∈ N × T , ∃!a ∈ A s.t. xi,a,t = 1. Correspondingly, ∀a′ ∈ A \ a, xi,a′,t = 0. The column
vectors of the associated sub-matrix, Aa ∈ ZNT×N |A|T , are indexed by disjoint (i, a, t) ∈ N × |A|× T ; thus, each column
vector contains a single non-zero entry and for Ra ⊆ Aa, taking the column-wise sum will yield a vector v⃗ ∈ ZN |A|T with
every entry equal to 1.

In a similar vein, equity constraint (b) enforces the requirement that we must pull each arm, i at least once during each
interval Ij of length νi. Within the associated sub-matrix, Ab ∈ ZN⌈ T

νi
⌉×N |A|T , each column that corresponds to a passive

action (e.g., xi,a=0,t) will have only zero-valued entries, since passive action decision variables are not impacted by constraint
(b). Conversely, each column that corresponds to an active action (e.g., xi,a=1,t) will have a single non-zero entry. Each
active action column corresponding to a specific arm-timestep can be mapped to exactly one interval. Thus, for Rb ⊆ Ab,
taking the column-wise sum will yield a vector v⃗ ∈ ZN |A|T with every entry taking a value ∈ {0, 1}.
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The budget constraint (c) enforces the requirement that we must pull exactly k of the N arms at each timestep. Much like
equity constraint (b), only columns corresponding to active actions are impacted. Thus, within the associated sub-matrix,
Ac ∈ ZT×N |A|T , each column that corresponds to a passive action (e.g., xi,a=0,t) will have only zero-valued entries, while
each column that corresponds to an active action (e.g., xi,a=1,t) can be mapped to a single timestep, and will have a single
non-zero entry. Thus, for Rc ⊆ Ac, taking the column-wise sum also yield a vector v⃗ ∈ ZN |A|T with every entry taking a
value ∈ {0, 1}.

The complete constraint matrix A thus contains NT +N⌈ Tνi
⌉+ T rows. Three possible cases arise when we consider every

subset of these rows: (1) R ⊊ A = ∅; (2) R ⊊ A;R ∩A ̸= ∅; (3) R ⊆ A.

Case 1. R ⊊ A = ∅. To satisfy Lemma C.1, partition R such that R = R1 ∪R2 = ∅ ∪ ∅. Then, for every j ∈ [n],

∑
i∈R1

Aij −
∑
i∈R2

Aij = 0− 0; 0 ∈ {−1, 0, 1}

Case 2. R ⊊ A;R ∩A ̸= ∅. If we consider ∪r∈Rφ(r), there are
∑3

k=1

(
3
k

)
possible sets of observed constraint types:

{a} ∨ {b} ∨ {c} ∨ {a, b} ∨ {a, c} ∨ {b, c} ∨ {a, b, c}.

1. If | ∪r∈R φ(r)| = 1, then any partition of R will satisfy Lemma C.1. Without loss of generality, let each row r ∈ R
belong to R1 and R2 = ∅.

i. If ∪r∈Rφ(r) = {a}, taking the column-wise sum of R1 will yield a vector v⃗ ∈ ZN |A|T with every entry
∈ {1} if R ⊆ Aa, and ∈ {0, 1} otherwise. Thus, ∀j ∈ [N |A|T ],

∑
i∈R1

Aij −
∑
i∈R2

Aij = 0− 0 ∨ 1− 0; {0, 1} ⊊ {−1, 0, 1}

ii. If ∪r∈Rφ(r) = {b} ∨ {c}, taking the column-wise sum of R1 will yield a vector v⃗ ∈ ZN |A|T with every entry
corresponding to a passive action column ∈ {0} and every entry corresponding to an active action column
∈ {1} if R ⊆ Ab∨c, and ∈ {0, 1} otherwise. Thus, ∀j ∈ [N |A|T ],

∑
i∈R1

Aij −
∑
i∈R2

Aij = 0− 0 ∨ 1− 0; {0, 1} ⊊ {−1, 0, 1}

2. If | ∪r∈R φ(r)| = 2, without loss of generality, partition as follows: sort the elements ∈ ∪r∈Rφ(r) lexicographically,
and let R1 = {r|φ(r) = min∪r∈Rφ(r)} and R2 = R \ R1. Per Case 2.1 (i) and (ii), taking the column-wise
sums of R1 and R2 will yield two vectors, v⃗1, v⃗2 ∈ ZN |A|T , each of which will contain only entries ∈ {0, 1}. Thus,
∀j ∈ [N |A|T ],

∑
i∈R1

Aij −
∑
i∈R2

Aij = 0− 0 ∨ 0− 1 ∨ 1− 0 ∨ 1− 1; {−1, 0, 1} ⊆ {−1, 0, 1}

3. If | ∪r∈R φ(r)| = 3, partition according to Algorithm 3:
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Algorithm 3 Partition for Case 2.3

1: procedure PARTITION(N , A, T , R)
2: CR1

;CR2
← {0}N |A|T ▷ Initialize two sets of counters

3: R1;R2 ← ∅
4: for element e ∈ {a, b, c} do
5: Re ← {r|φ(r) = e} ▷ Use φ to partition the rows of R by constraint type
6: for r ∈ Ra do
7: R1 ← R1 ∪ r ▷ Let r ∈ R1

8: for i ∈ 0 : N |A|T do
9: if r[i] > 0 then ▷ For each non-zero entry ∈ r

10: CR1 [i]← CR1 [i] + 1 ▷ Increment corresponding CR1 counter
11: for r ∈ Rb do
12: flag← false
13: for i ∈ 0 : N |A|T do
14: if r[i] > 0 ∧ CR1

