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1 Our result.

We resolve the problem posed as the main open question
in [4]: letting δ(G), ∆(G) and D(G) respectively denote
the minimum degree, maximum degree, and domatic
number (defined below) of an undirected graph G =
(V,E), we show that D(G) ≥ (1−o(1))δ(G)/ ln(∆(G)),
where the “o(1)” term goes to zero as ∆(G) → ∞.
A dominating set of G is any set S ⊆ V such that
for all v ∈ V , either v ∈ S or some neighbor of
v is in S. A domatic partition of V is a partition
of V into dominating sets, and the number of these
dominating sets is called the size of such a partition.
The domatic number D(G) of G is the maximum size of
a domatic partition; it is NP-hard to find a maximum-
sized domatic partition. This is a very well-studied
problem especially for various special classes of (perfect)
graphs: see, e.g., [2, 6, 7] and the references in [4].

Recent interesting work of [4] has given the first
non-trivial approximation algorithm for the domatic
partition problem, whose approximation guarantee is
also shown to be essentially best-possible in [4]. Let
n = |V |, δ = δ(G), and ∆ = ∆(G). It is easy to check
that D(G) ≤ δ + 1. An efficient algorithm to find a
domatic partition of size (1 − o(1))δ/ lnn is shown in
[4], where the o(1) term goes to zero as n increases;
thus, this is a (1 + o(1)) lnn approximation. It is also
shown in [4] that for any fixed ε > 0, an (1 − ε) lnn-
approximation algorithm for D(G) would imply that
NP ⊆ DTIME[nO(log log n)]; hence such an algorithm
appears unlikely. An interesting point is that this seems
to be the first natural maximization problem proven
to have a Θ(logn) approximation threshold. Can we
say something better for sparse graphs? It is shown
in [4] that D(G) ≥ (1 − o(1))δ/(3 ln ∆), where the
o(1) term is a function of ∆ that goes to zero as ∆
increases. (Among the very few such lower bounds
known before was that D(G) ≥ dn/(n− δ)e [8]. This is
relevant primarily for very dense graphs. For instance,
when 1 ≤ δ ≤ n/2, this bound says that D(G) ≥ 2;
however, D(G) ≥ 2 is readily seen to hold if (and only
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if) δ ≥ 1. If δ ≥ 1, then any maximal independent set
and its complement are dominating sets.) One of the
main open questions asked in [4] is whether D(G) ≥
(1− o(1))δ/ ln ∆; we answer this in the affirmative. (As
a step in this direction, the problem is resolved in [4]
for graphs with girth at least 5.) This D(G) bound is
best-possible up to lower-order terms.

We are mainly motivated by the work of [4]; as
in [4], the Lovász Local Lemma (LLL) [3] will be
key to our analysis. The main difference is that we
apply a “slow” (two-stage) partitioning that helps prune
the dependencies in applying the LLL, leading to our
improvement. The first partition is small-sized, but
has properties much stronger than being domatic; the
second partition refines the first, and crucially benefits
from these useful properties of the first partition.

Theorem 1.1. There is a constant a > 0 such that
for any graph G with minimum degree δ = δ(G)
and maximum degree ∆ = ∆(G) ≥ 3, D(G) ≥
b δ

ln ∆+a ln ln ∆c. (The value of D(G) for ∆ ≤ 2 is known
via a case analysis, and there is a corresponding linear-
time algorithm.)

2 Proof sketch for Theorem 1.1.

We will assume throughout that ∆ is large enough, i.e.,
for some constant ∆0, we assume that ∆ ≥ ∆0. (If
∆ ≤ ∆0, Theorem 1.1 holds by setting a large enough.)
Define [k] .= {1, 2, . . . , k}, and let exp(x) denote ex. Let
N(v) denote the set of neighbors of vertex v, and define
N+(v) = {v} ∪ N(v); let d(v) = |N+(v)|. Suppose
δ ≤ ln4 ∆. Letting ` = bδ/(ln ∆ + a ln ln ∆)c, choose a
color uniformly at random from [`], independently for
each vertex. We can show via appropriate use of the
general (asymmetric) version of the LLL (Lemma 1.1
in Chapter 5 of [1]) that with positive probability, all
colors will be covered by N+(v) for each v.

Next consider the more challenging case where
δ > ln4 ∆. Let ε = 1/(ln ∆). Define `1 = bε3δc
and `2 = bln2 ∆/(1 + b(ln ln ∆)/ ln ∆)c for a suitable
constant b. We will show the existence of a coloring
χ : V → [`1] × [`2] such that for every vertex u, there
is at least one vertex of each color in N+(u). We apply
a two-stage coloring: the first coloring determines the
first components of the vertex-colors, and the second



coloring is for the second components. Thus, the first
coloring is a coarse partition, which the second coloring
turns into a fine partition. The crucial role of the first
coloring is to reduce certain dependencies in applying
the LLL to analyze the second coloring.

The first coloring independently colors each vertex
with a random color from [`1]. By an application of
the Chernoff bounds and the symmetric version of the
LLL (Corollary 1.2 in Chapter 5 of [1]), we can show
that with positive probability, the number of vertices
in N+(u) with color c lies in the range d(u)(1± 3ε)/`1,
for all pairs (u, c). (Note that this property is much
stronger than the coloring being domatic.) Fix any
such “good” coloring χ1 : V → [`1]. In the second
coloring, choose a random color χ2(u) ∈ [`2] for each
u, independently of all other vertices; the final color of
u is the pair (χ1(u), χ2(u)). Let Bu,c1,c2 be the bad
event that there is no vertex of color (c1, c2) in N+(u).
We use the asymmetric LLL to show that all these
bad events can be avoided with positive probability.
For each vertex u and each c ∈ [`1], let N+

u,c =
{v ∈ N+(u) : χ1(u) = c}. Fix an event Bu,c1,c2 .
We can show that Pr[Bu,c1,c2 ] ≤ exp(−(1 − 3ε) · (1 +
b(ln ln ∆)/ ln ∆) · (ln ∆) · d(u)/δ) ≤ (∆(ln ∆)b)−(1−3ε).
Which other events does Bu,c1,c2 depend on? For
S ⊆ V , let N+(S) .=

⋃
v∈S N

+(v). We can check that
Bu,c1,c2 only depends on the events in S(u, c1, c2) =
{Bv,c′1,c′2 : v ∈ N+(N+

u,c1) and c′1 = c1}. By the general
LLL, it suffices to display a real yu,c1,c2 ∈ (0, 1) for each
(u, c1, c2), such that for all (u, c1, c2),

Pr[Bu,c1,c2 ] ≤ yu,c1,c2 ·
∏

(v,c′1,c
′
2)∈S(u,c1,c2)

(1− yv,c′1,c′2).

This bound can be shown via the properties of the
first coloring by choosing yv,c′1,c′2 = exp(−(1 − ε) · (1 −
3ε) · (1 + b(ln ln ∆)/ ln ∆) · (ln ∆) · d(v)/δ).

A complete proof of this result appears in [5]. An
interesting open problem is to obtain an algorithmic
version of this lower bound on the domatic number.
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