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1. INTRODUCTION

Derandomization, the development of general tools to derive efficient determin-
istic algorithms from their randomized counterparts, has blossomed greatly in the
last decade. The best-known deterministic solutions for several classical problems
such as testing undirected graph connectivity within limited space bounds, use this
approach [33, 8]. Two motivations for research in this area are the non-availability
of “perfect” random sources, and the need for absolute (non-probabilistic) guaran-
tees of correctness in critical applications. The theory of pseudorandomness offers
a sound theoretical framework to analyze the quality of pseudorandom generators
where one takes a small truly random seed and “stretches” it into a much longer
stream of pseudorandom bits [14, 39]; under unproven (but plausible) complexity-
theoretic assumptions, the theory shows how certain such generators are sufficient
to run various classes of randomized algorithms. This sound notion of pseudo-
randomness should be distinguished from “pseudorandom” generators available in
computers, which are based on some heuristics that will not work in all situations.
The fact that computers do not use “real” random sources prevents randomized
algorithms from having a sound practical footing. For example, it has been shown
that if algorithms such as randomized Quicksort are implemented with prevalent
“pseudorandom” generators, their expected running times can be high [24]. It has
also been observed that Monte-Carlo simulations yield remarkably different results
under different “random-number generators” [19], and that direct implementations
of certain randomized parallel algorithms take longer time than expected [22, 21].

In this paper, we present two new techniques for derandomization. The first
leads to improved parallel algorithms for many basic problems such as finding large
cuts in graphs, set discrepancy, (∆ + 1)-vertex coloring of graphs etc., while the
second improves the constructions due to [18] of small sample spaces for use in
derandomization. The second method yields smaller sample spaces for the efficient
derandomization of randomized algorithms.

We denote the probability of an event A by Pr(A), and the expected value of a
real-valued random variable X by E[X]. We also let [t] denote the set {1, 2, . . . , t}.
Three major known approaches to derandomization are the techniques of limited
independence ([26, 1, 17, 27, 2]), the method of conditional probabilities ([35, 38]),
and small-bias probability spaces ([32, 4, 3]).

Definition 1.1. Random variables X1, X2, . . . , Xn are k–wise independent if
for any set I ⊆ [n] of at most k indices and for any choice of v1, v2, . . ., we have
Pr(
∧
i∈I(Xi = vi)) =

∏
i∈I Pr(Xi = vi).

Efficient constructions of sample spaces S ⊆ {0, 1}n whose size is much smaller
than 2n, such that the distribution induced on {0, 1}n by sampling uniformly at
random from S is k–wise independent, are known [23, 17, 27, 2]. The basic principle
in derandomization is that in several cases we can analyze a given randomized
algorithm and show that its behavior is good enough if the random bits input to
this algorithm are k-wise independent for a suitably large k = k(n), rather than
completely independent. Using explicit constructions of such spaces, one can then
search over all points in a k-wise independent sample space and deterministically
output a good sample point for the randomized algorithm. However, it has been
shown that if k is large, in particular if k grows with n, then k-wise independent
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sample spaces for the Xis must have superpolynomial size, which is too large for
efficient exhaustive search [16, 2].

Another promising approach to derandomization has been the concept of ap-
proximately independent sample spaces, which are closely related to “small-bias
sample spaces”, as discussed in Section 2. Motivated by the fact that randomized
algorithms are usually robust to small changes in the probabilities, Naor and Naor
observed that it often suffices if the sample space is almost k-wise independent [32],
captured by

Definition 1.2. A sample space S ⊆ {0, 1}n is called ε-approximate if, when
~X = (X1, . . . , Xn) is sampled uniformly from S, for all I ⊆ [n] and for all
b1, . . . , b|I| ∈ {0, 1} we have

| Pr(
∧
i∈I

(Xi = bi)) − 2−| I | | ≤ ε.

S is called k-wise ε-approximate or “almost k-wise independent”, if the above in-
equality holds for all I such that |I| ≤ k.

The important work of [32] presents efficient constructions of sample spaces S ⊆
{0, 1}n which are k-wise ε-approximate. Thus we have efficient constructions of
almost k-wise independent spaces and these sample spaces are often much smaller
than their k-wise independent counterparts. Such almost k-wise independent spaces
have since become very useful in derandomization, as several randomized algorithms
are robust to such small changes in the probabilities.

A third key approach to derandomization, the method of conditional proba-
bilities, can be described informally as follows. Suppose a randomized algorithm
chooses n random bits ~X = (X1, . . . , Xn) and outputs a function f( ~X) and, by anal-
ysis, we can show that E[f( ~X)] is large, where the measure of largeness depends on
the problem. By definition, there exists X∗ ∈ {0, 1}n such that f(X∗) ≥ E[f( ~X)]:
the main goal is to efficiently and deterministically find such a point X∗. The
method of conditional probabilities finds this point by setting the components of
X∗ one bit at a time deterministically. We do this such that at every stage, the
expectation of f( ~X) conditioned on fixing the values of the components up till now
is non–decreasing. This ensures that when we have assigned all n components we
have found an X∗ such that f(X∗) ≥ E[f( ~X)].

In [29], Luby observed that using limited independence directly in some parallel
algorithms leads to a high processor complexity, and introduced a way of combining
limited independence with the method of conditional probabilities which led to
processor-efficient algorithms. His method has been used and extended to derive
efficient parallel algorithms for fundamental problems such as set discrepancy [12,
31].

The motivation for our first method is similar to that of [29]. We observe that for
a large class of problems, direct use of approximately independent spaces leads to
inefficient parallel algorithms, and present a way to combine them with the method
of conditional probabilities to get significantly better algorithms. Using this we
obtain improved parallel algorithms for many basic problems such as finding large
cuts in graphs, set discrepancy, (∆ + 1)-vertex coloring of graphs and others where
∆ is the maximum degree of the graph. In each application, our method results in
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algorithms that are faster than previously known algorithms or match the running
time of the fastest known algorithms with a significant reduction in the processor
complexity.

Throughout this paper, the model for parallelism is the exclusive read, exclusive
write EREW PRAM model of parallel computation [25]. Recall that a problem is
in NC if it can be solved in logO(1)(n) time using at most p(n) processors on this
model, where n denotes the length of the input to the problem and p(·) is any fixed
polynomial. To describe our results we denote an O(p(n)) processor, O(t(n)) time
deterministic parallel algorithm by a (p(n), t(n)) algorithm. The first application
of our technique is to the classical set discrepancy (or set balancing) problem.

Definition 1.3. (Set Balancing): Given a ground set V and subsets A1, . . . ,An
of V where |V | ≤ n and |Ai| ≤ s for each i, find an assignment χ : V → {0, 1} such
that the discrepancy

disc(χ) .= max
i
|(
∑
j∈Ai

χ(j))− |Ai|/2|

is “small”.

Spencer [38] gave a polynomial–time algorithm to find an assignment χ with
discrepancy O(

√
s log n). For any fixed δ > 0, an assignment χ with disc(χ) =

O(s1/2+δ
√

log n) can be constructed by O(log3 n) time NC algorithms, via limited
independence ideas [12, 31]. The method of approximately independent spaces was
used to improve the time complexity to O(log n) [32], but the processor complexity
of this algorithm is Ω(n3+2/δ). We derive an O(log n) time NC algorithm with
processor complexity O(s2n1+δ′+1/δ) for any fixed δ′ > 0 which is a significant im-
provement in the processor complexity. Since set balancing is a primitive for several
other problems, this yields improved algorithms for problems like vector–balancing
[37], lattice approximation [35], and computing ε-nets and ε-approximations for
range spaces with finite V C-dimension [15]. Our set-balancing approach is then
extended to a more general framework in Section 3.3.

A recent breakthrough result has led to NC algorithms whose discrepancy bound
matches the sequential O(

√
s log n) bound [30]: the running time is O(log2 n) and

the processor count is somewhat high—O(n23). The main point of the work of
[30] is to show how for discrepancy and some of its generalizations, one can indeed
match the corresponding sequential bounds in NC; this had been a major open
question. Our focus in this paper is on constructing efficient NC algorithms that
deliver the weaker discrepancy guarantee of O(s1/2+δ

√
log n).