[i] > 0 then ▷ If any non-zero element ri has CR1
> 0

15: flag← true ▷ Set flag to true
16: if flag then
17: R2 ← R2 ∪ r ▷ Let r ∈ R2

18: for i ∈ 0 : N |A|T do
19: if r[i] > 0 then ▷ For each non-zero entry ∈ r
20: CR2 [i]← CR2 [i] + 1 ▷ Increment corresponding CR2 counter
21: else
22: R1 ← R1 ∪ r ▷ Let r ∈ R1

23: for i ∈ 0 : N |A|T do
24: if r[i] > 0 then ▷ For each non-zero entry ∈ r
25: CR1

[i]← CR1
[i] + 1 ▷ Increment corresponding CR1

counter
26: for r ∈ Rc do
27: R2 ← R2 ∪ r ▷ Let r ∈ R2

28: for i ∈ 0 : N |A|T do
29: if r[i] > 0 then ▷ For each non-zero entry ∈ r
30: CR2

[i]← CR2
[i] + 1 ▷ Increment corresponding CR2

counter
return R1;R2

Taking the column-wise sums of the resulting R1 and R2 will yield two vectors v⃗1, v⃗2 ∈ ZN |A|T , which can contain entries
∈ {0, 1} and {0, 1, 2}, respectively. Note that since v⃗2 is constructed by taking only rows with constraint types ∈ {b, c},
only entries corresponding to active action columns can take values > 1. Moreover, ∀j ∈ [N |A|T ],

∑
i∈R2

Aij = 2 →∑
i∈R1

Aij = 1. Thus, ∀j ∈ [N |A|T ],∑
i∈R1

Aij −
∑
i∈R2

Aij = 0− 0 ∨ 0− 1 ∨ 1− 0 ∨ 1− 1 ∨ 1− 2; {−1, 0, 1} ⊆ {−1, 0, 1}

Case 3. R ⊆ A. Since | ∪r∈R φ(r)| = 3, proceed as outlined in Case 2.3. Only a slight modification is required: since R
is now equal to A, taking the column-wise sums of the resulting R1 and R2 will yield two vectors v⃗1, v⃗2 ∈ ZN |A|T , which
can contain entries ∈ {1} and {0, 2}, respectively. Thus, ∀j ∈ [N |A|T ],∑

i∈R1

Aij −
∑
i∈R2

Aij = 1− 0 ∨ 1− 2; {−1, 1} ⊊ {−1, 0, 1}

C.2.3. ENUMERATION OF OBJECTIVE FUNCTION COEFFICIENTS

The key challenge we encounter when we seek to enumerate the IP outlined in Section C.2.1 is that exact computation of the
objective function coefficients, c⃗ ∈ RN |A|T is intractable. Each arm contributes |A| × T coefficients, and while calculation
is trivially parallelizable over arms, we must consider a probability tree like the one in Figure 3 for each arm.
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Figure 3: Illustration of the probability tree for finding the coefficient corresponding to xi,a=0,t=2.
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The number of decision variables required to enumerate each arm’s game tree is of order O(|A||S|T ) and there are N such
trees, so even a linear program (LP) relaxation is not tractable for larger values of T and N , which motivates us to propose
PROBFAIR (Section 4) as an efficient alternative.
Example 1. Suppose we wish to find the coefficient c′ corresponding to xi,a=0,t=2. From Equation 9, we have c′ =
1
22

∑
s∈S p(s2 = s)p(s3 = 1|xi,a=0,t=2, s2 = s). Equivalently, we sum the weight of each path from the root node to the

highlighted end nodes in Figure 3 and normalize by 1
22 :

c′ =
1

4

(
P 0
s0,0P

0
0,0P

0
0,1 + P 0

s0,0P
1
0,0P

0
0,1 + P 0

s0,0P
0
0,1P

0
1,1 + P 0

s0,0P
1
0,1P

0
1,1 (14)

+ P 1
s0,0P

0
0,0P

0
0,1 + P 1

s0,0P
1
0,0P

0
0,1 + P 1

s0,0P
0
0,1P

0
1,1 + P 1

s0,0P
1
0,1P

0
1,1

+ . . . ) For each of the (|A||S|)t = 16 paths to a blue node in Figure 3.

C.2.4. COMPARISON OF PROBFAIR WITH THE TRUE OPTIMAL POLICY

In Section E, we normalize intervention benefit with THRESHOLD WHITTLE, which is asymptotically optimal for forward
threshold-optimal transition matrices under a budget constraint k (Mate et al., 2020). However, with the integer program (IP)
we formulate in Section C.2.1, we can find the optimal policy for any set of transition matrices under budget and fairness
constraints as long as N and T are small.

0 1 2 3 4 5 6 7

Distribution of arm adherences

0.0

0.5

C
ou

nt

IP
=0.33

IP
=3

Prob Fair
=0.33

Prob Fair
=0

IP
baseline

Figure 4: Adherences of PROBFAIR, compared to the IP formulation

We generate N = 2 random arms such that the structural constraints outlined in Section 2 are satisfied. We set k = 1
and T = 6. Though the variance in reward is large due to the small T , Figure 4 shows that PROBFAIR obtains 100% of
the intervention benefit when no fairness constraints are applied. Similarly, PROBFAIR with ℓ = 0.33 obtains the same
adherence behavior as the IP policy with under hard fairness constraint ν = 3 or minimum selection fraction constraint
ψ = 0.33. (within 95% confidence interval shown). All results shown are bootstrapped over 500 iterations.

