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We study contention resolution in a multiple�access channel such as the Ethernet channel� In

the model that we consider� n users generate messages for the channel according to a probability
distribution� Raghavan and Upfal have given a protocol in which the expected delay �time to
get serviced� of every message is O�log n� when messages are generated according to a Bernoulli
distribution with generation rate up to about ����� Our main results are the following protocols	
�a� one in which the expected average message delay is O��� when messages are generated accord�
ing to a Bernoulli distribution with a generation rate smaller than ��e� and �b� one in which the
expected delay of any message is O��� for an analogous model in which users are synchronized
�i�e�� they agree about the time�� there are potentially an in
nite number of users� and messages
are generated according to a Poisson distribution with generation rate up to ��e� �Each message
constitutes a new user��

To achieve �a�� we 
rst show how to simulate �b� using n synchronized users� and then show
how to build the synchronization into the protocol�

Categories and Subject Descriptors	 F�� �Theory of Computation
	 Analysis of Algorithms
and Problem Complexity� G�� �Mathematics of Computing
	 Probability and Statistics

General Terms	 Theory� Probability

Additional Key Words and Phrases	 Multiple�access channel� Ethernet� contention resolution�
Markov chains

�� INTRODUCTION

A multiple�access channel is a broadcast channel that allows multiple users to com�
municate with each other by sending messages onto the channel� If two or more
users simultaneously send messages� then the messages interfere with each other
�collide�� and the messages are not transmitted successfully� The channel is not
centrally controlled� Instead� the users use a contention�resolution protocol to re�
solve collisions� Although the most familiar multiple�access channels are local�
area networks �such as the Ethernet network� which are implemented using cable�
multiple�access channels are now being implemented using a variety of technologies
including optical communications� Thus� good contention�resolution protocols can
be used for communication between computers on local�area networks� for commu�
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nication in optical networks� and �therefore� for simulating shared�memory parallel
computers �such as PRAMs� on optical networks�

Raghavan and Upfal considered the model in which n users generate messages ac�
cording to a Bernoulli distribution with total generation rate up to about ���	 
Ragha�
van and Upfal ������ �More details about the arrival distribution are given in Sec�
tion ����� They gave a protocol in which the expected delay �time to get serviced�
of every message is O�logn�� Using the same model� we present a protocol in which
the expected average message delay is O��� provided that the total generation rate
is su
ciently small �less than ��e��� We derive our result by considering an anal�
ogous model in which users are synchronized �i�e�� they agree about the time�� the
number of users is potentially in�nite� and messages arrive according to a Poisson
distribution with parameter up to about ��e� Each message constitutes a new user�
We give a protocol in which the expected delay of any message is O���� The syn�
chronizing of our users allows our protocol to use di�erent time steps for di�erent
purposes� Thus� for example� those time steps that are equal to � modulo � could
be used for messages making their �rst attempt� time steps equaling � modulo �
can be used for messages making their second attempt� and so on� The partitioning
of time steps is what makes it possible to have bounded expected delay�

Once we have proved that the expected delay of each message is O���� we show
how to simulate the protocol using n synchronized users� Here each user is respon�
sible for a potentially in�nite number of messages �rather than for a single message�
and the di
cult part is dealing with all of the messages in constant time�

The analysis of our n�user protocol requires the n users to have synchronized
clocks� We next show how to simulate the synchronized clocks �for reasonably long
periods of time� by building synchronization into the protocol� Thus� our �nal pro�
tocol consists of �normal� phases in which the users are synchronized and operating
as described above and �synchronization phases� in which the users are synchro�
nizing� The synchronization phases are robust in the sense that they can handle
pathological situations �such as users starting in the middle of a synchronization
phase�� Thus� we are able to achieve constant expected message delay even for
models in which users are allowed to start and stop �see Section ��� for details��

��� The Multiple�Access Channel Model

Following previous work on multiple�access channels� we work in a time�slotted
model in which time is partitioned into intervals of equal length� called steps� During
each step� the users generate messages according to a probability distribution� For
our model with in�nitely�many users� we assume the probability distribution is
Poisson� while� for our models with �nitely�many users� we assume the probability
distribution is Bernoulli �for each user�� Thus� each user generates at most one
message per step� During each step� each user may attempt to send at most one
message to the channel� If more than one attempt is made during a given time
step� the messages collide and must be retransmitted� If just a single user attempts
to send to the channel� it receives an acknowledgment that the transmission was
successful� Users must queue all unsuccessful messages for retransmission and they

�Note that the delay of a message depends upon both	 �a� randomness in the input �message
arrivals�� and �b� randomness in the algorithm�
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use a contention�resolution protocol to decide when to retransmit� Note that we
do not place any bound on the amount of computation a user may perform at the
beginning of a step� That is� we are counting communication steps� not computation
steps�

In the Synchronized In�nitely�Many Users Model� there is a single parameter ��
The number of messages generated at each step is determined according to a Poisson
distribution with parameter �� Each message is deemed to be a new user� After a
user has sent its message successfully� it leaves the system�

There are two variants of the Finitely�Many Users Model� In both variants� there
are n users� The �rst variant �which we consider in Section �� is the Synchronized
Finitely�Many Users Model� In this model� the n users are synchronized and they all
run for the entire time that the protocol is running� When we consider this model�
we will need to consider two message�arrival distributions� Our main results will
hold for the f�ig��i�n�Bernoulli arrival distribution� which is de�ned as follows�
Each user i is associated with a positive probability �i and it generates a message
independently with probability �i during each time step� Our results hold whenP

i �i is at most � for some � � ��e� The f�ig��i�n�Bernoulli arrival distribution
is a natural message�arrival distribution which has been studied previously and it
will help the reader to keep this distribution in mind� However� in order to make
our proofs go through� we must also consider a more technical generalization of
this distribution� namely a f�ig��i�n�dominated arrival distribution� In such a
distribution� we require that for every user i� every time step t� and every event E
concerning

�the arrival of messages at steps other than t� and�or

�the arrival of messages at users other than i�

the probability� conditioned on event E� that user i generates a message at step t is
at most �i� Note that the f�ig��i�n�Bernoulli arrival distribution is a f�ig��i�n�
dominated arrival distribution� but there are also other� less natural� f�ig��i�n�
dominated arrival distributions�

The second variant of the Finitely�Many Users Model is called the Unsynchro�
nized Finitely�Many Users Model� In this model� the n users are not synchronized
and are allowed to start and stop over time� provided that each user runs for at least
a certain polynomial number of steps every time it starts� The starting and stop�
ping times should not depend upon the progress of the protocol� �The motivation
for allowing users to start and stop is to model machine crashes�� See Section �
for details� We generalize the de�nitions of f�ig��i�n�Bernoulli and f�ig��i�n�
dominated distributions so that they apply to this model by stipulating that no
messages are generated at users which are stopped� As stated above� for our main
results� we will be most interested in the f�ig��i�n�Bernoulli distribution� withP

i �i � ��e� The result of Raghavan and Upfal applies to any f�ig��i�n�Bernoulli
arrivals distribution in which

P
i �i � �� where �� � ���	�

In the Synchronized In�nitely�Many Users Model we will show that the expected
delay of any message is O���� In the Unsynchronized Finitely�Many Users Model
we will show only that the expected average delay of messages is O���� To be
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precise� let Wi be the delay of the ith message� and let

Wavg � lim
m��

�

m

mX
i��

Wi�

�Intuitively� Wavg is the average waiting time of messages in the system�� We will
show that if the message generation rate is su
ciently small �less than ��e�� then
E
Wavg� � O����

The multiple�access channel model that we have described is acknowledgment�
based because the only information that a user receives about the state of the
channel is the history of its own transmission attempts� �In the Unsynchronized
Finitely�Many Users Model� we also assume that the users all know some upper
bound on the number of simultaneous live users�� Other models have been con�
sidered� One popular model is the ternary feedback model in which� at the end
of each time step� each user receives information indicating whether zero� one� or
more than one messages were sent to the channel at that time step� Stable pro�
tocols are known 
Greenberg et al� ����� Vvedenskaya and Pinsker ����� for the
case in which � is su
ciently small �at most 	����� � � ��� However� Tsybakov and
Likhanov 
Tsybakov and Likhanov ����� have shown that� in the in�nitely�many
users model� no protocol achieves a throughput better than 	����� �That is� in the
limit� only a 	���� fraction of the time�steps are used for successful sends�� By con�
trast� Pippenger 
Pippenger ����� has shown that if the exact number of messages
that tried at each time step is known to all users� there is a stable protocol for every
� � �� We believe that the weaker acknowledgment�based model is more realistic
for purposes such as PRAM emulation and optical routing and we follow 
H�astad
et al� ����� MacKenzie et al� ����� Raghavan and Upfal ����� in focusing on this
model henceforth�

In this paper we concentrate on the dynamic contention�resolution problem in
which messages arrive according to a probability distribution� Other work 
MacKen�
zie et al� ����� has focussed on the static scenario in which a given set of users start
with messages to send� Similar static contention�resolution problems arise in opti�
cal routing 
Anderson and Miller ����� Ger�eb�Graus and Tsantilas ����� Goldberg
et al� ����� and in simulating shared memory computers on distributed networks

Dietzfelbinger and Meyer auf der Heide ����� Goldberg et al� ����� MacKenzie
et al� ������

��� Previous work

There has been a tremendous amount of work on protocols for multiple�access
channels� Here we will only discuss theoretical results concerning dynamic protocols
in the acknowledgment�based model that we use� We refer the reader to the papers
cited here and in Section ��� for work on protocols using di�erent assumptions or
models�

The multiple�access channel �rst arose in the context of the ALOHA system�
which is a multi�user communication system based on radio�wave communica�
tion 
Abramson ������ As we noted earlier� it also arises in the context of local�area
networks� For example� the Ethernet protocol 
Metcalfe and Boggs ����� is a pro�
tocol for multiple�access channels� Much research on multiple�access channels was
spurred by ALOHA� especially in the information theory community� see� for ex�
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ample� the special issue of IEEE Trans� Info� Theory on this topic 
IEEE Trans�
on Information Theory ������

We now give an informal description of a common idea that runs through most
known protocols for our problem� this is merely a rough sketch� and there are many
variants� In the In�nitely�Many Users Model� consider a newly�born message P � P
could try using the channel a few times with some fairly high probability� If it is
successful� it leaves the system� if not� then P could guess that its trial probability
was �too high�� and try using the channel with lower and lower probability until it
successfully leaves the system�

One way to formalize this is via backo� protocols� which are parameterized by a
non�decreasing function f � Z� � Z�� where Z� denotes the set of non�negative
integers� In the In�nitely�Many Users Model� a message P that has made i � 	
unsuccessful attempts at the channel� will pick a number r uniformly at random
from f�� �� � � � � f�i�g� and will next attempt using the channel r time steps from
then� If successful� P will leave the system� otherwise it will increment i and repeat
the process� In the Finitely�Many Users Model� each user queues its messages and
conducts such a protocol with the message at the head of its queue� once this
message is successful� the failure count i is reset to 	� If f�i� � �i � ������ or
�i� then such a protocol is naturally termed a polynomial backo� protocol or a
binary exponential backo� protocol� respectively� �The function f � if it exists� must
be chosen judiciously� if it grows too slowly� the messages will tend to try using
the channel too often� thus leading to frequent collisions and hence long message
lifetimes� But if f grows too quickly� the messages will tend to use the channel too
infrequently� and again the throughput rate will su�er as messages are retained in
the system��

For our model of interest� the dynamic setting with acknowledgment�based pro�
tocols� the earliest theoretical results were negative results for the Unsynchronized
In�nitely�Many Users Model� Kelly 
Kelly ����� showed that� for any � � 	� any
backo� protocol with a backo� function f�i� that is smaller than any exponential
function is unstable in the sense that the expected number of successful transmis�
sions to the channel is �nite� Aldous 
Aldous ����� showed� for every � � 	� that
the binary exponential backo� protocol is unstable in the sense that the expected
number of successful transmissions in time steps 
�� t� is o�t� and that the expected
time until the system returns to the empty state is in�nite�

In striking contrast to Kelly s result� the important work of 
H�astad et al� �����
showed� among other things� that in the Unsynchronized Finitely�Many Users
Model� for all f�ig��i�n�Bernoulli distributions with

P
i �i � �� all superlinear

polynomial backo� protocols are stable in the sense that the expected time to re�
turn to the empty state and the expected average message delay are �nite� However�
they also proved that the expected average message delay in such a system is !�n��
Raghavan and Upfal showed that� for any f�ig��i�n�Bernoulli distribution withP

i �i up to about ���	� there is a protocol in which the expected delay of any
message is O�log�n�� 
Raghavan and Upfal ������ It is also shown in 
Raghavan
and Upfal ����� that� for each member P of a large set of protocols that includes
all known backo� protocols� there exists a threshold �P � � such that if � � �P
then E
Wave� � !�n� must hold for P �
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��� Our results

We �rst consider the Synchronized In�nitely�Many Users Model and give a protocol
in which the expected delay of any message is O��� for message generation rates up
to ��e� �Note that this arrival rate threshold of ��e is higher than the threshold of
approximately ���	 allowed in 
Raghavan and Upfal ������ We argue in Section �
that handling arrival rates greater than ��e is a challenging problem�� As far as we
know� our protocol is the �rst acknowledgment�based protocol which is provably
stable in the sense of 
H�astad et al� ������ An interesting point here is that our
results are complementary to those of 
H�astad et al� ������ while the work of 
H�astad
et al� ����� shows that �negative� results for the In�nitely�Many Users Model may
have no bearing on the Finitely�Many Users Model� our results suggest that better
intuition and positive results for the Finitely�Many Users Model may be obtained
via the In�nitely�Many Users Model�

Our in�nite�users protocol is simple� We construct an explicit� easily computable
collection fSi�t � i� t � 	� �� �� � � �g of �nite sets of nonnegative integers Si�t where�
for all i and t� every element of Si�t is smaller than every element of Si���t� A
message born at time t which has made i �unsuccessful� attempts to send to the
channel so far� picks a time r uniformly at random from Si�t� and tries using the
channel at time r� If it succeeds� it leaves the system� Otherwise� it increments
i and repeats this process� We give bounds on the probability that the delay of
the message is high and we use these bounds to show that the expected number
of messages �and hence the expected total storage size� in the system at any given
time is O���� improving on the O�logn� bound of 
Raghavan and Upfal ������

Once we have proved that the expected delay of each message is O���� we show
how to simulate the In�nitely�Many Users Protocol using n synchronized users�
achieving low expected delay for a variety of message�arrival distributions�

Finally� we consider the Unsynchronized Finitely�Many Users Model� Our earlier
analysis required synchronized clocks and we show how to simulate this for reason�
ably long periods of time by building synchronization into our �nal protocol� The
synchronization is complicated by the fact that the model allows users to start and
stop over time�

The structure of our �nal protocol is simple� Most of the time� the users are
simulating our In�nitely�Many Users Protocol from Section �� The users occasion�
ally enter a synchronizing phase to make sure that the clocks are synchronized
�or to resynchronize after a user enters the system�� Note that the synchronizing
phase has some probability of �undetectably� failing� and thus it must be repeated
periodically to guarantee constant expected message delay�

We note here that although we achieve constant expected message delay� the
constant is quite large� and the requirements on starting and stopping times are
quite severe �in an n�user system� users must run without stopping for at least �n��

steps after they start�� Thus our result for the Unsynchronized Finitely�Many Users
Model should be considered a theoretical result� rather than a practical result�

The idea of the �synchronization phase� was inspired by the �reset state� idea of

Raghavan and Upfal ������ The key idea that allowed 
Raghavan and Upfal �����
to achieve low expected delay is to have users detect �bad events� and to enter a
�reset state� when bad events occur� In some sense� the structure of our protocol
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�normal phases� occasionally interrupted by synchronization phases� is similar to
the structure of 
Raghavan and Upfal ������ However� there are major di�erences
between them� One di�erence is that� because lack of synchronization cannot be
reliably detected� synchronizing phases must be entered periodically even when
no particular bad event is observed� Another di�erence is that users in a reset
state are only allowed to send messages with very low probability� and this helps
other users to access the channel� However� our synchronization phase is designed
to accomplish the more di
cult task of synchronizing the users �this is needed
to obtain constant expected delay rather than logarithmic expected delay�� and
accomplishing this task requires many transmissions to the channel� which prevent
access to the channel by the other users� Thus� synchronization phases are costly
in our protocol� A third di�erence is that in 
Raghavan and Upfal ����� a normal
phase always tends towards low expected delay� When bad situations arise� there
is a good probability of them being caught� thus causing a reset state to occur� In
our protocol� a normal phase tends towards even lower �constant� expected delay
if the users are synchronized� However� if they are not synchronized� the normal
phase does not necessarily tend towards low expected delay� and there is no sure
way to detect that the users are unsynchronized� Thus� the bad situation can only
be remedied during the next time the users start a synchronizing phase� which may
be after quite a long time" Fortunately� the e�ects of this type of behavior can be
bounded� so we do achieve constant expected message delay�

The synchronizing phase of our protocol is somewhat complicated� because it
must synchronize the users even though communication between users can only
be performed through acknowledgments �or lack thereof� from the multiple�access
channel� The analysis of our protocol is also complicated due to the very dynamic
nature of the protocol� with possibilities of users missing synchronizing phases�
trying to start a synchronizing phase while one is already in progress� and so on�
Our synchronizing phases are robust� in the sense that they can handle these types
of events� and eventually the system will return to a normal synchronized state�

��� Outline

In Section � we consider the Synchronized In�nitely�Many Users Model� Sub�
section ��� gives notation and preliminaries� Subsection ��� gives our protocol�
Subsections ��� and ��� bound the expected delay of messages� In Section � we
consider the Synchronized Finitely�Many Users Model and show how to simulate
our protocol on this model� achieving bounded expected delay for a large class of
input distributions� In Section � we consider the Unsynchronized Finitely�Many
Users Model� Subsection ��� gives notation and preliminaries� Subsection ��� gives
our protocol� In Section ��� we prove the key features of our protocol� namely� a
message generated at a step in which no users start or stop soon before or after
will have constant expected delay� and a message generated at a step in which a
user starts soon before or after will have an expected delay of O�n��� steps� In
Section ��� we show that our protocol achieves constant expected message delay for
a fairly general multiple access channel model� with users starting and stopping�
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�� THE INFINITELY�MANY USERS PROTOCOL

��� Notation and Preliminaries

For any � � Z�� we denote the set f�� �� � � � � �g by 
��� logarithms are to the base
two� unless speci�ed otherwise� In any time interval of a protocol� we shall say that
a message P succeeded in that interval if it reached the channel successfully during
that interval�

Theorem � presents the Cherno��Hoe�ding bounds 
Cherno� ����� Hoe�ding
������ see� e�g�� Appendix A of 
Alon et al� ����� for details�

Theorem �� Let R be a random variable with E
R� � 	 � 	 such that either�
�a� R is a sum of a �nite number of independent random variables X�� X	� � � �
with each Xi taking values in 
	� ��	 or �b� R is Poisson� Then for any 
 � �	
Pr
R � 	
� � H�	� 
�	 where H�	� 
�

�
� �e����
����

Fact � is easily veri�ed�

Fact �� If 
 � � then H�	� 
� � e����M� � where M� is positive and monotone
decreasing for 
 � ��

We next recall the �independent bounded di�erences tail inequality� of McDi�
armid 
McDiarmid ������ �The inequality is a development of the �Azuma mar�
tingale inequality�� a similar formulation was also derived by Bollob�as 
Bollob�as
�������

Lemma �� ��McDiarmid ����� Lemma ���	
 Let x�� � � � � xn be independent
random variables	 with xk taking values in a set Ak for each k� Suppose that the
�measurable� function f �

Q
Ak � R �the set of reals� satis�es

jf�x�� f�x��j � ck whenever the vectors x and x� di�er only in the kth coordinate�
Let Y be the random variable f�x�� � � � � xn�� Then for any t � 		

Pr
�jY � E
Y �j � t

� � � exp
�� �t	

�Pn
k�� c

	
k

�
�

Remark �� The proof of Lemma � in 
McDiarmid ����� actually shows the stronger
result that maxfPr

�
Y �E
Y � � t�� Pr

�
Y � E
Y � � �t�g � exp

�� �t	
�Pn

k�� c
	
k

�
�

Suppose �at most� s messages are present in a static system� and that we have
s time units within which we would like to send out a �large� number of them to
the channel� with high probability� We give an informal sketch of our ideas� A
natural scheme is for each message independently to attempt using the channel at
a randomly chosen time from 
s�� Since a message is successful if and only if no
other message chose the same time step as it did� the �collision� of messages is a
dominant concern� the number of such colliding messages is studied in the following
lemma�

Lemma �� Suppose at most s balls are thrown uniformly and independently at
random into a set of s bins� Let us say that a ball collides if it is not the only ball in
its bin� Then	 �i� for any given ball B	 Pr
B collides � � �� ��� ��s�

s��
� ����e	

and �ii� if C denotes the total number of balls that collide then	 for any � � 		

Pr
C � s��� ���e�� � ����� � F �s� ��� where F �s� ��
�
� e�s�

���	e���������
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Proof� Part �i� is direct� For part �ii�� number the balls arbitrarily as �� �� � � � �
Let Xi denote the random choice for ball i� and C � f�X�� X	� � � �� be the number
of colliding balls� It is easily seen that� for any placement of the balls and for any
movement of any desired ball �say the ith� from one bin to another� we have ci � ��
in the notation of Lemma �� Invoking Lemma � and the remark following it� we
conclude the proof�

Lemma � suggests an obvious improvement to our �rst scheme if we have many
more slots than messages� Suppose we have s messages in a static system and �
available time slots t� � t	 � � � � � t�� with s � ���e�� � ��� for some � � 	� Let

�i���
�
�

�

e�� � ��

�
�� �

e�� � ��

�i��
for i � �� ���

thus� s � ������ The idea is to have each message try using the channel at some
randomly chosen time from fti � � � i � �����g� The number of remaining messages
is at most s�� � �

e����� � � �	��� with high probability� by Lemma ��ii�� Each

remaining message attempts to use the channel at a randomly chosen time from
fti � ����� � i � ����� � �	���g� the number of messages remaining is at most �����
with high probability �for s large�� The basic �random trial� user of Lemma �
is thus repeated a su
ciently large number of times� The total number of time
slots used is at most

P�
j�� �j��� � �� which was guaranteed to be available� In

fact� we will also need a version of such a scenario where some number z of such
protocols are run independently� as considered by De�nition �� Although we need
a few parameters for this de�nition� the intuition remains simple�

De�nition �� Suppose �� m and z are positive integers� � � 	� and we are given
sets of messages P�� P	� � � � � Pz and sets of time slots T�� T	� � � � � Tz such that� �i�
Pi 	 Pj � � and Ti 	 Tj � � if i 
� j� and �ii� jTij � � for all i� For each i � 
z�� let
Ti � fti�� � ti�	 � � � � � ti��g� De�ne �
 � 	� and �i � �i��� as in ��� for i � ��

Then� RT�fPi � i � 
z�g� fTi � i � 
z�g�m� z� �� denotes the performance of z
independent protocols E�� E	� � � � � Ez ��RT� stands for �repeated trials��� Each Ei

has m iterations� and its jth iteration is as follows� each message in Pi that collided
in all of the �rst �j � �� iterations picks a random time from fti�p � �
 � �� � � � ��
�j�� � p � �
 � �� � � � �� �jg� and attempts using the channel then�

Remark �� Note that the fact that distinct protocols Ei are independent follows
directly from the fact that the sets Ti are pairwise disjoint�

The following useful lemma shows that� for any �xed � � 	� two desirable facts
hold for RT provided jPij � ����� for each i �where � � jTij�� if � and the number
of iterations m are chosen large enough� �a� the probability of any given message
not succeeding at all can be made smaller than any given small positive constant�
and �b� the probability of there remaining any given constant factor of the original
number of messages can be made exponentially small in ��

Lemma �� For any given positive 
	 � and � �� � ����	 there exist �nite positive
m�
� �� ��	 ��
� �� �� and p�
� �� �� such that	 for any m � m�
� �� ��	 any � � ��
� �� ��	
any z � �	 and �i � �i��� de�ned as in �
�	 the following hold if we perform
RT�fPi � i � 
z�g� fTi � i � 
z�g�m� z� ��	 provided jPij � �� for each i�
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�i� For any message P 	 Pr
P did not succeed � � 
�

�ii� Pr
in total at least �z� messages were unsuccessful� � ze���p�����	��

Proof� Let P � Pi� Let nj�i� denote the number of unsuccessful elements
of Pi before the performance of the jth iteration of protocol Ei� in the notation
of De�nition �� Let Aj be the �bad� event that packet P was unsuccessful in the
jth iteration of protocol Ei� and let Bj be the �bad� event that nj�� � �j��� By
assumption� we have n��i� � ��� Thus� for any j � 
m��

Pr
�j� � 
j� � Bj� � �
X
j���j�

Pr
Bj� j B� � B	 � � � � � Bj���� �
X
j���j�

F ��j� � ��� ���

by part �ii� of Lemma ��
We now upper�bound the probability of P failing throughout as follows�

Pr

	

 �
j��m�

Aj

�

 � Pr
�j � 
m� �� � Bj � � Pr

	


�
� �
j��m���

�Aj � Bj�
�
A � Am

�



�
X

j��m���

F ��j � �� � Pr

	


�
� �
j��m���

�Aj � Bj�
�
A � Am

�

 �by ����

�
X

j��m���

F ��j � �� �
Y
j��m�

Pr

	

Aj j

�
j���j���

�Aj� � Bj��
�



�
X

j��m���

F ��j � �� � ��� ��e�m� ���

since for each j� Pr
Aj j
V
j���j����Aj� � Bj��� � �� ��e by part �i� of Lemma ��

Also� ��� yields

Pr
nm���i� � �m��� �
X
j��m�

F ��j � ��� ���

The bounds ��� and ��� imply that if we pick

m�
� �� �� � log�
���� log��� ��e�

and then choose ��
� �� �� large enough� we can ensure part �i�� Also� if we pick
m�
� �� �� � log��e�� � ���� log�� � ���e�� � ���� and then choose ��
� �� �� large
enough and p�
� �� �� appropriately� we also obtain �ii��

A variant� The following small change in RT will arise in Lemmas � and ��
Following the notation of De�nition �� for each i � z� there may be one known
time ti�g�i� � Ti which is �marked out�� messages in Pi cannot attempt using the
channel at time ti�g�i�� To accommodate this� we modify RT slightly� de�ne j � j�i�
to be the unique value such that �
 � �� � � � � � �j�� � g�i� � �
 � �� � � � � � �j �
Then any message in Pi that collided in all of the �rst �j � �� iterations will�
in the jth iteration� attempt using the channel at a time chosen randomly from
fti�p � �p 
� g�i�� and �
 � � � �� �j�� � p � �
 � � � �� �jg� All other iterations are
the same as before for messages in Pi� for each i�
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We now sketch why Lemma � remains true for this variant� if we take m�
� �� ��
and ��
� �� �� slightly larger and reduce p�
� �� �� to a slightly smaller �but still posi�
tive� value� We start by stating the analogue of Lemma �� which applies to the vari�
ant� �The proof that the analogue is correct is the same as the proof of Lemma ���
Note that� for s � �� �� ��� ��s�s � �� ��e � K
�s� for some absolute constant
K
 � 	�

Lemma �� There are positive constantsK
�K��K	 such that the following holds�
For s � �� suppose at most s � � balls are thrown uniformly and independently at
random into s bins� Then �i� for any given ball B� Pr
B collides� � ����� ��s�

s �
� � ��e � K
�s� and �ii� if C denotes the total number of balls that collide then�
for any � � 	�

Pr
C � s��� ���e�� � ����� � G�s� ��� where G�s� ��
�
� K�e

�K�s�
�������� �

Now note that the proof of Lemma � applies to the variant by using Lemma �� in
place of Lemma ��

��� The protocol

We present the ideas parameterized by several constants� Later we will choose
values for the parameters to maximize the throughput� There will be a trade�o�
between the maximum throughput and the expected waiting time for a message�
a di�erent choice of parameters could take this into consideration� The constants
we have chosen guarantee that our protocol is stable in the sense of 
H�astad et al�
����� for � � ��e�

From now on� we assume that � � ��e is given� Let # � � be any �say� the
smallest� positive integer such that

� � ��� ��#��e� ���

We de�ne �
 by

� � �
 �
�

e� � ��#
� ���

Note that �
 � 	 by our assumptions on � and #�
Three important constants� b� r and k� shape the protocol� each of these is a

positive integer that is at least �� At any time during its lifetime in the protocol�
a message is regarded as residing at some node of an in�nite tree T � which is
structured as follows� There are countably in�nitely many leaves ordered left�to�
right� with a leftmost leaf� Each non�leaf node of T has exactly k children� where

k � r � ���

As usual� we visualize all leaves as being at the same �lowest� level� their parents
being at the next higher level� and so on� �The leaves are at level 	�� As will be
seen in P� below� the parameters b and r give� respectively� the �capacity� of each
leaf node and the factor by which this size increases from each level to the next�
Note that the notions of left�to�right ordering and leftmost node are well�de�ned
for every level of the tree� T is not actually constructed� it is just for exposition�
We associate a �nite nonempty set of non�negative integers Trial�v� with each node
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v� De�ne L�v�
�
� minfTrial�v�g� R�v�

�
� maxfTrial�v�g� and the capacity cap�v� of

v� to be jTrial�v�j� A required set of properties of the Trial sets is the following�

P�� If u and v is any pair of distinct nodes of T � then Trial�u� 	 Trial�v� � ��

P�� If u is either a proper descendant of v� or if u and v are at the same level with
u to the left of v� then R�u� � L�v��

P�� The capacity of all nodes at the same level is the same� Let ui be a generic
node at level i� Then� cap�u
� � b and cap�ui� � r � cap�ui��� � bri� for i � ��

Suppose we have such a construction of the Trial sets� �Note �P��� in partic�
ular� the Trial set of a node is not the union of the sets of its children�� Each
message P injected into the system at some time step t
 will initially enter the
leaf node u
�P � where u
�P � is the leftmost leaf such that L�u
�P �� � t
� Then
P will move up the tree if necessary� in the following way� In general� suppose
P enters a node ui�P � at level i� at time ti� we will be guaranteed the invariant
�Q� ui�P � is an ancestor of u
�P �� and ti � L�ui�P ���� P will then run proto�
col RT�Pui�P ��Trial�ui�P ���m� �� �
�� where Pui�P � is the set of messages entering
ui�P � and m is a suitably large integer to be chosen later� If it is successful� P will
�of course� leave the system� otherwise it will enter the parent ui���P � of ui�P �� at
the last time slot �element of Trial�ui�P ��� at which it tried using the channel and
failed� while running RT�Pui�P ��Trial�ui�P ���m� �� �
�� �P knows what this time
slot is� it is the mth step at which it attempted using the channel� during this
performance of RT�� Invariant Q is established by a straightforward induction on
i� using Property P�� Note that the set of messages Pv entering any given node
v perform protocol RT�Pv �Trial�v��m� �� �
�� and� if v is any non�leaf node with
children u�� u	� � � � � uk� then the trials at its k children correspond to RT�fPu� � � � � �
Pukg� fTrial�u��� � � � �Trial�uk�g�m� k� �
�� by Properties P� and P�� Thus� each
node receives all the unsuccessful messages from each of its k children� an unsuc�
cessful message is imagined to enter the parent of a node u� immediately after it
found itself unsuccessful at u� Figure � illustrates some of these ideas� A fragment
of the tree with �unreasonable� parameters k � �� r � �� b � �� is shown� For each
node u� the set Trial�u� is the set of shaded squares in the corresponding rectangle�
In this example� jTrial�u�j � � for all u� Packet P enters the sequence of nodes
u
�P �� u��P �� u	�P �� � � � �

The intuition behind the advantages o�ered by the tree is roughly as follows� Note
that in a multiple�access channel problem� a solution is easy if the arrival rate is
always close to the expectation �e�g�� if we always get at most one message per step�
then the problem is trivial�� The problem is that� with probability �� in�nitely often
there will be �bulk arrivals� �bursts of a large number of input messages within a
short amount of time�� this is a key problem that any protocol must confront� The
tree helps in this by ensuring that such bursty arrivals are spread over a few leaves
of the tree and are also handled independently� since the corresponding Trial sets
are pairwise disjoint� One may expect that� even if several messages enter one child
of a node v� most of the other children of v will be �well�behaved� in not getting
too many input messages� These �good� children of v are likely to successfully
transmit most of their input messages� thus ensuring that� with high probability�
not too many messages enter v� Thus� bursty arrivals are likely to be smoothed
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out� once the corresponding messages enter a node at a suitable level in the tree�
In short� our assumption on time�agreement plays a symmetry�breaking role�

Informally� if the proportion of the total time dedicated to nodes at level 	 is ��s�
where s � �� then the proportion for level i will be approximately �r�k�i�s� �Recall
the parameters r and k� the capacity of each tree node at level i is bri� and k is the
number of children of each non�leaf node�� Since the sum of these proportions for
all i can be at most �� we require s � k��k � r�� we will take

s � k��k � r� � ���

More precisely� the Trial sets are constructed as follows� it will be immediate that
they satisfy Properties P�� P�� and P�� First de�ne

s � #��#� ��� k � �#	� and r � �#� ���

We remark that though we have �xed these constants� we will use the symbols
s� k and r �rather than their numerical values� wherever possible� Also� rather
than present the value of b right away� we will choose b at the end of the proof of
Theorem �� we will require that

b is divisible by #� �� ��	�

For i � 	� let

Fi � fj � 	 � �h � 
#� �� such that j 
 h#i �mod #i���g� ����

Note that Fi is just the set of all j which� when written in base #� have zeroes in
their i least signi�cant digits� and have a non�zero in their �i� ��st least signi�cant
digit� Hence� the sets Fi form a partition of Z�� For any non�negative integer j�
any positive multiple z of #j � and any positive integer x� let $�z� j� x� denote the
xth smallest element of Fj that is at least as large as z� We can check that

$�z� j� x� � z � #j�x �

�
x

#� �

�
� �� if z is a multiple of #j��� ����

Suppose z is not a multiple of #j��� let z � z�#j be the smallest multiple of #j��

that is greater than z� If x � #� then $�z� j� x� � $�z � z�#j � j� x� z��� which� by
����� is at most the right�hand�side of ����� Thus�

$�z� j� x� � z � #j�x �

�
x

#� �

�
� �� if x � #� ����

Let vi be a generic node at level i� if it is not the leftmost node in its level� let
ui denote the node at level i that is immediately to the left of vi� We will ensure
that all elements of Trial�vi� lie in Fi� �For any large enough interval I in Z�� the
fraction of I lying in Fi is roughly �# � ���#i�� � �r�k�i�s� this was what we
meant informally above� regarding the proportion of time assigned to level i of the
tree being �r�k�i�s��

We now de�ne Trial�vi� by induction on i and from left�to�right within the same
level� as follows� If i � 	� then if v
 is the leftmost leaf� we set Trial�v
� to be the
smallest cap�v
� elements of F
� else we set Trial�v
� to be the cap�v
� smallest
elements of F
 larger than R�u
�� If i � �� let w be the rightmost child of vi� If
vi is the leftmost node at level i� we let Trial�vi� be the cap�vi� smallest elements
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Table �� Main parameters
Parameter�s� Brief explanation

� � ��e Message arrival rate

� � � Positive integer such that � � �� � �����e

�� � � � � �� � �e�� ������

r � ��� b Capacity of nodes at level i is bri� b is divisible by �� �

k � ��� Number of children of each non�leaf node

s Equals k��k � r� � ����� ��

a � e�� � ���� d � � Constants used in analysis

of Fi that are larger than R�w�� else de�ne Trial�vi� to be the cap�vi� smallest
elements of Fi that are larger than maxfR�ui�� R�w�g� In this case� we can show
that R�w� � R�ui�� as follows� Suppose for a contradiction that R�w� � R�ui��
let vi be the leftmost node at its level with this property� Thus� letting w� be the
rightmost child of ui� Trial�ui� is the set of bri smallest elements of Fi larger than
R�w��� So� de�ning z to be the smallest multiple of #i that is larger than R�w���
we have R�ui� � $�z� i� bri�� hence�

R�ui� � z � #i�bri �

�
bri

#� �

�
� ��� ����

Next� the number of elements of Fi�� lying in the interval �R�w��� z� is at most
#� �� since vi has k children� each of capacity bri��� we see that

R�w� � $�z� i� �� kbri�� � �#� ���

� z � #i���kbri�� � �#� �� �

�
kbri�� � �#� ��

#� �

�
� ��� ����

by ����� So� to prove that R�w� � R�ui�� it su
ces to show that the l�h�s� of ���� is
at most the r�h�s� of ����� which reduces to showing that d�kbri�� � ����#� ��e �
# � dbri��#� ��e� This inequality follows from ��� and ��	��

Since z � R�w�� � #i and b is divisible by # � �� ���� shows that R�ui� �
R�w�� � b#iri �#��#� ��� which equals R�w�� � sbki� Thus� for all i � ��

R�vi� � R�w� � sbki� ����

Before proceeding to analyze the protocol� we remind the reader that at any time
step at most one node of the tree is active� some of the messages residing at this
node at this time are attempting to transmit at this time�

��� Waiting times of messages

Our main random variable of interest is the time that a generic message P will
spend in the system� from its arrival� Let

a � e�� � �
� ����

and d be a constant greater than ��
The main parameters presented so far can be found in Table ��

De�nition �� For any node v � T � the random variable load�v�� the load of v� is
de�ned to be the number of messages that enter v� For any positive integer t� node
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v at level i is de�ned to be t�bad if and only if load�v� � bridt���a� Node v is said
to be t�loaded if it is t�bad but not �t � ���bad� It is called bad if it is ��bad� and
good otherwise�

It is not hard to verify that� for any given t � �� the probability of being t�bad
is the same for any nodes at the same level in T � This is because the Trial sets
of di�erent nodes are disjoint� the message arrival distributions at di�erent leaves
are i�i�d�� and since messages move �if at all� only from tree nodes to their parent
nodes� This brings us to the next de�nitions�

De�nition �� For any �generic� node ui at level i in T and any positive integer t�
pi�t� denotes the probability that ui is t�bad�

De�nition �� �i� The failure probability q is the maximum probability that a
message entering a good node will not succeed during the functioning of that node�
�ii� For any message P � let u
�P �� u��P �� u	�P �� � � � be the nodes of T that ui is
allowed to pass through� where the level of ui�P � is i� Let Ei�P � be the event that
P enters ui�P ��

If a node u at level i is good then� in the notation of Lemma �� its load is at most
����
�� where � � cap�u�� hence� Lemma ��i� shows that� for any �xed q
 � 	�
q � q
 can be achieved by making b and the number of iterations m large enough�

Note that the distribution of Ei�P � is independent of its argument� This is be�
cause the arrival distributions at di�erent leaves are i�i�d� and because each non�leaf
node treats the messages arriving from its di�erent children symmetrically� �Thus�
in particular� Ei�P � is independent of the leaf node at which P arrived�� Hence�
for any i � 	� we may de�ne fi

�
� Pr
Ei�P �� for a generic message P � Suppose P

was unsuccessful at nodes u
�P �� u��P �� � � � � ui�P �� Let A�i� denote the maximum
total amount of time P could have spent in these �i � �� nodes� We �rst bound
A�	�� Since b is a multiple of #� �� we can check that the xth leaf of the tree from
the left has its L��� value equaling �x� �� � �b��#� ��� �# � �� and its R��� value
equaling x � �b��# � ��� � # � �� Thus� if the arrival time of P was an integer of
the form z# � z�� where 	 � z� � #� �� then P will enter a leaf whose R��� value
is� �i� �z � �� � �b��# � ��� � # � � if z� � 	� and �ii� �z � �� � �b��# � ��� � # � �
if z� 
� 	� Thus� the maximum time spent by P before leaving the leaf level� is at
most �b#��#� �� � �sb� So� A�	� � �sb� For i � �� A�i� � kA�i� �� � �k�r�isbri�
using ����� Hence�

A�i� � �i � ��sbki for all i� ����

The simple� but crucial� Lemma � is about the distribution of an important
random variable W �P �� the time that P spends in the system�

Lemma �� �i� For any message P 	 Pr
W �P � � A�i�� � fi�� for all i � 		 and
E
W �P �� �P�

j�
 A�j�fj � �ii� For all i � �	 fi � qfi�� � pi������

Proof� Part �i� is immediate� using the fact that� for a non�negative integer�
valued random variable Z� E
Z� �

P�
i�� Pr
Z � i�� For part �ii�� note that

fi � fi�� Pr
Ei j Ei���� ����

Letting ci � Pr
ui���P � was good j Ei����

Pr
Ei j Ei��� � ci Pr
Ei j ui���P � was good � Ei��� �
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��� ci� Pr
Ei j ui���P � was bad � Ei���

� Pr
Ei j ui���P � was good � Ei��� �

Pr
ui���P � was bad j Ei���

� q � Pr
ui���P � was bad j Ei���

� q � Pr
ui���P � was bad��Pr
Ei����

Thus� by ����� fi � fi��q � Pr
ui���P � was bad� � qfi�� � pi������

��� The improbability of high nodes being heavily loaded

As is apparent from Lemma �� our main interest is in getting a good upper bound
on pi���� However� to do this we will also need some information about pi�t� for
t � �� and hence De�nition �� The basic intuition is that if a node is good then�
with high probability� it will successfully schedule �most� of its messages� this is
formalized by Lemma ��ii�� In fact� Lemma ��ii� shows that� for any node u in
the tree� the good children of u will� with high probability� pass on a total of �not
many� messages to u� since the functioning of each of these children is independent
of the other children�

To estimate pi�t�� we �rst handle the easy case of i � 	� Recall that if X� and
X	 are independent Poisson random variables with means �� and �	 respectively�
then X� � X	 is Poisson with mean �� � �	� Thus� u
 being t�bad is a simple
large�deviation event for a Poisson random variable with mean sb�� If� for every
t � �� we de�ne 
t

�
� dt����sa�� and ensure that 
t � � by guaranteeing

sa� � �� ��	�

then Theorem � shows that

p
�t� � Pr
u
 is t�bad� � H�sb�� 
t� � ����

Our choices for s and a validate ��	�� see ���� ����� ��� and ����
We now consider how a generic node ui at level i � � could have become t�bad�

for any given t� The resulting recurrence yields a proof of an upper bound for pi�t�
by induction on i� The two cases t � � and t � � are covered by Lemmas � and �
respectively� We require

d	 � k � � � dr � ����

this is satis�ed by de�ning

d � �#�

Lemma �� For i � � and t � �	 if a node ui at level i in T is t�bad	 then at least
one of the following two conditions holds for ui�s set of children� �i� at least one
child is �t � ���bad	 or �ii� at least two children are �t� ���bad� Thus	

pi�t� � kpi���t � �� �

�
k

�

�
�pi���t� ���	 �

Proof� Suppose that ui is t�bad but that neither �i� nor �ii� holds� Then ui
has at most one child v that is either t�loaded or �t � ���loaded� and none of
the other children of ui is �t � ���bad� Node v can contribute a load of at most
bri��dt�a messages to ui� the other children contribute a total load of at most
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�k � ��bri��dt�	�a� Thus the children of ui contribute a total load of at most
bri��dt�	�d	 � k � ���a� which contradicts the fact that ui is t�bad� since ����
holds�

In the case t � �� a key role is played by the intuition that the good children of
ui can be expected to transmit much of their load successfully� We now �x q and
m� and place a lower bound on our choice of b� Note that ���� implies r � d� De�ne
��� �	 � 	 by

�� � minf r � d

a�k � ��
�

�

�
g and �	 � minf r

ak
�

�

�
g �

For q� we treat it as a parameter that satis�es

	 � q � ��k� ����

�Lemmas � and � will require that q be su
ciently small�� In the notation of
Lemma �� we de�ne

m � maxfm�q� �
� ����m�q� �
� �	�g ����

and require

b � maxf��q� �
� ���� ��q� �
� �	�g� ����

Lemma �� For any i � �	 pi��� is at most

kpi����� �

�
k

�

�
�pi������

	
� k�k � ��pi�����e�br

i��p�q����	�� � ke�br
i��p�q����	���

Proof� Suppose that ui is ��bad� There are two possibilities� that at least one
child of ui is ��bad or that at least two children are ��bad� If neither of these
conditions holds� then either �A� ui has exactly one child which is ��loaded with no
other child being bad� or �B� all children are good�

In case �A�� the k � � good children must contribute a total of at least

cap�ui�

a
� cap�ui���d

a
�

bri���r � d�

a
� bri���k � ����

messages to ui� In the notation of Lemma �� z � k��� � � bri�� and � � ��� Since
there are k choices for the ��loaded child� Lemma ��ii� shows that the probability
of occurrence of case �A� is at most

k�k � ��pi�����e�br
i��p�q����	���

In case �B�� the k good children contribute at least cap�ui��a � bri�a� By a similar
argument� the probability of occurrence of case �B� is at most

ke�br
i��p�q����	���

The inequality in the lemma follows�

Next is a key theorem that proves an upper bound for pi�t�� by induction on i�
We assume that our constants satisfy the conditions ��� �� ��� �	� ��� ��� ��� ����
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Theorem �� For any �xed � � ��e and any q � �	� ��k�	 there is a su�ciently
large value of b such that the following holds� There are positive constants �� � and
�	 with �� � � �	 such that

�i � 	 �t � �� pi�t� � e�
�
i�t��

�

Before proving Theorem �� let us see why this shows the required property
that E
W �P ��� the expected waiting time of a generic message P � is �nite� Theo�
rem � shows that� for large i� pi����� is negligible compared to qi and hence� by
Lemma ��ii�� fi � O�qi�� Hence� Lemma ��i� combined with the bound ���� shows
that� for any choice q � ��k� E
W �P �� is �nite �and good upper tail bounds can
be proven for the distribution of W �P ��� Thus ���� guarantees the �niteness of
E
W �P ���

Proof� �Of Theorem ��� This is by induction on i� If i � 	� we use inequal�
ity ���� and require that

H�sb�� 
t� � e�
�
t��

� ����

From ��	�� we see that 
t � �� thus by Fact �� there is some M � M�t such that
H�sb�� 
t� � e��tsb
�M � Therefore to satisfy inequality ����� it su
ces to ensure
that dt��b��aM� � ��t��� We will do this by choosing our constants so as to satisfy

d � � and b � �aM � ����

We will choose � and � to be fairly close to �but larger than� �� and so the �rst
inequality will be satis�ed� Although � will have to be quite large� we are free to
choose b su
ciently large to satisfy the second inequality�

We proceed to the induction for i � �� We �rst handle the case t � �� and then
the case t � ��
Case I� t � �� By Lemma �� it su
ces to show that

ke�
�
i���t �

�
k

�

�
e�	
�

i���t�� � e�
�
i�t��

�

It is straightforward to verify that this holds for some su
ciently large �� provided

� � � and � � �� � ����

We can pick � � � � 
 and � � � � �
 for some small positive 
� 
 � �� to satisfy
�����
Case II� t � �� The �rst term in the inequality for pi��� given by Lemma � is the
same as for Case I with t � �� thus� as above� an appropriate choice of constants
will make it much smaller than e�
�

i

� Similarly� the second term in the inequality
for pi��� can be handled by assuming that � � � and that � is large enough� The
�nal two terms given by Lemma � sum to

k�k � ��pi�����e�br
i��p�q����	�� � ke�br

i��p�q����	��� ����

We wish to make each summand in ���� at most� say� e�
�
i

��� We just need to
ensure that

bri��p�q� �
� ��� � ��i � ln��k	� and bri��p�q� �
� �	� � ��i � ln��k� � ��	�



Contention Resolution with Constant Expected Delay � �


Since r � �� both of these are true for su
ciently large i� To satisfy these in�
equalities for small i� we choose b a su
ciently large multiple of # � � to satisfy
��	��������	�� completing the proof of Theorem ��

It is now easily veri�ed that conditions ������	���������� are all satis�ed� Thus�
we have presented stable protocols for � � ��e�

Theorem �� Fix any � � ��e� In the Synchronized In�nitely�Many Users
Model	 our protocol guarantees an expected waiting time of O��� for every mes�
sage�

We also get a tail bound as a corollary of Theorem ��

Corollary �� Let �� be a su�ciently large constant� Fix any � � ��e and
c� � �� We can then design our protocol such that	 for any message P 	 in addition
to having E
W �P �� � O���	 we also have for all � � �� that Pr
W �P � � �� � ��c��

Proof� Using ����� we see that if W �P � � � then P enters j levels wherePj
i���i � ��ki � ����sb�� so j�j � ��kj � ����sb�� This implies that

j � � logk
� �

�sb

�� � logk logk
� �

�sb

��
�

As we mentioned in the paragraph preceding the proof of Theorem �� fj � O�qj��
Thus�

Pr
W �P � � �� � O�qlogk����	sb���	 logk logk����	sb����

The result follows by designing the protocol with q � k�c�c� for a su
ciently large
positive constant c	�

Remark �� In practice� the goal is often simply to ensure that the probability that
any given packet is delivered to the channel is at least � � 
 for some constant 
�
By the corollary� we can achieve this goal by truncating each packet after ���
���c�

steps� or equivalently by truncating the in�nite tree after O�logk���
�� levels�

�� THE SYNCHRONIZED FINITELY�MANY USERS PROTOCOL

We transfer to the Synchronized Finitely�Many Users Model �see Section ����� Here�
we shall let � �

P
i �i be any constant smaller than ��e� and show how to simulate

the In�nitely�Many Users Protocol on n synchronized users� Suppose for the mo�
ment that each message can do its own processing independently �this assumption
will be removed shortly�� With this assumption� the di�erence between the synchro�
nized in�nitely�many users model which we have been considering and the synchro�
nized �nitely�many users model is that� instead of being a Poisson distribution with
parameter �� the input arrival distribution can be any f�ig��i�n�dominated distri�
bution �see Section ����� Although the arrivals may not be independent� the strong
condition in the de�nition of �f�ig��i�n�dominated distribution� allows us to ap�
ply Theorem ��a� to the message arrivals �using stochastic domination�� Therefore�
���� still holds in the synchronized �nitely�many users model�

We need to avoid the assumption that each message is processed separately� The
di
culty is that each user must be responsible for a potentially unbounded number
of messages and must manage them in constant time at each step� We �rst sketch
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how to manage the messages and then give further details� Each user f maintains�
for each i � 	� a linked list L�f� i� of the messages belonging to it that are at level i
of the tree� If it is the turn of messages at level i of the tree to try in the current time
step t� then each user f will compute the probability pf�t of exactly one message
in L�f� i� attempting to use the channel in our Synchronized In�nitely�Many Users
Protocol� Then� each f will independently send the message at the head of L�f� i�
to the channel with probability pf�t� �The reader may have noticed that� in order
to simulate faithfully our in�nitely�many users protocol� f should also calculate the
probability rf�t that more than one message in L�f� i� attempts to use the channel�
It should send a dummy message to the channel with probability rf�t� This solution
works� but we will show at the end of this section that dummy messages are not
necessary��

We now present the details of this message�management scheme� Let all the
parameters such as k�#� etc�� be as de�ned in Section �� For each t � Z�� de�ne
active�t� to be the index of the least signi�cant digit of t that is nonzero� if t is
written in base #� Recall from ���� that if the current time is t then the messages
in L�fj � active�t��� taken over all users fj � are precisely those that may attempt
using the channel at the current step� Thus� if active�t� � i� each user f �rst needs
access to the head�pointer of L�f� i� in O��� time� For this� it su
ces if f counts
time in base # and has an in�nite array whose ith element is the head�pointer of
L�f� i�� However� such static in�nite storage is not required� f can count time in
base # using a linked list� where the ith element of the list additionally contains
the head�pointer of L�f� i�� This list can be augmented with pointers to jump over
substrings �of the base�# representation of t� that are composed of only # � ��
so that f can maintain t and active�t� in O��� time� We leave the tedious but
straightforward details of this to the reader� �Alternatively� as mentioned in the
remark following Corollary �� we may simply truncate the tree to a certain �nite
height� if we only desire that each message reaches the channel with su
ciently
high probability� Then� of course� f may simply have a �nite array that contains
head�pointers to the L�f� i��� Thus� we assume that f can access the head�pointer
to L�f� active�t�� in O��� time�

Each user f also maintains two other types of lists� List L��f� t� contains messages
that arrive at f at time t� and which are waiting to enter the next leaf of the tree�
Each user f will also maintain lists %L�f� i� j�� for each positive integer i and for
j � �� �� � � � � k� the use of these lists is as follows� Suppose v is the node of level
i that has an L��� value greater than the current time by the smallest positive
amount� �That is� v is the node of level i that will become active soonest in
the future�� Then� %L�f� i� j� contains messages of f that were unsuccessful at the
jth child of v� In slight variance with the In�nitely�Many Users Protocol� when
a message is unsuccessful at a node u at some level i� it does not immediately
move to its parent� instead� when we reach time R�u�� the list L�f� i� is renamed
%L�f� i � �� j�� where j is such that u is the jth child of its parent�

Each list L�L�� %L will also have its cardinality at its head� In addition� it will have
a pointer to its last element� so that concatenating two such lists can be done in
O��� time� The lists L� and L will also have the important property that the rank
of any message P in the list order is uniformly distributed� For each f � we maintain
these properties as follows� To establish this property for L��f� t�� we shall require
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the following assumption on the message arrivals� in each step t� the messages
arriving at user f arrive in random order �among each other� and� when arriving�
they increment jL��f� t�j and get appended to the head of L��f� t�� Next� we show
the �random ordering� property for the lists L�f� i� by induction on i� For the base
case i � 	� the discussion preceding ���� shows that any message waits at most
the constant amount b� � b#��# � �� of time before entering a leaf� Thus� when
the current time equals L�u� for some leaf u� f must de�ne L�f� 	� to be the union
of at most b� lists L��f� t�� The user f can just generate a random permutation of

b�� and concatenate the lists L��f� t� in the permuted order� since each L��f� t� is
randomly ordered� so is the computed L�f� 	�� Similarly� suppose by induction that
the lists L�f� i� are randomly ordered for some i� this implies that so are the lists
%L�f� i � �� j�� for all f and j� When the current time equals L�u� for some node u
at level i� �� f can just generate a random permutation of 
k� and concatenate the
lists %L�f� i � �� j� �j � �� �� � � � � k� in the permuted order to produce L�f� i � ���

We need to show the probability computations to be done by f � Recall that the
set of messages Pv entering a node v perform protocol RT�Pv �Trial�v��m� �� �
��
Suppose f is managing its messages at node v in level i of the tree at time step t�
Let Trial�v� � ft� � t	 � � � � � t�g� Recall from De�nition � that the messages in
Pv proceed in m iterations� Suppose f is conducting the jth iteration at time t�
thus�

t � S
�
� ftp � �
 � �� � � � �� �j�� � p � �
 � �� � � � �� �jg�

User f needs to compute the probability pf�t of exactly one message in L�f� i�
attempting to use the channel� We show how to do this� for each tp such that

�
Pj��

h�
 �h� � p � �
Pj

h�
 �h�� Recall that f knows the value of N
�
� jL�f� i�j � jPv j�

this is present at the head of L�f� i�� At time step tq where q � � � b�Pj��
h�
 �h�c�

f generates a random integer r� � f	g � 
N �� where

Pr
r� � j� �

�
N

j

��
�

jSj
�j �

�� �

jSj
�N�j

�

Note that r� has the same distribution as the number of messages in L�f� i� that
would have attempted using the channel at step tq in our Synchronized In�nitely�
Many Users Protocol� At time step tq� if r� � �� f will send the message at the
head of L�f� i� to the channel� Similarly� if t � tq��� f will generate a random
integer r	 � f	g � 
N � r�� such that

Pr
r	 � j� �

�
N � r�

j

��
�

jSj � �

�j �
�� �

jSj � �

�N�r��j
�

Once again� r	 has the same distribution as the number of messages in L�f� i� that
would have attempted using the channel at step tq��� as before� f will send the
message at the head of L�f� i� to the channel at time step tq�� if and only if r	 � ��
It is immediate that� at each step� f correctly computes the probability of a �unique
send��

At this point� it is clear that the in�nitely�many users protocol can be simulated
by �nitely�many users provided that the users send �dummy messages� as explained
previously� We now argue that sending dummy messages is unnecessary because the
protocol is �deletion resilient� in the sense that if an adversary deletes a message
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�for example� one that would have collided with a dummy�� the expected lifetime
of other messages can only shorten� Formally� we must show that the simulated
system without dummy messages evolves with no worse probabilities than in the
in�nite case� We observe from our proof �for the Synchronized In�nitely�Many
Users Model� that it su
ces to show the following analogue of Lemma �� We need
to show that if the number of available time slots �elements of the set S� is at least
as high as

P
j jL�fj � i�j �the sum taken over all users fj�� then� �a� for any f and

any message P � L�f� i�� the probability that P succeeds in the jSj time slots above
is greater than ��e� and �b� the total number of colliding messages C satis�es the
tail bound in part �ii� of Lemma ��

It is not hard to see that the probability of a collision in any one of the time
steps above is at most ��e� Thus �b� follows by the same proof as for part �ii�
of Lemma �� So� let us show �a� now� Let jL�f� i�j � N � and let M � 
N� jSj�
denote

P
j jL�fj � i�j� In any given step among the jSj steps� the probability that f

successfully transmitted a message� is at least

N

jSj
�

�� �

jSj
�M��

� N

jSj
�

�� �

jSj
�jSj��

�
N

ejSj �

Thus� by linearity of expectation� the expected number of successful transmissions
by f is more than N�e� Once again by linearity of expectation� this equals the sum
of the success probabilities of the messages in L�f� i�� each of which is the same by
symmetry� Thus� for any given message P � L�f� i�� P succeeds with probability
more than ��e�

This completes the proof for the Synchronized Finitely�Many Users Model�

��� A Variant

We will take n to be su
ciently large �if n is smaller than a certain constant� we can
use the protocol of 
H�astad et al� ������ which can handle any arrival rate � � ���
We will assume without loss of generality that n is even� if n is odd� just add a
dummy user which gets no messages and does nothing�

Let P be a protocol �with constants to be determined in order to meet our
requirements below� running on n completely synchronized users which simulates
the Synchronized In�nitely�Many Users Protocol from Section � for n	 � � steps
then skips a step and continues� this �skip� happens at every step of the form
jn	 � �� where j � Z�� Inputs might� however� arrive during the skipped step� To
simplify P � note from ��� that we can take # to be even� Now ���� shows that� for
all i � �� all elements of Fi will be even� thus� since all skipped steps �which are
of the form jn	 � �� are odd since n is even� we see that no skipped step occurs in
the Trial set of nodes at level i � �� Thus� the skipped steps occur only during the
time slots assigned to the nodes at the leaf level� Since the Trial sets of the leaves
have cardinality b and as we may take n �

p
b� we have that such �marked out�

�skipped� steps occur at most once in the Trial set of any leaf� Thus� as long as b
is su
ciently large �and n is chosen larger�� the �variant� discussed after Lemma �
shows that P is essentially the same as the Synchronized In�nitely�Many Users
Protocol as far as our analysis is concerned�

We prove the following two useful lemmas about P � In both lemmas� P is run
for at most n

 steps�
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Lemma 	� Suppose � � ��e and that P is run with a f�ig��i�n�dominated
arrival distribution for � � n

 steps� Then the expected delay of any message that
arrives is O���� Furthermore	 the probability that any of the messages that arrive
during the � steps has delay more than n��� is at most n��
�

Proof� As discussed above� we can handle P just as if it were the Synchronized
In�nitely�Many Users Protocol� Then by Corollary �� we can choose the constants
for the protocol so that the probability that any given message has a delay exceeding
n��� is at most ���n��

c� �when n is large� for any desired c�� There are at most n�
messages generated� so the probability that there exists such a message is at most
n����n��

c� � which is su
ciently small if c� is su
ciently large �say� at least ����

Lemma 
� Suppose � � ��e and that P is run with a f�ig��i�n�dominated
arrival distribution for � � n

 steps� Suppose further that a message arrives at
user p at step t� � � � Then the expected delay of any message that arrives is O����
Furthermore	 the probability that any message has delay more than n��� is at most
n��
�

Proof� The only place where the proof in Section � uses the arrival distribution
is in bound ����� We argued at the beginning of this section that ���� still holds
for any f�ig��i�n�dominated arrival distribution� We now show that a similar
bound holds even if the arrival distribution is conditioned on a message arriving
at user p at step t� � � � Recall that a leaf u
 is t�bad if and only if its load
�the number of arrivals in the relevant period of sb steps� exceeds bdt���a� The
number of arrivals in sb steps is at most � plus the sum of nsb random variables
Xi�j where� for � � i � n and � � j � sb� Xi�j is a random variable that has
value � with probability at most �i �even conditioned on other arrivals� and value 	
otherwise� Using stochastic domination� we can apply Theorem �� We let 
�t �
�bdt�� � a���asb��� Since sa� � � ��	�� b can be chosen su
ciently large to make

�t � �� By Theorem �� the probability that the sum of the random variables exceeds
��dbt����a��� � �sb��
�t is at most H�sb�� 
�t�� Thus� in place of ����� we now have
�Pr
u
 is t�bad� � H�sb�� 
�t��� A small further change to be made to our proof for
the Synchronized In�nitely�Many Users Protocol is� in the sentence following �����
to de�ne M � M��

t
� The whole proof goes through now�

�� THE UNSYNCHRONIZED FINITELY�MANY USERS PROTOCOL

��� Notation and Preliminaries

In our basic model� we have n users which can start and stop at arbitrary steps�
with the constraint that each time a user starts� it runs for at least a certain
polynomial number of steps� �For the constant expected message delay results in
Section ���� we require this polynomial to be �n��� however� n�� is su
cient for all
proofs in Section ���� No attempt has been made to optimize these polynomials��
The starting and stopping times are not allowed to depend upon the progress of
the protocol� Thus� these starting and stopping times can be viewed as being
determined in advance of the running of the protocol�	 Recall that n is taken to

�Speci
cally� this models �normal� faults� and disallows �adversarial� faults� in which starting
and stopping times are adaptively chosen �depending on the history of the system� in order to
cause delays�
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be su
ciently large and that � �
P

i �i � ��e�

��� The Protocol

The users typically simulate protocol P from Section �� However� the starting and
stopping of users causes the system to become unsynchronized� so the protocol
synchronizes itself from time to time�

Here is an informal description of our protocol� In the normal state a user main�
tains a bu�er B of size n� and an unbounded queue Q� each containing messages
to be sent� When a message is generated it is put into B� For each message m � B
the user maintains a variable trial�m� which contains the next step on which the
user will attempt to send m� The step trial�m� will be chosen using protocol P �
When P is �skipping a step� our protocol will take the opportunity to try to send
some messages from Q� at such steps� with probability ����n�� the user attempts
to send the �rst message in Q� Each user also maintains a list L which keeps track
of the results �either �failure� or �success�� of the �up to n	� most recent message
sending attempts from Q�

A user goes into a synchronizing state if any message has remained in the bu�er
for n� steps or if L is full �contains n	 results� and only contains failures� It also
goes into a synchronizing state from time to time even when these events do not
occur� �It synchronizes if it has been simulating P for at least n

 steps� and it
synchronizes with probability n��
 on any given step�� If the user does go into a
synchronizing state� it transfers all messages from B to the end of Q�

In the synchronizing state� a user could be in one of many possible stages� and its
actions depend on the stage that it is in� It will always put any generated messages
into the queue� Also� it sends only dummy messages in the synchronizing state�
�The dummy messages are used for synchronizing� Real messages that arrive during
the synchronization phase must wait until the next normal phase to be sent��� The
sequence of synchronization stages which a user goes through is as follows�
De�nition� Let W � ��n
�

JAMMING The user starting the synchronization jams the channel by sending
messages at every step� In this way� it signals other users to start synchronizing
also�

FINDING LEADER Each user sends to the channel with probability ��n on
each step� The �rst user to succeed is the leader�

ESTABLISHING LEADER In this stage� a user has decided it is the leader�
and it jams the channel so no other user will decide to be the leader�

SETTING CLOCK In this stage� a user has established itself as the leader�
and it jams the channel once every �W steps� giving other users a chance to
synchronize with it�

COPYING CLOCK In this stage� a user has decided it is not the leader� and
it attempts to copy the leader s clock by polling the channel repeatedly to �nd
the synchronization signal �namely� the jamming of the channel every �W steps

�Of course� there is no harm in using real messages for synchronizing� but this does not improve
the provable results� so we prefer to use dummy messages for synchronizing in order to keep the
exposition clear�
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by the leader�� Speci�cally� it sends to the channel with probability ����n� on
each step and� if it succeeds� it knows that the current step �mod �W � does not
correspond to the leader s clock� After many attempts� it should be left with
only one step �mod �W � that could correspond to the leader s clock� At the
end of this stage� it synchronizes its clock to the leader s clock�

WAITING This stage is used by a user after COPYING CLOCK in order to
synchronize with the leader s clock� The user idles during this stage�

POLLING A user in this stage is simply �biding its time� until it switches to a
normal stage� While doing so� it attempts to send to the channel occasionally
�with probability ����n� on each step� in order to detect new users which might
be joining the system and re�starting a synchronization phase� If new users are
detected� the user re�starts the synchronization phase� Otherwise� it begins the
normal phase of the protocol�

The length of each of these stages is very important in terms of achieving both a
high probability of synchronization and a high level of robustness� The high proba�
bility of synchronization is achieved by making the �preliminary� stages �i�e�� JAM�
MING� FINDING LEADER� and ESTABLISHING LEADER� of length &�W � �this
is long enough to guarantee all users in a normal state will detect a synchronization��
and the �synchronizing� stages �i�e�� SETTING CLOCK� COPYING CLOCK� and
WAITING� of length &�Wn	� �this gives users enough time to determine the
leader s clock modulo �W with high probability�� The high level of robustness
is achieved by the following properties�

��� the lengths of the �preliminary� and �synchronizing� stages are as above�

��� only the preliminary stages can cause the channel to be jammed�

��� the �synchronizing� stages cannot detect a new synchronization occurring�

��� the POLLING stage is of length &�Wn�� �longer than all of the other stages
combined�� and

��� the POLLING stage is able to detect new synchronizations�

The di�ering lengths of time for the �preliminary�� �synchronizing� and POLLING
stages� and the fact that only the POLLING stage could cause another synchro�
nization to occur� guarantee that bad events as described at the end of Section ���
cannot occur� even when up to n users are starting at di�erent times �and stopping
periodically��

Whenever a user joins the multiple�access channel� it starts the protocol with
state � SYNCHRONIZING� sync stage � JAMMING� clock � 	� and L empty�
We now give the details of the protocol�

Protocol

At each step do
If �state � NORMAL� call Procedure Normal
Else call Procedure Synchronizing



�� � L� A� Goldberg� P� D� MacKenzie� M� Paterson� and A� Srinivasan

Procedure Normal
If a message m is generated

Put m in B
Choose trial�m� by continuing the simulation of P

If ��clock mod n	� � n	 � �� call Procedure Queue Step
Else call Procedure Normal Step

Procedure Begin Sync
Move all of the messages in B to Q
Empty L
state � SYNCHRONIZING� sync stage � JAMMING� clock � 	

Procedure Normal Step
If �clock � n

 or any message in B has waited more than n� steps�

Call Procedure Begin Sync
Else With Probability n��
� call Procedure Begin Sync

Otherwise
If more than one message m in B has trial�m� � clock

For each m � B with trial�m� � clock
Choose a new trial�m� by continuing the simulation of P

If exactly one message m in B has trial�m� � clock
Send m
If m succeeds� remove it from B
Else choose a new trial�m� by continuing the simulation of P

clock � clock � �

Procedure Queue Step
With probability ����n�

If �Q is empty� send a dummy message
Else

Send the �rst message in Q
If the outcome is �success�� remove the message from Q

Add the outcome of the send to L
Otherwise add �failure� to L
If �jLj � n	 and all of the entries of L are �failure��

Call Procedure Begin Sync
Else clock � clock � �

Procedure Synchronizing
If a message arrives� put it in Q
If �sync stage � JAMMING� call Procedure Jam
Else If �sync stage � FLEADER� call Procedure Find Leader
Else If �sync stage � ESTABLISHING LEADER� call Procedure Establish Leader
Else If �sync stage � SETTING CLOCK� call Procedure Set Clock
Else If �sync stage � COPYING CLOCK� call Procedure Copy Clock
Else If �sync stage � WAITING� call Procedure Wait
Else If �sync stage � POLLING� call Procedure Poll
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Procedure Jam
Send a dummy message
If �clock � W��� ��� clock � clock � �
Else sync stage � FLEADER� clock � 	

Procedure Find Leader
With probability ��n

Send a dummy message
If it succeeds

sync stage � ESTABLISHING LEADER� clock � 	
If �clock � W � �� clock � clock � �
Else

for i � 	 to �W � �
possibletime
i� � Yes

sync stage � COPYING CLOCK� clock � 	

Procedure Establish Leader
Send a dummy message
If �clock � �W � �� clock � clock � �
Else sync stage � SETTING CLOCK� clock � 	

Procedure Set Clock
If �clock � 	 mod �W �

Send a dummy message
If �clock � �	Wn	 � �� clock � clock � �
Else sync stage � POLLING� clock � 	

Procedure Copy Clock
With probability ����n�

Send a dummy message
If it succeeds

possibletime
clock mod �W � � No
If �clock � �	Wn	 � �� clock � clock � �
Else

If possibletime
j� � Yes for exactly one j�
clock � �j
If �j � 	� sync stage � POLLING
Else sync stage � WAITING

Else sync stage � POLLING� clock � 	

Procedure Wait
clock � clock � �
If �clock � 	�� sync stage � POLLING
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Procedure Poll
With Probability ����n�

Send a dummy message
Add the outcome of this send to the end of L

Otherwise Add �failure� to L
If �jLj � n	 and all of the entries of L are �fail��

Empty L
sync stage � JAMMING� clock � 	

Else
If �clock � Wn� � ��� clock � clock � �
Else

Empty L
state � NORMAL� clock � 	

��� The Main Proof

Step 	 will be the step in which the �rst user starts the protocol� Users will start and
stop �perhaps repeatedly� at certain predetermined times throughout the protocol�
We say that the sequence of times at which users start and stop is allowed if every
user runs for at least n�� steps each time it starts� Just before any step� t� we will
refer to the users that are running the protocol as live users� We will say that the
state of the system is normal if all of these users are in state NORMAL� We will
say that it is good if

��� it is normal� and

��� for some C � n

 � n�� every user has clock � C� and

��� every user with jLj � n	�� has a success in the last n	�� elements of L� and

��� no message in any user s bu�er has been in that bu�er for more than n���
steps�

We say that the state is a starting state if the state is good and every clock � 	�
We say that it is synchronizing if

�every user has state � NORMAL� or has state � SYNCHRONIZING with either
sync stage � JAMMING or sync stage � POLLING� and

�some user has state � SYNCHRONIZING with sync stage � JAMMING and
clock � 	�

We say that the system synchronizes at step t if it is in a normal state just before
step t and in a synchronizing state just after step t� We say that the synchronization
is arbitrary if every user with state � SYNCHRONIZING� sync stage � JAMMING
and clock � 	 just after step t had its clock � n

� had no message waiting more
than n� steps in its bu�er� and either had jLj � n	 or had a success in L� just
before step t�
De�nition� The interval starting at any step t is de�ned to be the period 
t� � � � � t�
n�� � ���
De�nition� An interval is said to be productive for a given user if at least n	���
messages are sent from the user s queue during the interval� or the queue is empty
at some time during the interval�
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De�nition� An interval is said to be light for a given user if at most n�� messages
are placed in the user s queue during the interval�
De�nition� Step t is said to be an out�of�sync step if either the state is normal
just before step t� but two users have di�erent clocks� or the state was not normal
just before any step in 
t� ��n� � �� � � � � t�� �Intuitively� an out�of�sync step is the
result of an �unsuccessful� synchronizing phase��

Procedure Normal Step simulates protocol P from Section �� Thus� from any
starting state until a synchronization� our system simulates P � This implies that our
system stops simulating P when a user starts up� since that user will immediately
start a synchronization� Then P is simulated again once a starting state is reached�
We will use the following lemma�

Lemma �� Given a random variable X taking on non�negative values	 and any
two events A and B	 E
X j A �B� � E
X j B��Pr
A j B��

Proof� E
X j B� � E
X j A � B� Pr
A j B� � E
X j A � B� Pr
A j B��

Lemmas �	 to �� outline the analysis of the normal operation of the synchroniza�
tion phase of our protocol�

Lemma ��� Suppose that the protocol is run with a sequence of user start
stop
times in which no user starts or stops between steps t and t � W � If the system is
in a synchronizing state just before step t	 then every live user sets sync stage to
FLEADER just before some step in 
t� � � � � t � W ��

Proof� A user can have state � SYNCHRONIZING and sync stage � JAMMING
for only W�� steps� Also� every user with state � SYNCHRONIZING� sync stage �
POLLING� and clock � Wn� � n	 will set sync stage to JAMMING after at most
n	 steps� every user with state � SYNCHRONIZING� sync stage � POLLING�
and clock � Wn� � n	 will either set sync stage to JAMMING within n	 steps�
or switch to state � NORMAL within n	 steps� and set sync stage to JAMMING
after at most an additional n
 steps �since when state � NORMAL� a queue step
is taken only once every n	 steps�� and every user with state � NORMAL will
set sync stage to JAMMING after at most n
 steps� The lemma follows by noting
that n	 � n
 � W��� and that a user remains in sync stage � JAMMING for W��
steps�

Lemma ��� Suppose that the protocol is run with a sequence of user start
stop
times in which no users start or stop between steps t and t� �W � If every user sets
sync stage � FLEADER before some step in 
t� � � � � t�W � then	 with probability at

least � � e�n
�

	 exactly one user sets sync stage � SETTING CLOCK just before
some step in 
t � �W � �� � � � � t � �W � and every other user sets sync stage �
COPYING CLOCK just before some step in 
t � W� � � � � t � �W ��

Proof� At most one leader is elected since� after being elected it does not allow
any users to access the channel for �W steps� Also no user will have sync stage �
FLEADER just before step t � �W � since sync stage � FLEADER for at most W
steps�

Suppose P is the last user to set sync stage � FLEADER� Then as long as no
leader has been elected� the probability that P is elected at a given step is at least
���n���� ���n��

n�� � ���en�� Thus the probability that no leader is elected is
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at most ��� ���en��W � which is at most e�n
�

� Then the leader will spend �W
steps with sync stage � ESTABLISHING LEADER before setting sync stage to
SETTING CLOCK� while each of the other users will directly set sync stage to
COPYING CLOCK�

Lemma ��� Suppose that the protocol is run with a sequence of user start
stop
times in which no user starts or stops between steps � � �W and � � �	Wn	� If
exactly one user sets sync stage � SETTING CLOCK just before step � in 
t �
�W� � � � � t � �W � and every other user sets sync stage � COPYING CLOCK just
before some step in 
� � �W� � � � � � �	 then	 with probability at least �� �Wne�n	 all
users set sync stage � POLLING with clock � 	 just before step � � �	Wn	�

Proof� The statement in the lemma is clearly true for the user that sets sync stage �
SETTING CLOCK� Suppose that P is some other user� For each i in the range
	 � i � �W � if P  s clock � i mod �W when the leader s clock � 	 mod �W �
possibletime
i� will be Yes� If not� P has at least b��	Wn	 � �W ����W �c chances
to set possibletime
i� to No� i�e�� it has that many chances to poll when its clock �
i mod �W and the leader has already set sync stage � SETTING CLOCK� Now�
�n	� � � b��	Wn	� �W ����W �c� The probability that P is successful on a given
step is at least 	

� � �
�n �� and so the probability that it is unsuccessful in �n	� � steps

is at most ��� 	
�n ��n

��� � e�n� The lemma follows by summing failure probabilities
over all users and moduli of �W �

Lemma ��� Suppose that the protocol is run with a sequence of user start
stop
times in which no users start or stop between steps � and � �Wn�� If all users set
sync stage � POLLING with clock � 	 just before step � then	 with probability at
least ��Wn
e�n��
	 all users set state � NORMAL and clock � 	 just before step
� � Wn��

Proof� Say a sequence of n	�� steps is bad for user P if P does not have a
successful transmission on any step in the sequence� Then the probability that a
given user P is the �rst to set sync stage � JAMMING is at most the probabil�
ity that it has a bad sequence of n	�� steps� assuming all other users still have
sync stage � POLLING� This is at most the probability that it either does not
send� or is blocked on each step of the sequence� which is at most�

�� �

�n
�

�

�n

�
�

�

��n��	
�

�
�� �

�n

�n��	
� e�n��
�

The lemma follows from summing over all steps �actually this overcounts the num�
ber of sequences of n	�� steps� and all users�

Lemma ��� Suppose that the protocol is run with a sequence of user start
stop
times in which no user starts or stops between steps t and t���n�� If the system is in
a synchronizing state just before step t then	 with probability at least ���Wn
e�n��
	
there is a t� in 
t� ��n�� � � � � t� ��n�� such that it is in the starting state just before
step t��

Proof� The lemma follows from Lemmas �	� ��� �� and ���

Lemmas �� to �� outline the analysis of the robustness of the synchronization
phase� Lemma �� shows that no matter what state the system is in �i�e�� pos�
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sibly normal� possibly in the middle of a synchronization�� if some user starts a
synchronization �possibly because it just started� then� within W�� steps� every
user will be in an early part of the synchronization phase� Then Lemma �� shows
that with high probability� within a reasonable amount of time� all users will be
beyond the stages where they would jam the channel� and furthermore there is a
low probability of any going back to those stages �i�e�� a low probability of any
synchronization starting�� Finally� Lemma �� shows that soon all users will be in
the polling stage� At this point� as shown in Lemma ��� they will either all proceed
into the normal state� or if a synchronization is started� they will all detect it and
with high probability proceed into a good state as in Lemma ���

Note that these lemmas require the assumption that no users start or stop� This
is because they are used for showing that the system returns to a normal state from
any situation� even from a bad situation such as a user just having started in the
middle of a synchronization phase� If another user starts before the system returns
to normal� then we would again use these lemmas to show that the system will
return to normal within a reasonable amount of time after that user started�

Lemma ��� If the protocol is run and some user sets sync stage � JAMMING
just before step t	 and that user does not stop for W�� steps	 then there is a t� in

t� � � � � t � �W���� such that just before step t� no user has state � NORMAL	 and
every user that has sync stage � POLLING has clock �W���

Proof� Every user P that has state � NORMAL or sync stage � POLLING
just before step t will detect the channel being jammed and set state � SYNCHRONIZING
and sync stage � JAMMING just before some step in 
t � �� � � � � t � �W����� The
lemma follows�

Lemma ��� Suppose that the protocol is run with a sequence of user start
stop
times in which no user starts or stops between steps t and t � �nW � If	 just
before step t	 no user has state � NORMAL and every user with sync stage �
POLLING has clock �W��	 then	 with probability at least �� �Wn	e�n��
	 there
is a t� in 
t� � � � � t � �nW � such that	 just before step t�	 each user has state �
SYNCHRONIZING with sync stage set to SETTING CLOCK	 COPYING CLOCK	
WAITING	 or POLLING� Furthermore	 if a user has sync stage � POLLING	 it
has clock � �nW � W�� and either it has clock � n	�� or it has had a success in
the last n	�� steps�

Proof� Say a user is calm at a given step if it has state � SYNCHRONIZING�
and sync stage set to SETTING CLOCK� COPYING CLOCK� WAITING� or POLLING�
and if sync stage � POLLING then its clock is at most W�� � �nW � Note that
each user is uncalm for at most �W steps in t� � � � � t� �nW � so there is a sequence
of W steps in t� � � � � t � �nW in which every user is calm� Let t� be the random
variable denoting the �n	�� � ��st step in this sequence�

Say a sequence of n	�� steps is bad for a user P if P has sync stage � POLLING
just before every step in the sequence� and all of its transmissions during the se�
quence are blocked by other calm users� The probability that a user with sync stage �
POLLING adds a failure to L on a given step� either due to not transmitting or due
to being blocked by a calm user� is at most ������n�������n������� � ������n��
Thus� the probability that a given sequence of n	�� steps is bad for a given user is at
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most ��� ����n��
n��	 � e�n��
� Thus� with probability at least �� �Wn	e�n��
�

no sequence of n	�� steps in t� � � � � t � �nW is bad for any user� In particular� the
sequence of n	�� steps preceding t� is not bad for any user� so any user that has
sync stage � POLLING just before step t� with clock � n	�� has a success in the
sequence of n	�� steps preceding t��

Lemma �	� Suppose that the protocol is run with a sequence of user start
stop
times in which no user starts or stops between steps t and t��nW��W�����	Wn	�
If some user sets sync stage � JAMMING just before step t then	 with probability
at least �� ��Wn�e�n��
	 there is a t� in 
t� � � � � t � �nW � �W��� � �	Wn	� such
that	 just before step t�	 each user has sync stage � POLLING�

Proof� We know by Lemmas �� and �� that� with probability at least � �
�Wn	e�n��
� there is a � in 
t� � � � � t� �nW � �W���� such that� just before step � �
each user has state � SYNCHRONIZING and sync stage set to SETTING CLOCK�
COPYING CLOCK� WAITING� or POLLING� Furthermore� if a user has sync stage
� POLLING� it has clock � �nW � W��� and either it has clock � n	�� or it has
had a successful poll in the last n	�� polls�

Unless a user sets sync stage � JAMMING in the next �	Wn	 steps� there
will be a step t� such that each user has sync stage � POLLING� But to set
sync stage � JAMMING� a user with sync stage � POLLING must be unsuccessful
in all transmission attempts during some n	�� consecutive steps� For a single user
and a single set of n	�� consecutive steps� the probability of this is at most e�n��


�as in the proof of Lemma ���� For all users and all possible sets of n	�� consecutive
steps in �� � � � � ���	Wn	� this probability is bounded by �	Wn�e�n��
� The lemma
follows�

Lemma �
� Suppose that the protocol is run with a sequence of user start
stop
times in which no user starts or stops between steps t and t � Wn� � ��n�� If the
system is in a state in which every user has state � NORMAL or sync stage �
POLLING just before step t then	 with probability at least ���Wn
e�n��
	 there is
a t� in 
t� � � � � t�Wn� � ��n�� such that the system is in a normal state just before
step t��

Proof� If no user sets sync stage � JAMMING during steps 
t� � � � � t�Wn����
then the system reaches a normal state before step t � Wn�� Otherwise� suppose
that some user sets sync stage � JAMMING just before step t�� � t � Wn� � ��
By Lemma ��� with probability at least � � �Wn
e�n��
� the system will enter a
starting state by step t�� � ��n��

Observation �� Suppose that the protocol is run with a sequence of user start�stop
times in which no user starts between steps t and t� ��Wn	� �� Suppose that no
user sets sync stage � JAMMING during steps t� � � � � t � ��Wn	 � �� Then every
user has state � NORMAL or sync stage � POLLING just before step t� ��Wn	�

To see why this observation is true� consider the interval of steps t� � � � � t���Wn	�
�� Note that once a user has state � NORMAL or sync stage � POLLING
�during this interval� it won t change state or sync stage �since that would cause
sync stage � JAMMING�� The observation then follows from the fact that the
cumulative amount of time that any user can spend in any sync stage besides
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POLLING is less than ��Wn	� �JAMMING takes at most W�� steps� FLEADER
takes at most W steps� ESTABLISHING LEADER takes at most �W steps� SETTING CLOCK
or COPYING CLOCK takes at most �	Wn	 steps� and WAITING takes at most
�W steps��

Lemma ��� Suppose that the protocol is run with a sequence of user start
stop
times in which no user starts or stops between steps t and t�n�� Given any system
state just before step t	 with probability at least � � �Wn
e�n��
	 there is a t� in

t� � � � � t � n�� such that the system is in a normal state just before step t��

Proof� The lemma follows from Lemmas �� and ��� and Observation ��

Lemmas �	'�� and Theorem � show that if the protocol is run with a f�ig��i�n�
dominated message arrivals distribution then the system is usually in a good state
�i�e�� synchronized and running the P protocol�� and thus the expected time that
messages wait in the bu�er is constant�

Lemma ��� Suppose that the protocol is run with a sequence of user start
stop
times in which no user starts or stops during steps t� � � � � t� n����� �� Given any
system state just before step t	 with probability at least �� �Wn
e�n��
	 there is a
t� in 
t� � � � � t� n����� such that the system is in a starting state just before step t��

Proof� By Lemma ��� no matter what state the system is in at step t� with
probability at least � � �Wn
e�n��
 it will be in a normal state within n� steps�
Then the probability that it does not enter a synchronizing state within n���� steps

is at most �� � n��
��n
�������n����� � e�n��
� Then by Lemma ��� once it enters

a synchronizing state� with probability at least � � �Wn
e�n��
 it will be in a
starting state within ��n� steps� The lemma follows directly from summing failure
probabilities�

Lemma ��� Suppose that the protocol is run with a sequence of user start
stop
times in which no user starts or stops between steps t and t � n�� � �n�� Given
any system state just before step t	 with probability at least � � �Wn
e�n��
 there
is a t� in 
t� � � � � t� n�� � �n�� such that the system is in a synchronizing state just
before step t��

Proof� From Lemma ��� with probability at least �� �Wn
e�n��
� the system
will be in a normal state at some time steps in 
t� � � � t� n��� Once the system is in
a normal state� on every step except one out of every n	 steps� with probability at
least n��
 a user will switch to a synchronizing state� The probability of this not
happening in the next n�� � �n� steps is at most ��� n��
��n

����n��n��� � e�n�	�
The lemma follows from summing the failure probabilities�

Arrival distribution� For the remainder of this subsection� we will assume �with�
out further mention� that the arrival distribution is f�ig��i�n�dominated distribu�
tion�

Lemma ��� Let � be a non�negative integer less than n

� n�� Suppose that no
user starts or stops between steps t and t � � � If the system is in a starting state
just before step t then	 with probability at least � � ������n�			 the system is in a
good state just before step t � � �
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Proof� Consider the following experiment� in which the protocol is started in a
starting state just before step t and run according to the experiment�

i� t
resyncing � false
Do forever

Simulate a step of the protocol
If �resyncing � false�

If some message has waited more than n��� steps
FAIL�

If some user with jLj � n	�� has no success in the last n	�� elements of L
FAIL�

If the new state of the system is synchronizing
If �i � t � � � ��n��� FAIL�
Else

resyncing � true
j � 	

Else
If �the new state of the system is a starting state�

resyncing � false
j � j � �
If ��j � ��n�� and �resyncing � true��� FAIL�

i � i � �
If �i � t � ��� SUCCEED

From the de�nition of a good state �see the beginning of Section ����� if none of
fFAIL�� � � � �FAIL�g occurs then the system is in a good state just before step t�� �
As in the proof of Lemma ��� the probability that a given element of L is �success�
is at least ����n�� so the probability that FAIL� occurs is at most �ne�n��� By
Lemma �� and the fact that at most n

�W starting states occur in the experiment
�so P is started at most n

�W times�� the probability that FAIL� occurs is at most
�n

�W �n��
 � n�	
� In the experiment� the clocks of the users never reach n

�
If the state is normal� all users have the same value of c� every user with jLj �
n	�� has a success in the last n	�� elements of L� and every user has no message
that has waited more than n��� steps� then the probability that a given user sets
state � SYNCHRONIZING on a given step is at most n��
� Thus� the probability
that FAIL� occurs is at most ��n�		� By Lemma ��� the probability of failing
to successfully restart after a given synchronization state is at most �Wn
e�n��
�
Hence� the probability of FAIL� occurring is at most ��Wn
e�n��
�

De�nition� Let T � n���

Lemma ��� Suppose that no user starts or stops between steps t and t�T � Given
any system state just before step t	 with probability at least �� ��n�			 the system
is in a good state just before step t � T �

Proof� The lemma follows from Lemma ��� Lemma ��� and Lemma ���
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Theorem �� Suppose that no user starts or stops during steps 
t�T� � � � � t�n���
Given any system state just before step t� T 	 suppose that a message is generated
at step t� The expected time that the message spends in the bu�er is O����

Proof� Let X be the time that the message spends in the bu�er and let G be
the event that the state just before step t is good and has clock less than T � Since
X is always at most n�� E
X � � n� Pr
G� � E
X j G�� Now� Pr
G� is at most the
probability that the state just before step t is not good plus the probability that the
state just before step t has clock at least T � By Lemma �	� the latter probability is
at most �Wn
e�n��
� and� by Lemma ��� the former probability is at most ��n�		�
Thus� E
X � � O��� � E
X j G�� Then E
X j G� �

P
t� E
X j Gt� � Pr
Gt� j G��

where Gt� is the event that the good state just before step t has clock t� � T �
Let At� be the event that a message p� is born in step t� of the P protocol� Let
B be the event that� prior to that step t� �in the P protocol�� no message has
waited more than n� steps� and at step t� no message in the bu�er has waited
more than n��� steps� Let Y be the random variable denoting the number of
steps required to transmit p� �in P�� Then E
X j Gt� � � E
Y j At� � B�� �It
would be equal except that in our protocol� it is possible for a message to be
transferred to the queue before it is successfully sent from the bu�er�� So by
Lemma �� E
X j Gt� � � E
Y j At� � B� � E
Y j At� ��Pr
B j At� �� Then by
Lemma �� E
X j Gt� � � �E
Y j At� � � O���� �t� � T � Thus E
X j G� � O����

The remaining results in Subsection ��� show that the probability of a message
entering a queue is low� the probability of a queue being very full is low� and the
rate at which the messages are sent from the queue is high enough that the expected
time any given message spends in the queue is low� �Note that most messages will
spend no time in the queue��

Lemma ��� Suppose that the protocol is run with an allowed sequence of user
start
stop times� The probability that there is a t� in 
t� � � � � t � n�	� such that the
system is in a starting state just before step t� is at least � � �Wn
e�n��
	 given
any system state just before step t�

Proof� Divide the interval of n�	 steps into subintervals of n���� steps each�
Since at most n users can start or stop during the interval� and those that start
continue for the remainder of the interval� there must be a subinterval in which no
users start or stop� The result follows from Lemma �	�

Lemma ��� Suppose that the protocol is run with a given allowed sequence of
user start
stop times in which no user starts or stops between steps t � T and
t � n���� Given any system state just before step t � T 	 suppose that a message
R arrives at user P at step t� The probability that R enters the queue is at most
��n�		�

Proof� Let X be the event that R enters the queue� Let G be the event that
just before step t the state is good and has clock less than T � Then by Lemma ��
and Lemma �	� Pr
X � � � Pr
G� � Pr
X j G� � ��n�		 � �Wn
e�n��
 � Pr
X j G��
Note that Pr
X j G� �

P
t� Pr
X j Gt� � Pr
Gt� j G�� where Gt� is the event that

the good state just before step t has clock t�� Consider the following experiment
�the corresponding intuition and analysis are presented after its description� so
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the reader is asked to �rst skip to the end of the description and then study the
description as needed��

i� 	
Do forever

If i � t�

Add a message R to user P
Simulate a step of the protocol �except for the arbitrary synchronizations�
If some message has been in a bu�er more than n��� steps

FAIL�
If some user with jLj � n	�� has no success in the last n	�� elements of L

FAIL�
Else

Simulate a step of the protocol �except for the arbitrary synchronizations�
If �i � t�� and some message has waited more than n� steps

FAIL�
If �i � t�� and some message has waited more than n� steps

FAIL�
If some user with jLj � n	 has no success in the last n	 elements of L

FAIL�
i � i � �
If �i � t� � n����

If message Q has been sent� SUCCEED
Else FAIL�

This experiment models the system beginning at a start state� and going for
t��n��� � T�n��� steps� but assumes that there are no arbitrary synchronizations�
and that there is a message R generated at P at clock t�� The experiment fails at
step i � t� if the system enters a state which is not good at that point� It fails at a
step i � t� or t� � i � t� � n��� if the system does a non�arbitrary synchronization
at that point� It fails at step i � t� � n��� if the message R has not been sent
successfully� Let A be the event that FAIL� occurs� B be the event that FAIL�
occurs� C be the event that FAIL� occurs� and S be the event that the experiment
does not fail during steps �� � � � � t�� The probability that R is still in the bu�er
after step t � n��� � �� or the real system synchronizes before step t � n��� � ��
conditioned on the fact that the state just before step t is good and has clock t�

and on the fact that message R is generated at P at step t�� is at most the sum
of ��� Pr
C j S�� ��� Pr
A j S�� ��� Pr
B j S�� and ��� the probability that there is
an arbitrary synchronization during steps t� � � � � t � n���� �� Probability ��� is at
most n�n�����n��
� � n�		��� Now note that Pr
A j S� � Pr
A��Pr
S�� By the
proof of Lemma �� �using Lemma ���

Pr
S� � �� 
n

�ne�n��� � n��
� � �

�

and

Pr
A� � n

�ne�n��� � n��
�

Thus Pr
A j S� � �n��
�
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Note also that Pr
B j S� � Pr
B��Pr
S�� By Lemma �� Pr
B� � n��
� �This can
only be decreased by a queue step causing a synchronization�� Then Pr
B j S� �
�n��
�

Finally� Pr
C j S� � 	� since all messages at step t� have waited for at most n���
steps� and the experiment stops at step t� � n����

Thus� Pr
X j G� � n�		� which completes the proof�

Lemma ��� Let j be an integer in 
	� � � � � ���� Suppose that no user starts or
stops during steps t� � � � � t�n�
�j��� If the system is in a starting state just before
step t then the probability that the system enters a synchronizing state during steps
t� � � � � t � n�
�j � � is at most �n����j�

Proof� The probability that an arbitrary synchronization occurs during steps
t� � � � � t � n�
�j � � is at most n � n��
 � n�
�j � n����j � Following the proof of
Lemma ��� we see that the probability that a non�arbitrary synchronization occurs
during these steps is at most n��
 � n���je�n��� �The probability that a message
waits in a bu�er more than n� steps is at most n��
 by Lemma � and the probability
that some user gets n	 failures on L is at most n�
�j � n � e�n����
Lemma �	� Suppose that no user starts or stops during the interval 
t� � � � � t �

n�� � ��� If the system is in a starting state just before step t then the probability
that either some step in the interval is an out�of�sync step or that the system is in a
starting state just before more than n� steps in the interval is at most �Wn��e�n��
�

Proof� If the system is in a starting state x times� where x � n�� then at least
x�n��� of these must be followed by fewer than �n	� steps before the next synchro�
nization phase� By Lemma ��� the probability of fewer than �n	� steps occurring
between a starting state and the next synchronization phases is at most �n�	� Thus�
the probability of this happening after at least x� n��� of the x starting states is

at most �x��n�	�
x�n��	

which is at most ��n
��	�

If the system is in a starting state just before at most n� steps in the interval� then
the only time that the system could have an out�of�sync step during the interval is
during at most n��� subintervals which start with a synchronizing state and end in
a starting state� By the proof of Lemma ��� the probability that a given subinterval
contains an out�of�sync step is at most �Wn
e�n��
� Thus� the probability that an
out�of�sync step occurs in the interval is at most n���Wn
e�n��
��

Lemma �
� Suppose that the protocol is run with a given allowed sequence of user
start
stop times after step t	 and a given system state just before step t� Divide the
interval starting at step t into blocks of n
 steps� The probability that the interval
has more than ��n�� blocks containing non�normal steps is at most �Wn�	e�n��
�

Proof� Recall that the interval starting at step t is de�ned to be the period

t� � � � � t�n��� ��� and that we are assuming that each user runs at least n�� steps
each time it starts� Let S contain the �rst step of the interval and each step during
the interval in which a user starts or stops� Then jSj � �n��� Let S� contain S plus
for each step s � S� all steps after s until the system returns to a normal state� By
Lemma ��� with probability at least �� ��n � ����Wn
e�n��
�� S� can be covered
by �n� � sequences of at most n� steps each� Then the set S� partitions the other
steps in the interval into at most �n� � subintervals� such that the state is normal
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just before each subinterval� and no users start or stop during any subinterval� We
perform the following analysis for each of these subintervals�

By Lemma ��� once the system enters a synchronizing state� with probability at
least �� �Wn
e�n��
 it will be in a starting state within ��n� steps� Once the sys�
tem is in a starting state� by Lemma �� with probability at least �� �Wn��e�n��
�
it will enter a synchronizing state at most n� � � times� and each synchronizing
phase will last at most ��n� steps�

In total� the probability of not performing as stated above is at most

��n � ����Wn
e�n��
 � �Wn
e�n��
 � �Wn��e�n��
� � �Wn�	e�n��
�

Finally� the set S� can intersect at most ��n�����n��n
���� blocks of size n
� Then�
in each of the �n � � subintervals of steps between those of S�� there are at most
n� � � synchronizing phases� each of which can intersect at most ����n��n
� � ��
blocks of size n
� Altogether� at most ��n�� blocks of size n
 will contain non�
normal steps�

Corollary �� Let x be an integer in the range 	 � x � n	� � ��n��� Suppose
that the protocol is run with a given allowed sequence of user start
stop times after
step t	 and a given system state just before step t� Focus on a particular non�
empty queue at step t� The probability that the queue remains non�empty for the
next xn
 � ��n�� steps	 but fewer than x messages are delivered from it during this
period	 is at most �Wn�	e�n��
�

Proof� Divide the next xn
 � ��n�� � n�� steps into blocks of size n
� By
Lemma ��� with probability at least � � �Wn�	e�n��
� at most ��n�� of these
blocks will either contain a non�normal step� or precede a block which contains a
non�normal step� The corollary follows by noting that if block i contains all normal
steps and no synchronization is started in block i � �� then a message must have
been sent from the queue during block i�

Lemma ��� Suppose that the protocol is run with a given allowed sequence of
user start
stop times after step t	 and a given system state just before step t� Then
the probability that the interval starting at t is light for a given user is at least
�� �Wn�	e�n��
�

Proof� As in the proof of Lemma ��� with probability at least ���Wn�	e�n��
�
the non�normal steps could be covered by at most ��n � �� � ��n � ���n� � ��
subintervals of at most n� steps each� and each of the subintervals would contribute
at most n� � n� messages to the queue �including the at most n� that could be
transferred from the user s bu�er�� If this were the case� at most �n�� messages
would be placed in the queue during the interval�

Lemma ��� Suppose that the protocol is run with a given allowed sequence of
user start
stop times after step t	 and a given system state just before step t� The
probability that the interval starting at t is productive for a given user is at least
�� �Wn�	e�n��
�

Proof� Follows from Corollary ��

Lemma ��� Suppose that the protocol is run with a given allowed sequence of
user start
stop times before step t� The probability that more than n���j�n���n��
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messages are in a queue just before step t is at most e�jn��
 for j � � and at most
e�n��
 for j � 	�

Proof� For every non�negative integer j� we will refer to the interval 
t � �j �
��n����� � � � � t�jn��� as �interval j�� Choose k such that the queue was empty just
before some step in interval k� but was not empty just before any steps in intervals 	
to �k� ��� We say that interval j is �bad� if it is not both productive and light for
the user� The size of the queue increases by at most n�� � n� during any interval�
since the user generates at most one message during each step� If interval k is not
bad� then the queue size increases by at most n�� during interval k� If interval j
is not bad for j � k� then the queue size decreases by at least n	���� n�� during
interval k� Thus� if b of intervals 	 to k are bad� then the size of the queue just
before step t is at most

�k � ���n�� � n��� �k � �� b��n�� � n� � n	���� n��� � n���

This quantity is at most n�� � i�n�� � n�� unless b � i�� � k���n
�� Thus� the
probability that the queue has more than n�� � i�n�� � n�� messages just before
step t is at most the probability that� for some non�negative integer k� more than
�i�����k���n
�� of intervals 	 to k are bad� By Lemmas �� and �	� the probability
that a given interval is bad is at most ��Wn�	e�n��
� Let X � ��Wn�	e�n��
�
Then� for i � �� the failure probability is at mostX

k�


�
k

b�i��� � �k���n
��c� �

�
Xb�i�	���k���n���c��

�
X
k�


���en
X�b�i�	���k���n
���c��

�
X
k�


���en
X��i�	���k���n
���

� ���en
X�i�	
X
k�


���en
X�k���n
��

� ���en
X�i�	�n

X
k�


���en
X�k

� ���n
����en
X�i�	 � e�in��
�

For i � 	� this probability is at mostX
k�


�
k

bk���n
�c� �

�
Xbk���n��c�� �

X
k�


���en
X�bk���n
��c��

� ���en
X�
X
k�


���en
X�bk���n
��c

� ���n
����en
X� � e�n��
�

Lemma ��� Suppose that the protocol is run with a given allowed sequence of
user start
stop times after step t� n�	� Suppose that no users start or stop during
steps 
t � T� � � � � t � n�	� and that the system state just before step t � T is given�
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The probability that an out�of�sync step occurs before a starting step after t is at
most �Wn��e�n��
�

Proof� By Lemma �	� the probability of not having a start state just before
any step in the subinterval 
t � T� � � � � t � T��� is at most �Wn
e�n��
� Then by
�the proof of� Lemma ��� the probability of having an out�of�sync step before step
t � n�	 is at most �Wn��e�n��
� Finally� by Lemma �	� the probability of not
having a start state in the subinterval 
t� � � � � t� T��� is at most �Wn
e�n��
� The
lemma follows by summing the failure probabilities�

Lemma ��� Suppose that the protocol is run with a given allowed sequence of
user start
stop times after step t	 and a given system state just before step t in
which queue Q contains at least x messages� Then the expected time until at least
x messages have been sent from Q is O�xn
 � n����

Proof� Our �rst case is when x � n	���� Let A be the event that at least
x messages are sent in steps t� � � � � t � xn
 � ��n�� � �� We refer to the interval

t � xn
 � ��n�� � �k � ��n��� � � � � t � xn
 � ��n�� � kn�� � �� as �interval k�� Let
Ck be the event that interval k is productive� Let Ex be the expected time to send
the x messages� Using Corollary � and Lemma �	�

Ex � �xn
 � ��n��� � n�� Pr
A� �
X
k��

n�� Pr

�

��i�k��

Ci�

� xn
 � ��n�� �
X
k��

n����Wn�	e�n��
�k

� O�xn
 � n����

Our second and last case is when x � n	���� Let r � d�x�n	�e� Note that after
r productive intervals� at least x messages will be sent� Let Dk be the event that
intervals � to k do not contain at least r productive intervals� but that intervals �
to �k � �� do contain r productive intervals�

Ex �
X
k�r

�k � ��n�� Pr
Dk�

� n����r �
X
k�	r

�k � �� Pr
Dk��

� n����r �
X
k�	r

�k � ��

�
k

k � r

�
��Wn�	e�n��
�k�r�

� n����r �
X
k�	r

�k � ���k��Wn�	e�n��
�k�r�

� O�n��r� � O�xn
��

Theorem �� Suppose that the protocol is run with a f�ig��i�n�dominated ar�
rival distribution	 a given allowed sequence of user start
stop times in which no
users start or stop during steps 
t � n��� � � � � t � n���� Suppose that a message is
generated at step t� The expected time that the message spends in the queue is O����
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Proof� Let I� be the interval 
t � �n�� � �� � � � � t � �� � ��n���� Let A
 be the
event that the size of the queue is at most n��� � just before step t�n�� � �� and�
for i � �� let Ai be the event that the size of the queue just before step t� n�� � �
is in the range 
n�� � �i� ���n�� �n��� n�� � i�n�� � n��� ��� Let B the event that
interval I� is light� Let C be the event that the message enters the queue� Let t�

be the random variable denoting the smallest integer such that t� � t and the state
of the system just before step t� is a starting state� Let t�� be the random variable
denoting the smallest integer such that t�� � t and step t�� is out�of�sync� Let F
be the event that t� � t��� Let X be the random variable denoting the amount of
time that the message spends in the queue� All probabilities in this proof will be
conditioned on the fact that no users start or stop during steps 
t�n��� � � � � t�n����

We start by bounding
P

i�� E
X j Ai � C� Pr
Ai � C�� By Lemma ��� Pr
Ai� �
e��maxfi����g�n��
 so Pr
Ai � C� � e��maxfi����g�n��
� By Lemma ���

E
X j Ai � C� � E
t� � t j Ai � C� � O�n
�n�� � �i � ���n�� � n�����

�This inequality holds because� given that Ai holds� there are at most n�� � i�n�� �
n�� messages in the queue before interval I� and at most n�� �n� get added during

interval I��� By Lemma ��� E
t��t j Ai�C� is at most
P

j�� n
�	��Wn
e�n��
�

j��
�

O�n�	�� Thus� E
X j Ai � C� � �i � ��O�n���� Thus�X
i��

E
X j Ai � C� Pr
Ai � C� �
X
i��

e��maxfi����g�n��
�i � ��O�n��� � O����

We now bound E
X j A
 � B � C� Pr
A
 � B � C�� By Lemma ��� Pr
B� �
�Wn�	e�n��
� so Pr
A
 � B � C� � �Wn�	e�n��
� As above� E
X j A
 � B � C� �
O�n���� so

E
X j A
 �B � C� Pr
A
 � B � C� � ��Wn�	e�n��
�O�n��� � O����

Next� we bound E
X j A
�F �C� Pr
A
�F �C�� By Lemma ��� the probability
of F is at most �Wn��e�n��
� so Pr
A
 � F � C� � �Wn��e�n��
� As above�
E
X j A
 � F � C� is at most E
t� � t j A
 � F � C� � O�n���� Since C occurs�
the system is in a synchronization state just before some state in 
t� � � � � t � n���
Since F occurs� there is an out�of�sync step in 
t� � � � � t� ��n��� By Lemma ��� the
expected time from this out�of�sync step until a starting state occurs is at mostP

j�� n
�	��Wn
e�n��
�

j��
� O�n�	�� Thus� E
t� � t j A
 � F � C� � O�n�	� and

E
X j A
 � F � C� � O�n���� Thus�

E
X j A
 � F � C� Pr
A
 � F � C� � ��Wn��e�n��
�O�n��� � O����

Finally� we bound E
X j A
 � B � F � C� Pr
A
 � B � F � C�� By Lemma ���
the probability of C is at most ��n�		� so Pr
A
 � B � F � C� � ��n�		� We now
wish to bound E
X j A
 � B � F � C�� Since A
 and B hold� the size of the queue
just before step t is at most �n��� Suppose that t� � t � �n	� � ��n�� Then� since
F holds� no step in t� � � � � t� �n	� � ��n� is out�of�sync� Suppose �rst that no step
in t� � � � � t � �n	� � ��n� is out�of�sync and that the state is normal before each
step in t� � � � � t � �n	�� Then all of the clocks will be the same� so at least �n��

messages will be sent from the queue during this period� Suppose second that no
step in t� � � � � t � �n	� � ��n� is out�of�sync� but that the state is not normal just
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before some step in 
t� � � � � t � �n	��� Then since no state in t� � � � � t � �n	� � ��n�

is out�of�sync� t� � t� �n	� � ��n�� Finally� suppose that t� � t� �n	� � ��n�� By
Lemma ��� E
X j A
 �B �C � F � is at most t� � t� O�n
 � �n��� � O�n	��� Thus�

E
X j A
 � B � F � C� Pr
A
 �B � F � C� � ��n�		O�n	�� � O����

Observation �� When the protocol is run� every message spends at most n� steps
in the bu�er�

Theorem �� Suppose that the protocol is run with a f�ig��i�n�dominated ar�
rival distribution and a given allowed sequence of user start
stop times� Suppose
that a message is generated at step t� Then the expected time that the message
spends in the queue is O�n����

Proof� Let X be the random variable denoting the size of the queue just before
step t� By Lemma ��� for i � �� the probability that X � n�� � i�n�� � n�� is at
most e�in��
� Given a particular value of X � Lemma �� shows that the expected
time to send the message is O�Xn
 �n���� Thus� the overall expected time to send
the message is

O�n
�n���n���n���n����
X
i�	

O�n
�n���i�n���n����n���e��i���n��
 � O�n����

��� Final Results

For v � 
n�� let Tv be the set of steps in which user v is running�

Theorem 	� Suppose that the protocol is run with a f�ig��i�n�Bernoulli arrival
distribution and a given sequence of user start
stop times in which each user runs
for at least �n�� steps every time it starts� Then E
Wavg� � O����

Proof� First note that the sequence of user start�stop times is allowed� Let
R be the set of steps within n�� steps of the time that a user starts or stops�
Lemma �� proves that if the f�ig��i�n�Bernoulli arrival distribution is conditioned
on having at most m messages arrive by time t� the resulting arrival distribution
is a f�ig��i�n�dominated distribution� Therefore� the system described in the
statement of the theorem satis�es the conditions of Lemma �� with �from Theorem �
and Theorem �� C � � O��� and �from Theorem � and Observation �� C � O�n����
From the condition given in the statement of this theorem� we can see that

S � max
v�V

lim sup
t��

jR 	 Tv 	 
t�j
jTv 	 
t�j � n����

�The worst case for S is when a user runs for �n�� � ��n� ��n�� � �n�� steps� and
the other n� � users have 
ending� starting� ending� starting� times


�in��� ��n� ��n�� � �in��� ��n� ��n�� � �in�� � �n��� ��n� ��n�� � �in�� � �n����

for � � i � n� �� Then jRj � ��n� ��n�� � �n��� including the n�� steps just after
the user starts and the n�� steps just before the user stops�� The theorem then
follows from Lemma ��� �Note that C and C � are actually functions of �� but � is
a constant��
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Lemma ��� Consider the distribution obtained from the f�ig��i�n�Bernoulli ar�
rivals distribution by adding the condition that at most m messages arrive by step t�
The resulting arrival distribution is a f�ig��i�n�dominated distribution�

Proof� Let Av�t� denote the probability that a message arrives at user v at
time t� �under the f�ig��i�n�Bernoulli arrivals distribution�� Let E be any event
concerning the arrival of messages at steps other than t� or at users other than v�
Let C be the event that at most m messages arrive during steps �� � � � � t� We wish
to show that Pr
Av�t� j C � E� � �v � If t� � t then Pr
Av�t� j C � E� � �v by
the independence of the f�ig��i�n�Bernoulli arrivals distribution� so suppose that
t� � t� Let E� denote the part of event E concerning arrivals at steps �� � � � � t� By the
independence of the f�ig��i�n�Bernoulli arrivals distribution� Pr
Av�t� j C � E� �
Pr
Av�t� j C �E��� Let W be the set containing every possible sequence of message
arrivals during steps �� � � � � t with the arrival at user v and step t� omitted� Let W �

be the set of elements of W which satisfy E� and have fewer than m arrivals and
let W �� be the set of elements of W which satisfy E� and have exactly m arrivals�

Pr
Av�t� j C � E�� �
X
w�W

Pr
Av�t� j w � C �E�� Pr
w j C � E��

�
X
w�W �

Pr
Av�t� j w � C� Pr
w j C � E��

�
X

w�W ��

Pr
Av�t� j w � C� Pr
w j C � E��

�
X
w�W �

Pr
Av�t� j w� Pr
w j C �E��

� �v
X
w�W �

Pr
w j C � E�� � �v �

Lemma ��� Suppose that	 for every m and t	 a protocol running on n users has
the property� for all users v	 if a message P is generated at user v at step t � R and
is one of the �rst m messages generated	 then the expected time before message P is
sent is at most C	 and if a message P is generated at user v at step t � R and is one
of the �rst m messages generated	 then the expected time before message P is sent is

at most C �� Then E
Wavg� � ��SC�C ��	 where S � maxv�V lim supt��
jR	Tv	�t�j
jTv	�t�j

�

Proof� Recall that � �
P

v�V �v � that �v � 	 for all v � V and that Wavg �
limm��

�
m

Pm
i��Wi� where Wi is the delay of the ith message generated in the

system�

E
Wavg� � E

�
lim

m��

�

m

mX
i��

Wi

�
� E

�
lim sup
m��

�

m

mX
i��

Wi

�
� lim sup

m��

�

m

mX
i��

E
Wi��

Now let Ai�v�t be the event that the ith message is generated at user v at step t�
Then

mX
i��

E
Wi� �

mX
i��

X
t�


X
v�V

E
Wi j Ai�v�t� Pr
Ai�v�t�
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�
X
v�V

X
t�Tv

mX
i��

E
Wi j Ai�v�t� Pr
Ai�v�t��

Let Bm�v�t be the event that one of the �rst m messages is generated at user v at
step t� Now� the properties of the protocol given in the lemma are equivalent to
the following� for any v � V � m and t � Tv�

mX
i��

E
Wi j Ai�v�t� Pr
Ai�v�t j Bm�v�t� � C� if t � R� and

mX
i��

E
Wi j Ai�v�t� Pr
Ai�v�t j Bm�v�t� � C �� if t � R�

Since� for i � m� Pr
Ai�v�t� � Pr
Ai�v�t �Bm�v�t� � Pr
Ai�v�t j Bm�v�t� Pr
Bm�v�t��

mX
i��

E
Wi� �
X
v�V

X
t�Tv

mX
i��

E
Wi j Ai�v�t� Pr
Ai�v�t�

�
X
v�V

X
t�Tv

mX
i��

E
Wi j Ai�v�t� Pr
Ai�v�t j Bm�v�t� Pr
Bm�v�t�

�
X
v�V

X
t�Tv

Pr
Bm�v�t�

mX
i��

E
Wi j Ai�v�t� Pr
Ai�v�t j Bm�v�t�

�
X
v�V

�
� X
t�R	Tv

Pr
Bm�v�t�C �
X

t�R	Tv

Pr
Bm�v�t�C
�

�
A �

Let 	t �
P

v��V �v� jTv� 	 
t�j� i�e� the expected number of messages generated in the
system through time t� Note that Pr
Bm�v�t� � �v� and� for m � 	t� Pr
Bm�v�t� �
�v expf��	t �m�	���	t�g� by a Cherno� bound� Then for any T 
 � Tv�X

t�T�

Pr
Bm�v�t� �
X

t�T���t�	m

�v �
X

t�T���t�	m

�v expf��	t �m�	���	t�g

� �v jT 
 	 ft � 	t � �mgj� �v
X

t�T���t�	m

expf��	t �m���g

� �v jT 
 	 ft � 	t � �mgj� �v
X
i�


expf��m � i�v���g

� �v jT 
 	 ft � 	t � �mgj� �ve
�m�


X
i�


�e�
v�
�i

� �v jT 
 	 ft � 	t � �mgj� O����

Consequently�

E
Wavg� � lim sup
m��

�

m

mX
i��

E
Wi�

� lim sup
m��

�

m

X
v�V


C��v jR 	 Tv 	 ft � 	t � �mgj� O����
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�C ���v jR 	 Tv 	 ft � 	t � �mgj� O�����

� C�lim sup
m��

�

m

X
v�V

�v jR 	 Tv 	 ft � 	t � �mgj�

�C ��lim sup
m��

�

m

X
v�V

�v jR 	 Tv 	 ft � 	t � �mgj��

We bound the factor multiplied by C as follows�

lim sup
m��

�

m

X
v�V

��v jR 	 Tv 	 ft � 	t � �mgj�

� lim sup
m��

X
v�V

�v jTv 	 ft � 	t � �mgj
m

� jR 	 Tv 	 ft � 	t � �mgj
jTv 	 ft � 	t � �mgj

�

� lim sup
m��

�
max
v�V

jR 	 Tv 	 ft � 	t � �mgj
jTv 	 ft � 	t � �mgj

�X
v�V

�v jTv 	 ft � 	t � �mgj
m

�
�

lim sup
m��

max
v�V

jR 	 Tv 	 ft � 	t � �mgj
jTv 	 ft � 	t � �mgj

��
lim sup
m��

X
v�V

�v jTv 	 ft � 	t � �mgj
m

�

�
�

max
v�V

lim sup
m��

jR 	 Tv 	 ft � 	t � �mgj
jTv 	 ft � 	t � �mgj

��
lim sup
m��

�m

m

�

� max
v�V

lim sup
t��

jR 	 Tv 	 
t�j
jTv 	 
t�j � � � �S�

We bound the factor multiplied by C � as follows�

lim sup
m��

�

m

X
v�V

��v jR 	 Tv 	 ft � 	t � �mgj� � lim sup
m��

X
v�V

�v jTv 	 ft � 	t � �mgj
m

� lim sup
m��

�m

m
� ��

�� CONCLUSIONS AND OPEN PROBLEMS

We have given a protocol which achieves constant expected delay for each message
in the Synchronized In�nitely�Many Users Model with � � ��e� We have also given
a protocol which achieves constant expected average delay in the Unsynchronized
Finitely�Many Users Model for any f�ig��i�n�Bernoulli message�arrivals distribu�
tion in which

P
i �i � ��e� Several open questions remain�

�Can we get good delay versus arrival rate tradeo�s in our models( Are there
�ne�tunings of the protocols or constants which ensure short delays for �small�
values of �(

�In the in�nitely�many senders models considered� is there a protocol which is
stable in the sense of 
H�astad et al� ����� for all � � �( If not� then what is the
supremum of the allowable values for �� and how can we design a stable protocol
for all allowed values of �( We have shown protocols that guarantee stability for
all � � ��e� Here is a heuristic argument as to why this may indeed be a limit�
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Assume that we have a static system with some h users �messages�� where even
the value of h is known to all users� If all users follow the same protocol� the
optimal probability of �success� �exactly one message attempting the channel�
in one time step is achieved if each message attempts using the channel with
probability ��h� in this case� the success probability is h����h�������h�h�� � ��e
for large h� Thus� even if the users are given the additional information on the
exact number of messages� it may be that ��e is the best probability of success
possible� This seems to suggest that if the arrival rate � is more than ��e� then
the system cannot be stable �since the average arrival rate will be more than
the average rate of departure�� Is this intuition correct( What is a �minimal�
assumption that will ensure a stable protocol for all � � �( �As described in the
introduction� some su
cient conditions are described in 
Pippenger ����� H�astad
et al� ����� for certain models including �nitely�many users models��

�For which arrivals distributions are our protocols stable( We have shown that our
Unsynchronized Finitely�Many Users Model protocol is stable for any f�ig��i�n�
Bernoulli message�arrivals distribution in which

P
i �i � ��e� that our Synchro�

nized Finitely�Many Users Model protocol is stable for any f�ig��i�n�dominated
arrivals distribution with

P
i �i � ��e� and that our Synchronized In�nitely�

Many Users Model protocol is stable for Poisson arrivals with � � ��e� We
believe that our Synchronized In�nitely�Many Users Model protocol is also sta�
ble for other input distributions�

For example� suppose that the distribution of incoming messages to the system
has substantially weaker random properties than the independent Poisson dis�
tribution� Our protocol can still achieve E
Wave� � O���� From the paragraph
immediately following the statement of Theorem �� we see that pi��� � O�qi�
will su
ce to maintain the property that E
Wave� � O���� the strong �doubly
exponential� decay of pi��� as i increases is unnecessary� In turn� by analyzing
the recurrences presented by Lemmas � and �� we can show that rather than the
strong bound of ����� it su
ces if

Pr
u
 is t�bad� � k����k	��t� ����

We can then proceed to show that pi��� � O�qi� by showing� via induction on
i as above� that pi�t� � k��i�����k	��t� the proof can then be concluded as
before� The bound in ���� just decays singly exponentially in t� as opposed to
the doubly�exponential decay we had for Poisson arrivals� Thus� our approach
will work with message�arrival distributions that have substantially weaker tail
properties than independent Poisson�
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Fig� �� The tree protocol