The problem of finding a heavy codeword, which generalizes the classical problem
of finding a large cut in a graph, was introduced in [32]. Given a matrix A ∈ Zm×n2 ,
no row of which has only zeroes, the problem is to find an x ∈ Zn2 with Ax (over
Z2) having at least m/2 ones. Approximately independent sample spaces are used
in [32] to obtain a (min{m4n2,m3n3}, log(m + n)) algorithm, thus placing the
problem in NC. Our method directly yields a range of better NC algorithms for
this problem with a continuous processor–time tradeoff: the algorithm with the best
processor-complexity is an (n2m, log(n + m) logm) algorithm, and the best time-
complexity algorithm is an (n2m1+δ, log(m + n)) algorithm, for any fixed δ > 0.
Thus we are able to improve significantly the processor complexity even in the
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algorithm with the same time complexity. The problem of finding a large cut in a
graph G = (V,E) with |V | = n and |E| = m, is to find a cut in G with at least
m/2 cut edges. This well-known problem is a special case of the heavy codeword
problem and NC algorithms of complexity ((n+m), log2 n) have been designed (see,
e.g., [29]). Small-bias spaces can be used to obtain an O(logn) time NC algorithm
but with a processor complexity of Θ(m3 log2 n). Similarly, direct use of pairwise
independent sample spaces leads to an O(log n) time NC algorithm, but with a
processor complexity of mn. In contrast, our method yields an ((m + n)nδ, log n)
algorithm for this problem, for any fixed δ > 0.

We combine our method with some ideas of Alon and Naor [5] to derive improved
algorithms for other basic combinatorial problems. Given a graph G = (V,E) with
|V | = n, |E| = m and having a maximum degree ∆, a (∆+1)-vertex coloring of the
graph can be computed by an ((n+m), log3 n log log n) algorithm [29]. An improved
((n+m)/ log log n, log2 n log log n) algorithm that runs on the CREW PRAM, has
been devised [20]. We improve these time complexities by presenting an ((n +
m)nδ, log2 n) algorithm where δ > 0 is any constant. This gives faster algorithms
for other problems such as the much harder ∆-vertex coloring problem [34]. We use
similar ideas to derive a faster algorithm for approximating the maximum acyclic
subgraph problem [11], incurring a small processor penalty.

Thus, our first method yields the fastest known NC algorithms for a large class of
problems, without a big processor penalty. Though decreasing the running time at
the expense of an increased processor complexity may be viewed as impractical, we
view some of these results as progress toward pinpointing the best time complexity
possible for such problems, while still having a relatively small processor complexity.

We now turn to the second type of derandomization technique presented. Given
the utility of small spaces approximating the joint distribution of unbiased and
independent random bits, the problem of approximating arbitrary independent dis-
tributions was addressed in [18].

Definition 1.4. If X1, . . . , Xn ∈ {0, 1, . . . ,m − 1} are independent random
variables with arbitrary individual distributions and joint distribution D, a sample
space S is a (k, ε)-approximation for D if, for ~Y = (Y1, . . . , Yn) sampled uniformly
from S, for all index sets I ⊆ {1, . . . , n} with |I| ≤ k, and for all a1, . . . , a|I| ∈
{0, 1, . . . ,m− 1}, |Pr(

∧
i∈I(Yi = ai))−

∏
i∈I PrD(Xi = ai)| ≤ ε.

Definition 1.2 shows that a k-wise ε-approximate set S is a (k, ε)-approximation
for the uniform distribution on {0, 1}n. General (k, ε)-approximations have obvious
applications to reducing randomness and to derandomization. Three constructions
of such small sample spaces are presented in [18], each suitable for different ranges
of the input parameters. We provide a construction which is always better than or
as good as all of their constructions. Our sample space is of size polynomial in log n,
1/ε, and (dk/ log(1/ε)e)log(1/ε). As in [18], we reduce this problem to a geometric
discrepancy problem and our construction follows from our improved solution for
this latter problem. Improved solutions for this geometric discrepancy problem also
yield better methods for certain classes of numerical integration problems.

The rest of this work is organized as follows. The basic idea behind our first
method is presented in section 2, followed by some direct applications of it, in
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section 3. Section 4 presents some extensions of the basic method. In section 5, we
present our second derandomization tool. Section 6 concludes.

2. THE FIRST METHOD: BASIC IDEAS

In this section we describe how to combine the method of conditional probabilities
with the method of approximately independent sample spaces.

Notation 2.1. For any positive integer n and for any a, b ∈ {0, 1}n, <a, b>
denotes the dot product, over Z2, of vectors a and b. For a binary vector y, wt(y)
denotes its Hamming weight, i.e., the number of components which are 1 in the
vector. Logarithms are to the base two, unless specified otherwise.

The notion of small-bias sample spaces was developed in an important paper of
Naor and Naor [32]:

Definition 2.1. The bias of a binary random variable X is bias(X) .= Pr(X =
0) − Pr(X = 1). Let α be a nonzero vector in Zn2 and let ~X = (X1, . . . , Xn) be
sampled uniformly from a sample space S ⊆ {0, 1}n. The bias of S with respect to
α is defined to be bias(< ~X,α>), and is denoted biasS(α). If |biasS(α)| ≤ ε for all
nonzero α, then S is said to be ε-biased. Similarly S is said to be k-wise ε-biased
if |biasS(α)| ≤ ε for all α with wt(α) ≤ k.

The biases of a sample space S with respect to the vectors α ∈ Zn2 are the
Fourier coefficients of the probability distribution DS induced on {0, 1}n by sam-
pling uniformly from S [32]. The Fourier bases are the functions fα, where fα(x) =
(−1)<α,x> for x ∈ {0, 1}n. If cα is the Fourier coefficient with respect to α (i.e.,
the bias of S with respect to α), then by standard Fourier inversion,

DS(x) = 2−n
∑

α∈{0,1}n
cαfα(x)

for x ∈ {0, 1}n. Similarly, for any t ≤ n, any {i1, i2, . . . , it} ⊆ [n] and any sequence
of bits b1, b2, . . . , bt, Pr(

∧
j∈[t](Xij = bj)) can be rewritten as the sum of 2t bias

terms. These ideas will be useful in Sections 3.2, 3.3, and 4; they can also be used
to show

Theorem 2.1. ([32]) If a set S ⊆ {0, 1}n is k-wise ε-biased for some k and ε,
then S is also k-wise ε-approximate.

The following NC constructions of (n-wise) ε-biased sample spaces S are known:
(i) |S| = O(n/ε3) [3], improving on the sample space size of [32], and (ii) three
different sample spaces S with |S| = O(n2/ε2) [4]. All these NC constructions run
in O(logn) time.

The basis of our construction of approximate sample spaces is the following simple
fact:

Fact 2.1. Let X1, . . . , Xt be independent binary random variables, with
bias(Xi) = εi. Then, the random variable Yt = X1 ⊕ X2 ⊕ . . . ⊕ Xt has bias
ε1 · ε2 · · · εt.
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Proof. We supply an elementary proof for completeness. Note that

bias(Yt) = Pr(Yt−1 = 0) Pr(Xt = 0) + Pr(Yt−1 = 1) Pr(Xt = 1)

−Pr(Yt−1 = 0) Pr(Xt = 1)− Pr(Yt−1 = 1) Pr(Xt = 0)

= (Pr(Yt−1 = 0)− Pr(Yt−1 = 1)) · (Pr(Xt = 0)− Pr(Xt = 1))

= bias(Yt−1) · bias(Xt).

Hence by induction, bias(Yt) ≤ ε1 · ε2 · · · εt.

That is, if we have many independent random bits each having a possibly “high”
bias, we can XOR them to get a bit that is of much smaller bias. The new con-
struction of small-bias sample spaces uses this fact, and is as follows:

Lemma 2.1. Let S′ be an ε′-biased sample space and let ~X1, . . . , ~Xt(ε,ε′) be
sampled independently and uniformly at random from S′, where
t = t(ε, ε′) = dlog(ε)/ log(ε′)e.
Define ~X = ~X1 ⊕ · · · ⊕ ~Xt. Then the sample space (multi-set) S of all such ~X is
ε-approximate. If the sample space S′ is k-wise ε′-biased then the resulting space is
k-wise ε-biased.

Proof. Fix any nonzero α ∈ {0, 1}n. By definition,

bias(< ~X,α>) = bias(<
⊕t

i=1
~Xi, α>) = bias(< ~X1, α>⊕ · · · ⊕< ~Xt, α>).

Since the ~Xi are all independent and since |bias(< ~Xi, α>)| ≤ ε′ for each i, the first
statement follows from Fact 2.1. The second statement follows if we restrict α to
be a nonzero vector with wt(α) ≤ k.

Thus our construction of a k-wise ε-biased sample space S is to start with a k-
wise ε′-biased sample space S′ of potentially much larger bias ε′ and then to XOR
t(ε, ε′) independent samples ~X1, ~X2, . . . , from S′.

