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Abstract

We show that for all large n, every n-uniform hypergraph with at most 0.74/n/lnn x 2"
edges can be 2-colored. This makes progress on a problem of Erdés (1963), improving the
previous-best bound of n'/3-°(1) x 2" due to Beck (1978). We further generalize this to a
“local” version, improving on one of the first applications of the Lovasz Local Lemma. We also
present fast randomized algorithms that output a proper 2-coloring with high probability for
n-uniform hypergraphs with at most 0.7 /n/Inn x 2™ edges, for all large n. In addition, we
derandomize and parallelize these algorithms, to derive NC! versions of these results.

1 Introduction

A hypergraph H = (V, E) consists of a set V and a collection E of subsets of V. The elements
of V and E are respectively called wvertices and edges, and we only consider finite hypergraphs
here. Hypergraph coloring is a generalization of graph coloring: H is said to be c-colorable iff
there is a function V' — {1,2,..., ¢} such that no edge is monochromatic. In contrast with graphs,
deciding if a given hypergraph is 2-colorable is NP-complete, even if all edges have cardinality at
most 3 (Lovész [20], Garey & Johnson [16]). Hypergraph 2-colorability is a central problem in
combinatorics that has been studied since the early part of this century. It has also been studied by
computer scientists due to its connections to the graph coloring and satisfiability problems. In this
work, we make progress on an extremal problem of Erd6s on 2-colorable hypergraphs, improving
on a result of Beck from 1978; we further generalize this to a “local” version, improving on one of
the first applications of the Lovdsz Local Lemma [12]. Furthermore, our first result translates to
fast sequential and parallel (deterministic) algorithms.

History. The property of hypergraph 2-colorability, also called Property B, has been studied for
long (Bernstein [8], Miller [23]: see Jensen & Toft [17]). Much work has been done on proving
hypergraph families 2-colorable and on the corresponding algorithmic questions [1, 2, 6, 7, 12, 21,
22, 24, 26, 29]. Inspired in part by recent work on approximate graph coloring via semidefinite
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programming (Karger, Motwani & Sudan [18]), Alon, Kelsen, Mahajan & Ramesh [3], Chen &
Frieze [9], and Krivelevich & Sudakov [19] have provided approximation algorithms for coloring
2-colorable hypergraphs. They present polynomial-time algorithms to c-color a given 2-colorable
hypergraph H = (V, E), where c is a function of |V| and maxscp |f|. There is also a natural
maximization version of 2-coloring: color V' with two colors such that a maximum possible number
of edges are non-monochromatic. Approximation algorithms with a performance ratio of 0.724- - -
for this problem, have been provided by Andersson & Engebretsen [5].

We now present the setting of our first main result. H = (V, E) is called an £-uniform hyper-
graph if each edge is of cardinality £. In an approach that is now oft-used in the context of, e.g., the
maximum satisfiability problem, Erdés showed in 1963 that any n-uniform hypergraph with less
than 2" ! edges is 2-colorable: color the vertices Red and Blue uniformly at random and indepen-
dently, and observe that the expected number of monochromatic edges is smaller than 1 [10]. This
prompted one of his extremal problems: what is the least m(n) such that there is an n-uniform
hypergraph with m(n) edges that is not 2-colorable? (This is problem 15.1 in [17].) Clearly, his
above result shows that m(n) > 277!, In yet another approach that is now much used in computer
science, Erdés then used the probabilistic method to construct a “random n-uniform hypergraph”
for which no 2-coloring exists: he showed that m(n) < n?2"+! [11]. See [17] for bounds on m(n)
for small n, as well as recurrence relations for m(n).

It was conjectured by Erdés and Lovdsz in their seminal paper [12] that m(n) may be ©(n2").
An elegant result of Beck showed that m(n) > n'/3=°(1)2"; ie., for a certain function g(n) that tends
to 0 as n increases, Beck showed (using a randomized algorithm) that any n-uniform hypergraph
with nl/3-9(n)gn edges is 2-colorable [6]. (Of course, in such positive results, the n-uniformity
condition can be weakened to each edge having at least n vertices: just restrict each edge to an
arbitrary n-element subset of it.) A simpler, probabilistic and algorithmic, proof of Beck’s result
was presented by Spencer [26]. Recall from above that m(n) = O(n?2"). To quote Spencer from
the second edition of [27],

It may appear then that the bounds on m(n) are close together. But from a probabilistic
viewpoint a factor of 2! may be considered a unit. We could rewrite the problem
as follows. Given a family F' let X denote the number of monochromatic sets under
a random coloring. What is the maximal k& = k(n) so that, if F' is a family of n-sets
with F(X) < k, then Pr[X = 0] > 0? In this formulation en'/® < k(n) < ¢n? and the
problem clearly deserves more attention.

1.1 Contributions of this work

(i) Improved lower bounds for m(n). By building on the Beck-Spencer approach, we improve
on Beck’s result to prove that m(n) = Q(\/n/Ilnnx2"). We show that if H = (V, E) is an n-uniform
hypergraph with at most (1/10)y/n/Inn x 2™ edges, then H is 2-colorable; for sufficiently large n,
this bound can be improved to 0.7y/n/Inn x 2". We, in fact, present fast randomized algorithms
that output a proper 2-coloring with high probability for such hypergraphs. We also derandomize
and parallelize these algorithms, to derive NC! versions of these results. See Theorems 2.1 and
3.1.

(ii) 2-coloring hypergraphs with small overlap. Next, we generalize result (i) to a “local”
version, using the Lovasz Local Lemma. A useful parameter of H is its overlap D, defined to be



the maximum number of edges, including itself, that any edge of H intersects. One of the first and
major applications of the powerful Lovasz Local Lemma [12]—abbreviated LLL here—was to show
that any n-uniform hypergraph with D < 2"~ !/e is 2-colorable. (Here, as usual, e denotes the base
of the natural logarithm.) The Local Lemma was also applied to this parameterization based on D
to show, e.g., that for any d > 9, any d-uniform hypergraph in which each vertex appears in at most
d edges, is 2-colorable [12]; see [2, 29, 22] for further improvements. The “D < 2"~1/e” result was
major progress on the extremal question: what is the least D* = D*(n) for which there exists an
n-uniform hypergraph with overlap at most D* that is not 2-colorable? The result of [11] described
previously, shows that D*(n) = O(n?2"). By applying Theorem 4.1 to our approach for proving
result (i), we show in Theorem 4.2 that D*(n) > 0.17\/n/Inn2" for sufficiently large n. This
improves on the above-seen ©(2") lower bound of [12]. In other words, we show that for sufficiently
large n, any n-uniform hypergraph with overlap D at most 0.17/n/Inn2" is 2-colorable. Modulo
constant factors, this is easily seen to be a generalization of our result (i), since |E| > D trivially.

(iii) Hypergraphs with “small” intersections. What could be a possible avenue for improv-
ing our result (i)7 One answer is to start by considering some restricted but interesting family F of
uniform hypergraphs. In Section 5, we build on a lead suggested by the work of [12] and present a
candidate family F. We show that the upper bound O(n?2") of [11] holds even for m(n) restricted
to this family. We then show that for all € > 0, m(n) > Q(n'~¢2") for this family, by analyzing a
modification of our algorithm for result (i).

At a high level, our main contribution is the following. An important branch of the basic prob-
abilistic method is the method of alteration: one starts with an appropriate random construction,
which, however, may (or will) contain some “blemishes”. To correct the blemishes, we first argue
that we do not expect too many blemishes, and then proceed to make a (hopefully) small alteration
to correct these blemishes. See [4, 27] for several concrete instances of this methodology. In “cor-
recting the blemish”, two popular approaches are to proceed deterministically, or to alter several
components of the current structure independently, with low probability. The above-mentioned
result of Beck is essentially an example of the latter idea [6]. More precisely, one starts with a
random coloring, and then independently flips the colors of vertices lying in monochromatic edges,
with a small probability. Our main idea is to slow down this recoloring process: in the random re-
coloring process, we recolor the vertices lying in monochromatic edges in random order, processing
these vertices one-by-one. The probabilistic recoloring of a vertex will take place only if a certain
condition necessitates it: the advantage is that the effect of previously-processed vertices may have
hopefully falsified this condition. The reader is referred to Section 2 for a precise description and
analysis. Can such “lazy alteration” be applied to other probabilistic (alteration) arguments?

