
Finding Large Independent Sets of Hypergraphs in Parallel

Hadas Shachnai
Department of Computer Science

The Technion IIT
Haifa 32000, Israel

hadas@cs.technion.ac.il

Aravind Srinivasan
Bell Labs, Lucent Technologies

600-700 Mountain Avenue
Murray Hill, NJ 07974, USA

srin@research.bell-labs.com

ABSTRACT
A basic problem in hypergraphs is that of finding a large
independent set–one of guaranteed size–in a given hyper-
graph. Understanding the parallel complexity of this and
related independent set problems on hypergraphs is a fun-
damental open issue in parallel computation. Caro and Tuza
(J. Graph Theory, Vol. 15, pp. 99–107, 1991) have shown a
certain lower bound αk(H) on the size of a maximum inde-
pendent set in a given k-uniform hypergraph H, and have
also presented an efficient sequential algorithm to find an in-
dependent set of size αk(H). They also show that αk(H) is
the size of the maximum independent set for various hyper-
graph families. Here, we develop the first RNC algorithm to
find an independent set of size αk(H), and also derandomize
it for various special cases. We also present lower bounds
on independent set size and corresponding RNC algorithms
for non-uniform hypergraphs.

Keywords
Hypergraphs, Independent Sets, Parallel Algorithms, Ran-
domized Algorithms

1. INTRODUCTION
Finding large/maximal independent sets in (hyper)graphs,

defined formally below, is a fundamental problem in parallel
combinatorial optimization. An outstanding open question
in parallel computation is whether a maximal independent
set in a given hypergraph can be found in (R)NC [14]. The
work of Karp and Wigderson [16] on finding maximal in-
dependent sets in graphs in NC, was a breakthrough that
inspired several graph-theoretic NC algorithms, and also
led to a rich theory of derandomization. The corresponding
problems on hypergraphs have applications, e.g., to feasi-
ble communication in channelized cellular telephone systems
[20], but seem much harder than in the case of graphs. In
this work we develop RNC algorithms for finding large in-
dependent sets in hypergraphs, and derandomize these for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’01 Crete, Greece
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

various special cases. The main RNC algorithm is particu-
larly simple, and basically involves the parallel computation
of maxima.

Recall that a hypergraph H = (V,E) consists of a vertex
set V and a collection E of subsets of V ; each element of
E is called a (hyper)edge. We will only consider finite hy-
pergraphs here, and will throughout denote the number of
vertices and edges in a given hypergraph by n and m respec-
tively. An independent set (IS) in H is a subset S of V that
does not contain any edge. S is a maximal independent set
(MIS) if no proper superset of S is an IS. It is easy to find
an MIS sequentially, but efficient parallel algorithms appear
much harder. There has been much work on finding MISs in
parallel in (hyper)graphs (see, e.g., [1, 4, 7, 9, 17, 15, 16, 18,
21]). Since an MIS can be much smaller than a maximum
independent set (as in the case of a star graph), it is also of
much interest to find ISs that have a guaranteed size. What
is known in this context? Recall that given a hypergraph
H = (V,E), the degree of a vertex is the number of edges
that it lies in; also, H is called k-uniform if all the edges
have exactly k elements. Caro and Tuza showed in [6] that
for any k ≥ 2, any k-uniform hypergraph H contains an IS
of size at least

αk(H) =
∑
v∈V

1(
d(v) + 1/(k − 1)

d(v)

) ; (1)

here and from now on, d(v) denotes the degree of v ∈ V .
(For any integer l ≥ 0 and real r,

(
r
l

)
is defined to be r(r −

1) · · · (r − l + 1)/l!.) They showed that this bound is tight
for a large class of hypergraphs and also gave a sequential
algorithm that finds an IS of size αk(H) in O(km+n) steps.
Note that when k = 2, the bound in (1) reduces to

α2(G) =
∑
v∈V

1

d(v) + 1
, (2)

which is the classical Turán bound for graphs [26]. To give
the reader a better feel for (1), we point out that(

d(v) + 1/(k − 1)

d(v)

)
= Θ((d(v))1/(k−1)). (3)

This is relatively easy to derive using the fact that(
d(v) + 1/(k − 1)

d(v)

)
=

d(v)∏
i=1

(1 + 1/(i(k − 1))),

and then applying the inequality

ex−x
2/2 ≤ 1 + x ≤ ex,

which holds for all x ≥ 0. (The symbol e denotes the base
of the natural logarithm.)