Minimum Selection Fraction Constraints. As we discuss in Appendix B, the optimal policy is often to pull the same k
arms at every timestep and ignore all other arms. Under minimum selection fraction constraints (Equation 11), each arm
must be pulled at least a minimum fraction ψ of T rounds, with no conditions on when these pulls should take place. We
confirm with the optimal IP implementation our intuition that these additional pulls are allocated at the beginning or end of
the simulation. That is, the optimal policy under minimum selection fraction constraints is to take advantage of the finite
time horizon, which is not suitable for the applications we consider.
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D. PROBFAIR: a Probablistically Fair Policy
Our main contribution is the novel probabilistic policy PROBFAIR (see Section 4.1). In contrast to prior work, we seek to
guarantee rather than incentivize fairness without incurring an exponential dependency on the time horizon or sacrificing
optimality guarantees. We thus seek an efficient policy which is reward-maximizing, subject to the satisfaction of both
budget and probabilistic fairness constraints.

 candidate   values

arms 

concave arms
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candidate 

get grid 
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Figure 5: A visual representation of PROBFAIR’s probabilistic policy
construction and discrete action selection.

Recall to construct πPF , we: (1) partition the arms
based on the shapes of their respective fi functions
(Eq. 4); (2) perform a grid search over possible
ways to allocate the budget, k, between the two
subsets of arms; (2a) solve each sub-problem to
produce a probabilistic policy for the arms in that
subset; (2b) compute the total expected reward of
the policy; (3) take the argmax over this set of grid
search values to determine the approximately opti-
mal budget allocation; and (4) form πPF by taking
the union over the policies produced by evaluat-
ing each sub-problem at its approximately optimal
share of the budget.

Here, in Section D.1, we present complete proofs
to Theorems 4.1-4.4. Then, in Section D.2, we pro-
vide additional details about how we sample from
our probabilistic policy to select discrete actions at
each timestep.

D.1. Proofs

In this section, we provide proofs for the theorems
introduced in Section 4.1. When relevant, we begin
by restating the theorem for convenience.

Theorem 4.1. For every arm i ∈ [N ], fi(pi) is either concave or strictly convex in all of pi ∈ [0, 1].

Proof. For notational convenience, let:

c1 = P 0
0,1;

c2 = P 1
0,1 − P 0

0,1;

c3 = 1− P 0
1,1 + P 0

0,1;

c4 = P 0
1,1 − P 1

1,1 − P 0
0,1 + P 1

0,1.

Then, fi(pi) = c1+c2pi

c3+c4pi
. We observe that ∀i ∈ [N ], fi(pi) is a valid probability since the term 1− (1− pi)P 0

1,1 − piP 1
1,1 in

the denominator is at least 1− (1− pi)− pi = 0 for all pi ∈ [0, 1]. Then, there are three cases which describe the possible
shapes of fi(pi):

Case 1. c4 = 0. Here, fi(pi) is linear and hence, concave.

Case 2. c4 ̸= 0; c2 = 0. Here, f
′′

i (pi) =
2c1c

2
4

(c3+c4pi)3
≥ 0, so fi(pi) is linear (hence concave) if c1 = 0 or strictly convex (if

c1 > 0) in the domain pi ∈ [0, 1].

Case 3. c4 ̸= 0; c2 ̸= 0. Here,

fi(pi) =

c2
c4

(
c1c4
c2

+ c4pi

)
c3 + c4pi

=
c2
c4

+

(
c1 − c2c3

c4

)
c3 + c4pi

. (15)
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Thus,

f
′′

i (pi) =
2c24

(
c1 − c2c3

c4

)
(c3 + c4pi)3

(16)

The sign of f
′′

i (pi) is the same as the sign of d = c1 − c2c3
c4

. It follows that fi(pi) is strictly convex if c1 > c2c3
c4

, and
concave otherwise for pi ∈ [0, 1].

Theorem 4.2. For each arm i ∈ [N ], the structural constraints introduced in Section 2 ensure that fi(pi) is monotonically
non-decreasing in pi over the interval [0, 1].

Proof. For notational convenience, let:

c1 = P 0
0,1;

c2 = P 1
0,1 − P 0

0,1;

c3 = 1− P 0
1,1 + P 0

0,1;

c4 = P 0
1,1 − P 1

1,1 − P 0
0,1 + P 1

0,1.

Then fi(pi) = c1+c2pi

c3+c4pi
and f ′i(pi) =

c2c3−c1c4
(c3+c4pi)2

.

Observe c2c3 − c1c4 ≥ 0 implies f ′i(pi) ≥ 0.

c2c3 − c1c4 ≥ 0

c2c3 ≥ c1c4
(P 1

0,1 − P 0
0,1)(1− P 0

1,1 + P 0
0,1) ≥ P 0

0,1(P
0
1,1 − P 1

1,1 − P 0
0,1 + P 1

0,1)

(1− P 0
1,1)P

1
0,1 ≥ (1− P 1

1,1)P
0
0,1

Per our structural constraints, P 0
1,1 < P 1

1,1 and P 1
0,1 > P 0

0,1.

Lemma 4.3. P2 has an optimal solution in which pi ∈ (ℓ, u) for at most one i ∈ Y .

Proof. Note by compactness that P2 has not just a supremum, but an actual maximum solution. Suppose for contradiction
there is some optimal solution p⃗ with distinct indices i, j ∈ Y such that pi, pj ∈ (ℓ, u). Now, suppose we perturb by an
infinitesimal ϵ (of arbitrary sign but tiny positive absolute value) such that pi := pi + ϵ and pj := pj − ϵ. This satisfies all
our constraints for small-enough |ϵ|. The change in the objective

∑
i∈Y fi(pi) is now ϵ · (f ′i(pi)− f ′j(pj)) +O(ϵ2); hence,

if f ′i(pi) − f ′j(pj) is nonzero, then we can take a tiny ϵ of the appropriate sign to increase the objective, a contradiction.
Therefore, f ′i(pi)− f ′j(pj) = 0, and so, we now focus on lower-order terms: the change in the objective

∑
i∈Y fi(pi) is

now (ϵ2/2) · (f ′′i (pi) + f ′′j (pj)) +O(ϵ3). However, since fi and fj are strictly convex, we have that f ′′i (pi) + f ′′j (pj) > 0,
and hence the objective increases regardless of the sign of (the tiny) ϵ, again a contradiction. Thus we have our structural
result.