A space constructed like this will, in general, be larger than those obtained by
direct constructions of ε-approximate spaces: its cardinality is clearly |S′|t(ε,ε′).
However, when we actually use this method in derandomizing probabilistic algo-
rithms, we will take the different samples ~Xi from the space S′ one at a time.
The choice of which particular ~Xi to choose in the current stage is done using the
method of conditional probabilities: this essentially reduces to a simple exhaustive
search over S′ for a “good” point ~Xi. Why does this lead to faster algorithms?
Let S′′ denote a generic k-wise ε-biased space constructed using previous meth-
ods; most previous-best algorithms for the problems considered, involve exhaustive
search over S′′. Since ε′ � ε, we will typically have |S′| � |S′′|, thus yielding more
efficient algorithms since our search-space for each ~Xi is smaller. Also, t(ε, ε′) will
typically be “small” in our applications; e.g., we sometimes just require it to be a
sufficiently large constant.

Since our idea is to use a known construction of small-bias sample spaces to
bootstrap itself, we state a known construction for completeness.

Theorem 2.2. ([4]) Let bin: GF (2m) 7→ {0, 1}m be the standard binary repre-
sentation of the field of 2m elements which satisfies bin(0)= 0m and bin(u + v) =
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bin(u)⊕ bin(v). Given any two field elements x and y, define the n-bit string r(x, y)
to be r0(x, y) . . . rn−1(x, y), where ri(x, y) = <bin(xi),bin(y)>. The sample space
consisting of the string r(x, y) for all choices of x and y is ((n − 1)/2m)–biased.
Thus there is an explicit ε–biased sample space of size O(n2/ε2).

Similarly, k-wise ε-biased spaces of size O(min{k logn
ε3 , (k logn)2

ε2 }) can be con-
structed by O(logn) time NC algorithms [32, 4, 3].

3. DIRECT APPLICATIONS OF THE FIRST METHOD

Throughout this section we use G = (V,E) to denote a graph on n vertices and
m edges, with maximum degree ∆. We use δ, δ′, δ′′, δ1, δ2 etc. to denote arbitrarily
small positive constants.

3.1. Cuts in Graphs and the heavy codeword problem
As a straightforward application of our method, we consider the heavy codeword

problem [32]: given A ∈ Zm×n2 , find an x ∈ Zn2 such that Ax (over Z2) has at least
m
2 ones. In the following, ai denotes the ith row of A, and we assume that the ai’s
are nonzero. As pointed out in [32], if x is picked from an ε-biased space S with
ε = 1/(2m), then

E[wt(Ax)] =
m∑
i=1

Pr(<ai, x> = 1) =
m∑
i=1

(
1− bias(<ai, x>)

2

)
≥ m (1/2− ε/2)

and thus, there exists an x ∈ S with wt(Ax) ≥ dm (1/2− ε/2)e = dm/2e. This
yields a simple deterministic parallel algorithm where each processor tries out one
point in the biased sample space. But, any known construction of an 1/(2m)-biased
space has Ω(min{m3n,m2n2}) points, so a direct use of small-bias spaces results
in high processor complexity.

Our approach is to start with an m−δ-biased sample space S0 and pick x, as
in section 2, to be the bit-wise XOR of ` = d(log 2m)/(logmδ)e ∼ 1/δ = O(1)
many independent samples Y1, Y2, . . . , Y` from S0. At each stage j, we will choose
a “good” value for Y ∗j ∈ S0 so that the resulting x after ` stages will yield a heavy
codeword Ax with at least dm2 e weight.

We show that the method of conditional probabilities can be used to find such
a “good” sequence Y ∗1 , . . . , Y

∗
` efficiently in NC. To do this, we define a benefit

function at each stage and the Y ∗j which we choose will be the point which maxi-
mizes it. Assume that we have already fixed the values of Y ∗1 , . . . , Y

∗
j−1. Define the

conditional estimator at stage j to be

fj(y) .= E[wt(Ax)|Yk = Y ∗k , 1 ≤ k ≤ j − 1 and Yj = y]

=
m∑
i=1

(1− bias(<ai, x>|Yk = Y ∗k , 1 ≤ k ≤ j − 1 and Yj = y))
2

,

where bias(X|A) .= Pr((X = 0)|A)− Pr((X = 1)|A) for a binary random variable
X and event A. Intuitively, fj(y) estimates the benefit of choosing y at the jth
stage. We want a Y ∗j ∈ S0 which maximizes fj(y): for this, we need only show that
the function fj(·) can be computed efficiently for all points in S0.
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Fix y ∈ S0, and let b = (
⊕j−1

k=1 Y
∗
k )⊕y. Thus, x = b⊕z, where z = Yj+1⊕· · ·⊕Y`

with Yj+1, . . . , Y` picked uniformly and independently from S0. Now,

bias(<ai, x>|Yk = Y ∗k , 1 ≤ k ≤ (j − 1) and Yj = y) = bias(<ai, (b⊕ z)>,

which equals bias(<ai, z>) if <ai, b> = 0, and −bias(<ai, z>) otherwise. From
Fact 2.1, bias(<ai, z>) = (biasS0(ai))`−j . Thus, for each point of S0 we can
compute the benefit function efficiently. The entire algorithm is thus as follows:

Construct a sample space S0 which is ε′ = m−δ–biased.
For each i in parallel compute biasS0(ai).
For j from 1 through ` = d log 2m

logmδ
e do

For each y ∈ S0 compute b(y) = (
⊕j−1

k=1 Y
∗
k )⊕ y in parallel.

Let Y ∗j be any y ∈ S0 that maximizes
∑m
i=1(1− (−1)<ai,b(y)>(biasS0(ai))`−j).

Output
⊕`

k=1 Y
∗
k .

The size of S0 is O(m3δn) and hence we can compute biasS0(ai) for all the ai’s
using mn|S0| processors in O(log n+ logm) time. At each of the ` stages we have
|S0| choices for Y ∗j and fj(Y ∗j ) can be evaluated in O(log(m+n)) time using O(mn)
processors. Alternatively, in the algorithm, we could choose S0 of constant bias.
By Lemma 2.1 if we choose ` = O(logm), the resulting sample space will have bias
m−O(1). This gives an (n2m, log(m+ n) logm) algorithm.

Theorem 3.1. For any fixed δ > 0, there are (n2m1+δ, log(m+ n)) and
(n2m, log(m+ n) logm) algorithms for the heavy codeword problem.

Thus, a key reason that led to this improved processor complexity is that our
search space S0 has size much less than min{m3n,m2n2}.

Given a graph G, we can use a similar algorithm to find a cut with at least m/2
edges. If each vertex picks a bit to decide which side of the cut it lies on, and if
the bits come from a 2-wise 1/(2m)–biased sample space, the expected number of
cut edges is at least m/2. Direct use of biased spaces yields an (m3 log2 n, log n)
algorithm. Actually, a better algorithm can be obtained by using a sample space
which guarantees pairwise independence and this results in a (mn, log n) algorithm.
In contrast, using our method we obtain

Theorem 3.2. There is an ((n+m)min{(log n)/ε3, (log2 n)/ε2}, log2 n/ log(1/ε))
algorithm for any ε = ε(n,m) < 1, for the large cut problem. In particular (by
choosing ε = n−δ/3), the large cut problem can be solved by an ((n + m)nδ, log n)
algorithm, for any fixed δ > 0.

Proof. As for the heavy codeword problem, we construct the desired pairwise
1/(2m)–biased space by starting with an efficiently constructed pairwise ε–biased
space S0 and taking the XOR of ` = O(logn/ log(1/ε)) independent samples from
S0. As before, we derandomize this construction by fixing the ` choices–elements of
S0–one by one. Each stage takes O(logn) time using O(n + m) processors. Thus,
the processor and time bounds follow.
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3.2. Applications using biases to compute probabilities
In this section we outline an application where we use the biases of the base

distribution to compute probabilities of events by Fourier inversion. Recall the
definition of the set discrepancy problem: Given subsets A1, . . . , An of a set V
where |V | ≤ n and |Ai| ≤ s for each i, the problem is to find a χ : V 7→ {0, 1} such
that disc(χ) .= maxi|χ(Ai)− |Ai|/2| is small, where χ(Ai) =

∑
j∈Ai χ(j).