Remark. To handle the case where d(v) = 0, the r.h.s.

of (3) should actually be Θ((d(v) + 1)1/(k−1)). However,
since vertices of degree zero are irrelevant and can always
be added to our independent set, we will always assume
that vertex-degrees are non-zero. Further, if an edge is just
a singleton {v}, then vertex v cannot lie in any independent
set. We therefore ignore all vertices that lie in singleton
edges; hence, we will take all edge-sizes to be at least 2.

We would like to develop a parallel algorithm that finds an
IS of size αk(H) for k-uniform hypergraphs with any k ≥ 2.
We also aim to find large independent sets in non-uniform
hypergraphs.

1.1 Related Work
The following parallel algorithms are known in the case

of graphs. Spencer [23] gave an RNC algorithm that yields
an IS of expected size α2(G) in graphs G. Goldberg and
Spencer [10] presented an NC algorithm that finds an IS of
size at least dn2/(2m+ n)e in any graph G, where n and m
denote the number of vertices and edges in G respectively.
This bound equals α2(G) when G is regular; in all other
cases, α2(G) is higher. (In fact, it is not hard to construct
graph families for which α2(G) = Θ(n) and n2/(2m+ n) is
just Θ(1): see item (i) in Section 1.2.) Recently, the second
author developed an NC algorithm that finds an IS of size
(1 − o(1)) · α2(G), where the “o(1)” term goes to zero as
n → ∞ [24]. Alon, Babai and Itai [1] studied the MIS
problem on hypergraphs: they gave an NC algorithm that
finds an IS of size c(nk/m)1/(k−1), 0 < c < 1, in k-uniform
hypergraphs with k ≥ 2 being any constant. The work of
Karger and Koller [13] generalized this to arbitrary k.

1.2 Main Results
We give an RNC algorithm to find an IS of size αk(H) in

k-uniform hypergraphs, and also present related results and
extensions. Our main contributions are as follows.

(i) The expected size of the IS produced by our algorithm
is larger than the size of the IS found by previous par-
allel algorithms for this problem. For instance, αk(H)

is always at least as large as the bound c(nk/m)1/(k−1)

of [1, 13]. Furthermore, one can construct families of
k-uniform hypergraphs for which αk(H) is Θ(n) while

(nk/m)1/(k−1) is Θ(1). For instance, in the case of
constant k, consider hypergraphs H where:

– the vertex set is partitioned into two equal-sized
sets V1 and V2, and

– H contains all k-sized subsets of V1 and n/(2k)
many pairwise-disjoint k-sized subsets of V2.

It is easy to check that for such families of hypergraphs,
αk(H) = Θ(n) and (nk/m)1/(k−1) = Θ(1).

(ii) We show how our methods extend to non-uniform hy-
pergraphs: we are not aware of any such bounds or
algorithms relating to large independent sets in this
non-uniform case.

(iii) Regarding derandomized versions, we have the follow-
ing for arbitrary hypergraphs. Consider the following
three properties (with lg denoting the logarithm to the
base 2, as usual):

(P1): all vertex-degrees are constant;

(P2): all the vertex-degrees are at most O(lgn);

(P3): for each vertex v, there are at most O(lgn) ver-
tices w such that v and w lie in a common edge.

Then, we show that our algorithm can be made to
run in NC if (P1) holds, or if both of (P2) and (P3)
hold. (Given (P2), property (P3) holds, e.g., when
every edge-size is bounded by a constant.)

(iv) All our results extend without any change in the pro-
cessor or time complexity to their weighted analogs.
In the weighted analogs, we are given a non-negative
weight for each vertex, and wish to find an IS of large
total weight. The only way that we are aware of to ex-
tend arbitrary IS algorithms to their weighted analogs
is by a suitable (polynomial) blowup in the size of the
hypergraph, leading to a loss in efficiency.

One key facilitator of our results is a way of generating
random permutations that provides sufficient (stochastic)
independence to conduct our analysis; please see Lemma 1.
It also leads to algorithms and lower bounds for indepen-
dent size in non-uniform hypergraphs, as demonstrated by
Theorem 3.