The rest of this paper is organized as follows. Section 2 presents the main result, and a de-
randomized parallel version is shown in Section 3. Sections 4 and 5 study hypergraphs with small
overlap and small intersections, respectively.

2 Slow recoloring

We now prove our first main result—result (i) of the introduction. Edges of H will be denoted by
f, f', h, b etc.



For a coloring x : V' — {Red, Blue}, let
M(x) ={f € E: f is monochromatic in x},

and for v € V, let
M(v,x) ={f e M(x) :v € f}.

For S C V, let R(S,x) denote the event ‘S is completely red in x’, and B(S,x) the event ‘S is
completely blue in x’. Sometimes, instead of R(S, x) and B(S, x) we write ‘S is red in x’ and ‘S is
blue in x’ respectively.

THE ALGORITHM.

Phase 1. Generate a random coloring xo : V' — {Red, Blue} by choosing xo(v) to be Red or Blue
with probability 1/2, independently for each vertex v € V.

Phase 2. In this phase, we flip the colors of some of the vertices to make edges in M (xp) non-
monochromatic, and hope that this does not make the already non-monochromatic edges
monochromatic. In the method of [26], colors of all vertices that belonged to at least one
monochromatic set were flipped (independently, with a certain probability q) simultaneously.
In our proof we will not recolor all vertices at the same time. Instead, each vertex will be
assigned a delay, which will be real number between 0 and 1, and the vertices will be processed
in the order of their delays.

Formally, we pick the delay function delay : V' — [0, 1] by choosing delay(v) uniformly at
random in [0, 1] and independently for each v € V. (Note that with probability 1, no two
vertices are assigned the same delay.) Next, pick b : V' — {0,1} by choosing b(v) = 1 with
probability p, and b(v) = 0 with probability 1 —p, independently for each v € V. (Appropriate
values for p will be presented later.) Using delay and b, we will recolor in |V| steps as follows."
Let v1,v9,... be the vertices of H written in the order of their delays (v; has the smallest
delay).

Step 1. If M(v1,x0) # @ and b(vy) = 1, then flip the color of v;. Let the resulting coloring be
X1-

Step 2. If some edge in M (v, xo) continues to be monochromatic in x; and b(v) = 1, then flip
the color of vy. Let the resulting coloring be ys.

Step i. If some edge in M (v;, xo) continues to be monochromatic in x;_1 and b(v;) = 1, then
flip the color of v;. Let the resulting coloring be x;.

Let x* be the coloring obtained after all vertices have been considered.

This slow recoloring is the key to our improvement: one expects that a vertex that gets a
“large” delay will have a “low” probability of having to be recolored due to the effect of the
vertices with smaller delays. Intuitively, this helps increase the probability that an edge that was
non-monochromatic at some point, remains so.

!The previous version of this algorithm used delays in the (discrete) range 1,...,r, where r was about Inn. Joel
Spencer showed that choosing real-valued delays from the range [0, 1] considerably simplifies the calculations.



Simplification. Ravi Boppana (personal communication) has shown that the second phase of
the algorithm can be considerably simplified, as follows. We pick delays and let vy,vs,... be the
vertices written in the order of their delays, as before. In step i, if some edge in M (v;, x¢) continues
to be monochromatic in y;_1, then we flip the color of v;. Let the resulting coloring be x;. Boppana
has shown that this algorithm also achieves the performance bounds we claim for our algorithm.

Indeed, one of the referees pointed out that this can be seen readily by comparing what hap-
pens in Phase 2 of the two algorithms. Let N be the number of vertices that belong to some
monochromatic set after Phase 1, and let X be a random variable having Binomial Distribution
Bin(N,p). The claim is that if Boppana’s algorithm is stopped after the first X (of the N) vertices
have been considered, then it corresponds exactly to the algorithm we have presented above. In our
algorithm, the number of vertices v with b(v) = 1 has the same distribution as X, and these vertices
are considered in a random order. On the other hand, in Boppana’s algorithm (with stopping after
X) we pick a random order order on all vertices and stop after X vertices have been considered.
Clearly, the two are the same. Thus, Boppana’s algorithm when stopped after X vertices have
been considered does at least as well as our algorithm; it could do no worse (and might even do
better) if it is not stopped early. Note that the bits b(v) play no role in the Boppana’s algorithm;
they appear only in the analysis of the algorithm!

2.1 Analysis

Let |E| = k2™, for some parameter k = k(n). We wish to show that M(x*) = () with non-zero
probability if £ = k(n) is not “too large”. Consider an edge f of H. We will estimate the probability
that f is monochromatic in x*. We have two cases based on whether or not at least one vertex of
f changed its color during the recoloring phase.

Case 1. If f was blue in both xo and x*, then we say that event Ap.(f) took place; that is

ABlue(f) = B(faXU) N B(faX*)

Similarly, we have Ageq(f) = R(f, x0) AN R(f, x*), which states that the edge f was red in x( and
this was not rectified while recoloring.

Case 2. Suppose f was not blue in xo but became blue during the recoloring phase. That is,
during the recoloring phase every red (in xo) vertex of f changed its color. Let w be the last red
vertex of f to change its color. Why was it necessary to recolor w? There must be an edge f' # f
such that w € f’, and f’ was red in xp and continued to be red until w was considered. That is, f
became blue in x* because w had to be recolored to rectify the improper coloring of f’. When this
happens, we say that f blames f’ for making it (i.e., f) blue; this event is denoted by Bpp.(f, f').
Note that a fixed f can blame more than one f’, that is, Bpp.(f, f') might hold for for more than
one f’.

To account for the possibility that f was not red in xo but became red in x*, we interchange
the roles of red and blue in the above discussion. We then arrive at the event Bgey(f, f'), which is
true exactly when f blames f’ for making it red. We thus have the following lemma.

Lemma 2.1 If f € E is blue in x*, then at least one of Apue(f) or Bpue(f, f') takes place for
some f' € E (f # f'). If f is red in x*, then at least one of Ageq(f) or Brea(f, f') takes place for
some f' € E (f £ f').



Thus, to bound the probability that there is some monochromatic set in x* it is enough to
bound the probabilities of the events

H.f S (ABlue(f) \4 ARed(f)) and Elfa fl S (BBlue(fa f,) \4 BRed(fa fl))

The next three claims will help us estimate the probabilities of these events.
Claim 2.1 Pr[Agu.(f)] = Pr[Age(f)] =27"(1 — p)™.

Proof  Now Ape(f) = B(f.x0) A (Y0 € f : b(v) = 0). Thus, Pridpme(f)] = 2"(1 — )"
Similarly, Pr[Ageq(f)] =2""(1 —p)". ]

Claim 2.2 If |f N f'| > 1, then Pr[Bgpe(f, )] = Pr[Brea(f, f')] = 0.

Proof: Suppose f blames f’ for making it blue. Then, the red vertex of f that was recolored last,
say w, lies in f’. That is, all other vertices of f N f’ became blue before w was considered. But then
/' could not have been red just before w was considered for recoloring. Thus, Pr[Bpp.(f, f')] = 0.
Similarly, Pr[Bgeq(f, f')] = 0. [

Let f N f'={w}. For S C f — f’, consider the following event.

‘S%lue(sa fa fl)

Suppose Bape(f, f') holds. Then the event L, (S, f, f') must hold for some S C f — f’ (namely,
S is the set of red vertices (in xg) of f — f’). Furthermore, since w was the last red vertex of f to
be recolored and f’ was red until then, we have that the following event also holds.

R(f',x0) AB(f =8 = f',x0) AR(S,x0) A (Vv € (S U{w}) : b(v) = 1).

Eue (S, f, f) = (Vu € S : delay(u) < delay(w))A (Yo € (f'—{w}) : (delay(v) > delay(w)Vb(v) = 0)).
Here S is the set of red vertices of f. Thus, Bpp.(f, f') implies

BBlue(fa fl) déf 15 C f - f, : gBlue(Sa fa fl)a

where Eppe (S, f, 1) = Ebpe (S, o FINE Ry, (S, f, f'). Similarly, when considering the event Breq(f, f')
we obtain the corresponding event Breq(f, f'). We summarize our observations as follows.

