
The discrepancy of permutation families∗

J. H. Spencer† A. Srinivasan‡ P. Tetali§

Abstract

In this note, we show that the discrepancy of any family of ` permutations of
[n] = {1, 2, . . . , n} is O(

√
` log n), improving on the O(` log n) bound due to Bohus

(Random Structures & Algorithms, 1:215–220, 1990). In the case where ` ≥ n, we
show that the discrepancy is Θ(min{

√
n log(2`/n), n}).
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1 Introduction

Discrepancy theory, the study of uniform distributions and irregularities of distribution,
arises in many branches of mathematics and has a rich combinatorial aspect; see the chap-
ter by Beck & Sós [3]. The discrepancy disc(A) of an m × n matrix A is defined to be
min{‖Aχ‖∞ : χ ∈ {−1, 1}n}. The discrepancy disc(H) of a set-system H is defined to be
the discrepancy of its vertex-edge incidence matrix. For any positive integer ` ≤ n! and
any set σ = {σ1, σ2, . . . , σ`} of ` permutations of [n] = {1, 2, . . . , n}, define Pσ(n) to be the
set-system {{σk(i), σk(i+ 1), . . . , σk(j)} : k ∈ [`], 1 ≤ i ≤ j ≤ n}, defined on the ground set
[n]. Define D`(n) = maxσ disc(Pσ(n)). It is known that D2(n) ≤ 2, and a major open ques-
tion, due to Beck, is whether D3(n) = O(1); this is problem 1.9 of [3]. Classical discrepancy

results show constructively that D`(n) = O(
√
n log(`+ n)) [8]. The best known result prior

to our work is that D`(n) = O(` log n), due to Bohus [4]. We improve this to show that

∗A preliminary version of part of this work appeared in the Proc. ACM-SIAM Symposium on Discrete
Algorithms, pages 692–701, 1997.
†Courant Institute of Mathematical Sciences, New York University, New York, NY 10012. Email:

spencer@cs.nyu.edu; research supported in part by NSF grant DMS 9970822.
‡Department of Computer Science and University of Maryland Institute for Advanced Computer Studies,

University of Maryland at College Park, College Park, MD 20742. E-mail: srin@cs.umd.edu. Parts of this
work were done: (i) while at the School of Computing, National University of Singapore, Singapore 119260,
Republic of Singapore, and (ii) while visiting the Department of Computer Science, University of Melbourne,
Victoria 3052, Australia, sponsored by a “Travel Grants for Young Asian Scholars” scheme of the University
of Melbourne.
§School of Mathematics and College of Computing, Georgia Institute of Technology, Atlanta, GA 30332.

Email: tetali@math.gatech.edu; research supported in part by NSF grant DMS 0100298.

1



D`(n) = O(
√
` log n). We also show that D`(n) = Θ(min{

√
n log(2`/n), n}) if ` ≥ n; thus,

the dependence on ` in our “O(
√
` log n)” bound cannot be improved significantly.

2 Discrepancy upper bounds for permutation families

There is an elegant approach to discrepancy via entropy and the pigeonhole principle [1, 7, 5].
Let A ∈ {0, 1}m×n, and let cols(A) denote the set of columns of A. For any i ∈ [m], let
nz(i, A) denote the number of nonzero entries in row i of A. A partial coloring is a map
χ : cols(A) → {−1, 0, 1}. For any v ∈ cols(A), we call v uncolored if χ(v) = 0, and colored
otherwise. Let exp(x)

.
= 2x, and let log x denote the logarithm of x to the base 2. For a

certain absolute constant c > 0 and for any λ > 0, define G(λ) to be: c · exp(−λ2/9), if
λ > 10; c, if 0.1 ≤ λ ≤ 10, and c · log(λ−1), if λ ∈ (0, 0.1).

We get, from Corollary 2.4 of [5]:

Theorem 2.1 ([5]) Suppose A ∈ {0, 1}m×n has at most f(s) rows with s nonzero entries,
for each s ≥ 1. If b(s) = σ(s)

√
s where σ(s) satisfies

∑
s≥1 f(s)G(σ(s)) ≤ n/5, then there is

a partial coloring χ of cols(A) with |(Aχ)i| ≤ b(nz(i, A)) for each i ∈ [m], and with at least
half of the columns of A colored.

Theorem 2.2 Given ` permutations on n points, there exists a partial coloring with dis-
crepancy O(

√
`), and with at most half the points uncolored.

Proof. For convenience, we assume here that both ` and n are powers of 2. (It is
straightforward to remove this assumption at the loss of at most a multiplicative constant
in the discrepancy.) Given the ` permutations, for each permutation we make canonical sets
- partitioning into n2−i sets of size 2i, for each i. More precisely, for each given permutation
σ and for every integer 1 ≤ i ≤ log n, we construct n2−i sets of size 2i each, as follows: each
such set is defined to be the set of points ordered from (j − 1) · 2i + 1 to j · 2i by σ, for some
positive integer j. Summing over all the ` permutations, we get a total of at most n2−j sets
of size `2j for each integer j such that − log ` ≤ j ≤ log(n/`).