2. AN RNC ALGORITHM

2.1 Algorithms and Tools
Spencer’s algorithm for graphs [23] is as follows. Ran-

domly permute the vertices; add a vertex v ∈ V to the IS
iff no neighbor of v precedes v in the random order. We
show below via an application of the FKG inequality [8]
that a natural extension of Spencer’s algorithm yields an
IS of expected size at least αk(H), when applied to any k-
uniform hypergraph H for any k ≥ 2. For our purposes,
we recall a special case of the FKG inequality; the reader
is referred to [3] for more about the inequality. Given a

vector ~Y = (Y1, Y2, . . . , Y`) of independent random variables
Yi ∈ {0, 1} and an event F that is completely determined
by the Yi’s, call F increasing iff the following holds: for
any ~a such that F holds when ~Y = ~a, F also holds when
~Y = ~b for any ~b that co-ordinatewise dominates ~a (i.e.,
ai ≤ bi for all i). Then, for any collection of increasing
events F1, F2, . . . , Ft, the FKG inequality shows that

Prob(

t∧
i=1

Fi) ≥
t∏
i=1

Prob(Fi). (4)

Consider the following RNC algorithm, AS , for finding
an IS in an arbitrary, not necessarily uniform, hypergraph
H = (V,E). Randomly permute the vertices; add a vertex
v ∈ V to the IS iff there is no edge e ∈ E such that v ∈ e
and v is last among the vertices of e in the random order. It
is easy to check that we produce a valid IS in this fashion.
A specific way of implementing AS is given in Figure 1.
As will be seen in the proof of Lemma 1, the method of
generating random permutations that we adopt, provides
sufficient independence to employ tools such as the FKG

Algorithm AS:
Independently for all v ∈ V do:

Sample Xv ∈ [0, 1) using the uniform distribution
on [0, 1).

Define a permutation π of the vertices in which
π(v) < π(u) iff Xv < Xu.
I := ∅;
for all v ∈ V do
{
jv = true.
For all e ∈ E such that v ∈ e

if π(v) = maxu∈e π(u) then jv = false.
If jv then I := I ∪ {v};

}
return(I).

Figure 1: The algorithm AS

inequality. Note that in the special case where H is a graph,
AS reduces to Spencer’s algorithm.

It is readily seen that AS can be implemented in RNC.
For each edge, we first choose the vertex u in it of highest
Xu value; removing duplicates from this multi-set of cho-
sen vertices (e.g., through sorting) yields the set of vertices
that will not lie in our IS. This is easily done on a CREW
PRAM in O(lg(m+n)) steps, using (

∑
ei∈E |ei|) ≤ mn pro-

cessors. Also, since this algorithm is simple and just uses
some basic primitives, it should be easy to implement in
other parallel/distributed settings.

2.2 Analysis of the performance ofAS
Given a hypergraph H, denote by Bv the event that ver-

tex v is in the final IS produced by AS . Our basic tool will
be Lemma 1. Before presenting the lemma, we recall that
a linear hypergraph is one in which every pair of distinct
edges share at most one vertex. Linear hypergraphs have
been studied in the context of parallel construction of MISs,
and NC algorithms are known for the MIS problem on lin-
ear hypergraphs [19, 25]. Hence, we also see how well our
algorithm does on linear hypergraphs: Lemma 1 also helps
provide an exact bound on our algorithm’s performance in
this case.

Lemma 1. Suppose a vertex v lies in edges e1, e2, . . . , et,
whose respective cardinalities are k1, k2, . . . , kt. Then,

Prob(Bv) ≥
∫ 1

0

[

t∏
i=1

(1− xki−1)] dx.

Furthermore, this inequality becomes an equality in the case
of linear hypergraphs.

Proof. Recall the random variables Xu from Figure 1.
The main idea behind our proof is that the computations
become tractable once we condition on the value of Xv. As
we will see, the fact that the Xu’s are independent will help
us much: this way of introducing independence into a choice
of permutations helps us use tools such as the FKG inequal-
ity. Let x ∈ [0, 1) be arbitrary, and define, for all u 6= v, the
random variable Yu = 1 if Xu > x, and Yu = 0 otherwise.
For each edge e, define the random variable C(e) to be 1 if

maxu:u∈eXu > x, and C(e) to be 0 otherwise. Then,

Prob(Bv|Xv = x) = Prob([
∧
e:v∈e

C(e)]|Xv = x).