Let V = {x1, x2, . . . , xn}, Xi denote χ(xi), and k be the smallest even integer
that is at least as big as log(2n)/(δ log s). It is shown in [12, 31] that if we choose
X1, X2, . . . , Xn k-wise independently with Pr(Xi = 1) = Pr(Xi = 0) = 1/2 for each
i, then

Pr( (∃i) |χ(Ai)−
|Ai|

2
| ≥ s0.5+δ

√
log n ) ≤

n∑
i=1

E[(χ(Ai)− |Ai|2 )k]
(s0.5+δ

√
log n)k

< 1. (1)

This has been used to derive O(log3 n) time NC algorithms that yield an assignment
χ with discrepancy bounded by s0.5+δ

√
log n. It is shown in [32] that (1) holds

even if the distribution of (X1, X2, . . . , Xn) is k–wise ε-biased for ε < 1/(2n1+1/δ),
leading to an O(logn) time NC algorithm via exhaustive search of a k–wise ε-
biased sample space. However, using any known construction of small-bias sample
spaces, the processor complexity of such an algorithm will be Ω(n3+ 2

δ ). (Any known
explicit construction of the desired sample space has Ω(n2+ 2

δ ) points; since there
are n sets Ai, we need n processors to check in O(log n) time if a given point of the
sample space is “good”.) We show how to significantly improve on this processor
complexity while retaining the O(log n) running time.

Note that we can assume s ≥ log n without loss of generality. Indeed, since
disc(χ) ≤ s/2 for any χ, we can trivially achieve disc(χ) ≤

√
s log n if s < log n.

Next, suppose we generate (X1, X2, . . . , Xn) from a k–wise ε-biased sample space,
where ε = (4n1+1/δ)−1, say. For each i ∈ [n], we can use linearity of expectation to
rewrite E[(χ(Ai)− |Ai|2 )k] as a sum of terms of the form c ·Pr(Xi1 = · · · = Xit = 1),
with t ≤ k and c a scalar. Since |Ai| ≤ s and k ≤ log(2n)/(δ log s) + 2, the number
of such terms for any given Ai is at most

(s+1)k ≤ O(s22log(s+1) logn/(δ log s)) = O(s22(log s+O(1/s)) logn/(δ log s)) = O(s2n1/δ),

since s ≥ log n by assumption. For each of these terms we know how to compute
probabilities of events once we we know the Fourier coefficients as shown in Sec-
tion 2. In this case we can express the term c · Pr(Xi1 = · · · = Xit = 1) as the
sum of 2t = 2o(log n) bias terms (we get a o(·) in the exponent since k = o(log n)).
Now, exactly as in the case of the algorithm for the heavy codeword problem we
can start with a k-wise n−δ

′′
-biased sample space S0 and define a good χ using

as the XOR of O(1) samples from S0. By Lemma 2.1, the resulting sample space
will be k-wise ε–biased. At each stage we choose a point in S0 which minimizes
the expectation which we have expressed in terms of the biases. The number of
sample points we need to try at each stage is |S0| = nO(δ′′) and the number of bias
terms we need to consider for each Ai is O(s2n1/δ2k); so, the total number of bias
terms is O(s2n1+1/δ2k). Thus, the algorithm runs in time O(log n) and the number
of processors we need for each stage is O(s2n1+1/δ+δ′). Thus we can obtain the
following.
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Theorem 3.3. There is an (s2n1+1/δ+δ′ , log n) algorithm to find a χ for the set
discrepancy problem with disc(χ) ≤ s0.5+δ

√
log n, for any fixed δ, δ′ > 0.

Since disc(χ) ≤ s/2 is trivially achievable as seen above, we can assume δ < 1/2
without loss of generality. Thus, our processor requirement is a good improvement
on the Ω(n3+2/δ) requirement of [32].

The set discrepancy abstraction has been used to solve other problems such as
vector balancing [37], lattice approximation [35, 31] and for computing ε-nets and
ε-approximations for range spaces with finite V C–dimension [15]. Theorem 3.3
implies improved NC algorithms for all these problems.

3.3. A general framework
Set discrepancy has been captured as part of a more general framework in [12],

and it is easy to extend the above method to this framework. Let X1, . . . , Xn be
unbiased and independent random bits, and let ~X = (X1, X2, . . . , Xn). For positive
constants a and b, consider a function such as g( ~X) =

∑na

i=1 fi( ~X) where each fi de-
pends on at most b log n of the random variables X1, . . . , Xn. In several algorithms,
we can define a function as above to capture the benefit in choosing a particular
sample point [12]. By analysis we can show that if the Xis are unbiased and inde-
pendent random bits, then E[g( ~X)] is a suitably large value v; to derandomize, we
wish to deterministically find a sample point X∗ with g(X∗) ≥ v.

An (na+b, t log3 n) algorithm is presented for this problem in [12] where each
of the functions fi is computable in O(t) time with one processor. Sometimes, it
actually suffices to find a point X∗ with g(X∗) ≥ v − n−Θ(1). Furthermore, once
again as in set discrepancy, the functions fi are often bounded in magnitude by
nO(1). Thus, it is not difficult to show that if we choose the Xis from a b log n-wise
n−C-biased space S for a suitably large constant C, then E[g( ~X) ≥ v − n−Θ(1).
Once again, our idea is to first express E[X] as a sum of at most na+b bias terms
as detailed in Section 2. Then, if we start with a sample space S0 with bias n−δ/3

and use the same approach as for set discrepancy we can get an (na+b+δ, t log n)
algorithm. On the other extreme, if we start with a sample space S0 which is of
constant bias we can derive an (na+b log2 n, t log2 n) algorithm. In contrast, directly
using the small-bias sample space S gives an (Ω(n3a+2b), t log n) algorithm.

4. HANDLING MULTIVALUED VARIABLES

In this section we consider a family of applications where the random variables
of interest are uniform over {0, 1}q for some q > 1. The parameter q is at most
logarithmic in the input size in our applications. By combining our basic method
with some ideas of [5] we get improved parallel algorithms for various problems.
Some of these problems can also be solved using the above general framework.
However, the solutions we give here are better than those obtained as instantiations
of the general framework.

4.1. The Profit/Cost problem
The first application we describe is for the “General Pairs Benefit Problem” of

[29] (this problem is called the “General PROFIT/COST Problem” in [28]). This
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models problems such as (∆ + 1)-vertex coloring of graphs. The essence of this
framework is the problem stated below.

We are given a graph G = (V,E), with |V | = n and |E| = m and non-negative
functions Profitv : {0, 1}q → <+ and Costu,v : {0, 1}q × {0, 1}q → <+, for all
v ∈ V and {u, v} ∈ E. For any labeling ` : V → {0, 1}q,

Benefit(`) .=
∑
v∈V

Profitv(`(v))−
∑
u,v∈E

Costu,v(`(u), `(v)).

The parameter q will be O(logn) in our applications.
The problem is to efficiently find an ˆ̀ such that Benefit(ˆ̀) ≥ E∗, where E∗

is the expected benefit when the labels {`(v) : v ∈ V } are assigned uniformly at
random and independently, from {0, 1}q. Since the profit and cost functions depend
only on the labeling of at most two vertices, the expected benefit will be the same
if the labels are uniform and pairwise independent over {0, 1}q.

The strategy used in [29] is to set one bit of each of the labels ˆ̀(v) per stage
without using too many processors. This results in an NC algorithm using O(n +
m) processors and running in O(q(t + log2 n)) time. Our goal is to develop an
O(t + log n + q) time algorithm to find an ˆ̀ with Benefit(ˆ̀) ≥ E∗ − n−Θ(1) for
those instances of the problem where the functions Profit and Cost are bounded
in magnitude by a polynomial in n. In all the applications of this framework, the
associated functions do satisfy this constraint. Also, let t be a parameter such
that the following holds. Suppose, for an arbitrary j ∈ [q], the first j bits of
the labels of all the variables have been fixed at arbitrary given values, and that
the remaining n(q − j) bits of the labeling ` are chosen uniformly at random from
{0, 1}n(q−j). Then, for any given v ∈ V and {u, v} ∈ E, the conditional expectations
E[Profitv(`(v))] and E[Costu,v(`(u), `(v))] can be computed in time t each with
one processor.

A direct approach following the earlier algorithms would be to start with a ran-
domly chosen bit string

y1,1y1,2 · · · y1,qy2,1 · · · y2,q · · · yn,1yn,2 · · · yn,q

from a 2q-wise, ε-biased sample space for nq-length bit strings, for a suitably chosen
ε. We can then set `(i) .= yi,1yi,2 · · · yi,q. However, the methods of the previous
section require us to compute probabilities by first converting them to the appro-
priate bias terms. The large number of Fourier coefficients would then increase the
processor complexity by a 22q factor.

