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Abstract

The PAC learning of rectangles has been studied because they have been found experimentally
to yield excellent hypotheses for several applied learning problems. Also, pseudorandom sets for
rectangles have been actively studied recently because (i) they are a subproblem common to the
derandomization of depth-2 (DNF) circuits and derandomizing Randomized Logspace, and (ii) they
approximate the distribution of n independent multivalued random variables. We present improved
upper bounds for a class of such problems of “approximating” high-dimensional rectangles that arise
in PAC learning and pseudorandomness.

Key words and phrases. Rectangles, machine learning, PAC learning, derandomization, pseu-
dorandomness, multiple-instance learning, explicit constructions, Ramsey graphs, random graphs,
sample complexity, approximations of distributions.



1 Introduction

A basic common theme of a large part of PAC learning and derandomization/computational pseu-
dorandomness is to “approximate” a structure using a “small” number of representative random
examples. A commonly studied such type of structure in both learning and derandomization are
the n-dimensional combinatorial rectangles, i.e., sets of the form §; x Sy x --- x S,,, where each
S; € R; an important special case is where each S; is an interval, in which case we have the
usual geometric (azis-aligned) rectangles. The PAC learning of rectangles has been studied because
they have been found experimentally to yield excellent hypotheses for a variety of applied learning
problems (see [38, 12]). Also, pseudorandom sets for rectangles have been actively studied recently
[29, 4, 14, 25, 11, 20, 6] because (i) they are a subproblem common to the derandomization of
depth-2 (DNF) circuits and derandomizing Randomized Logspace (RL), and (ii) they approximate
the distribution of n independent multivalued random variables. In this work, we present improved
(and in some cases optimal) upper bounds for a class of such “approximating rectangles” problems
in learning and derandomization.

(a) Learning from multiple-instance examples. We describe and analyze a new algorithm
for a practical learning problem, motivated by drug discovery, introduced by Dietterich, Lathrop
and Lozano-Perez [12]. Their problem boils down to that of learning an axis-parallel rectangle B
in R™ from multi-instance examples. An r-instance example consists of r elements of R”, together
with a label indicating whether any of the instances of this example are in B. The idea is that
each multi-instance example represents a molecule and the instances represent different shapes of
this molecule. The molecule “works” if at least one of its shapes can bind to some site. This is
possible if the measurements of the shape are in the target region B. After receiving a sample of
multi-instance examples the learning algorithm is supposed to output a hypothesis H C R™ which
is close to the target rectangle B, in the sense that it is likely to correctly classify another r-instance
example as to whether any of its instances are in B.

This problem has previously been studied in Valiant’s PAC framework [36]. In [26], it was proved

that if all instances are drawn independently from a product distribution on R", the target rect-
. . ~ 5,12 .
angle can be learned from r-instance examples in O (”650 ) time, where € and § are accuracy and

confidence parameters.

In this paper we present a new learning algorithm which does not require that the distribution on
R" is a product distribution and which takes only O ("3’"2) time. This algorithm can be modified

€2

slightly to achieve similar results in the statistical query model; applying the results of Kearns [21],
this implies that it can be made robust against classification noise. Blum and Kalai [8] recently
improved on these results.

Our algorithm is substantially different from those previously proposed for this problem [12, 26].
We believe that a variant of our algorithm will prove useful in practice. Initial empirical results [7]
support this belief: a straightforward implementation of a variant of our algorithm performs com-
petitively on datasets used in [12].

Our analysis still requires that all instances are drawn independently. We point out that if the
r instances of each example are allowed collectively to be generated according to an arbitrary
distribution, the resulting learning problem is much harder. If rectangles could be learned in this
model from multi-instance examples then DNF formulas could be learned in the original PAC model,
a longstanding open problem. Furthermore, we show that a polynomial-time learning algorithm
which outputs a rectangle as its hypothesis only exists if NP = RP.