Claim 2.3 B (f, f') implies Bpue(f, f') and Brea(f, f') implies Brea(f, ).
Claim 2.4 If [[ O f'| = L, then Pr[Baue(f. /)] = PrlBrea(f. /)] < 27241,
Proof: It is easy to check, using our definition of x, delay and b, that

Pr[Epiue (S, f, f) | delay(w) = z] = 27201 plSIH1 1811 — gp)n=t.



On integrating over z and summing over all S, we obtain
R n—1 n — 1 1
PrlBone(f, f)] < 2721y P [t )
=\ ¢ 0

n—1
_ 22n+1p/1(1 _ J?p)n*l Z n—1 pl:L‘é dr
0 14

£=0

1

— 2—2n+1p/ (1 —J?p)n_l(]_ _’_xp)n—l dx
0
1

_ 2—2n+1p/0 (1= (2p)?)" da

1
< 272n+1p/ dr
0

_ 2—2n+1p.

Similarly, Pr[Breq(f, )] < 2727 +1p. |

Recall that |E| = k2™. We are now ready to show that if k£ is not “too large”, then with constant
probability M(x*) = (). First, from Claim 2.1, we have

Pr3f € E: Apue(f) V Apea(f)] < k2" x 2 27"(1 —p)" < 2k(1 —p)". (1)

Remark. By considering the positive correlation between the events considered in Claim 2.1, one
can improve the bound in (1) to 1 — (1 — (1 — p)")?*. The detailed argument is presented in the
appendix.

Next, from Claims 2.2, 2.3 and 2.4, we have
Pr[zlfa fl S BBlue(fa fl) \% BRed(.fa f,)] < k222n X 2 X 272n+1p = 4k2p' (2)

By Lemma 2.1,
Pr[M(x*) # 0] < 2k(1 —p)" + 4k>p. (3)

For 0 <e<1,k=(1/vV2)(1 —¢)y/n/Inn, p = (1/2)Inn/n, and for all large n, this probability
is at most 1 —e. (In particular, for any fixed € > 0 and n > ng(e), every n-uniform hypergraph
with (1/v/2)(1 — €)y/n/Inn x 2" edges has a proper 2-coloring.) If € is, e.g., a constant, then
this “success probability” of € can of course be boosted to any constant probability less than 1
by repeating our basic random process a sufficiently large constant number of times. If n > 2 is
arbitrary, we can take, e.g., & = (1/10)y/n/Inn and p = (1/2)Ilnn/n; (3) will then imply that
every n-uniform hypergraph with at most (1/10)y/n/Inn x 2™ edges is 2-colorable.

Theorem 2.1 Let H = (V, E) be an arbitrary n-uniform hypergraph with at most (1/10)y/n/Inn x
2" edges; if n is sufficiently large, then H having up to 0.7\/n/lnn x 2™ edges is also admissi-
ble. Then, H is 2-colorable; also, a proper 2-coloring for H can be found with high probability in
O(poly(|V| + |E|)) time.

A derandomized parallel version of Theorem 2.1 is presented in the next section (see Theorem 3.1).



2.2 When there are few singleton intersections

In our discussion above, pairs of edges that intersect in only one element play a special role. Call
f € E relevant iff there is some f' # f such that |f N f'| = 1; let I(H) be the set of relevant
edges of H. Suppose we can 2-color the sub-hypergraph of H that only contains the edges in I(H).
Then there is a simple way to start with this and 2-color H, as follows. First, if any vertex is
currently uncolored (since it only occurred in edges in E —I(H)), color each such vertex arbitrarily.
Next, repeat the following as long as there exists any monochromatic edge: choose an arbitrary
monochromatic edge and flip the color of any one of its vertices. It is known and easy to see that
no new monochromatic edge is ever created, and hence this process stops after considering each
edge in F — I(H) at most once. Thus, a simple consequence of Theorem 2.1 is

Theorem 2.2 The consequences of Theorem 2.1 hold even if the upper bounds of Theorem 2.1 on
|E|, are only upper bounds on |I(H)|.

[In particular, this implies the known fact that if I(H) = (), then H is 2-colorable in polynomial
time.]

3 Derandomized parallel version: recoloring with discrete delays

We show how to derandomize and parallelize our algorithm. To this end, we first present the
original version of our algorithm, which is more amenable to derandomization. We then present
the derandomized parallel version in Section 3.2.

3.1 Recoloring with discrete delays

The original version of our coloring algorithm uses delays chosen from the set {1,2,...,r} (for
a suitable r = Q(logn)) instead of [0, 1], and will be a useful version to base our derandomized
parallel algorithm on. Since the randomized algorithm is very similar to that of Section 2, we only
present a brief description now. Phase 1 is the same as the one of Section 2. In phase 2, the main
difference is that we pick the delay function delay : V' — {1,2,...,r} by choosing delay(v) = i with
probability 1/r, independently for each v € V. The bits b(-) are chosen the same way as before:
b(v) = 1 with probability p, and b(v) = 0 with probability 1 — p, independently for all v € V.

In phase 2, we now recolor in r stages as follows. Let x; denote the coloring at the end of
stage j. In stage i, all v with delay(v) = i perform the following action in parallel: if some edge in
M(v, x0) continues to be monochromatic in x;—1 and b(v) = 1, then flip the color of v.

The analysis is almost identical to the analysis in Section 2.1. Here, we shall describe only
the parts where there is a difference. Let events Appe(f), Area(f), Baue(f, f') and Brea(f, f')
be defined as before. Then, Lemma 2.1 and Claim 2.1 are still valid. For Claim 2.2 we have the
following analog.

Claim 3.1 If either Bpue(f, f') or Brea(f, f') takes place, then all vertices in f N f' must have the
same delay.

Proof: Suppose Bpp.(f, f') holds, but delay(u) < delay(v) for some u,v € f N f'. Clearly, u and
v were both made blue during the the recoloring phase, and v became blue before v. But then,
when the last red vertex in f was considered the color of u was already blue. Hence, f’ was not red
at that stage; so f could not have blamed f’ for making it blue. Thus, all vertices in f N f’ must



have the same delay. By symmetry, the same conclusion follows when Bgeq(f, f') holds. [

Claim 3.2 Pr[Bpu.(f, f')] = Pr[Brea(f, f)] < 272 p(2p/r) 0 I=Le(=lINFDR/T - Purthermore,
this calculation can be done by only considering the xo, delay, and b values of the vertices in fU f'.

Proof: The proof has the same structure as that of Claim 2.4; the only difference is that we allow
lfNf|>1. Let fnf' =T and let t =|T|. For S C f — f', consider the following event.

5113!ue(87faf,) = R(f17X0) /\B(f -5 - f,7XU) /\R(87XU) A (VU € (SUT) : b(U) = 1)

Suppose Bgpe(f, f') holds. Then the event £, (S, f, f') must hold for some S C f — f’ (namely,
S is the set of red vertices (in xp) of f — f’). Also, by Claim 3.1 all vertices in f N f’ have the same
delay, say d. Since the last red vertex of f to be recolored is in f’, and f’ was red until that vertex
was taken up for recoloring, the following event also holds.

E2,..(S,d, £, 1) = (Vu € S : delay(u) < d) A (Vv € (f' = T) : (delay(v) > d V b(v) = 0)).

Thus BBlue(fa fl) implies
dd3S - f - f, . gBlue(Sadafaf,)a

where gBlue(Sa da fa f,) = gllglue(sa fa fl) A 62(Sa da f’ fl) A delay(T) = {d}
It is easy to check, using our definition of xq, delay and b, that Pr[delay(T) = {d}] = 1/r!, for
d=1,2,...,r, and that

Pr[Epiue (S, d, f, f') | delay(T) = {d}] = 27" 'pS¥!(d/r)¥I(1 — (d = 1)p/r)"".

On summing over all d and S, we obtain

n—t r
—om n—t d d—-1 ., _
PrBpue(f, )] < 27 +t2< , )p”t(l/r)tZ(;)f(l "
£=0 d=1
—2n - d—1 n— g n—1 dp
22yt 31— L) tz( e )(7%
d=1 £=0
o A1, d
= 27 (p/r)' Y (L= ——p)" (1 + —p)"
= r r
< 2/ STy
d=1 "
< 2—2n+tpt(1/,r)t—1e(n—t)p/r‘
Similarly, we bound Pr[Bgeq(f, f')]- [

Recall that |E| = k2™. To bound the probability that M(x*) # 0, we repeat the calculation
presented at the end of Section 2, this time using Claims 3.1 and 3.2 instead of Claims 2.2, 2.3 and
2.4.