Instead, we adopt the following strategy, motivated by a technique of [5, 6]. The
idea is to set γq bits of each of the labels ˆ̀(v) all at once in each stage, and repeat
γ−1 times. Here, γ denotes a positive parameter that is at most one, whose value
we choose based on the application. In the following, we assume that γq is an
integer.

Let α = γq and β = dγ−1e. Our approach is to choose at each stage j, 1 ≤ j ≤ β,
the bit string

rj = (y1,(j−1)α+1, . . . , yn,(j−1)α+1, y1,(j−1)α+2, . . . , yn,(j−1)α+2, . . . , y1,jα, . . . , yn,jα).

The final labeling on the vertices will be ` defined by `(i) .= yi,1yi,2 · · · yi,q.
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At stage j of the algorithm, we have already chosen the first (j − 1)α bits of the
labeling of each vertex. The following lemma will show that in stage j, if we choose
rj from an sample space S0 with small bias then the penalty incurred from not
choosing rj uniformly at random is small. Let M denote the maximum magnitude
of the values taken by the functions Profit or Cost; by assumption, M ≤ nO(1).
Given a finite set A, let Z ∼ U(A) denote random variable Z being picked uniformly
at random from A.

Lemma 4.1. Fix ε = γ2−2αn−2−cM−1, where c is is a positive constant. Let
S0 be any 2α-wise ε-biased sample space for nα–length bit strings. There exist
r∗1 , r

∗
2 , . . . , r

∗
β ∈ S0 such that for each j ∈ [β],

E[ Benefit(`) | rk = r∗k, 1 ≤ k ≤ j
and (rj+1, rj+2, . . . , rβ) ∼ U({0, 1}nα(β−j)) ]

≥ E∗ − jγn−c. (2)

Proof. The proof is by induction on j. The base case j = 0 is immediate; we
prove the lemma for j, 1 ≤ j ≤ β, by assuming it for j − 1. Let r∗1 , . . . , r

∗
j−1 ∈ S0

be the values given by the induction hypothesis for j − 1.
Since S0 is also 2α-wise ε–approximate, it can be seen that for any fixed vertex

v,

E[ Profitv(`(v)) | rk = r∗k, 1 ≤ k ≤ (j − 1),

(rj , rj+1, . . . , rβ) ∼ U(S0 × {0, 1}nα(β−j)) ]

≥ E[Profitv(`(v)) | rk = r∗k, 1 ≤ k ≤ (j − 1),

(rj , rj+1, . . . , rβ) ∼ U({0, 1}nα(β−j+1)) ]

−2αεM.

This is because the function Profit is bounded in value by M , the sample space
S0 is 2α-wise ε-approximate and there are only α (≤ 2α) bits of the labeling of the
vertex v that are being fixed by the string rj . Similarly for any {u, v} ∈ E,

E[ Costu,v(`(u), `(v)) | rk = r∗k, 1 ≤ k ≤ (j − 1),

(rj , rj+1, . . . , rβ) ∼ U(S0 × {0, 1}nα(β−j)) ]

≥ E[ Costu,v(`(u), `(v)) | rk = r∗k, 1 ≤ k ≤ (j − 1),

(rj , rj+1, . . . , rβ) ∼ U({0, 1}nα(β−j+1)) ]

−22αεM.

Thus by linearity of expectation,

E[ Benefit(`) | rk = r∗k, 1 ≤ k ≤ (j − 1),

(rj , rj+1 , . . . , rβ) ∼ U(S0 × {0, 1}nα(β−j)) ]

≥ E[ Benefit(`) | rk = r∗k, 1 ≤ k ≤ (j − 1),

(rj , rj+1 , . . . , rβ) ∼ U({0, 1}nα(β−j+1)) ]

− Mε(2αn+ 22αm),
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which in turn is at least E∗ − jγn−c (via the induction hypothesis and the fact
that Mε(2αn+ 22αm) ≤ γn−c). So there exists r∗j ∈ S0 such that (1) holds.

The above lemma gives us an algorithm to pick the labeling of the vertices γq
bits at a time all at once. At stage j, to find the point r∗j , we need to compute

fj(w) = E[ Benefit(`) | rk = r∗k, 1 ≤ k ≤ (j − 1), rj = w,

(rj+1 , rj+2 , . . . , rβ) ∼ U({0, 1}nα(β−j)) ]

for each point w ∈ S0 and pick r∗j as the point w which maximizes the value of the
function. Recalling the definition of t, the function fj(·) can be computed in time
O(t+ log n) using O(n+m) processors.

To further optimize the number of processors used, we will not directly sample
the point w from the sample space S0. We construct the sample space S0 by starting
from an 2α-wise n−δ2-biased sample space S1 for nα–length bit strings and taking
s = O(1) samples from S1, as in Section 3.1. (We assume here, as is true in our
applications, that q = O(logn).)

We claim that via the approach of Sections 3.2 and 3.3, each of the s samples
can be chosen appropriately using O((n + m)24α|S1|) processors and O(t + log n)
time. To justify this, we just need to show that for any s′ ≤ s, conditional on:

• rk = r∗k, 1 ≤ k ≤ (j − 1),
• any given assignment for the first s′ samples, and
• the remaining s − s′ samples being chosen independently at random from S1,

and, independently, (rj+1, rj+2, . . . , rβ) ∼ U({0, 1}nα(β−j)),

the expectation of a term such as Profitv(`(v)) or Costu,v(`(u), `(v)) can be com-
puted by a (24α, t+ log n) algorithm. Consider, say, a term such as
Costu,v(`(u), `(v)). The result of choosing the remaining s − s′ samples from S1

will lead to a value for rj ; since rj will fix only 2α of the bits of (`(u), `(v)), the
conditional expectation of Costu,v(`(u), `(v)) can be written as a sum∑

ψ∈[22α]

aψpψ,

where the aψ are scalars and the pψ are probabilities that add up to 1. By the
definition of t, all the aψ can be computed in O(t) time using 22α processors. Each
pψ in turn can be expressed as a sum of 22α bias terms, where each individual bias
term can be computed in constant time by one processor. Thus, the expectation of
a term such as Profitv(`(v)) or Costu,v(`(u), `(v)) can be computed by a (24α, t+
log n) algorithm; so each of the s = O(1) stages can be implemented by an ((n +
m)24α|S1|, t+ log n) algorithm.

Plugging in the size of S1 from the standard construction of [4] and using the
fact that there are γ−1 stages, we get

Theorem 4.1. For any fixed γ, δ ∈ (0, 1) and q = O(logn), there is an ((n +
m)24γqnδ, γ−1(t + logn)) algorithm to find a labeling ˆ̀ with Benefit(ˆ̀) ≥ E∗ −
n−Θ(1) in the PROFIT/COST problem, for the case where the functions Profit
and Cost are bounded in value by a polynomial in n. In particular, there exists an
((n+m)nδ, t+ log n) algorithm to find such a labeling.
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As instantiations of this general framework we can derive the following as corol-
laries, via Theorem 4.1 and some results from [29] and [34]. Recall that any graph
with maximum degree ∆ can be colored using ∆ + 1 colors. The first linear-
processor NC algorithm for (∆ + 1)-coloring was presented in [29], with a running
time of O(log3 n log log n). It is shown in [29] that if there is a (P (n,m), T (n,m))
NC algorithm for the Profit/Cost problem when q and t are both O(logn), then
(∆ + 1)-coloring can be solved by a (P (n,m), log n(log n+ T (n,m))) algorithm. In
this instantiation the functions Profit and Cost actually lie in [0, 1]. Using this in
conjunction with Theorem 4.1 we get

Corollary 4.1. There is an ((n + m)nγ , log2 n) algorithm for (∆ + 1)-vertex
coloring, where γ is any positive constant.

A connected graph is vertex-colorable with ∆ colors if and only if it is neither
an odd cycle nor a complete graph. It is shown in [34] that if there is a P (n,m)–
processor NC algorithm for (∆ + 1)-coloring that runs in O(T (n,m)) time, then
there is a (P (n,m), (log n+T (n,m)) log2 n/ log ∆) algorithm for ∆-coloring graphs
that are ∆-colorable. Thus, by Corollary 4.1, we get

Corollary 4.2. For any fixed δ > 0, there exists an ((n+m)nδ, log4 n/ log ∆)
algorithm for ∆-vertex coloring, for graphs that are ∆-vertex colorable.