(b) Learning from single-instance examples. We show that the “closure algorithm” [19],
which takes time linear in the size of the sample, PAC learns axis-aligned rectangles in R™ in the

n-+log %
€

original (one-instance) PAC model from O ( ) examples. This matches the lower bound of

[13] to within a constant factor. This is the first example we know of an infinite concept class

used in practice whose PAC learning sample complexity has been determined to within a constant
n log %—Hog %
€

factor. Our bound improves on the O ( ) bound that follows from the general results

nlog%

of Blumer, Ehrenfeucht, Haussler and Warmuth [9], and on the bound of O (T) that follows
from the general results of Haussler, Littlestone and Warmuth [19].

In our analysis, we bound the p-norm of the error of the algorithm’s hypothesis as a function of the
random sample it receives, where p = In(1/4). A side effect of our analysis is that for all p, after
m examples, this norm is at most "mﬂ. The bound of [19] was obtained by analyzing the expected
error (i.e. the 1-norm).

(c) Pseudorandom sets for combinatorial rectangles. One major goal in derandomization is
to efficiently construct a discrete structure (e.g., constant-degree expanders (Lubotzky, Phillips and
Sarnak([27]), dispersers and extractors (Nisan [31]), hash function families (Carter and Wegman
[10])) that is usually easily shown to ezist by a probabilistic argument. Converting randomized
algorithms to deterministic ones is one of the many applications of such results. Another application
is that a random construction (notably of hashing families and error-correcting codes) could require
enormous storage, thus requiring a succinct explicit construction. This area was enriched by the
key observation of Naor and Naor that randomized algorithms are usually robust to approzimating
the distribution of n i.i.d. unbiased random bits X, Xs,..., X, [29]. A natural generalization
of this is to allow the X; to have arbitrary independent distributions on any finite set, and is
formalized as the following problem of pseudorandom sets for combinatorial rectangles. Let R}, =
{S1 x---x 8, :Vi, §; C{0,1,...,m — 1}} be a set of n-dimensional combinatorial rectangles.
Call a finite multiset S C [0,m — 1]" an e-approzimation for R, if for X sampled uniformly at
random from S, we have for all R = S x --- x S, € R”, that |Pr(X € R) — ([I;|S:])/m"| < .
That is, w.r.t. events in R}, a random sample from S should look roughly like a random sample
from [0, m — 1]".

The goal here is to construct a “small” such “pseudorandom” set S deterministically. (There is
a constant ¢y > 0 such that a multi-set of comn/e? points chosen at random from [0,m — 1]7,
forms an e-approximation with high probability.) To make our goal precise, let us first define the
notion of indexibility. Let S = {s1,s2,...,50} C {0,1}* be any set; let s; = (84,1, 8,2, -, Sit), With
sij € {0,1}. We say S is indexible if each s; j can be generated “efficiently” and deterministically:
more precisely, in deterministic poly(log(¢t)) time. A major open question is to explicitly construct
an indexible e-approximation S for R, such that log|S| = O(logm + logn + log(1/e€)). Progress
on this has been made very recently in Armoni, Saks, Wigderson & Zhou [6], constructing an
indexible S with log|S| = O(logm + logn + log?(1/¢)). Hence, the key problem is to improve
the O(log?(1/€)) term, to the eventual target of O(log(1/€)). Why would this be a significant
improvement? Recall that derandomized algorithms based on such constructions first explicitly
construct the set S, and then try out each element of S in succession, as their “random” seed. Thus,
such an improvement will very much reduce the running times of the corresponding derandomized
algorithms: poly((1/¢)°8(1/9)) will become poly(1/e).

Another related direction for progress is as follows. Given R = S§; X Sy X--- xSy, € R, we shall say



R is trivial in dimension 7 iff S; = {0,1,...,m —1}; R is nontrivial in dimension ¢ otherwise. Given
any integer k < n, let R} , contain the elements of Ry}, that are nontrivial in at most k& dimensions.
Tn analogy with k-wise and almost k-wise independence ([28, 3, 29, 4]), it is also an important open
question to construct a good e-approximation Sg for R, , (note that R;, = Ry, ). The major
goal here is to achieve an indexible Sy with log |Sp| = O(l(;g log n + log k + logm + log(1/¢)). This
would be optimal to within a constant factor, and by setting k = n, we would also get the required
construction for R7,.