Inequality (1) still holds. To bound the probability of the event “3f, f' € E : (Bpue(f, f) V
Brea(f, f'))”, we use Claim 3.2 and obtain that for edges f and f' (f # f') with |[f N f'| =t > 1,

Pr(Bpue (f, ')V Brea(f, f1)] < 2 x 2720 p(2p /r) =P =D/ < 4 5 2720 pePniT,



the last inequality holds because r > 2. Thus, we have
Pr(3f, 1" € E: Baue(f, ') V Brea(f, f)] < 27" x 4 x 27 2"pe?™/™ = 4k?pe’™/".

By Lemma 2.1,
PriM(x*) # 0] < 2k(1 —p)™ + 4k>peP™/". (4)

For 0 <e<1, k= (1/V2)(1—¢)y/n/lnn, p=(1/2)Inn/n, r = [¢ 'Inn] and for all large n,
this probability is at most 1 — e.

3.2 Derandomization and parallelization

We now show how the above algorithm can be derandomized and also be made to run in NC*.
A fundamental idea in derandomization, due to Naor & Naor [25], is that randomized algorithms
are typically robust to small changes in the underlying distribution. As explained in more detail
below, this opens up the following avenue to potentially derandomize a given randomized algorithm.
The key goal is to show that there is an efficiently constructible “small” sample space, such that
sampling from this small space changes a (carefully crafted) analysis of the algorithm negligibly.
Thus, the algorithm will work essentially as well, if its random choice comes from the small space.
This in turn yields a deterministic algorithm, which runs the randomized algorithm (in parallel)
on all possible seeds from the small space, and finally outputs the best solution found. The work
of [25] presents explicit constructions of small sample spaces that “approximate” some properties
of certain much larger sample spaces, in a precise sense. To specify the type of “approximation”
we need, we start with a definition.

For any non-negative integer ¢, let [t] = {0,1,...,¢ — 1}; an interval of [t] is a set of the form
{i:a <i < b}, for some a,b € [t] such that a < b. Let J; be the set of all intervals of [¢].

Extending the work of [25], Even, Goldreich, Luby, Nisan & Velickovi¢ defined the following
[13, 14]. Suppose X1, Xo,..., Xy € [t] are independent random variables with arbitrary individual
distributions and joint distribution D; let X denote the vector (X1,Xo,...,Xy). Callaset A C [t]V
an (£, 0)-approximation for D if, for Y = (Y1,...,Yy) sampled uniformly at random from A,

e for all index sets I C {1,2,...,N} with |I| </, and
e forall J: I — J;,

we have

IPA(Y; € 760)] - [TPriXi € JG) < &
i€l el

(We call any event of the form “A;c;(X; € J(4))” an interval event w.r.t. X.) Among other results,
it was shown in [13] that such a set A with cardinality poly(2¢,log N,6~') can be constructed
explicitly using poly(]A| + N) processors in O(log(|A| + N)) time on an EREW PRAM. (See [14]
for the journal version of [13].)

Some remarks on this construction of [13]:

e The construction possesses some stronger properties, which, however, we do not need here.

e As described in [13], the construction handles the situation where J(7) is a singleton for each
1, but it is easy to see that a minor modification makes it work for all interval events.
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e The description in [13] does not explicitly discuss such parallel constructions, but such a
parallel version of the work of [13] is immediate from a reading of [13].

e |A] above does not depend on ¢, since we can assume without loss of generality that ¢ = O(£/9)
[13].

One basic utility of such constructions to, say, derandomized parallel algorithms, is as follows.
Given a randomized algorithm that uses the independent random variables X, Xo,..., Xy, one
first shows that the analysis is changed little by an approximation as defined above, if £ is sufficiently
large and d suitably small. Then, one may just exhaustively search such a sample space A (allocating
an appropriate number of processors to each element of A), and thus deterministically find a value
for (X1, Xo,...,Xy) that is “good enough” for the algorithm. In our context, we get

Theorem 3.1 For any sufficiently large n, let H = (V, E) be an arbitrary n-uniform hypergraph
with at most 0.7\/n/Inn x 2" edges. Then, H is 2-colorable; also, a proper 2-coloring for H can
be found in NC'.

Proof: Suppose for a sufficiently large n that H = (V| E) is an n-uniform hypergraph with at
most 0.7y/n/Inn x 2" edges. Clearly, we may assume without loss of generality that |V| < n|E|.
We may also assume that |E| > 2"/5%0: if not, one can employ the NC' algorithm of [1] to 2-color
H. So suppose |E| > 2n/500 " Then, the “input size” for our problem is 2°(™) and hence an NC*
algorithm would use 29 processors and O(n) time.

We now show how to derandomize the algorithm of this section within these processor and time
bounds. In the “approximating distributions” notation used above, the underlying independent
random variables X7, Xs,... are the xo, b and delay values of the vertices; ¢ = r. Let D be the
joint distribution of these independent random variables. Our plan is to proceed as follows. We
will show that our failure probability bound (4) is obtainable as a sum of at most s = 2°(") terms,
where each term is the probability of an interval event (w.r.t. X ) that depends on at most 6n of
the variables X7, Xs,.... So, since (4) leads to a failure probability that is bounded away from
1, we may instead generate the random variables X, Xs,... from a (6n,0)-approximation A for
D, where § = o(1/s) (say, 1/(slogn)); it is then easy to check that our failure probability is still
bounded away from 1. Thus, we would have shown the existence of a point in A that leads to a
successful 2-coloring for H. Since |A| = 29(") the exhaustive search of A can be made to run in
O(n) time using 2°(™ processors.

So, let us study our analysis of this section, and the proof of Claim 3.2. Recall our goal from
above: to show that our failure probability bound is a sum of at most 2°(") terms, each term
being the probability of an interval event that depends on at most 6n of the X;. Our failure
probability was the sum of the probabilities of the events Appe(f), Area(f), Epwe(S,d, f, f') and
ERred(S,d, f, f'), for all edges f, for all f' # f with f'nf # 0, for all S C (f — f'), and for all
de{1,2,...,r}. It is immediate that there are 2k2™ events of the form Apgy.(f) and Age(f), and
that each of these is an interval event w.r.t. X that depends on 2n of the X;. Next, choose distinct
edges f, f' arbitrarily such that |f’' N f| > 1. There are at most 22"poly(n) such choices. Having
fixed such a choice of f, f’, choose any S C (f — f') and any d € {1,2,...,r}: there are at most
O(2" logn) such choices. We now show that Egpe (S, d, f, f') can be expressed as the disjunction of
at most 2" disjoint interval events; similarly for Egqq(S,d, f, f'). This would conclude the proof.

Let f N f' = T. Recall that Eppe (S, d, f, f') = Eo (S, [, 1) ANEX(S,d, f, f') A delay(T) = {d}.
It is easily seen that Epp.(S,d, f, f') depends on at most 6n of the X;. Also, Epe(S,d, f, ') is

11



“almost” an interval event, except for the part “Vv € (f'—T) : (delay(v) > dVb(v) = 0)”. However,
for any given v, the event “delay(v) > d V b(v) = 0” can be rewritten as the disjunction of two
disjoint interval events:

(delay(v) > dV b(v) =0) = (b(v) =0)V (b(v) =1 Adelay(v) € [d,r]).

Thus, Eppe(S,d, f, f') is the disjunction of at most 2" disjoint interval events. This finishes the
proof. [ |

4 Generalization: A Local Version

As mentioned in the introduction, a useful parameter of H is its overlap D = maxscp |{f' €
E: fnf"#0}. We now show that any n-uniform hypergraph with D < 0.17\/n/Inn x 2" is
2-colorable, for sufficiently large n.