4.2. The maximum acyclic subgraph problem
Given a directed graph G = (V,A), the maximum acyclic subgraph problem is

to find a maximum sized subset of edges Â such that the subgraph G′ = (V, Â)
is acyclic. This problem is known to be NP–hard. Let us assume that V = [n].
Building on the work of [13], Berger [11] derives an elegant NC algorithm which
finds a subset Â of size at least

target(G) .=
|A|
2
− 1 + c0(

n∑
i=1

√
deg(i) +

n∑
i=1

|dout(i)− din(i)|),

where dout(v) and din(v) denote the out- and in-degrees of vertex v in G, deg(v) =
dout(v) + din(v), and c0 > 0 is an absolute constant.

We now only present the portion of the work of [11] that is most relevant to
our results. In the algorithm of [11], each vertex v is assigned a random label
rv ∈ {1, 2, . . . , σ} in parallel, where σ is the smallest power of two that is at least
as high as n (other suitable values also exist for σ [11]). Each vertex v is then
processed in parallel as follows. Let N ′out(v) = {(v, w) ∈ A : rw > rv}, and
let N ′in(v) = {(w, v) ∈ A : rw > rv}. If |N ′out(v)| ≥ |N ′in(v)|, then we choose
the outedges from v to be in Â, else we choose the inedges. The resulting set of
arcs Â clearly defines an acyclic graph. It is shown in [11] that if the labels are
assigned 5–wise independently with each label being uniformly random in [σ], then
E[|Â|] ≥ target(G).

We will use the same approach as in the Profit/Cost problem to efficiently de-
randomize the assignment of labels. Since the approach is similar, we will merely
outline a proof following some results in [11].
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Notation 4.1. Given an event B, I(B) equals 1 if B holds, and is 0 if B does
not hold. For any v ∈ V , let N(v) = {w ∈ V : (v, w) ∈ A or (w, v) ∈ A}, and let
∆ = maxv∈V |N(v)|.

The values cv,S in Theorem 4.2 can all be precomputed using n∆4 processors, in
O(logn) time.

Theorem 4.2. ([11]) For any choice of the labels rv in the above algorithm, the
resulting set of arcs Â satisfies |Â| ≥ f(r1, r2, . . . , rn), where f(r1, . . . , rn) equals

|A|/2− (
∑

(u,v)∈A

I(ru = rv))/2 +
∑

v∈V ;S⊆N(v);|S|≤4

cv,S · I(rv < min{rw : w ∈ S}).

If the rv’s are picked uniformly at random and (5-wise) independently from [σ],
then E[f(r1, . . . , rn)] ≥ target(G).

Thus, the goal is to compute a suitable set of labels {rv : v ∈ V } in NC, so that
f(r1, . . . , rn) ≥ target(G). As observed in [11], we could derive an O(logn) time
NC algorithm from the above by exhaustive search of a 5-wise independent sample
space, but that would use O(n5) processors. An (n∆4, log2 n log ∆) algorithm is
presented in [11]; we now present an (n1+δ∆4, log n) algorithm for any fixed δ > 0.

Let q = log σ = dlog ne. Suppose, for an arbitrary j ∈ [q], the first j bits of
the labels of all the variables have been fixed at arbitrary given values, and that
the remaining n(q − j) bits of the labels are chosen uniformly at random from
{0, 1}n(q−j). Then, it is shown in [11] that any conditional expectation such as
E[I(ru = rv)] or E[I(rv < min{rw : w ∈ S})] can be computed in O(log n) time
using one processor. Motivated by this, we present a strategy similar to the one for
the general profit/cost problem.

Let γ ∈ (0, 1) be a sufficiently small constant. We proceed in β = γ−1 stages, and
in each stage, we set γq bits of the labels of each of the vertices all at once. In each
stage we need to sample from a sample space S0 which is (5γq)–wise n−O(1)–biased,
and we wish to maximize the sum of O(n∆4) functions (conditional expectations),
each depending on at most 5γq bits. As in Section 4.1, we will instead construct
S0 using the XOR of O(1) samples from a (5γq)–wise n−δ1–biased sample space
S1. Proceeding identically as in Section 4.1, each stage can be implemented using
n∆4nO(γ+δ1) processors and O(logn) time. We omit the details since the algorithm
and the proof are almost exactly as the ones for the Profit/Cost problem.

Theorem 4.3. Given a directed graph G = (V,A) and any fixed δ > 0, there is
an (n1+δ∆4, log n) algorithm to find an acyclic subgraph of G with at least |A|/2−
1 + c0(

∑n
i=1

√
deg(i) +

∑n
i=1 |dout(i)− din(i)|) arcs.

5. APPROXIMATING GENERAL DISTRIBUTIONS
We have so far considered small spaces that approximate the distribution of

independent and uniform binary random variables. With potentially similarly ap-
plications, the general problem of approximating the joint distribution D of in-
dependent multivalued random variables is considered in [18]: see Definition 1.4.
We are interested in such approximating sample spaces that are small and effi-
ciently constructible. An elementary probabilistic argument shows the existence of
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a (k, ε)-approximation of cardinality as small as O(n log(n/ε)/ε2) for any D and any
k ≤ n. However, for the purpose of derandomization, we need that these small sam-
ple spaces are efficiently constructible and no such constructions are known. Even
though the constructions we present are of size bigger than the theoretically pos-
sible result, they are significantly smaller than the previously known constructions
of (k, ε)-approximations.

Henceforth let e denote the base of the natural logarithm.

5.1. A geometric discrepancy problem
The efficient construction of (k, ε)-approximations can be reduced to the following

discrepancy problem, as shown in [18]. An axis-parallel rectangle R ⊆ [0, 1)n is a
cross-product of the form [u1, v1)× [u2, v2)× · · · × [un, vn), where 0 ≤ ui < vi ≤ 1.
(As in [18], it is more convenient to work with intervals such as [ui, vi), than with,
say, [ui, vi]. One reason is that the complement of such a half-open interval [ui, vi)
within the universe [0, 1), is the disjoint union of two such half-open intervals: [0, ui)
and [vi, 1).) The volume of R, denoted vol(R), is defined naturally to be

∏
i(vi−ui).

R is said to be nontrivial in dimension i if either ui > 0 or vi < 1. For any positive
integer k ≤ n, let Rkn denote the set of axis-parallel rectangles that are nontrivial in
at most k dimensions. Given a finite set S ⊆ [0, 1)n, let ~Y be chosen uniformly at
random from S. For any axis-parallel rectangle R, define the discrepancy of R with
respect to S, denoted ∆S(R), to be

∣∣ Pr(~Y ∈ R) − vol(R)
∣∣. Note that vol(R) is

the probability that a point chosen randomly from [0, 1)n lies in R. Thus, ∆S(R) is
the discrepancy between the two measures of sampling uniformly from [0, 1)n and
sampling uniformly from S, with respect to R. We define

∆S(Rkn) = maxR∈Rkn ∆S(R).

This problem also arises in discrepancy theory [10] in the context of certain
numerical integration problems. To compute the integral of a function over a certain
body, one common method in numerical integration is to approximate this integral
by the arithmetic mean of this function evaluated at a finite set of points chosen
judiciously within this body, times the volume of the body. Small-discrepancy
sets are obvious candidates to be such a good set of points. For certain kinds of
functions, there are bounds that show that sampling points from a small discrepancy
set implies a small error.

The following lemma shows a link between the above geometric discrepancy prob-
lem and (k, ε)-approximations:

Lemma 5.1. ([18]) Let ε > 0 and S ⊂ [0, 1)n be such that ∆S(Rkn) ≤ ε, for inte-
gers k, n. For a positive integer m, let X1, . . . , Xn ∈ {0, . . . ,m− 1} be independent
random variables with arbitrary individual distributions and joint distribution D.
Then, there exists a (k, ε)-approximation S′ for D, such that: (a) |S′| = |S|, and
(b) given a uniformly random sample from S, a uniformly random sample from S′

can be generated deterministically in time polynomial in n and m.

Given Lemma 5.1, we shall focus on the problem of efficiently constructing a
finite set S ⊆ [0, 1)n such that it has a small “rectangle discrepancy”, i.e.,

for any R ∈ Rkn,∆S(Rkn) ≤ ε. (3)
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Of course, we also require S to be efficiently constructible, and be of small size. A
major open question in derandomization theory is to construct S of size polynomial
in k, log n, and ε−1. Actually, even a construction with cardinality polynomial in
n and ε−1 will be very interesting. However, these seem to be difficult problems
for now. The work of [18] describes efficient constructions of three sample spaces
S1, S2, S3 ⊂ [0, 1)n to satisfy (3) with

|S1| = poly(log n, 2k, 1/ε), |S2| = (n/ε)O(log(1/ε)), and |S3| = (n/ε)O(log n). (4)

The sample spaces S2 and S3 actually guarantee (3) for all k ≤ n. In contrast, our
main result, given by Theorem 5.1 below, is an explicit construction of a sample
space of size polynomial in log n, 1/ε and (dk/ log(1/ε)e)log(1/ε), and which has
discrepancy at most ε.