We first show how to convert the construction of [6] to get an indexible e-approximation S for R}, .

with log |S| = O(loglogn +log k + log m + log?(1/¢)). We then use some previous results with new
ideas to construct an indexible e-approximation S where

log |S| = O(loglogn + (logm)log(1/€) + log(1/¢) log([k/ log(1/€)]))

To parse this, we note that this is better than the above-seen construction of [6] iff ¢ < k™' and
e < m~ ¢, for certain absolute constants c1,co > 0, i.e., if € is sufficiently small. Often, € is in fact as
small as exp(—©(k)), e.g., in many applications of almost k-wise independent random bits. Thus,
the main determining factor for comparing the construction of [6] with ours seems to be whether
e <m~? or not. If € is “small”, e.g., if m is O(polylog(1/¢)), then we get good improvements.

Of equal interest is the fact that our approach suggests a potential way of improving on it: see
Theorem 18 for a bootstrapping approach.

(d) Pseudorandom sets for axis-aligned rectangles, and constructions of Ramsey-type
graphs. Call an undirected graph G an (s,t,n)-graph iff it has n vertices, has clique number
w(G) < s, and independence number a(G) < t. One of the first applications of the probabilistic
method was the proof by Erdés that (2logy 1, 21logy n, n)-graphs (also known as Ramsey graphs since
they provide lower bounds for the graph Ramsey function) exist [15]. It is still an outstanding open
question to explicitly construct such graphs; the current-best are the breakthroughs of Frankl and
Wilson, who constructed (20(\/1°g”l°g1°g”),20(\/1°g”1°g1°g”),n)-graphs [17, 18]. Similarly, while
nonconstructive progress has been made on the (“off-diagonal” or “Ramsey-type”) case of s # t
[5], where we assume w.l.o.g. that s < ¢, very few constructive results are known; see, e.g., [2] for
a construction of (2, 0(n?/3),n)-graphs. (It is known that (2,0 (y/nlogn),n)-graphs ezist.)

We present a family of improved deterministic sequential and parallel (EREW PRAM) con-
structions for Ramsey-type graphs here, using e-approximations for axis-aligned rectangles in
{0,1,...,m — 1}". For instance, we show parallel constructions of, e.g., (20(\/@), 20(\/@),7»)-
graphs using n0((1081081)*) 1rocessors and polylog(n) time. (If we are willing to expend n?(08™)
processors, it is known that we can use “almost (2log?n)-wise independent random bits” [29] to
construct (2logsy n,2log, n,n)-graphs in polylog(n) time.) At the other end of the spectrum, we
show, e.g., that for arbitrarily small constants «, > 0, we can construct (c,n®,n)-graphs using
exp(n?) processors and O(n®) time, where ¢ = ¢(a, B) is a constant. (Direct application of previ-
ous techniques such as “(almost) n®(!-wise independent random variables” will have the processor
complexity necessarily of the form exp(n/(®) for some function f, and not exp(n?) for an arbitrar-
ily small constant 8 > 0, as we have here.) To our knowledge, even the sequential counterparts of
these parallel algorithms have not been presented before.

Section 2 sets up some preliminary definitions. We then show the learning theory results in Sections
3 and 4. The derandomization and Ramsey graph constructions are presented in Sections 5 and 6.
The appendix shows some technical proofs.



2 Definitions

Denote the reals by R and the positive integers by N. We sometimes abbreviate “random variable”
as “r.v.”. We use the unit cost RAM model of computation.

For each n € N, for each @,b € R", let B = [Tiz1lai, bi], and let By = [[;=;(—00,b;]. De-
fine BOXES,, = {B,; : @b € R"}, BOXES,, = {BN{0,...,m — 1}" : B € BOXES,}, and
OBOXES,, = {B;: be R"™}. Finally, a class of combinatorial rectangles that we work with:

n
R = {]] Xi: X1, ... Xn C{0,...,m — 1}}.
=1

3 Learning from multiple-instance examples

First we give a formal description of the learning problem.