We want a coloring so that for some constant C > 0, sets of size `2j have discrepancy at
most C(j + 1)−2

√
` for j ≥ 0, and sets of size `2−k have discrepancy at most Ck−2

√
` for

k ≥ 1. Then any interval is the difference of two intervals beginning at the beginning, each
of which is the union of canonical sets of distinct sizes of the form ` · 2j; so, the discrepancy
of an interval would be at most O(

∑
j≥1 j

−2
√
`) = O(

√
`), using the convergence of

∑
j j
−2.

In view of Theorem 2.1, it suffices to show that

[
∑
j≥0

n2−jG(
C

2j/2(j + 1)2
)] +

∑
k≥1

n2kG(
C2k/2

k2
) ≤ n/5. (1)

We now show that this holds if C is large enough.
We will ensure that C > 100. Let j1 be the smallest non-negative integer such that
C

2j/2(j+1)2 <
√
C; we have j1 ≥ c0 logC for some absolute constant c0 > 0 (which, in particular,
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is independent of C). Since
√
C > 10, we see that G( C

2j/2(j+1)2 ) ≤ exp(−C/9) for 0 ≤ j < j1.

Also, it is easy to verify that for j ≥ j1, G( C
2j/2(j+1)2 ) ≤ c1j for some absolute constant c1.

Finally, since C > 100, G(C2k/2

k2 ) ≤ exp(−C22k/(9k4)) for all k ≥ 1. These ideas show that
the l.h.s. of (1) is at most

[
∑

0≤j<j1
n2−jexp(−C/9)] + [

∑
j≥c0 logC

n2−j · c1j] +
∑
k≥1

n2kexp(−C22k/(9k4)),

which is at most n/5 if C is large enough. 2

So, if we remove the colored points and iterate, we will get a coloring in O(log n) iterations.
Thus we have:

Corollary 2.1 D`(n) = O(
√
` log n).

An application to geometric discrepancy. As usual, define a rectangle in <k to be a
cross-product of k real intervals. Given a set S of n points lying in <k, let ES be the set
of rectangles that enclose the n points, and let RS be the set-system {(S ∩ R) : R ∈ ES},
defined over the ground-set S. (Note that RS has at most n2k distinct nonempty elements.)
Define Gk(n) = supS disc(RS). Gk(n) has been studied for fixed k, for a while; see [3]. It
is conjectured in [3] that Gk(n) has order of magnitude logk−1 n. It follows from the work
of [4] that for any fixed k, Gk(n) = O(D`(n) logk−1 n), where ` = (1 + log n)k−1. So, we get
that Gk(n) = O(log(3k−1)/2 n) for fixed k.

2.1 The case ` ≥ n

Theorem 2.3 If ` ≥ n, then D`(n) = O(min{
√
n log(2`/n), n}).

Proof. Suppose ` ≥ n. Clearly, it suffices to show that D`(n) = O(
√
n log(2`/n)). As in

[7] (and as in [5]), we now repeat the argument of Theorem 2.2, taking into account the fact
that at each step the number of points remaining to be colored is decreasing by a constant
fraction.

For the general step, suppose that we have ` permutations on 2−sn points, for s ≥ 0. As
before, consider the partitioning of each permutation into canonical sets: we have ` sets of
size n2−s, 2` sets of size n2−s−1, and in general, 2j` sets of size n2−s−j for j ≥ 0. We want
a coloring so that sets of size n2−s−j have discrepancy at most

C
√

(s+ j)n2−s−j log(2`/n);

then the final discrepancy of an interval (at the end of the O(log n) iterations) would be at
most

O(
∑
j,s≥0

√
(s+ j)n2−s−j log(2`/n)) = O(

√
n log(2`/n)).
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Once again, in view of Theorem 2.1, we get the above discrepancy as long as we have∑
j≥0 `2

jG(C
√

(s+ j) log(2`/n)) ≤ n2−s/5. Choosing C > 10, it suffices to have∑
j≥0

`2jexp(−C2(s+ j) log(2`/n)/9) ≤ n2−s/5,

which is true for C large enough. 2

We next present a simple probabilistic proof to show that Theorem 2.3 is tight:

Theorem 2.4 If ` ≥ n, then D`(n) = Ω(min{
√
n log(2`/n), n}).

Proof. We will assume throughout that n is large enough, and for notational convenience,
will avoid the use of the floor and ceiling signs in several places.