Let us recall a special case of the LLL, which shows a useful sufficient condition for simultane-
ously avoiding a set Ay, Ao, ..., Ay of “bad” events:

Theorem 4.1 ([12]) Suppose events Ay, As,..., AN are given. Let S1,So,...Sn be subsets of
[N] such that for each i, A; is independent of (any Boolean combination of) the events {A; :
j € ([N] = Si)}. Suppose that Vi € [N]: (i) Pr[A;] < 1/2, and (ii) 3 jcq, Pr[Aj] < 1/4. Then,

Pr[Aicin) Ai] > 0.

Remark: Often, each j € N will be an element of at least one of the sets S;; in such cases, it
clearly suffices to only verify condition (ii) of Theorem 4.1.

Suppose H is an n-uniform hypergraph with overlap D = A2". Let x* be the random coloring
obtained by running the slow recoloring algorithm of Section 2; the value of p will be specified
shortly. By Lemma 2.1, if we can simultaneously avoid the following events, then x* will be a valid
2-coloring of H:

{ABlue(f)aARed(f) : f € E} U {BBlue(fa fl)aBRed(fa f,) : fa f, € E}

In Claims 2.2 and 2.3 we observed that the event Bpp(f, f') holds only if |f N f'| = 1 and the
event Bpue(f, f') holds; similarly Breq(f, f') holds only if |f N f/| = 1 and the event Breq(f, ')
holds. Thus, it is enough if we can simultaneously avoid the following two types of events.

e Type 1 events: {Apue(f), Area(f): f € E}.

o Type 2 events: {Bpue(f, ), Brea(f, 1) : (f,f € EYA(fOf|=1)}.

We will now show that for A < 0.17\/n/Inn, these events satisfy the conditions of Theorem 4.1.
Thus, we can simultaneously avoid these bad events.
Our argument rests on the following observations.

(a) Every bad event has at most two edges as its arguments.
(b) The occurrence of a bad event is completely determined once the value of x¢(v), delay(v) and

b(v) are fixed for all vertices belonging to its arguments.
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For instance, consider the bad event B = B Biue(f, f'). Suppose C is any collection of bad events
such that for each event £ € C: no argument of £ intersects f, and no argument of £ intersects f’.
Then, the above observations, together with the fact that yg, delay and b are chosen independently
for different vertices, imply that B is independent of any Boolean combination of events in C.

For a bad event B, let S(B) be the set of all bad events at least one of whose arguments has a
non-empty intersection with an argument of B. Thus, as discussed above, B is independent of any
Boolean combination of the events outside S(B). Thus, to apply Theorem 4.1, we need to bound
the sum of the probabilities of the events in S(B). To do this, we will first bound the number of
events of each type in S(B); then we will use Claims 2.1 and 2.4 to bound their probabilities.

Claim 4.1 For all bad events B, S(B) has at most 4D events of type 1 and at most 8D? events of
type 2.

Proof: Let the arguments of B be f and f' (we will take f = f’ if B is a type 1 event). The only
events of type 1 that are in S(B) correspond to edges that intersect either f or f’. There are at most
2D such edges by the definition of D; for each such edge h, there are two type 1 events—Apy.(h)
and Apgeg(h). Thus, S(B) has at most 4D events of type 1.

For a type 2 event with arguments (h, h') to be in S(B), at least one of A and A’ must intersect
at least one of f and f’; furthermore, A and A’ must themselves intersect. It follows that there
are at most 4D? possibilities for (h,h'). For each such argument (h, k'), there are two bad events
Bpiue (b, B') and Bpreg(h,B') in S(B). Thus the number of type 2 events in S(B) is at most 8D2. m

Claim 4.2 Suppose D = \2", where A < 0.17/n/Inn and n is sufficiently large. Then, for any
bad event B, 3 ¢cgp) Prl€] < 1/4.

Proof: We use Claim 4.1 to bound the number of events of each type in S(B); to bound the
probabilities of these events, we use Claims 2.1 and 2.4. We have

> Pr[€] <4D x 27"(1 —p)" +8D% x 272" p = AX(1 — p)" + 16A°p.
£e€S(B)

Ifp=(1/2)Inn/n, e > 0 and X\ = (1 — €)/1/32/n/Inn, then for all large n, this probability is
less than 1/4. (Note that y/1/32 > 0.176.) ]

We have thus established that condition (ii) of Theorem 4.1 holds if D is chosen suitably. As
remarked before, this implies that condition (i) holds as well.

Theorem 4.2 Suppose, for a sufficiently large n, that H is an arbitrary n-uniform hypergraph in
which each edge intersects at most 0.17\/n/Inn x 2™ other edges. Then, H is 2-colorable.

By following the proof of Theorem 2.2, we see that Theorem 4.2 holds even if each relevant edge
intersects at most 0.17\/n/Inn x 2" other relevant edges.
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5 Almost-disjoint hypergraphs

We now explore possibilities for improving the results of Sections 2 and 4. As seen in Section 2.2,
hypergraphs where pairwise edge-intersections are typically “large”, can often be 2-colored. This
seems to suggest that 2-coloring may be most difficult for hypergraphs where edge-intersections are
“small”. Motivated in part by this, Erddés and Lovasz considered simple hypergraphs (also called
nearly-disjoint hypergraphs), wherein any two distinct edges intersect in at most one vertex [12].
Recall the function m(n) defined in the introduction; let m*(n) be the analog of m(n) when we
restrict our attention to nearly-disjoint n-uniform hypergraphs. It is shown in [12] that

Q(4"/n3) < m*(n) < O(nt4"). (5)

(These results of [12] were pointed out to us by Noga Alon and Jeong-Han Kim.) This lower bound
on m*(n) has been further improved to 4" /n' ¢ by Szabé [28], for any fixed ¢ > 0 and all sufficiently
large n. This result was pointed out to us by Jézsef Beck.

Thus, m*(n) > m(n). So, in order to make progress on our goal of improving the result of
Section 2, we need to consider a restricted family of hypergraphs such that: (i) edge-intersections
are “small”, and (ii) the family is rich enough so that the restriction of m(n) to the family is not
much bigger than m(n). This is what is done in the rest of this section.

Remark: Simple hypergraphs sometimes connote “hypergraphs with no repeated edges”. Through-
out this paper, simple hypergraphs mean nearly-disjoint hypergraphs as mentioned above.
5.1 Definition and Theorems

Let F' be a collection of subsets of some universe A. For the definitions below, we do not assume
that all elements of F' are distinct, i.e., we allow F' to be a multiset; however, when we construct
hypergraphs, we will ensure that in the end all its edges are distinct. For a € A, let

dr(a) € |{f € F:a€ f}].
Define (? ) to be the (multi-)set of all ¢-element subcollections of F'. Let

AF) Y max{0,dp(a) — 1}

acA

I(F) ¥ 28

(F) ¥ B [ZH) (6)
me(t)

[In (6), the expectation is over a H chosen uniformly at random from (%).]
Our interest in A(F') stems from the equality

LU 1= 1) = AF).
feEF fer

If the edges of F' are disjoint, then A(F) =0, and Z;(F') = 1 for all t > 1. Suppose F' = {fi, f2,...}
and that for some s and any i # j, |fi N fj| < s. Then, by inclusion-exclusion, [Uscp f| >

Yrerlfl— s(IP1); ve.,
A(F) < 5<|}27|>, Vit > 1, It(F) < 25(;)‘ (7)
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Thus, Z being “small” can be thought of some notion of “small pairwise intersections”. We wish
to consider hypergraphs whose edges do not, on an average, intersect much. We will use Z;(F') to
formalize this notion.

Definition 5.1 (e-almost-disjoint hypergraphs) We say that a family of hypergraphs {G, =
(Vi, En)} is a family of uniform e-almost-disjoint hypergraphs if Gy, is n-uniform, and for all large
n, there exists a t (2 <t < (Inn)'/3) such that

T (E,) < n3, (8)

So, rather than require all pairwise edge-intersections to be “small” (say, at most 1), we just
need edge-intersections to be “small on average”, in the sense defined above. We will show that for
almost-disjoint families of hypergraphs, there is a coloring algorithm that works even if more edges
are allowed. First, we will see that Definition 5.1 captures a large enough family of hypergraphs,
by showing that m(n) restricted to such families, for any fixed € > 0, is still at most O(n22").