Let n,r € N. A tuple ((&1,...,%Z,),y) with each #; € R" and with y € {0, 1} is called an r-instance
example. A sample is a sequence of r-instance examples. For a finite sequence o = ((s;)7_,)%_;
of instances and a rectangle B, the sample generated by ¢ and B is

SBo = ((Z1,1,-sF1r)sY1)s---» (F1y- - s Tor)s Vo),
where -

I B R v S
fors=1,...,%

A learning algorithm receives a sample S and an accuracy parameter ¢ and outputs a hy-
pothesis H(S,e) C R"™. The error of a hypothesis H in respect to a probability distribu-
tion D on R"™ is measured by the probability that a random r-instance is misclassified, i.e. by
erpp(H) = D™{(#1,...,%y) : YB(Z1,..., %) # Yu(Z1,...,Z,)}. Here and elsewhere D" denotes
the distribution obtained by sampling r times independently from D.

Definition 1 A learning algorithm learns BOXES,, from r-instance examples with sample com-

plexity (n,r,€,0) if the learning algorithm calculates a hypothesis H(S,e€) such that for all
B € BOXES,,, for all distributions D on R™, for all €,6 > 0, for all £> £(n,r,€,0)

Dr'e{a : erB,D(H(SB,a, 6)) > 6} < 6.
The following is the main result of this section.

Theorem 2 There is a learning algorithm that learns BOXES,, from r-instance examples with

sample complezity £ = O ("2T2 log %) . The run-time of the algorithm is O(nflog¥).

€2



3.1 The algorithm

First, observe that a; < z; < by & —xzp < —ap Az < bg. Thus BOXES,, can be learned if
OBOXESs,, can be learned (see [33]). (A similar trick was employed in [22, 24].) We therefore give
an algorithm for learning OBOXES,, for each n.

The algorithm for learning OBOXES,, learns the faces by, ..., b, of the target B = [];_;(—o0, bg]
independently. It tries to calculate an estimate by < by such that D{(z1,...,z,) : (21,...,2,) €
B and z, > b} is small. If this can be done for all k then the hypothesis szl(—oo,i)k] is
contained in the target rectangle and its error is small. Now the main observation is that, despite
the fact that examples do not indicate whether individual instances lie in B, we can still estimate
Br(b) = D{(z1,...,zp) : (z1,...,2,) € B and z > b} from the sample. Thus the algorithm
just has to pick a by, such that the estimate Bk(i)k) is small while still guaranteeing that by, < by.
Let ¢ = [1 — D(B)]" (note that this is just the probability that an r-instance example is labelled
0) and ag(b) = D{(z1,...,2zn) : T, > b}. See Figure 1. If we define ¢i(b) = D"{(#1,...,Z,) :
Yp(Z1,...,%) =0 and T1k > b}, then

¢k (b) = [k (0) — Br(d)] - [1 = D(B)]" ™" = [ak(b) — B ()] - ¢ /" (1)
Since ¢, oy, and @) can be estimated from a sample S, we get an estimate for 8y by solving
(1) for B we set ¢ = {1 < s < €1y, = 0N/, ax(d) = {1 < s < €5 mg1p > BY/L,
Op(b) ={1 <s<ZL:zs1% > bandys =0}|/¢, and Bk(b) = Gy (b) — qf’ﬁ(lb/),. Finally, observe that
ergp(R") <eifg<eand ergp(f) <eifg>1—e We get the following algorithm.

Input: a sample S of size £ and an accuracy parameter e.
If ¢ < €/2 then return R™ and halt, and if ¢ > 1 — €/2 then return () and halt.
For k=1,...,n do

€

Bk := min {ws,l’k 01 § S § ¢ and Bk(.’ﬂs,l,k) S W}

Return By 5 -

For each k the ﬁk(x s,1,k) can be calculated incrementally after sorting the z ;5. Thus the run-time
of the algorithm is O(nflog¥).

3.2 Analysis of the algorithm

It remains to show that the estimate by is sufficiently accurate that the error of the hypothesis of
the algorithm is small enough.

The next lemma gives a sufficient condition on the accuracy of the estimates ¢, i, and @. Theo-
rem 2 is then proved by applying uniform convergence bounds.