Now, even conditional on Xv = x, the random variables Yu
are independent with Prob(Yu = 1) = 1 − x. Also, condi-
tional on Xv = x, each C(e) is determined by the values of
the Yu, and is increasing as a function of the Yu. Thus, by
the FKG inequality,

Prob(Bv|Xv = x) ≥
t∏
i=1

Prob(C(ei)|Xv = x)

=

t∏
i=1

(1− xki−1). (5)

The first part of the lemma now follows from the fact that

Prob(Bv) =

∫ 1

0

Prob(Bv|Xv = x) dx.

It is also easy to check that the inequality in (5) becomes
an equality in the case of linear hypergraphs. Hence, the
inequality of this lemma is in fact an equality for linear hy-
pergraphs.

Applying the linearity of expectation, we get the following
theorem on the expected quality of the IS produced by AS
on an arbitrary hypergraph:

Theorem 1. Suppose we are given an arbitrary hyper-
graph H = (V,E) with a weight wv ≥ 0 for each vertex v.
Suppose each vertex v lies in d(v) edges, whose cardinalities
are kv,1, kv,2, . . . , kv,d(v). Then, the expected weight of the
IS produced by AS is at least

∑
v

(wv ·
∫ 1

0

[

d(v)∏
i=1

(1− xkv,i−1)] dx);

in the case of linear hypergraphs, this lower bound is an exact
bound on the expected weight.

The next theorem considers the performance of AS for un-
weighted uniform hypergraphs, and shows that the expected
size of the IS produced is at least as large as αk(H):

Theorem 2. For any k ≥ 2 and any k-uniform hyper-
graph H, AS finds an IS of expected size at least αk(H).

Proof. We will use the following identity from [11], which
holds for any non-negative integer d and any real x that does
not lie in the set {0, . . . ,−d}:

d∑
l=0

(
d
l

)
(−1)l

x+ l
=

1

x

(
d+ x
d

) . (6)

Specialized to k-uniform hypergraphs, Lemma 1 shows

that

Prob(Bv) ≥
∫ 1

0

(1− xk−1)d(v) dx

=

d(v)∑
l=0

(−1)l
(
d(v)

l

)∫ 1

0

x(k−1)l dx

=

d(v)∑
l=0

(−1)l
(
d(v)

l

)
1

1 + (k − 1)l

=

(
d(v) + 1/(k − 1)

d(v)

)−1

,

by (6).
Summing over all the vertices and applying the linearity

of expectation completes the proof.

We remark that any algorithm that works for k-uniform
hypergraphs and whose output solution is a non-increasing
function of each vertex-degree (as is the function αk(H)),
can be immediately extended to give the same guarantee
for hypergraphs in which all edges have size at least k. We
simply replace each edge by an arbitrary subset of it of size
k, to achieve this. Thus, our results such as Theorem 2 also
hold for hypergraphs with at least k vertices in each edge.
However, in various families of non-uniform hypergraphs we
can do better than this simple approach, as we demonstrate
in Theorem 3.

We need some notation. Suppose each vertex v lies in
D(j, v) edges of cardinality k(j, v), for j = 1, 2, . . . , a(v).
(In other words, vertex v lies in edges of a(v) different sizes:
k(j, v), for j = 1, 2, . . . , a(v). If H is a uniform hypergraph,
then a(v) ≡ 1.) Define

f(v) = min
j=1,2,...,a(v)

[D(j, v)]−1/(k(j,v)−1),

and let b(v) = minj(k(j, v) − 1). Then, Theorem 3 shows
that given a weight w(v) for each vertex, AS produces an

IS of expected total weight at least Ω(
∑
v(w(v)/a(v)1/b(v)) ·

f(v)). We prove this by lower-bounding the quantity guar-
anteed by Theorem 1.

Our proof of Theorem 3 shows that the quantity guar-
anteed by Theorem 1 is at most O(

∑
v w(v)f(v)); so our

“closed-form” bound Ω(
∑
v(w(v)/a(v)1/b(v)) · f(v)) approx-

imates the guarantee of Theorem 1 well when a(v) is “small”
or b(v) is “large”.