Theorem 5.1 For any fized € > 0, there is an infinite family {Gn} of uniform e-almost-disjoint
hypergraphs such that: (a) G, has at most n?2" edges, and (b) for all sufficiently large n, Gy, is
not 2-colorable.

We next show the main result of this section that complements Theorem 5.1. Theorem 5.2 shows
that for e-almost-disjoint families of hypergraphs, there is a coloring algorithm that works even if
up to n! 2" edges are allowed. [From now on, whenever we claim that an algorithm 2-colors a
hypergraph “with high probability” (whp), we just mean that the algorithm succeeds with prob-
ability lower bounded by some positive constant. Since we can efficiently check if a coloring is a
2-coloring, such an algorithm can be repeated a sufficient number of times to drive down the failure
probability. ]

Theorem 5.2 Let {G} be a family of uniform e-almost-disjoint hypergraphs. Suppose G, has at
most n'=€2" edges (e > 0). Then, for all large enough n (i.e., n > n(e€)), G, is 2-colorable; there
1s o randomized polynomial-time algorithm that constructs such a 2-coloring whp.

5.2 Proof of Theorem 5.1: a random family is almost-disjoint

The probabilistic construction of non-2-colorable n-uniform hypergraphs in [4, page 8] proceeds
as follows: take V(G,) = n?/2, and for E(G,,) pick (e(In2)/4 + o(1))n?2" edges at random (with
replacement, say, but note that the probability of picking the same n-set up in two different trials is
negligible, and the hypergraph will whp have no repeated edges). As usual, e here denotes the base
of the natural logarithm. Then, with probability at least 3/4, the resulting random hypergraph G,
cannot be 2-colored [4]. We will show that with probability at least 3/4 the hypergraph will be
almost-disjoint; thus, the “n!~¢” in Theorem 5.2 cannot be replaced by any term larger than n?.
We define exp(z) = e”. We start with a useful claim.

Claim 5.1 For the random family {G,} considered above, we have for all t > 2 and for all n >
41n(2t) that E[T;(E(Gy))] < 2exp(4t?).

Proof: Let F = (f1, fa,..., ft) be a random collection of n-subsets of V,, obtained by choosing ¢
subsets at random (with replacement). We will show that if n > 41In(2t), then

E[Z(F)] < 2exp(4t?). (9)
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It will then follow, by linearity of expectation, that E[Z;(E(Gy))] < 2 exp(4t?).

Let N & |V|- Instead of computing Z(F) directly, it will be easier to relate it to Z(F"), for

a slightly different family F’ (for which the calculations are simpler). The family F’ has ¢ sets
f1,f3,---, f{, where f/ is generated by picking each element of the universe independently with

probability p e on /N = 4/n. If each set in F' has size at least n, pick a random n-sized subset of
each; in this case, the resulting collection F” has the same distribution as F. Now,

BIZ(F)] > Prvf' € F'|f'| > n] x BIZ(F") |V € | > n]
— Pivf' € F'|f'| > n] x BIZ(F)].

Hence
E[Z(F)] <E[Z(F"))/Pr[vf' € F'|f'] > n]. (10)

Now, our claim will follow from (10), if we show the following.

E[Z(F)] < exp(4t®); (11)
1
PrVf e F'|f'| >n] > 3 (12)
First, consider (11). We have
E[I(F,)] _ E[2A(F’)] _ E[ H 2max{0,dF/(a)71}]
aeVn
— H E[2max{0,dF/(a)fl}]. (13)
aeVn
It, thus, suffices to bound E[2m#*{0:drr(@)~1}] geparately for each a. Fix a € Vj,. Then,
L t
E[2ma.x{0,dpl(a)—1}] _ (1 _p)t + Z 9i—1 ( _>pj(1 _p)t—j
— J
j=1
= [1-p)'+ (1 +p)]/2
< [exp(—pt) + exp(pt)]/2
< exp(p*/2)
[For the last inequality, compare the Taylor series of the two sides.] Then, by (13), we have
p2t2
BIZ(F)] < exp(N) < explas?),
thus establishing (11).
It remains to show (12). For i = 1,2,... ¢, (see [4, page 238,Theorem A.13])
n? n
Pr[|fi| <n] < eXP(—E) < eXP(—Z)-
Thus, Pr[3f' € F'|f'| <n] < texp(—%) < 1/2, since n > 41n(2t). |

16



Given any € > 0, let n be sufficiently large. Let D be the event that all the edges of G,, are
distinct. It is easy to see that Pr[D] > 9/10. It follows from Claim 5.1 that

E[It(E(Gn))] < @exp(4t2).

BIL(B(G,)) | D < Pl < 5

Then, by Markov’s inequality we have, for each ¢ (2 < ¢ < (Inn)'/3),

1
2 1/3
Pr[Z:(E(G,)) > 100 exp(4t”)(lnn)" /> | D] < B’
and 1
Pr[3t, 2 <t < (Inn)'/?: L,(E(G,)) > 100 exp(4¢?)(Inn)'/3 | D] < =
Note that if n is sufficiently large as a function of €, then 100exp(4t?)(Inn)'/? < nf=3 for any
t < (Inn)'/3. Thus, with probability at least 19—0 X % > %, G, has no repeated edges and is

e-almost-disjoint in a strong sense: for all t, 2 < t < (Inn)'/3, it is true that Z;(E(Gy)) < nf=3.

5.3 Algorithm for Theorem 5.2

As before, let xo be the coloring obtained after the first random coloring phase. We say that an
edge f € E is almost-red in xo if: (1) f & M(xo) and (2) f has at most 7 blue vertices (7 is
a parameter to be chosen later). Let AR(xp) be the set of almost-red edges with respect to xo.
Similarly, we define almost-blue and AB(xo). In the recoloring phase we pay special attention to
the edges in AR(xo) and AB(xo).

We will modify the algorithm used in the proof of Theorem 2.1. In the analysis we present now,
it is not important that the vertices be considered in a random order. So let us fix an ordering
v1,v2, ... of the vertices. Step ¢ is now implemented as follows.

Step i. If in xi—1: (a) v; is the only red vertex of an edge in AB(xo), or (b) v; is the only blue

vertez of an edge in AR(xo), then skip v;. Otherwise, if some edge in M(v;, xo) continues to be

monochromatic in x;—1 and b(v;) = 1, then flip the color of v;. Let the resulting coloring be x;.
As before, let x* be the coloring obtained after all vertices have been considered.

5.4 Analysis of the algorithm of Section 5.3

Fix a family {G,} of uniform e-almost-disjoint hypergraphs. Fix n large, and let G = (V, E) stand
for the graph G,, = (V,, E,) of the family. Let |E|/2" < k, where k = n'~¢. Suppose t is the
positive integer satisfying (8). We will show that the above algorithm, with 7 = ¢ — 2, produces a
proper coloring for G with probability lower-bounded by some positive absolute constant. Note that
we can assume that € < 2/3, for by Theorem 2.1, n-uniform hypergraphs with at most nl/39n edges
are 2-colorable. Recall that the bits b(v) were set to be 1 with probability p and 0 with probability
1—p; we will take p = (2Ink)/n. Let us bound the probability of failure of this algorithm. Suppose
f is blue in x* (the other case, when f is red, is similar). We have three possibilities:

Case 0. f was red in xy.
Case 1. f was blue in yp.
Case 2. f was not completely red or blue in g, but was made blue during the recoloring process.
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Note that this implies that f was not almost-blue in xo, because the new recoloring phase never
makes such edges blue.

We will now bound the probabilities of the three cases separately. We will show that for all
large enough n,

Pr[3f Case0(f)] < %; (14)
Pr[3f Casel(f)] < %; (15)
Pr[3f Case2(f)] < % (16)

It follows that Pr[M(x*) # 0] < 2(1/1041/10+ 1/10) = 3/5; therefore, G has a proper 2-coloring
that can be found whp using our algorithm.

5.4.1 Case 0

It is easy to see that the probability of this happening is at most |E|2"p"; for large n, this is less
than 1/10, since p < (2lnn)/n and |E| < n2". Thus, (14) holds.

5.4.2 Casel

Suppose f was blue in xo and continued to be blue in x*. Let us examine the events that led to
this. Our algorithm attempted to change the colors of vertices v € f for which b(v) = 1. Thus, if
f continued to be blue in x*, then it must be that all these attempts failed. Let

Pivots(f) = {v € f : b(v) = 1}.