Lemma 3 Let 0 < € < 1/2 and let H be the hypothesis of the algorithm based on a sample Sp .
If for allk € {1,...,n} and allb € R

€
_ 4 b) — & (b b) — o (b)|} <
max{|g — g, lax (b) — & (B)], ok (b) = Gr(B)]} < g,

(2)

then erp p(H) < e.



Proof: We claim that for the non-trivial case § < ¢ <1 — §, the following inequalities
€ €
- <g<1—- 3
1Sa<1-4 3)
ql—l/r/2 < Cjl—l/'r < 2q1—1/r, (4)
. €
b) — Br(b)]| < ———+ 5
81(8) = BB < S @
hold for all & and b. Inequalities (3) and (4) are obvious; we now prove (5).
It is easy to show using calculus that for all z,y > 0
1 1/r
—1/r _A-1r| < | (7) . 6
|z y T <z -yl — —_ (6)

Fix k£ and b (and drop them from the subscripts of all variables). Expanding the definition of ¢

and applying (1), we have
5 @ . ¢
=8l =| (o 5) - (- 7))

Bounding |a — &| using (2) and simplifying the rest, we get

sl=1/r _ » 1-1/r
A € ¥q ¥q
P PRI . i L
256rn gi-l/rgi=1/r
Applying (4), we get
. ANpat—tr — pglt-1/r
BB < — 4+ lpd — ¢4 |
256rn q2=2/r
_o_e 2ed = (e + (6 = 0))g M|
256rn q22/r
e L 2p—ol | 2ed" " — g V7|
2567rn T ql—l/r + q2—2/r
Applying (2) and the fact that ¢ < g, we have
N 9lgt—1/r _ J-1/r
B-pls v U oa 7 7]
256rn  128rngl—l/T qi=2/r
Applying (6), we get
A € € 2lg—q
B —p| < + + -4 (7)

~ 256rn  128rng'~1/r  (min{q,§})'/mqt 2/’

By (2), ¢ > g — €/(256nr), so by (3), § > q¢ — q/(64nr) > q/2. Therefore, (7) implies

L e 4i-q
_Bl< .
5= 5l < 2567n + 128rngt=t/r = gi=t/r

Applying (2) yields (5).



We claim that Bk < b and that
- €

B (bg) < ym YL (8)

Observe that if 41, > by for all s € {1,...,£} then &(by) = 1 whereas ay(by) < 1 — D(B) =
¢/m<(1—e/4)V <1 += by (3) which contradicts (2). Hence there are some z,;; < bg. Let
Cr = max{xs,l,k 11 < s <Y, Ts 1,k < bk}- Then Bk(ck) = Bk(bk) < 32,,”,.;1—1/7' < 16m,q€1—1/T by (5)
and (4) since B (bx) = 0. Thus by < bg. Furthermore,

. A €
b < b _
Be(b) < Br(bk) + S2nrgl 1"
€ €
- +
16nrgt -1/~ 32nrgt-1/r
€ €
+
8nrql=1l/r =~ 32nrql-1/r
€
4n,rq1—1/r’

again by (5) and (4) and the choice of by, in the algorithm.

Finally an r-instance is misclassified by H = [];_;(—o0, bi] only if no instance is in H and at least
one instance is in B, i.e. at least one coordinate of this instance is in (Ek, bi] for the corresponding
k. The probability of drawing such an instance is at most B (bg) — Bk (bx) = Bk (bk)- To bound the
probability that a random instance is not in H we find

1-D(H) < 1-D(B)+ . B(bx)
k=1

¢
4,r.q1—1/r
g"/"(1+1/r)

N

by (8) and (3). Hence

ergp(H) < 1Y Bi(bs)-[1 - D(H) ™
k=1
-
< €
by (8). ;

Now we turn to analyzing the number of examples required to ensure (2). This analysis uses
standard techniques, but we include it in an appendix for completeness.

2,2

Lemma 4 There is a constant ¢ such that for all 0 <€,0 < 1/2, if £ > <5~ log %, then
€ )
P — g <
la—dl>550) < 05 g ©)
and for each k € {1,...,n},
€ )
Pr(3 —a - < . 1
£(3b, max{|ex(b) - & (0)}lon(b) = GO} > o) < — (10)

10



Proof: In Appendix A. 0

Proof of Theorem 2: Combine Lemmas 3 and 4.