Theorem 4.4. Alg. 2 yields the mapping from arms in Y to subsets in {Y1,Y2,Y3} which maximizes
∑

i∈Y fi(pi) s.t.∑
i∈Y pi = k − z. (See Appendix D for the complete proof).

We begin by introducing Lemma D.1, which we use in our proof of Theorem 4.4:

Lemma D.1. For a given γ, p′ ∈ (ℓ, u].
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Proof. To begin, observe that z − k = γℓ+ (|Y| − 1− γ)u+ p′. Then, to prove the lower bound, observe that:

γ =

⌊
|Y|u− (k − z)

u− ℓ

⌋
γ >

|Y|u− (k − z)
u− ℓ

− 1

→ γ >
|Y|u− (γℓ+ (|Y| − 1− γ)u+ p′)

u− ℓ
− 1

γ >
|Y|u− γℓ− |Y|u+ u+ γu− p′ − u+ ℓ

u− ℓ
0 > ℓ− p′ =⇒ p′ > ℓ

To prove the upper bound, observe that:

γ =

⌊
|Y|u− (k − z)

u− ℓ

⌋
γ ≤ |Y|u− (k − z)

u− ℓ

→ γ ≤ |Y|u− (γℓ+ (|Y| − 1− γ)u+ p′)

u− ℓ

γ ≤ γ(u− ℓ) + u− p′

u− ℓ
0 ≤ u− p′ =⇒ p′ ≤ u

Thus, ℓ < p′ ≤ u.

Now, we proceed with our proof of Theorem 4.4.

Proof. Recall P2: maximize
∑

i∈Y fi(pi) such that pi ∈ [ℓ, u] for all i ∈ Y and
∑

i∈Y pi = k − z. By Lemma 4.3, there
exists at most one arm with optimal value p∗i ∈ (ℓ, u).

First, we discuss an edge case. If k − z = |Y|ℓ, Line 2 of Algorithm 2 assigns γ = |Y|, so Line 11 assigns

πY := i 7→


ℓ, for i ∈ Y1 = {Y}
p′, for i ∈ Y2 = ∅
u, for i ∈ Y3 = ∅

 (17)

Thus Algorithm 2 returns the only valid solution to P2 in this case, which is to set pi = ℓ for all arms i ∈ Y .

For all other cases k− z > |Y|ℓ, we introduce the following notation: let Y1 be the set of arms for which pi = ℓ, Y2 be a set
containing exactly one arm (WLOG j) where pj = p′ ∈ (ℓ, u], and Y3 be the remaining set of arms for which pi = u, with⋂3

x=1 Yx = ∅. Then by Lemma D.1, γ = |Y1| =
⌊
|Y|u−(k−z)

u−ℓ

⌋
and p′ = k − z − γℓ− (|Y| − 1− γ)u ∈ (ℓ, u].

P2 is then equivalent to finding a partition Y → Y1 ∪ Y2 ∪ Y3 which maximizes the following:

argmax
{Y1,Y2,Y3}

∑
i∈Y1

fi(ℓ) + fj(p
′) +

∑
i′′∈Y3

fi′′(u)

s.t. |Y1| = γ, Y2 = {j},
3⋂

x=1

Yx = ∅, and
3⋃

x=1

Yx = Y (18)
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Subtracting the constant
∑

i∈Y fi(ℓ) and simplifying yields:

argmax
{Y1,Y2,Y3}

fj(p
′)− fj(ℓ) +

∑
i′′∈Y3

fi′′(u)− fi′′(ℓ)

s.t. |Y1| = γ, Y2 = {j},
3⋂

x=1

Yx = ∅, and
3⋃

x=1

Yx = Y (19)

Suppose we sort arms in ascending order by fi(u)− fi(ℓ). Let us create the set Y ′
3 from the last |Y| − γ − 1 arms.

By monotonicity, for all i ∈ Y ′
3 and j ̸∈ Y ′

3,

fj(p
′)− fj(ℓ) ≤ fi(u)− fi(ℓ) (20)

Thus, setting Y∗
3 = Y ′

3 reduces the optimization problem in Eq. 18 to finding a partition over the remaining sets Y1 and Y2.

argmax
{Y1,Y2}

fj(p
′)− fj(ℓ)

s.t. |Y1| = γ, Y2 = {j},
2⋂

x=1

Yx = ∅, and
2⋃

x=1

Yx = Y \ Y∗
3 (21)

Finally, we solve Equation 21 by finding the arm j with maximal value fj(p′)− fj(ℓ). Then Y∗
2 = j, Y∗

1 = Y \ (Y2
⋃
Y∗
3 ),

and we are done.

Corollary 4.5. Alg. 2 has time complexity O(|Y| log |Y|).

At worst, Algorithm 2 requires two sorts: once on Line 5, and a second time on Line 8, for a total computational cost of
O(2|Y| log |Y|). In total, the computational cost of Algorithm 1 is at worst O

(
kN
ϵ3

)
when all N arms are in X .

D.2. Dependent Rounding Sampling Approach

Here we provide pseudocode for the sampling algorithm introduced in Section 4.2, along with its associated SIMPLIFY
subroutine (Srinivasan, 2001).