Theorem 3. In a hypergraph H = (V,E), let the nota-
tion a(v), b(v) and f(v) be as above. Then, given weights
w(v) ≥ 0 for the vertices, the expected weight of the IS pro-

duced by AS is at least Ω(
∑
v(w(v)/a(v)1/b(v)) · f(v)).

Proof. Fix a vertex v. For notational simplicity, let a =
a(v), b = b(v), k(j) = k(j, v), and f = f(v). By Theorem 1,
it suffices to show that

β
.
=

∫ 1

0

[

a∏
j=1

(1− xk(j)−1)D(j)] dx ≥ Ω(f/a1/b). (7)

Let s = s(v) = argminj=1,2,...,a[D(j)]−1/(k(j)−1). The bound
(3) and the proof of Theorem 2 help show that

β ≤
∫ 1

0

(1− xk(s)−1)D(s) dx = Θ(f);

thus, (7) is tight to within a constant factor if, e.g., a(v) is
bounded by an absolute constant. (In particular, (7) is a
tight bound for hypergraphs of constant maximum degree.)

We now prove (7). Let t = f/a1/b, and note that t ∈ [0, 1].
Let exp(x)

.
= ex. We can show that

γ
.
=

a∏
j=1

(1− tk(j)−1)D(j)

≥ exp(−O(

a∑
j=1

D(j)tk(j)−1))

≥ exp(−O(

a∑
j=1

D(j)
fk(j)−1

a
)) (by the definition of b)

= exp(−O((1/a) ·
a∑
j=1

D(j)fk(j)−1))

≥ exp(−O((1/a) ·
a∑
j=1

1)) (by the definition of f)

= Ω(1).

Thus,

β ≥
∫ t

0

[

a∏
j=1

(1− xk(j)−1)D(j)] dx ≥
∫ t

0

γ dx = tγ ≥ Ω(t),

establishing (7).

3. NC ALGORITHMS
We now explore how one may derandomize our results

for various special cases; we will work throughout with the
weighted case, and with hypergraphs that need not be uni-
form. We are able to develop NC versions for two cases
via different methods. The unifying idea behind these two
results is as follows. Suppose we consider, for any given
constant c > 0, the family of hypergraphs with maximum
degree at most c lgn, where n denotes the number of ver-
tices as usual. The basic observation is that for any vertex v,
Prob(Bv) can be evaluated in NC as follows. Suppose ver-
tex v lies in edges ev,1, ev,2, . . . , ev,d(v), where d(v) ≤ c lgn
by assumption. Let [k] denote the set {1, 2, . . . , k}. Denote
by Cv,u the event “Xv ≥ Xu”; then, by inclusion-exclusion,

Pr(Bv) =
∑

S⊆[d(v)]

(−1)|S| · Pr(
∧
i∈S

[∀u ∈ ev,i, Cv,u])

=
∑

S⊆[d(v)]

(−1)|S| · Pr(∀u ∈ [(
⋃
i∈S

ev,i)\{v}], Cv,u)

=
∑

S⊆[d(v)]

(−1)|S| · (1 + |(
⋃
i∈S

ev,i)− {v}|)−1; (8)

(8) follows from the fact that each Xu, u ∈
⋃
i∈S ev,i, is

equally likely to be max{Xw : w ∈
⋃
i∈S ev,i}. Since there

are at most 2c lgn = nc terms in (8), the sum can be eval-
uated in NC. We shall briefly sketch how this leads to two
types of derandomized versions of our RNC algorithm.

3.1 The Case of Constant Maximum Degree
We now sketch how to find an IS of weight at least (1− ε)

times the expected value presented in Theorem 1, for the
case where all vertex-degrees are bounded by some constant
d; ε here denotes a given arbitrary positive constant.

Denote by Sn the set of all permutations of [n]. A family
of permutations F ⊆ Sn is defined in [5] to be approximately
min-wise independent with relative error δ > 0, if for all
X ⊆ [n], we have for a randomly chosen permutation π ∈ F
that

|Prob(min{π(X)} = π(x))− 1/|X|| ≤ δ/|X|.