3.3 The hardness of learning from dependent multiple-instance examples

Definition 5 A learning algorithm learns BOXES,, from dependent r-instance examples if the
learning algorithm calculates a hypothesis H(S,€) such that for all B € BOXES,,, for all distribu-
tions D on (R™)", for all €,6 > 0, for all £ > (n,r,€,08), D*{o : erp p(H(SB,s,€)) > €} < 4.

Theorem 6 If there is a poly(n,r,1/€,1/5)-time algorithm A for learning BOXES,, from dependent
r-instance examples, then there is a poly(n,r,1/€,1/d)-time algorithm A" for learning r-term DNF
formulas over n variables (from 1-instance examples).

If A in addition outputs azis-aligned rectangles as its hypotheses then RP = N'P.

Proof: We reduce learning an r-term DNF f = C; V... V C, over n variables z1, ..., z, to learning

a rectangle in R™ from r-instance examples. For each truth setting ¥ € {0,1}", let ¢(¥) be the

r instances (vi,...,vn,1/2,...,1/2),...,(1/2,...,1/2,v1,...,vn) € {0,1/2,1}"". We associate f with
agwhereforeach0<z<r 1<y <n

Qip+j = 1/2 and bm+j =1 if T € Cit1
aintj = 0 and b4, = 1/2 if Tj € Cit1

@intj = 0,bipyj =1 otherwise.
Then ¢(7) is classified 1 by B ; iff ¥ satisfies f.

Suppose there is a polynomial p such that for each N, r, ¢ > 0 and § > 0, A learns BOXESy from
dependent r-instance examples in p(N,r,1/¢,1/6) time. Consider the DNF learning algorithm A’
that, for each example (%,y), gives (¢(7),y) to A, and, given the hypothesis H4 C RN, N = nr,
output by A, constructs Hy by letting ¥ € Hy < ¢(0) € Ha. It is easily verified (see [33]), that
A’ learns r-term DNF formulas over n variables in poly(n,r,1/€,1/6) time.

Next, we claim that if H4 labels collections of r instances according to an axis-aligned hyperrect-
angle, then Hys can be expressed as an r-term DNF. Applying the result of Pitt and Valiant [32],
that r-term DNF are not learnable using r-term DNF as hypotheses in polynomial time unless
RP = NP, will complete the proof of the second statement.

Suppose H 4 is ¥

(@1,e-erbrn ), (b1, sbrn)

e If there exist distinct 7,7’ € {0,...,r — 1} such that there are j,j' € {1,...,n} with 1/2 ¢
[Gin+tj, bing ;] and 1/2 & [Gjrn4 41, birntj7] then the definition of ¢ implies that H 4 = 0, trivially
expressed as an r-term DNF.

e If there is a single i € {0, ..., — 1} such that there exists j with 1/2 ¢ [éiin 14, Din4], then H
can be expressed by the smgle term C, where zj € Ceood [@intjs bm+]] and Z; € Celd
[am-l-g ) bm-i—y] .

e Otherwise, it is easily verified that Hu can be expressed as the r-term DNF C; V ... V
C obtained by including z; in Cj1 iff 0 ¢ [Ginyj, bint;] and including Z; in Cjiq iff 1 ¢
[&in+j7 bin-l—j] :

11



4 Learning from single-instance examples

Valiant’s PAC model can be obtained from the model described in Section 3 by fixing the number
r of instances to be 1. The following is our main result about this model.

Theorem 7 There is a learning algorithm A such that, for all ,6 > 0,n € N, Algorithm A
1 nl
(€,0)-learns BOXES,, from w examples in O (M) time.

As discussed in Section 3, it is sufficient to consider OBOXES,,. Consider the algorithm A that,
given a sample ((Z1,y1), ..., (Te,ye)), sets each by, = max{z; : y; = 1} and outputs H = B(?n,...,?m)'
This algorithm is known as the “closure algorithm”, because it outputs the unique smallest element
of OBOXES,, consistent with the sample.