Let us first see why this size is at least as good as |S1|, |S2| and |S3|. As for |S1|,
we need only show that

dk/ log(1/ε)elog(1/ε) ≤ 2O(k).

This is immediate if k ≤ log(1/ε). If k > log(1/ε), then for a fixed value of k,
(k/ log(1/ε))log(1/ε) is maximized when log(1/ε) = k/e. Thus, if k > log(1/ε), we
have

dk/ log(1/ε)elog(1/ε) ≤ (2k/ log(1/ε))log(1/ε) ≤ 2k/eek/e ≤ 2k.

Next, it is easy to see that our construction is at least as good as S2. Finally, as
for S3, note that if even if k = n, the logarithm of the size of our construction is
O((logn) · log(1/ε)); however, log |S3| = O(log2 n + (log n) · log(1/ε)). Thus, our
construction is an improvement over the previous ones. It also provides significant
improvements in some cases. For instance, if k = logb n and ε = n−Θ(1) with b ≥ 2,
our construction has size nO(log log n), while the previously known constructions have
size nΩ(log n).

The basic idea in our construction is to reduce the problem of finding a (k, ε)-
approximate sample space to that of finding a (k′, ε′)-approximate sample space
where k′ � k and ε′ is not much smaller than ε. Then we can use the sample space
S1 of [18].

5.2. Construction of the sample space
We start with the following technical fact.

Proposition 5.1. Suppose: (a) a1 ≤ x1 ≤ a1 + b1 and a2 ≤ x2 ≤ a2 + b2,
or (b) a1 − b1 ≤ x1 ≤ a1 and a2 − b2 ≤ x2 ≤ a2 holds, for b1, b2 ≥ 0. Then,
|x1 − x2| ≤ |a1 − a2|+ |b1 − b2|+ b2.

Proof. It is evident that whether case (a) or case (b) holds, we have |x1−x2| ≤
|a1 − a2| + max{b1, b2}. We now use the fact that max{b1, b2} ≤ |b1 − b2| + b2 to
complete the proof.

As stated above, our basic goal is to reduce the construction of (k, ε)-approximate
sample spaces to that of constructing (k′, ε′)-approximate spaces with k′ � k and
with ε′ not much smaller than ε. We call this reduction of dimension from k to k′

a dimension reduction.
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We start with Lemma 5.2, which closely follows the proof of Theorem 2 in [18].
Lemma 5.2 will be crucial to our dimension reduction, and its basic setup is as
follows. We have arbitrary binary random variables Z1, Z2, . . . , Zk, and independent
binary random variables X1, X2, . . . , Xk, and we want some conditions under which
Pr(
∧
i∈[k](Xi = 0)) is a “good” approximation for Pr(

∧
i∈[k](Zi = 0)). Lemma 5.2

shows that this is a good approximation if, for some “large” k′ ≤ k and for each
A ⊆ [k] with |A| ≤ k′, Pr(

∧
i∈A(Zi = 1)) and Pr(

∧
i∈A(Xi = 1)) are sufficiently

close to each other. See the statement of Lemma 5.2 for the actual bound.
Theorem 2 of [18] handles the version of this lemma where for each i, Pr(Zi = 1) =

Pr(Xi = 1). We need the more general version of this lemma for our construction;
however, as mentioned above, our proof closely follows that of Theorem 2 in [18].

Lemma 5.2. Let X1, X2, . . . , Xk be independent binary random variables and let
Z1, Z2, . . . , Zk be arbitrary binary random variables. Then, for any positive integer
k′ ≤ k,

∣∣ Pr(
∧
i∈[k](Zi = 0))− Pr(

∧
i∈[k](Xi = 0))

∣∣ is bounded by

2−k
′
+ e · e−k

′/(2e) +
k′∑
`=1

∑
A⊆[k]:|A|=`

∣∣ Pr(
∧
i∈A

(Zi = 1))− Pr(
∧
i∈A

(Xi = 1))
∣∣ .

Proof. For any positive integer ` ≤ k′, define

B` =
∑

A⊆[k]:|A|=`

Pr(
∧
i∈A

(Zi = 1)), and C` =
∑

A⊆[k]:|A|=`

Pr(
∧
i∈A

(Xi = 1)).

Let Pr(Xi = 1) = pi. We will consider two cases depending on the value of
∑
i pi.

Case I:
∑
i∈[k] pi ≤

k′

2e . As in [18], we have

Ck′ =
∑

1≤i1<···<ik′≤k

pi1 · · · pik′

≤
(
k

k′

)
· ((
∑
i

pi)/k)k
′

≤ (k′/2e)k
′

k′!

≤ (k′/2e)k
′

(k′/e)k′
= 2−k

′
. (5)

The first inequality follows from the fact that subject to a fixed value for
∑
i∈[k] pi,

Ck′ is maximized when all the pi are the same.
Let a1 = 1−B1 +B2 − · · ·+ (−1)k

′−1Bk′−1, b1 = Bk′ , a2 = 1−C1 +C2 − · · ·+
(−1)k

′−1Ck′−1, and b2 = Ck′ . By standard inclusion-exclusion, we know that

if k′ is even, then

a1 ≤ Pr(
∧
i∈[k]

(Zi = 0)) ≤ a1 + b1 and a2 ≤ Pr(
∧
i∈[k]

(Xi = 0)) ≤ a2 + b2;

if k′ is odd, then

a1 − b1 ≤ Pr(
∧
i∈[k]

(Zi = 0)) ≤ a1 and a2 − b2 ≤ Pr(
∧
i∈[k]

(Xi = 0)) ≤ a2.
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Thus, Proposition 5.1 shows that∣∣ Pr(
∧
i∈[k]

(Zi = 0))− Pr(
∧
i∈[k]

(Xi = 0))
∣∣≤ |a1 − a2|+ |b1 − b2|+ Ck′ .

The bounds (5), |a1 − a2| ≤
∑k′−1
`=1 |B` − C`| and |b1 − b2| = |Bk′ − Ck′ | show that

in Case I, the lemma holds.

Case II: In this case we have
∑
i∈[k] pi >

k′

2e . We will consider only enough of
the pis so that Case I can be applied and then bound the error in ignoring the
remaining terms. Let t < k be the first index such that k′

2e − 1 <
∑
i∈[t] pi ≤

k′

2e .

Now, since
∑
i∈[t] pi ≤

k′

2e , it follows from Case I that

|Pr(
∧
i∈[t]

(Zi = 0)) − Pr(
∧
i∈[t]

(Xi = 0))|

≤ 2−k
′
+

k′∑
`=1

∑
A⊆[t]:|A|=`

∣∣ Pr(
∧
i∈A

(Zi = 1))− Pr(
∧
i∈A

(Xi = 1))
∣∣ (6)

Since
∑
i∈[t] pi > k′/(2e)− 1 by assumption, we have

Pr(
∧
i∈[t]

(Xi = 0)) =
∏
i∈[t]

(1− pi)

≤

(
1−

∑
i∈[t] pi

t

)t

<

(
1− (k′/2e)− 1

t

)t
≤ e · e−k

′/(2e). (7)

Now, the absolute value of the difference between Pr(
∧
i∈[k](Zi = 0)) and

Pr(
∧
i∈[k](Xi = 0)) will be maximized if one of these two can be zero and the other,

as high as possible. Thus, by the obvious constraints

0 ≤ Pr(
∧
i∈[k]

(Zi = 0)) ≤ Pr(
∧
i∈[t]

(Zi = 0))

and

0 ≤ Pr(
∧
i∈[k]

(Xi = 0)) ≤ Pr(
∧
i∈[t]

(Xi = 0)),

we have ∣∣ Pr(
∧
i∈[k]

(Zi = 0))− Pr(
∧
i∈[k]

(Xi = 0))
∣∣

≤ max{Pr(
∧
i∈[t]

(Zi = 0)),Pr(
∧
i∈[t]

(Xi = 0))}

≤ |Pr(
∧
i∈[t]

(Zi = 0))− Pr(
∧
i∈[t]

(Xi = 0))|+ Pr(
∧
i∈[t]

(Xi = 0)).
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This, along with (5) and (6), completes the proof.