First, for a certain constant ε ∈ (0, 1) that will be appropriately chosen later, we may
assume that ` ≤ 2εn, for the following reason. There is some constant δ ∈ (0, 1/2) such

that for large enough n,
(
n
δn

)
≤ 2εn. (Note that for a fixed choice of δ, we may choose ε

accordingly, e.g., ε > H(δ) suffices, where H(.) denotes the binary entropy function.) Thus,
if ` > 2εn, we can construct ` permutations such that the set of first δn elements of these
permutations equals the set of all δn–sized subsets of [n]. Now, since δ ≤ 1/2, it is easy to
see that any two-coloring will lead to at least one of the ` permutations having its first δn
elements monochromatic. Thus, if ` > 2εn, then D`(n) ≥ δn = Ω(n), and we will be done.
Thus we can assume that ` ≤ 2εn, and our approach will be the following simple probabilistic
one.

Let a > 0 be a constant that will be chosen small enough later, and let v1, v2, . . . , vn be
arbitrary elements of {−1, 1}. Suppose we can show, for a subset S of [n] chosen at random
from the uniform distribution, that

Pr[|
∑
j∈S

vρj | ≥ a
√
n ln(2`/n)] > (ln 2) · n/`. (2)

Next suppose we choose subsets S1, S2, . . . , S` of [n] uniformly at random and independently.
Then, (2) shows that

Pr[
∧̀
i=1

(|
∑
j∈Si

vρj | < a
√
n ln(2`/n))] < (1− (ln 2) · n/`)` < 2−n.

So, since there are only 2n choices for (v1, v2, . . . , vn), there exist subsets S∗1 , S
∗
2 , . . . , S

∗
` of

[n] such that for each choice of (v1, v2, . . . , vn), there is some S∗i such that |∑j∈S∗i vρj | ≥
a
√
n ln(2`/n). Now construct permutations P1, P2, . . . P` such that each S∗i is a prefix (under

an arbitrary ordering of the elements of S∗i ) of Pi; this will show that D`(n) ≥ a
√
n ln(2`/n).

So, we now proceed to show that (2) holds for a small enough, using appropriate estimates
of the binomial coefficients; these calculations are quite routine.

For n/2 ≤ k ≤ n, a standard estimate (see, e.g., equation (4.10) in [6]) shows that(
n

k

)
≥ c2n√

n
· e−2(k−n/2)2/n−d(k−n/2)3/n2

,
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where c, d > 0 are absolute constants. Thus, there is a constant ε > 0 such that if ` ≤ 2εn,
a ≤ 1/2 and n is large enough, then

∀k ∈ [n/2 + (a/2) ·
√
n ln(2`/n), n/2 + (a/2) ·

√
n ln(2`/n) +

√
n],

(
n

k

)
≥ c2n√

n
· e−4(k−n/2)2/n.

(3)
We will assume that ` ≤ 2εn; as mentioned above, this is without loss of generality.

Suppose some s of the vi equal 1, and that n− s of the vi are −1. Now, to show (2), we
may assume that s ≥ n/2, since |∑j∈S vρj | = |

∑
j∈S(−vρj)|. Now,

Pr[|
∑
j∈S

vρj | ≥ a
√
n ln(2`/n)] ≥ Pr[

∑
j∈S

vρj ≥ a
√
n ln(2`/n)];

since s ≥ n/2, the r.h.s. is minimized when s = n/2. Thus,

Pr[|
∑
j∈S

vρj | ≥ a
√
n ln(2`/n)] ≥ 2−n ·

n∑
k=n/2+(a/2)·

√
n ln(2`/n)

(
n

k

)

≥ 2−n ·
n/2+(a/2)·

√
n ln(2`/n)+

√
n∑

k=n/2+(a/2)·
√
n ln(2`/n)

(
n

k

)

≥ c√
n
·
√
n∑

i=0

e−4((a/2)·
√
n ln(2`/n)+i)2/n (by (3))

≥ c′√
n
· e−a2 ln(2`/n) ·

√
n∑

i=0

e−4a
√

ln(2`/n)/n·i

=
c′√
n
· (n/(2`))a2 ·

√
n∑

i=0

e−4a
√

ln(2`/n)/n·i, (4)

where c′ > 0 is some absolute constant. Now set a � 1; say, a ≤ 1/20. Then, there is an
absolute constant c1 > 0 such that for all a ∈ (0, 1/20], all large enough n and all ` ≥ nc1 ,
the inequality c′√

n
· (n/(2`))a2

> (ln 2) · n/` holds. So, we will be done if ` ≥ nc1 ; suppose

` < nc1 . Then, a simple lower bound on the geometric series in (4) using the fact that
ln(2`/n) ≥ Ω(1) shows the following: there is an absolute constant c2 > 0 such that (4) is
at least

c2

a ·
√

ln(2`/n)
· (n/(2`))a2

.

Now, it is easy to verify that if we choose a small enough, then for any ` ∈ [n, nc1 ], this
quantity is greater than (ln 2) · n/`. 2

3 Conclusion

Our results motivate us in making the following conjecture:
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Conjecture. For all positive integers `, D`(n) = O(
√
`).

As another interesting open problem we wonder whether an O(
√
` log n)–discrepancy result

can be achieved in time polynomial in n+ `.

Acknowledgements. We thank Alan Frieze, Jirka Matoušek and David Shmoys for helpful
discussions.
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