Algorithm 4 Sampling Subroutine (adapted from Srinivasan (2001))

1: procedure SIMPLIFY(α ∈ [0, 1], β ∈ [0, 1])
2: if α = β = 0 then
3: pi, pj ← [0, 0]
4: else if α = β = 1 then
5: pi, pj ← [1, 1]
6: else if α+ β = 1 then
7: flag← X ∼ B(n = 1, p = α)
8: pi, pj ← [1, 0] if flag else [0, 1]
9: else if 0 < α+ β < 1 then

10: flag← X ∼ B
(
n = 1, p = α

α+β

)
11: pi, pj ← [α+ β, 0] if flag else [0, α+ β]
12: else if 1 < α+ β < 2 then
13: flag← X ∼ B

(
n = 1, p = 1−β

2−α−β

)
14: pi, pj ← [1, α+ β − 1] if flag else [α+ β − 1, 1]

return pi, pj
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Algorithm 5 Sampling Algorithm (adapted from Srinivasan (2001))

1: procedure SAMPLE(G = (V,E))
2: H ← G \ {v|∃e ∈ G s.t. edst = v} ▷ Select subgraph containing nodes without a parent
3: if |H| = 1 then return G ▷ zv ∈ {0, 1}∀v ∈ G;

∑
v zv = k

4: else if |H| ≥ 2 then
5: A ⊊ G ∈

( H
⌊ |H|

2 ⌋
)

6: B ← G \A
7: pairs← {(ai, bi) ∈ A×B|i ∈ I}
8: H ′ ← (V = ∅, E = ∅)
9: for (vi, vj) ∈ pairs do

10: H ′ ← H ′ ∪ {vi, vj}
11: H ′ ← H ′ ∪ {v′; ev′,vα

|α ∈ {i, j}}
12: Xi, Xj ← SIMPLIFY(pvi

, pvj ) ▷ Defined in Algorithm 4
13: zvi ← Xi ▷ If Xi was fixed, zvi ∈ {0, 1}
14: zvj ← Xj ▷ If Xj was fixed, zvj ∈ {0, 1}
15: if zvi ∈ {0, 1} then
16: pv′ ← Xj

17: elsepv′ ← Xi

18: F ← G ∪H ′ ▷ ∀v ∈ G ∩H ′, update attribute values per H ′

19: return SAMPLE(F)
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E. Experimental Evaluation
In this section, we empirically demonstrate that PROBFAIR
enforces the probabilistic fairness constraint introduced in
Section 2 with minimal loss in total expected reward, rela-
tive to fairness-aware alternatives. We present results from
three experiments: (1) PROBFAIR versus fairness-inducing
alternative policies, holding the cohort fixed and consider-
ing fairness-aligned sets of hyperparameters; (2) PROBFAIR
evaluated on a breadth of cohorts representing different
types of patient populations; and (3) PROBFAIR when fair-
ness is not enforced (i.e., ℓ = 0), to examine the cost of
state agnosticism.

E.1. Experimental Design

Policies: In each of our experiments, we compare
PROBFAIR against the following baseline§ and fairness-
{inducing†, guaranteeing‡, and agnostic⋆} policies:

RANDOM§ Select k arms uniformly at random at each t.
ROUND-ROBIN§,‡ Select k arms at each t in fixed, sequential order.

TW-BASED

HEURISTICS‡

Select top-k arms based on Whittle index values.
Available arms vary based on time-indexed
fairness constraint satisfaction (Prins et al., 2020).

RISK-AWARE

TW (RA-TW)†
Select top-k arms based on Whittle index values.
Incentivizes fairness via concave reward function
(Mate et al., 2021).

THRESHOLD
WHITTLE (TW)⋆

Select top-k arms based on Whittle index values
(Whittle, 1988; Mate et al., 2020).

We specifically consider three THRESHOLD WHITTLE-
based heuristics: FIRST, LAST, and RANDOM. These
heuristics partition the k pulls available at each timestep
into (un)constrained subsets, where a pull is constrained if
it is executed to satisfy a time-indexed fairness constraint.
During constrained pulls, only arms that have not yet been
pulled the required number of times within a ν-length inter-
val are available; other arms are excluded from considera-
tion, unless all arms have already satisfied their constraints.
FIRST, LAST, and RANDOM position constrained pulls at
the beginning, end, or randomly within each interval of
length ν, respectively. Appendix F.1 provides pseudocode.

Objective: In all experiments, we assign equal value to the
adherence of a given arm over time. Thus, we set our objec-
tive to reward occupancy in the “good” state: a simple local
reward rt(sit) := sit ∈ {0, 1} and undiscounted cumulative
reward function, R(r(s)) :=

∑
i∈[N ]

∑
t∈[T ] r(s

i
t).

Evaluation metrics: We are interested in comparing poli-
cies along two dimensions: reward maximization and fair-
ness (i.e., with respect to the distribution of algorithmic
attention). To this end, we rely on two performance metrics:
(a) intervention benefit and (b) earth mover’s distance.

Intervention benefit (IB) is the total expected reward of an

algorithm, normalized between the reward obtained with no
interventions (0% intervention benefit) and the asymptoti-
cally optimal but fairness-agnostic THRESHOLD WHITTLE
algorithm (100%) (Mate et al., 2020). Formally,

IBNoAct,TW(ALG) :=
EALG[RALG(·)]− ENoAct[R(·)]
ETW[R(·)]− ENoAct[R(·)]

(22)

Earth mover’s distance (EMD) is a metric that allows us
to compute the minimum cost required to transform one
probability distribution into another (Rubner et al., 2000).
We use it to compare algorithms with respect to fairness—
i.e., how evenly pulls are allocated among arms. (Other
metrics that may measure individual distributive fairness are
discussed in Appendix F.2.)

For each algorithm, we consider a discrete distribution F
of observed pull counts, where each bucket, j ∈ {0 . . . T},
corresponds to a feasible number of total pulls that an arm
could receive, and F [j] ∈ {0 . . . N} corresponds to the
number of arms whose observed pull count is equal to j. All
of the distributions we consider have the same total mass
because each algorithm produces kT total pulls.

We use ROUND-ROBIN as a fair reference algorithm since
it distributes pulls evenly among arms. We then compute
the minimum cost required to transform each algorithm’s
distribution, FALG, into that of ROUND-ROBIN’s, FRR.