We have two cases. First, it might be that not enough attempts were made to change the color of
vertices in f; that is, Pivots(f) was very small—an extreme case of this occurs when Pivots(f) = 0.
Second, it might be that a good number of attempts were made, but each time the color of the
vertex could not be flipped because it happened to be the only blue vertex of some other edge that
was almost red in x (see the revised recoloring step above). We bound the probabilities of these
two cases separately. We, therefore, write

Pr[Casel(f)] < (S1)+(52), (17)
where

(S1) = Pr[Casel(f) A |Pivots(f)| <t —1];
(S2) = Pr[Casel(f) A |Pivots(f)| > t].

First, consider (S1).

(S1) < PB(f,x0) A|Pivots(f)| <t — 1]
= 27" Pr[|Pivots(f)| <t —1]

t—1
= 2" (?)pi(l —p)""

1=0
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t—1
_ _ n ;
I
=0

t—1
< 271 =p)" ' Y (np)!

i=0
< 271 —p)" ()" (18)
Since p = (21Ink)/n, t < (Inn)'/3 and k = n'~¢, we have

2—n
(1) < 575 (19)

Now, we consider (S2), that is, the probability that f remains blue even when at least ¢ attempts
were made. It follows from our definition of recoloring that if an attempt at recoloring a certain
vertex v € Pivots(f) was unsuccessful, then v was the last blue vertex of some edge f' € AR(xo)-
This motivates the following definition.

Definition 5.2 For v € f, we say that v is blocked by the edge f' if
(a) [0 f = (o}
(b) b(v) =1;
(¢c) "€ AR(xo);
(d) for all blue (in xo) vertices w of f' —{v}, b(w) = 1.
We then have the following claim.
Claim 5.2 If B(f,x0) A B(f,x") and v € Pivots(f), then v is blocked by some g € E.

Note, in particular, that if edge g is held responsible for preventing the recoloring of vertex v €
Pivots(f), then g N f = {v}. In our case, not just one but ¢ vertices are prevented from recoloring.
Thus, there is a set of edges F' = {f1, f2, ..., fi} where each f; blocks a different vertex of Pivots(f).

Definition 5.3 Let F be a set of t edges {f1, f2,-.., ft}, where each f; intersects f on exactly one
vertex v;, and these t vertices are distinct. We say that F' conspires against [ if

(1) [ is blue in xo.
(1) fi blocks v;, fori=1,2,...t.
We then have the following analog of Claim 5.2.

Claim 5.3 If B(f,x0) AB(f,x*) and |Pivots(f)| > t, then AF € (?) such that F' conspires against
f.

Thus,
(52) < Z Pr[F conspires against f]. (20)
Fe(y)
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Fix F € (?), such that each edge in F' intersects f on exactly one element and different edges in F
intersect f on different elements. (If F' does not have this property then Pr[F' conspires against f] =

0.) Let fi1, fo,..., ft be the elements of F' listed in some order. Let f def fifore=1,2,...,¢ let

f; def fi — ;;% fj. If F conspires against f, then we must have b(w) = 1 for all vertices w € fi

that were blue in yo. We summarize our observations as follows: if F' conspires against f, then
(C1) f is blue in xo; and for i = 1,2,...,1,

(C2) if f; N f = {v;}, then b(v;) = 1;

(C3) Yw € f; B(w, x0) — b(w) = 1;

(C4) f; has at most 7 — 1 blue vertices in xo.

It follows that

t 71 £ ) .
Pr[F conspires against f] <2 " x p' x H Z <|f_l|>p32|ff. (21)
i=15=0

(Here the first factor is justified by (C1), the second by (C2), and the third by (C3) and (C4).) Let
fl=fi—f, for i > 1; note that |f/| =n—1. Also let F' = {f!: 1 <i <t}. It is easy to check that

oSl =1U fil = tn = 1) = A(F') = t(n — 1) — A(F).
=1 =1

Also, since |f;] < n, we have E]T;é (‘éz‘)pf < (np)7. Thus, (21) gives
Pr[F conspires against f] < 27" x p! x 27 Hn=DFAE) o (np)T, (22)

Then, by (20) we have

(52) < <|lt2|> ];;1][2—npt2—t(n—1)+A(F) (np)Tt]
S thtTL x 27n27t(n71) (np)TtptE[QA(F)]
F
= 27"k (np)"™"(2p)' Ty(E).
Since Z;(F) < n 3, p = (2Ink)/n, k < nl~9% and t,7 < (Inn)'/3, we have for all large n

(52) < ann(lfe)t(Q In n)t2 (Mﬂ)tnetf?)

n
2—n
< -
Thus,
o1 1
PrCasel(f)] < (S1) + (82) £ 27" x [1575 + ],

and, considering all possible f,
Pr[3f Casel(f)] <

e

Since k = n'~¢, for large n this quantity is negligible; we have thus established (15).
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5.4.3 Case 2

Notation. In the following, let (£), =£(£{ —1)--- (£ —r +1).

Suppose Case 2 holds for f. As discussed before, since f is not almost-blue in yq, it must have
had at least 7 + 1 red vertices in xp. During the recoloring phase all red (in xo) vertices of f
changed their color; hence, for each v € S, there must be an edge f, € E, such that v € f, N f and
fv was red in xo and continued to be so when v was considered for recoloring; we say that f, was
responsible for making v change its color. (Note that an edge can be held responsible for at most
one vertex.) Let T' be a random (7 + 1)-sized subset of the red vertices of f; then f blames the set
of edges F' = {f, : v € T'} for making it blue. That is, for each set f with at least 7+ 1 red vertices
in xo, we pick a random subset T' = T'(f) of those vertices; the sets T'(f) are picked independently
for each such edge f. Thus,

Pr{Case2(f)] < Z Pr[f blames F].

Fe(rfl)

We have already considered the situation when f was completely red in o (this was Case 0); so
in the sum above, we have a contribution only for F’s that do not contain f. We will now estimate
Pr[f blames F] for fixed f and F', where f & F. Let U = U ¢p f'. Consider the sequence of events
that resulted in f blaming F'.

1. All of U was colored red in xp.

2. Let R be the set of red vertices of f. Then, Vw € R, b(w) = 1. Also, U N f C R; let
Ri=UnNfand Ro = R— Ry. Let ry = |R1| and r9 = |R2|

3. Let T" = {v € R: f, € F}; please see a few lines above for the definition of the f,. Then, for
f to blame F, T' must coincide with the randomly chosen (7 + 1)-sized subset T of R.

Using these observations, we get

n—ri . _1
Pr[f blames F] < 9-1UI & Z (n 7"1> 2_|f_U‘p”+r2 <7"1 +7"2>

ry—0 9 T7+1
n—ri -1
_ - + 79
2 |UUf‘ X n 1 714712 1 .
1"22::0 ] p T+1

Note that r;1 > 7+ 1, and that the sum above is a decreasing function of ry. Thus,

n—(7+1) _ 1
Pr[f blames F] < 271V9/1 Z <n (7“7 T 1)>p(7'+1)+r2 <(T + 2 ;‘7"2>
2 T

ro=0

n—(7+1 -1
< 9= (TH)n+AFU{f}) (2: ) (n —(r+ 1)>p7'+1+7"2 <(T +1) + 7"2)
N — ) T+ 1
ro=0
-1
< o (TH2)n+A(FU{f}) nf T ‘
< 2 (1+p) a1 (23)
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For the last inequality, we used the fact that for any « > 0,

; +
zq: q\ =" _ zq: G+ it o 1 I fg+r S (1+x)q+’"‘
— \ j (i—i—r),« (g+7), i+ T (gt \ i (g+7),

2=0 ZZO

(To derive (23) from this, set z =p, g =n — (7 +1) and r = 7 + 1.) Summing over all f € E and
Fe (7)) (f € F), we obtain

-1
Pr[3f Case2(f)] < |E|<'f'+‘11>z—<7+2>n<1+p)n<7_”;1> B, @)
'e

)
n 1
< Lo (Tkj_ 1) 2*(T+2)n(1 + p)n (7_ :7’_ 1) IT+2(E)
T+4
< (z)iTHIT‘F?(E) (24)
kt+2
- —(n)t,lzt(E)' (25)

To get (24) above, we substituted p = (2Ink)/n. Since t < (Inn)'/3, k = n'~¢, Z;(E) < n® 3 and
n is large, the right hand side of (25) is less than n™¢. This establishes (16), and completes the
proof of Theorem 5.2.