Suppose we are given n, k and ε, and wish to construct a S ⊂ [0, 1)n such that
∆S(Rkn) ≤ ε. The basic idea of Theorem 5.1 below is to show, for some k′ =
O(log(1/ε)) and ε′ “not much less than” ε, that it suffices to take any S ⊂ [0, 1)n

such that ∆S(Rk′n ) ≤ ε′. The actual values of ε′ and k′ will be given in 11. Let us
start with a bit of notation.

Notation 5.1. Fix any rectangle R = [u1, v1) × [u2, v2) × · · · × [un, vn) which
is nontrivial in at most k dimensions: say, without loss of generality, in dimen-
sions 1, 2, . . . , k. Consider any S ⊂ [0, 1)n such that ∆S(Rkn) ≤ ε. Let ~Y =
(Y1, Y2, . . . , Yn) be sampled uniformly at random from S. For each i ∈ [k], let
Zi ∈ {0, 1} be the random variable that is 1 if Yi 6∈ [ui, vi), and let Xi ∈ {0, 1} be
the random variable that is 1 if a point drawn uniformly at random from [0, 1)n

does not lie in [ui, vi).

Thus, our goal is to show that∣∣ Pr(
∧
i∈[k]

(Zi = 0))− Pr(
∧
i∈[k]

(Xi = 0))
∣∣≤ ε. (8)

By Lemma 5.2, it will suffice to show, for some k′ = C · log(1/ε) where C is a
sufficiently large constant, that for each A ⊆ [k] with |A| ≤ k′, Pr(

∧
i∈A(Zi = 1))

and Pr(
∧
i∈A(Xi = 1)) are sufficiently close to each other. Since ∆T (Rk′n ) ≤ ε′, we

only know that for each A ⊆ [k] with |A| ≤ k′,∣∣ Pr(
∧
i∈A

(Zi = 0))− Pr(
∧
i∈A

(Xi = 0))
∣∣≤ ε′;

however, we wish to bound
∣∣ Pr(

∧
i∈A(Zi = 1))− Pr(

∧
i∈A(Xi = 1))

∣∣. Lemma 5.3
helps in this.

Lemma 5.3. Let S ⊂ [0, 1)n be a set with ∆S(Rk′n ) ≤ ε′, for some k′ and ε′ and
let ~Y = (Y1, Y2, . . . , Yn) be sampled uniformly at random from S. Then, for any
J ⊆ [n] with |J | = s ≤ k′ and for any ui, vi with 0 ≤ ui < vi ≤ 1, i ∈ J , we have∣∣ Pr(

∧
i∈J

(Yi 6∈ [ui, vi))−
∏
i∈J

(1− (vi − ui))
∣∣≤ 2sε′.

Proof. We assume without loss of generality that J = [s]. For each i ∈ J , let
Ii,0 = [0, ui), and Ii,1 = [vi, 1). Since the event Yi 6∈ [ui, vi) is the disjoint union of
the events Yi ∈ Ii,0 and Yi ∈ Ii,1, we can verify that

Pr(
∧
i∈J

(Yi 6∈ [ui, vi))) =
∑

σ∈{0,1}s
Pr(
∧
i∈J

(Yi ∈ Ii,σi)). (9)

Let `i,0 = ui and `i,1 = 1− vi. It is clear that∏
i∈J

(1− (vi − ui)) =
∑

σ∈{0,1}s

∏
i∈J

`i,σi . (10)
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For any σ ∈ {0, 1}s, we have
∣∣ Pr(

∧
i∈J(Yi ∈ Ii,σi)) −

∏
i∈J `i,σi

∣∣≤ ε′, since
∆S(Rk′n ) ≤ ε′. This fact, combined with equations (9) and (10) and the trian-
gle inequality, concludes the proof.

Our construction of the small sample space is described now, following the above
informal outline.

Theorem 5.1. There is an explicitly constructible set S ⊆ [0, 1)n of size poly-
nomial in log n, 1/ε and (dk/ log(1/ε)e)log(1/ε)), with discrepancy bounded by ε.
Thus, the joint distribution of any n independent discrete random variables, has
an explicit (k, ε)-approximating sample space of size polynomial in log n, 1/ε and
(dk/ log(1/ε)e)log(1/ε)).

Proof. Given k and ε, define

k′ = min{p ∈ Z+ : 2−p + e · e−p/(2e) ≤ ε/2}, and ε′ =
ε

2

(
k′

ke2

)k′
. (11)

Observe that k′ = O(log(1/ε)), and hence 1/ε′ = poly(1/ε, (dk/ log(1/ε)e)log(1/ε)).
Given the parameters n, k′ and ε′, one could use the first construction S1 pre-
sented in [18] to explicitly construct a set S ⊂ [0, 1)n, with size polynomial in
log n, 1/ε′, and 2k

′
, such that ∆S(Rk′n ) ≤ ε′. By definition of ε′ and k′, we have

|S| = poly(log n, 1/ε, (dk/ log(1/ε)e)log(1/ε)). In the following analysis, we will as-
sume that k′ < k/3: if k′ ≥ k/3, we have k = O(log(1/ε)), and hence we can define
the constructed sample space S to be the construction S1 of [18].

Our claim is that S also satisfies ∆S(Rkn) ≤ ε. To see this, let R, {Xi : i ∈ [k]},
~Y = (Y1, Y2, . . . , Yn), and {Zi : i ∈ [k]} be as in Notation 5.1. We now prove (8).
Lemmas 5.2 and 5.3 show that

∣∣ Pr(
∧
i∈[k]

(Zi = 0))− Pr(
∧
i∈[k]

(Xi = 0))
∣∣ ≤ 2−k

′
+ e · e−k

′/(2e) +
k′∑
`=1

∑
A⊆[k]:|A|=`

2`ε′

= 2−k
′
+ e · e−k

′/(2e) + ε′
k′∑
`=1

(
k

`

)
2`.

Since we have assumed that k′ < k/3,

k′∑
`=1

(
k

`

)
2` ≤ 2 ·

(
k

k′

)
· 2k

′

≤ 2 · kk
′(

k′

e

)k′ · 2k′
≤
(
ke2

k′

)k′
.

Thus,

∣∣ Pr(
∧
i∈[k]

(Zi = 0))− Pr(
∧
i∈[k]

(Xi = 0))
∣∣≤ 2−k

′
+ e · e−k

′/(2e) + ε′
(
ke2

k′

)k′
.
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By our choice of the parameters ε′ and k′, the right-hand-side is at most ε. Thus
the discrepancy of the set S is bounded by ε, and by Lemma 5.1 we can construct
a (k, ε)-approximate sample space with the required bounds.

6. DISCUSSION
We have devised a new method to construct sample spaces whose Fourier coeffi-

cients are close to those of the distribution of n independent and unbiased random
bits. Though the size of the sample space so constructed is larger than that of
previous constructions, its definition is particularly amenable to the application
of the method of conditional probabilities. Using this we derived efficient parallel
algorithms for several combinatorial optimization problems. For a large class of
problems our method yields algorithms which are faster than previously known al-
gorithms or match the running time of the best known algorithms with a significant
reduction in the processor complexity.

The above result is primarily concerned with approximating the distribution of
a set of n independent binary and unbiased random variables, using a small sample
space. An obvious generalization is to study such approximations for n independent
multi-valued random variables that have arbitrary marginal distributions. Such
constructions are motivated by their use as pseudorandom generators and in de-
randomization. For this problem, we have presented a construction that improves
on the previously known constructions.

Furthermore, there is a natural related problem of approximating combinatorial
rectangles [7, 9], defined as follows. Let m and n be positive integers. A com-
binatorial rectangle R is now a cross-product of the form S1 × S2 × · · · × Sn,
where Si ⊆ {0, 1, . . . ,m − 1} for each i; R is called trivial in dimension i iff
Si = {0, 1, . . . ,m− 1}. What we require in this problem is a “small” and efficiently
constructible multiset X ⊆ {0, 1, . . . ,m− 1}n such that for ~X = (X1, X2, . . . , Xn)
sampled uniformly at random from X, we have

∣∣ Pr( ~X ∈ R)− (
∏n
i=1 |Si|)/mn

∣∣≤ ε
for all combinatorial rectangles R that are nontrivial in at most k dimensions. Some
constructions of such X are now known [7, 9]; the work of [9] uses our construction
of (k, ε)-approximations as a tool.
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