For our application this is equivalent to:

EMDRR(ALG) :=

∣∣∣∣∣
T∑

h=0

h∑
j=0

FALG[j]− FRR[j]

∣∣∣∣∣ (23)

Unless otherwise noted, we normalize EMD with respect
to the distance obtained by TW, EMDRR(ALG)/EMDRR(TW).

Datasets: We evaluate performance on two datasets: (a) a
general set of randomly generated synthetic transition ma-
trices and (b) a realistic patient adherence behavior model.

Synthetic. We construct a synthetic dataset of randomly
generated arms such that the structural constraints outlined
in Section 2 are preserved.

CPAP Adherence. Continuous positive airway pressure
therapy (CPAP) is an effective treatment for obstructive
sleep apnea (OSA). However, poor adherence behavior
in using CPAP reduces its beneficial outcomes. Non-
adherence to CPAP therapy affects an estimated 30-40%
of patients (Rotenberg et al., 2016). We adapt Kang et al.
(2016; 2013)’s Markov model of CPAP adherence behavior
(a three-state system of hours of nightly CPAP usage) to a
two-state system with the clinical standard for adherence–at
least four hours of CPAP machine usage per night (Sawyer
et al., 2011). We consider an intervention effect that broadly
characterizes supportive interventions such as telemonitor-
ing and phone support, which are associated with a moder-
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ate 0.70 hours (95% CI ± 0.35) increase in device usage
per night (Askland et al., 2020). For full details, see Ap-
pendix F.4.

E.2. PROBFAIR versus Fairness-aware Alternatives

In this experiment, we compare PROBFAIR to alternative
policies which either induce or guarantee fairness. The
former includes RISK-AWARE WHITTLE, which modifies
the objective function via concave reward r(b) (Mate et al.,
2021). We consider the authors’ suggested reward function
r(b) = −eλ(1−b), λ = 20, which imposes a large nega-
tive utility on lower belief values. However, RA-TW does
not guarantee fair resource allocation. The latter includes
ROUND-ROBIN and the heuristics, which guarantee time-
indexed fairness but do not provide optimality guarantees.

In Table 2, we report average results for each policy, along
with margins of error for 95% confidence intervals, com-
puted over 100 simulation seeds for a synthetic cohort of
100 collapsing arms, with k = 20 and T = 180. To facili-
tate meaningful comparisons between PROBFAIR and the
heuristics, we consider combinations of values for ℓ and
ν that produce equivalent, integer-valued lower bounds on
the number of pulls any arm can expect to receive—i.e.,
mini E[

∑
t 1(a

i
t = 1)] = ℓ× T = T/ν.

mini E[# pulls] Policy E[IB] (%) E[EMD] (%)

10
ℓ = 0.056
ν = 18

PF ℓ 88.45 ± 0.27 81.11 ± 0.18
FIRST ν 88.75 ± 0.27 68.19 ± 0.14
LAST ν 89.32 ± 0.26 69.17 ± 0.11
RANDOM ν 92.02 ± 0.18 71.24 ± 0.13

18
ℓ = 0.1
ν = 10

PF ℓ 81.57 ± 0.29 60.04 ± 0.22
FIRST ν 81.07 ± 0.31 47.44 ± 0.09
LAST ν 81.30 ± 0.29 48.47 ± 0.08
RANDOM ν 84.33 ± 0.26 51.67 ± 0.10

30
ℓ = 0.167
ν = 6

PF ℓ 68.22 ± 0.33 22.66 ± 0.17
FIRST ν 70.22 ± 0.30 19.10 ± 0.03
LAST ν 69.41 ± 0.33 19.70 ± 0.03
RANDOM ν 70.52 ± 0.34 19.96 ± 0.04

comparison TW 100.00 ± 0.00 100.00 ± 0.00
RA-TW 72.73 ± 0.38 115.14 ± 0.26

baseline
RANDOM 54.66 ± 0.35 10.44 ± 0.11
NOACT 0.00 ± 0.00 76.08 ± 0.11
RR 62.96 ± 0.33 0.00 ± 0.00

Table 2: Expected intervention benefit and normalized earth
mover’s distance by policy and fairness bracket.

Key findings include:
• Fairer hyperparameters (ℓ ↑, ν ↓), yield decreased
E[IB] and E[EMD], reflecting improved individual
fairness at the expense of total reward.

• RA-TW appears to discourage distributive fairness
(E[EMD] > 100%), and yields reduced expected re-
ward.

• For each (ℓ, ν), PROBFAIR performs competitively

with respect to the best-performing heuristic (which,
like TW, are state-aware, see Appendix E.4).

E.3. PROBFAIR Evaluated on a Breadth of Cohorts

Here we conduct sensitivity analysis with respect to cohort
composition. For each dataset, we identify a transition ma-
trix characteristic that can be modified during the generation
process to produce a subset of arms that will exhibit less
favorable transition dynamics than their peers. For the syn-
thetic dataset, this characteristic is strict convexity. For the
CPAP dataset, it is non-adherence, a mnemonic coined by
Kang et al. (2013) to characterize a cluster of study partici-
pants, and contrast this to a model fit on the general patient
population (see Appendix F.4 for details).

For each dataset, we generate 10 different cohorts, each
of which is characterized by the percentage of unfavorable
arms that it contains. We use a seed to control the generation
process such that each cohort contains 100 collapsing arms
in total, and a sliding window of the unfavorable (favorable)
arms we can generate with this seed are included (excluded)
as we increase the cardinality of the unfavorable subset. For
ease of interpretation, we present unnormalized results over
100 simulation seeds with k = 20 and T = 180 in Figure 6,
and then proceed to summarize normalized performance.