5.5 A local version

We now use Theorem 4.1 with a modification of the analysis of Section 5.4, in order to derive a “local
version” generalization of Theorem 5.2 for hypergraphs with small edge-intersections bounded by
a constant a; recall that for such hypergraphs, we have the inequality (7).

Theorem 5.3 For any fized (a,€) with € > 0, let {Gy} be any family of uniform hypergraphs such
that in Gy, any two distinct edges intersect in at most a vertices. Suppose further that G, has
overlap D < n'=€2". Then, for all large enough n (i.e., n > Ny(a,€)), Gy, is 2-colorable.

Proof: Suppose D < k2", where k = n' €. We may assume that ¢ < 2/3, for otherwise we are
covered by Theorem 4.2. We will use the algorlthm of Section 5.3 with p = (2Ink)/n, t = [3/¢]
and 7 =t —2. As in Section 5.3, we will work with an arbitrary but fixed permutation vy, vo, ... of
the vertices, and consider the vertices in this order, when attempting to recolor.

As in Section 5.4, the analysis of the event “f is blue in x*” splits into the same three cases:
Case 0, Case 1 and Case 2.

The idea once again is to define a collection of “bad” events and show that Theorem 4.1 applies
to them. The following bad events, defined for each allowed choice of F', capture the event that f
is blue in x*:

e Zi1(f): R(f,xo0) A Pivots(f) = f. This covers the event Case0(f).

e Z5(f): B(f,xo) A |Pivots(f)| < ¢t — 1. This corresponds to the subcase of Casel(f) whose
probability was bounded using (S1) in the previous section.
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e Z3(f,F): B(f,xo0), and F conspires against f. (Here F' € (E_t{f}).) This corresponds to the
subcase of Casel(f), whose probability was bounded using (S2) in the previous section.

o Zy(f,F): f blames F. (Here F' € (ET__E{})) This covers Case2(f).

Similarly, we define analogous events Z1(f), Z5(f), Z5(f, F) and Zj(f, F) for the case of f becoming
red in x*.
Clearly, for each edge f,
Pr(Z,(f)] = Pr[Z{(f)] < 27"p". (26)

Now, for events Zy and ZJ, (18) gives
Pr{Zs(f)] = Pr[Z3(f)] < 27"(1 = p)" " (np)". (27)
For Z3 and Zj;, we have from (22), that
Pr[Z3(f, F)] = Pr[ZL(f, F)] < 2-"pt2=tn=D+AF) (o)t < 9=npto=tn=1+tt=1a/2 ()7t (9g)

Finally, for Zy, (23) gives

-1
Pr[Z4(f,F)]=Pr[Zi(f,F)]S2“T+2’”+(T+2)(T+l)a/2enp( il) | (29)
T

The main observation once again is that there is not much dependence between these events.
All the events above, except Z4(f, F) and Zj(f, F), depend only on the xo and b values of the
vertices contained in either f or one of the elements of F'; in the case of Fy(f, F) and F;(f, F), we
need to know, in addition, the value of the random set T'(f) to determine if these events hold (see
conditions 3 in Case 2 of the previous section). Thus, we can proceed as in Section 4. To illustrate
this, we first note that each of the events £ above, has at most £ = 1 + ¢ = O(1/e) edges as its
arguments. Clearly, £ depends on at most 2D¢ events of type Z1, Z{, and on at most 2D/ events of
type Zo, Z4. How many events of type Zs3(f, F) does £ depend upon? Some argument f’ of & must
intersect either f or some element of F. There are at most £ choices for f’; fix f'. If f’ intersects
f, then there are at most D choices for f and once we fix f, there are at most (lt) ) choices for F.
Otherwise, f’ intersects some element f” of F: we can first choose f” (at most D choices), then
choose f (at most D choices), and finally choose the remaining ¢ — 1 elements of F' (at most D*~!
choices). So, £ depends on at most O(£D'*!) events of type Z3; similarly, £ depends on at most
O(¢D7*2) events of type Zy.

Recall that k = n'~ ¢, D < k2", p = (2Ink)/n, t = [3/e], 7 =t — 2, and £ < O(1/¢). With
these values, one sees that

(D729~ (T+2)n+(7+2)(T+1)a/2 ;np

()

goes to 0 as n increases. Thus, bounds (26), (29), (27) and (28), in conjunction with Theorem 4.1,
complete the proof. ]

Dro—" (pn + (1 _p)n—t(np)t) +th—I—l2—npt2—t(n—1)+t(t—1)a/2 (np)Tt +

Recall the definition of m*(n) from the first paragraph of Section 5. As an application of
Theorem 5.3 we obtain the following corollary, giving a different proof of Szabd’s result [28] that
m*(n) > 4n/n1+e‘
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Corollary 5.1 For any fized € > 0 and all sufficiently large n, m*(n) > 4" /n'*e.
Proof: The following proposition was shown by Erdds and Lovéasz [12].

Proposition 5.1 ([12]) Suppose every simple t-uniform hypergraph in which each vertex lies in
at most h(t) edges is 2-colorable. Then, m*(n) > (h(n —1))%/n.

We reproduce the proof of [12] below, but before that let us see why this implies the corollary. By
Theorem 5.3, for any constant € > 0 and for all sufficiently large n, h(n) > 2" /n°. On substituting
this in the proposition above, we obtain m*(n) > Q(4" /n'*2¢). This implies the corollary.

Proof of Proposition 5.1. Let H be an n-uniform simple hypergraph which is not 2-colorable.
We wish to show that H must have many edges. Since H is n-uniform,

BH) >~ Y dul) (30)
vEV(H)

Thus, it suffices to show that H has many vertices of high degree. For each e € E(H), let v, be a
vertex in e with maximum degree; that is, dy(ve) > dy(w) for all w € e. If there are several such
maximum-degree vertices v, choose one arbitrarily.

Consider the following hypergraph H', with V(H) = V(H') and

E(H')={e—{v.}:e € E(H)}.

Clearly, H' is (n — 1)-uniform and simple. Since H is not 2-colorable, H' is not 2-colorable. By the
hypothesis of the proposition, there is a vertex v in H' with dg/(v) > h(n — 1). Let €}, €),...,¢€}
(h > h(n—1)) be the edges of H' incident on v, and let ey, es, ..., e, be the corresponding edges of
H. Now, by the definition of H', each e; has a vertex v; different from v, such that dg (v;) > dg(v).
Since H is simple, v; # v; for i # j. We have thus obtained h distinct vertices each of degree at
least h. Since h > h(n — 1), the proposition follows from (30). [
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A Appendix
Exploiting positive correlation. Let A(f) be the event Appe(f)V Aged(f). Then,
A(f) = M(f,x0) A (Yo € [ 2 b(v) = 0).
Claim A.1 Pr3f € E: A(f)] <1— (1 — (1 —p)")%.

Proof: We have

PrAfe E: A(f)] = 27V > Pr[3f € M(x) Vv e f: b(v) = 0]
x:V—{Red,Blue}
= 2=Vl 3 (1-PrVf e M(x) v e f: bv)=1]). (31)

x:V—{Red,Blue}

Fix x : V. — {Red, Blue}. It is easy to check using the FKG inequality [15] that we have positive
correlation:
PriVf e M(x) v e f: bv)=1] > H Pr[3v e f: b(v) =1]
feMx)
= (- (-pmel,
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Thus, by (31),

PrAf e E: A(f)] < 27V 3 (1— (1= (1—p)m))Me
x:V—{Red,Blue}
= 1= =gyl
x:V—{Red,Blue}
= 1-B[1-(1-p)m)M&o]

X0

< 1— (1= (1= p))ElMO)I

)

the last inequality follows from Jensen’s inequality, since, for any fixed a > 0, the function z — a” is
convex (as its second derivative a®(Ina)? is non-negative). Thus, since E[|M(xo)|] = 27! k2" =
2k, we have Pr[3f € B : A(f)] <1—(1—(1—p)™)%k. ]
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