We begin by characterizing the pth moment of the error of A’s hypothesis. For some sequence
o = #1,...,%, define ery g p(c) to be the error of A’s hypothesis H when given Sp,, i.e.

erg p(H(SBs),€)-
Lemma 8 Choose n,f,p € N, B € OBOXES,, and a probability distribution D over R™. Then
E,epe((era,s,n(0))’)
is equal to the probability, if
e we draw T1, ..., Toqp ndependently at random according to D,

® give Sp(z,..7,) to A (only the first £ draws are used here), and

o call A’s resulting hypothesis H,
that H is incorrect about each of Zyi1, ..., Zo4p. That is, that
{Ze41, -, Toqpt C HAB,
where A denotes the symmetric difference.

Proof: For each o € (R"), define H, = H(Sp,). Expanding the definition yields
Brepi((erann(@)?) = [(Pr(Z € HAB)P dD(o).

Changing the names of the variables in the p factors of (Przcp(Z € H,AB))? from Zto 41, ..., Lo4p
respectively, we get

p
E,.p((eras.p(o)) = / ] . Pr (%4 € H,AB) dD (o)

j—1 Ze+i€D

12



which immediately implies
P
Boen((erann@)) = [11, Pr _ (f € HAB) dD!(0).

=1 flf+17“'7'f€+p€Dp

Applying the definition of independence, we get

p
Boeprllerapp(@))= [, Pr (\Fess € HoB) 4D o), (11)
EEEEE) P i=1

Define ¢ : (R®)“? — {0,1} by

1 if A}y Zoys € Hiz, . 3)AB

0 otherwise.

(P(fla "'7£K+P) = {
Then rewriting (11), we get

Bycnel(exann(@)P) = [ [ @@, sGesp) dDPFert, o iery) AD'(E1, o To).

Applying Fubini’s Theorem (see [16, volume 2, page 120]) completes the proof. 0

The proof of Lemma 8 did not use anything specific about A or OBOXES,,; therefore, the lemma,
can trivially be generalized to any algorithm and concept class.

Next, we record a well-known lemma whose application is commonly known as the “permutation
trick”.

Lemma 9 (see [19]) Choose a set X, m € N, a distribution D on X, and a random wvariable ¢
defined on X™. Let U be the uniform distribution on the permutations of {1,...,m}. Then

[e@Dm@ < sw [ oo, om)U0)

(1'1, ﬂfm eXm
Now we are ready to bound the pth moment of the error.

Lemma 10 Choose n,p,£ € N. For Algorithm A (the Closure Algorithm), for any B € OBOXES,,,
n+p—1
and for any probability distribution D over R", E cp¢((era,p,p(c))P) < (ﬁ(ﬁp—))
Y4

Proof: Lemma 8 implies that E,cpe((era g ,p(o))P) is equal to the probability, if (a) we draw
#1,..., Tgyp independently at random from D (b) give Sp (7. 7) to A (only the first £ draws are
used here), and (c) call the resulting hypothesis H, that each of Zo41, -er Lo4p fall in the symmetric
difference of H and B.

Applying Lemma 9, the above probability is at most the supremum, over Z1, ..., ¢4, of the prob-
ability of the same event with respect to a random permutation of this particular sequence. Since
the hypothesis H does not depend on the relative order of the first £ elements, and the “test” does
not depend on the order of the last p elements, we can instead evaluate the probability of the same
event with respect to a random choice of which p elements occur last.

Let us call a set of p elements, which, if occurring last, all fall in BAH, a “bad set”. We claim
that there is a partial mapping 9 from the set of sequences of n nonnegative integers summing to
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n+p—1

p onto the set of bad sets. The fact that there are known to be only ( v

then complete the proof.

) such sequences will

Since the Closure Algorithm outputs the unique smallest hypothesis (call it [, (—oo, by]) containing
the examples given to it that are in B, each element Z of a bad set must be in B — [];(—oc, bg]-
For convenience, we “blame” Z’s misclassification on the least k& such that x; > b.

Define a partial map 1 from the set of sequences 7 of n nonnegative integers summing to p to
subsets of {1,...,£ + p} by the following procedure.