We abbreviate the above property by (n, δ)-amw. We will
use the property that for any n and δ > 0, there is an explic-
itly constructible permutation family F (n, δ) that satisfies

property (n, δ)-amw, and has cardinality nO(lg(1/δ)) [12]. Let
δ = O(ε/(d2d)) be a suitable constant. In the full version, we
shall show that for a randomly chosen permutation π from
F (n, δ) and every vertex v, Prob(Bv) is at least (1−ε) times
the value guaranteed by Lemma 1. Thus, by the linearity of
expectation, the expected size of an IS produced by using a
random element of F (n, δ) is at least (1− ε) times the value
guaranteed by Theorem 1. (In other words, we show that
instead of permuting the vertices completely at random, it
suffices to choose a random permutation from the explicit
polynomial-sized set F (n, δ).) We can then apply parallel
exhaustive search on the polynomial-sized F (n, δ) to find a
“good” permutation in NC.

The proof ideas involve (3) and the above discussion on
the inclusion-exclusion expansion, and will be presented in
the full version.

Theorem 4. Consider the family of hypergraphs with max-
imum degree at most d, for any given constant d > 0. Then,
given any constant ε > 0, there is an NC algorithm to find
an IS in these hypergraphs of total weight at least (1 − ε)
times the expected weight guaranteed by Theorem 1.

3.2 Logarithmic Degree and Sparse Neighbor-
hoods

We now consider the case of hypergraphs satisfying prop-
erties (P2) and (P3) defined in item (iii) of Section 1.2. For
such hypergraphs, we now sketch how to find, in NC, an
IS of total weight at least (1− ε) times the expected weight
guaranteed by Theorem 1. The parameter ε can now in fact
be n−c for any given constant c > 0. Complete details and
proofs will be presented in the full version of this work.

The basic idea here is as follows. Let t = d3 lgne. Suppose
we choose a random t-bit vector sv = sv,t−1sv,t−2 · · · sv,0
independently for each vertex v, and then define a random
permutation of the vertices by sorting them according to the
sv (by interpreting the sv as integers in {0, 1, . . . , 2t − 1}).
It is easy to see that this changes the analysis of Section 2.2
very little, since: (a) with high probability, all the sv’s will
be distinct, and (b) if condition (a) holds, then we indeed
produce a random permutation of the vertices. Our goal is to
make a “good” choice of the vectors sv deterministically, in
NC. To do so, we proceed as follows. Suppose the vertices
are numbered 1, 2, . . . , n. For i = 0, 1, . . . , t − 1, define ri
to be the vector s1,is2,i · · · sn,i. We aim to make “good”
choices for the ri one-by-one, in the order i = t − 1, t −
2, . . . , 0, using a basic idea developed in [2]: make these
choices one-by-one so that the conditional expectation of
the total weight of the final IS falls by only a tiny amount
after choosing each additional ri. (The key difference with
the method of conditional probabilities is that we allow the
conditional expectation to fall from one iteration to the next,
but carefully limit the amount of this fall.) By employing

the above-seen inclusion-exclusion expansion to evaluate the
conditional expectation of the total weight of the final IS,
we show that it suffices to choose each ri at random from a
polynomial-sized small-bias space [22], instead of choosing
from {0, 1}n. Thus, we will be able to choose a “good” value
for each additional ri in NC, via parallel exhaustive search.

Theorem 5. Consider the family of hypergraphs satisfy-
ing properties (P2) and (P3) of Section 1.2. Then, given any
constant c > 0 and any ε ≥ n−c, there is an NC algorithm
to find an IS in these hypergraphs of total weight at least
(1− ε) times the expected weight guaranteed by Theorem 1.

4. DISCUSSION
A question that remains open is to obtain a full deran-

domization of our RNC algorithms. Any progress on the
classical MIS problem on hypergraphs would also be most
interesting.

Acknowledgments. We thank Noga Alon for valuable dis-
cussions, and for pointing out to us the results by Caro and
Tuza. We also thank the SPAA 2001 program committee
member(s) and referee(s) for their helpful comments.

5. REFERENCES
[1] N. Alon, L. Babai and A. Itai. A fast and simple

randomized parallel algorithm for the maximal
independent set problem. J. of Algorithms, 7, pp.
567–583, 1986.

[2] N. Alon and M. Naor. Derandomization, witnesses for
Boolean matrix multiplication and construction of
perfect hash functions. Algorithmica, 16:434–449,
1996.