0% 25% 50% 75% 100%
% strictly convex arms; N=100

0

2

4

6

8

10
1e3 Expected Total Reward

0% 25% 50% 75% 100%
% strictly convex arms; N=100

Expected Earth Mover's Distance

NoAct PF
=0.1 RR TW

(a) Synthetic results

0% 25% 50% 75% 100%
% non-adhering arms; N=100

0
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4
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8
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1e3 Expected Total Reward

0% 25% 50% 75% 100%
% non-adhering arms; N=100

Expected Earth Mover's Distance

(b) CPAP results

Figure 6: Expected total reward (left) and unnormalized
earth mover’s distance (right) on a breadth of cohorts.
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Key findings from this experiment include:
• Per Figure 6, for each dataset, E[R] predictably de-

clines for all policies as the % of unfavorable arms
increases, while unnormalized E[EMD] rises for TW
and PROBFAIR.
– Synthetic (6(a)): As the proportion of strictly convex
arms increases, PROBFAIR’s allocation of pulls tends
towards the bimodality of TW.
– CPAP (6(b)): As the proportion of non-adherent
arms increases, the level of intervention required to
improve trajectories rises, but the available budget re-
mains static.

• PROBFAIR’s normalized performance remains stable
even as cohort composition is varied:
– Synthetic: With respect to IB (EMD), PROBFAIR
achieves an average (over all cohorts) of averages
(over 100 simulations per cohort) of 80.45% ± 1.30%
(60.42% ± 2.03%).
– CPAP: The corresponding values for IB (EMD):
80.44%± 0.57% (60.54%± 1.26%).

E.4. PROBFAIR: Price of State Agnosticism

Here, we investigate the cost associated with PROBFAIR’s
state agnosticism, relative to state-aware THRESHOLD
WHITTLE (TW). To ensure a fair comparison, we set ℓ = 0
and u = 1, effectively constructing a version of PROB-
FAIR in which probabilistic fairness is not enforced. (Recall
that TW is fairness-agnostic; in the previous results, we do
not expect PROBFAIR to obtain the same total reward as
TW). While PROBFAIR incorporates each arm’s structural
information (i.e., transition matrices), it produces a set of
stationary probability distributions over actions from which
all discrete actions are subsequently drawn. TW, in contrast,
ingests each arm’s current state at each timestep, and is thus
able to exploit realized sequences of state transitions. While
we thus expect PROBFAIR to incur some loss in IB, our
results (computed over 100 simulation seeds, with k = 20,
N = 100, and T = 180) indicate that this loss is acceptable
rather than catastrophic. Relative to TW, PROBFAIRℓ=0

obtains 96.04%± 0.22 of E[IB] and incurs an increase of
only 4.61%± 0.16 with respect to E[EMD].
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F. Additional Experimental Details
In this section, we discuss additional details of our empirical study in Appendix E. We provide a description and pseudocode
of the heuristic policies (F.1), discuss our choice of fairness metric (F.2), and provide additional details of our Synthetic and
CPAP datasets (F.3, F.4).

All results presented in this paper are bootstrapped over 100 simulation iterations, with a time horizon T = 180, cohort size
N = 100, and budget k = 20, unless otherwise noted. We utilize seeds to ensure reproducible variation for each randomized
parameter, including actualized transitions in each simulation. We have run simulations on an Intel(R) Core i7 CPU with
16Gb of RAM. Simulations are configurable via configuration files; runs are trivially parallelizable via these configuration
files.

F.1. Heuristic Algorithms

In Section E, three heuristics based on the THRESHOLD WHITTLE algorithm are introduced: FIRST, LAST, and RANDOM.
Here, we go into more detail and provide pseudocode.

Definition F.1. Within the context of Algorithm 6, we define a constrained pull to be one that is executed to satisfy an
integer periodicity constraint. Only arms that have not yet been pulled the required number of times within the ν-length
interval are available; other arms are excluded from consideration, unless all arms have already satisfied their constraints. In
this case, all arms are available to be pulled.

If a pull is not constrained, we say it is unconstrained or residual.

The FIRST heuristic requires that all constrained pulls must occur at the start of the interval. This implies that the first N/k
timesteps in each interval are dedicated to pulling all N arms.

The LAST heuristic requires that all constrained pulls must occur at the end of the interval. Unlike the FIRST heuristic, not
all arms will necessarily be pulled in the last N/k timesteps, as some arms will have already satisfied their constraint earlier
in the interval via unconstrained pull(s). These leftover constrained pulls function as unconstrained pulls, per Definition F.1.

The RANDOM heuristic chooses random positions within the interval for constrained pulls to occur. Similarly to the
LAST heuristic, some of the later constrained pulls may become unconstrained pulls if all arms have already satisfied their
constraint earlier in the interval.
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Algorithm 6 Periodicity Constraint-Enforcing Heuristic Based on THRESHOLD WHITTLE

1: procedure SIMULATION(A, T , ν, k)
2: for interval ∈ [0, T ] with step size ν do
3: Cinterval ← ∅ ▷ Cinterval := arm(s) with constraint satisfied during the interval
4:
5: for a ∈ A do
6: a.last observed state← 1
7: a.time since pull← 1

8:
9: for t ∈ T do

10: i← GetInterval(t)
11:
12: if t is a constrained pull ∧ Ci ⊊ A then
13: A′ ← {a|a ∈ A \ Ci} ▷ Consider arms with constraint not yet satisfied in interval
14: else if t is a residual pull ∨ Ci = A then
15: A′ ← A ▷ Consider all arms
16:
17: A′

k ← SelectTopK(A′, k, t) ▷ Select k arms with highest Whittle index
18: Ci ← Ci ∪A′

k

19:
20: for a ∈ A do
21: st+1(a)← UpdateState(a) ▷ Update each arm’s state using belief

return

F.2. Fairness Metric Choices

It is not immediately obvious which evaluation metric(s) best indicate whether we have improved distributive fairness.
While constraint satisfaction itself is a logical candidate, it is Boolean-valued at the arm level, and thus does not reflect
to what extent a policy fairly allocates pulls. Even if we were to report population-level constraint satisfaction (i.e., by
noting the proportion of arms for which a given fairness constraint is satisfied, either over the course of a single simulation,
or in expectation over a set of simulation iterations), this would be tautologically biased in favor of PROBFAIR and the
THRESHOLD WHITTLE-based heuristics, which explicitly encode constraint satisfaction. This observation motivates us to
consider proxy metrics, including the price of fairness (PoF), the Herfindahl–Hirschman Index (HHI), and the earth mover’s
distance (EMD).