[3] N. Alon and J. H. Spencer. The Probabilistic Method.
Wiley-Interscience, 1992.

[4] P. Beame and M. Luby. Parallel search for maximal
independence given minimal dependence. In Proc.
ACM-SIAM Symposium on Discrete Algorithms, pages
212–218, 1990.

[5] A. Z. Broder, M. Charikar, A. M. Frieze and M.
Mitzenmacher. Min-wise independent permutations.
In Proc. ACM Symposium on Theory of Computing,
1998.

[6] Y. Caro and Z. Tuza. Improved lower bounds on
k-independence. J. Graph Theory, 15, pp. 99–107,
1991.

[7] E. Dahlhaus, M. Karpinski, and P. Kelsen. An
efficient parallel algorithm for computing a maximal
independent set in a hypergraph of dimension 3.
Information Processing Letters, 42(6):309–314, 1992.

[8] C. M. Fortuin, J. Ginibre, P. N. Kasteleyn,
Correlational Inequalities for Partially Ordered Sets,
Communications of Mathematical Physics, 22, pp.
89–103, 1971.

[9] M. Goldberg and T. Spencer. A new parallel
algorithm for the maximal independent set problem.
SIAM J. Comput., 18:419–427, 1989.

[10] M. Goldberg and T. Spencer. An efficient parallel
algorithm that finds independent sets of guaranteed
size. SIAM J. Disc. Math., 6:443–459, 1993.

[11] M. Hofri. Analysis of Algorithms. Oxford University
Press, 1995.

[12] P. Indyk. A small approximately min-wise
independent family of hash functions. In Proc.
ACM-SIAM Symposium on Discrete Algorithms, pages
454–456, 1999.

[13] D. R. Karger and D. Koller. (De)randomized
construction of small sample spaces in NC. Journal of
Computer and System Sciences, 55 (1997),
pp. 402–413.

[14] R. M. Karp and V. Ramachandran. Parallel
algorithms for shared memory machines. In Handbook
of Theoretical Computer Science, Volume A, J. van
Leeuwen, Editor, Elsevier, New York, pages 871–941,
1990.

[15] R. M. Karp, E. Upfal, and A. Wigderson. The
complexity of parallel search. Journal of Computer
and System Sciences, 36:225–253, 1988.

[16] R. M. Karp and A. Wigderson. A fast parallel
algorithm for the maximal independent set problem.
J. Assoc. Comput. Mach., 32:762–773, 1985.

[17] P. Kelsen. On the parallel complexity of computing a
maximal independent set in a hypergraph. In Proc.
ACM Symposium on Theory of Computing, pages
339–350, 1992.

[18] M. Luby. A simple parallel algorithm for the maximal
independent set problem. SIAM J. Comput., 15
(1986), pp. 1036–1053.

[19] T. Luczak and E. Szymańska. A Parallel Randomized
Algorithm for Finding a Maximal Independent Set in
a Linear Hypergraph. J. Algorithms, 25:311–320, 1997.

[20] R. J. McEliece and K. N. Sivarajan. Performance
limits for channelized cellular telephone systems.
IEEE Trans. Info. Theory, 40(1):21–34, 1994.

[21] R. Motwani, P. Raghavan, Randomized Algorithms,
Cambridge Univ. Press, 1995.

[22] J. Naor and M. Naor. Small–bias probability spaces:
efficient constructions and applications. SIAM Journal
on Computing, 22:838–856, 1993.

[23] J. H. Spencer. The probabilistic lens: Sperner, Turán
and Brégman revisited. In A Tribute to Paul Erdős
(A. Baker, B. Bollobás, A. Hajnal, Eds.), Cambridge
Univ. Press, pp. 391–396, 1990.

[24] A. Srinivasan. New approaches to covering and
packing problems. In Proc. ACM-SIAM Symposium
on Discrete Algorithms, pages 567–576, 2001.

[25] E. Szymańska. Derandomization of a Parallel MIS
Algorithm in a Linear Hypergraph. In Proc. Fourth
International Workshop on Randomization and
Approximation Techniques in Computer Science,
pages 39–52, 2000.

[26] P. Turán. On the theory of graphs. Colloq. Math., 3,
pp. 19–30, 1954.