Price of Fairness. Consider price of fairness, defined formally as:

POFTW(ALG) :=
ETW[R(·)]− EALG[R(·)]

ETW[R(·)]
(24)

Price of fairness is the relative loss in total expected reward associated with following a distributive fairness-enforcing policy,
as compared to THRESHOLD WHITTLE (Bertsimas et al., 2011). A small loss (∼ 0%) indicates that fairness has a small
impact on total expected reward; conversely, a large loss means total expected reward is sacrificed in order to satisfy the
fairness constraints.

Lemma F.2. Price of fairness is inversely proportional to intervention benefit.

Proof. The statement in Lemma F.2 is equivalent to the statement “Given y, z > 0, there exists α ∈ R such that x−z
y−z = α z−x

z

for all x > 0”. Here x = EALG[R(·)], y = ENoAct[R(·)], and z = ETW[R(·)]. Consider α = −z
y−z . Then α z−x

z = x−z
y−z .

Thus, for any algorithm ALG, POFTW(ALG) ∝ IBNoAct,TW(ALG)−1.

Herfindahl–Hirschman Index (HHI). The Herfindahl–Hirschman Index (HHI) (Rhoades, 1993), is a statistical measure
of concentration useful for measuring the extent to which a small set of arms receive a large proportion of attention due to
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an unequal distribution of scarce pulls (Hirschman, 1980). It is defined as:

HHI(ALG) :=

N∑
i=1

(
1

kT

T∑
t=1

ait

)2

(25)

HHI ranges from 1/N to 1; higher values indicate that pulls are concentrated on a small subset of arms. However, HHI
is an imperfect evaluation metric for addressing our prioritarian concern for arms that would be deprived of algorithmic
attention (i.e., fail to receive any pulls) under THRESHOLD WHITTLE (see Appendix B). Since entries are squared, reducing
u offers a more direct path to lowering HHI than increasing ℓ. However, reducing u will not accomplish our stated goal of
guaranteeing each arm a strictly positive lower bound on the probability that it will receive a pull at any given timestep.

Earth Mover’s Distance The earth mover’s distance (EMD), or Wasserstein metric, is a measure of distance between two
distributions. Specifically, we measure the distance of an algorithm’s distribution of cumulative pull allocations to a fair
reference distribution, ROUND-ROBIN. Though differences in distances are meaningful, EMD does not directly map to our
fairness desiderata. That is, a given level of fairness enforcement (e.g., as characterized by the hyperparameters ℓ or ν) is not
associated with a specific range of EMD values. Hence, our discussion of (normalized) earth mover’s distances in Section E
focuses on relative differences between policies.

F.3. Synthetic Dataset

Conjecture F.3. The set of forward (reverse) threshold-optimal arms are a subset of the set of concave (strictly convex) arms
for the local reward function we consider, r(s) = s.

Mate et al. (2021) provide conditions for threshold optimality. First, the arm must satisfy the structural constraints (Section 2)
and the indexability condition P 0

1,1 − P 0
0,1 + P 1

1,1 − P 1
0,1 ≤ 1. Then, the following inequalities determine forward (reverse)

threshold optimality: {
P 0
1,1 − P 0

0,1 ≥ P 1
1,1 − P 1

0,1 forward threshold-optimal

P 0
1,1 − P 0

0,1 ≤ P 1
1,1 − P 1

0,1 reverse threshold-optimal
(26)

We conjecture that these conditions necessarily imply the conditions for concavity, repeated here for convenience:
P 0
0,1 ≤

(
P 1
0,1 − P 0

0,1

) (
1− P 0

1,1 + P 0
0,1

)
P 0
1,1 − P 1

1,1 − P 0
0,1 + P 1

0,1

concave

P 0
0,1 >

(
P 1
0,1 − P 0

0,1

) (
1− P 0

1,1 + P 0
0,1

)
P 0
1,1 − P 1

1,1 − P 0
0,1 + P 1

0,1

strictly convex

(27)

F.4. CPAP Dataset

Obstructive sleep apnea (OSA) is a common condition that causes interrupted breathing during sleep (Punjabi, 2008);
when used throughout the entirety of sleep, continuous positive airway pressure therapy (CPAP) eliminates nearly 100%
of obstructive apneas for the majority of treated patients (Sawyer et al., 2011). Our CPAP dataset is provided by Kang
et al. (2013; 2016), who model the dynamics and patterns of patient adherence behaviour as a basis for designing effective
and economical interventions. We include this dataset in the supplement. Kang et al. (2013) specifically divide patients
into two clusters using expectation-maximization on CPAP usage patterns. Patients in the first cluster exhibit ‘adherent’
behavior–though they occasionally miss a night, these patients utilize a CPAP machine for more than four hours every night
without assistance. The ‘non-adherent’ patient type we consider in Section E.3 is the second cluster; otherwise, we consider
data that encapsulates all study participants.

Kang et al. (2016) consider many intervention effects; in this paper, we specifically consider αinterv = 1.1 for all patients,
i.e. the impact of supportive interventions (Askland et al., 2020). Additionally, we add random σ = 1 logistic noise to the
transition matrices so that there is some variance in individual arm dynamics. For non-adherent arms, added noise can only
further hinder the probability of adherence. The initial state of each arm (before the simulation starts) is randomly assigned
between s = 0 (did not adhere), and s = 1 (adhered).