T:={t:% € B};
U :=0;
for k:=1tondo
move the iy elements ¢ of T" with the largest values
of z;; from T to U;
output U;

If for any time k& through the loop there is a tie for the ixth largest element of T', then ¢(;) is
undefined.

Choose a bad subset S. Let [](—o0, I;k] be the hypothesis output by the closure algorithm when
given the sample generated from the instances with indices not in S. For each k € {1, ...,n}, define
C}, to be the those elements of S whose misclassification was blamed on dimension k. We claim
that S = 9(|C1], ..., |Cnl)

Imagine a run of the procedure defining ¢ with its input 7 set to (|Ci,...,|Cn|). For each k €
{1,...,n}, let T} be the value of T before the kth time through the loop. Define Uy, similarly for U.

We wish to show that, each time through the loop, the elements of Cj, are moved from T to U. We
prove this by induction by proving the nominally stronger statement that for all k, Uy, = U;xCj.
The base case is trivial. Assume the IH holds before some time k through the loop. Since C1,...,Cy
are disjoint, the inductive hypothesis implies that none of the elements of C} have been moved
from T to U before the kth time through the loop.

We claim that the elements of Cy are the elements of Ty, with the largest kth components. Assume
without loss of generality that Cy # 0 and Cy, # Ti. Choose s € Cy,t € T, — C.

o Ift € S, then #; was one of the elements of B given to the closure algorithm, and therefore,
Ti g < by.

e Suppose t € S. By the inductive hypothesis, ¢ was not blamed on an index less than &, since
otherwise it would have been moved to U before the kth time through the loop. Therefore, t
must be blamed on an index greater than k. Thus ;) < bg.

So in either case, x;; < b,. But the fact that index k was blamed for the misclassification of Z;
implies that z,; > Ek, and therefore, that ;5 < xs,. Since s and ¢ were chosen arbitrarily, the
elements of Cy are the elements ¢ of T}, with the largest values of x; ;. Thus, they are the elements
moved from T to U during the kth time through the loop, completing the proof of the inductive
step. This implies that the output of the algorithm is U;_,Cy = S. Since S was chosen arbitrarily,
this implies that 1) is onto. As described above, this completes the proof. []
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Proof of Theorem 7: Applying Markov’s inequality together with Lemma 10 implies that

P > = P P> e
negl(erA,B,D(ﬁ) €) Negl((erA,B,D("ﬂ)) e’)
< (n+p>p
- el
< 6

1
for p = [In(1/4)] and £ > w The fact that learning BOXES,, reduces to learning
OBOXESsy,, completes the proof. 0

5 Pseudorandom sets for combinatorial rectangles

We refer the reader to the introduction for the motivation, notation, and history of this problem.

We will make use of an approximation result for BOXES. Let BOXESy , ,, € BOXES,, ;, be the
set of axis-parallel rectangles in {0,1,...,m — 1}" that are nontrivial in at most k£ dimensions,
analogously to Ry, . Once again, BOXES, n,m = BOXES;, . Furthermore, e-approximations for
BOXESg,n,m are defined analogously to e-approximations of Ry, ;. An explicit family {Sp, k.n.c C
[0,m —1]" : k,m,n € N,k < n}, where Sy, s, is an indexible e-approximation for BOXESy 5, n,
was presented in the full version of [11] with

18 [ Smesm.c] = Olloglog n + log k + log(1/€) + log(1/e) log([k/ log(1/e)1)- (12)

This builds on some ideas from [14], and improves on all three constructions of [14]. (Though it
may look surprising that the bound of (12) is independent of m, it is shown in [14] that in the case
of axis-parallel rectangles, we can effectively reduce the problem to the case where m < [4k/e] and
where € is replaced by €/2; hence the independence from m.)

In the following we first show how e-approximations for R% easily lead to e-approximations for
Ry, when n' > 2k?/e (Section 5.1). Then we show our main e-approximation construction for
m.k (Section 5.2).

5.1 Reducing n

As mentioned a couple of sentences ago, the main point of Section 5.1 is to show how we can
effectively “reduce” n to O(k?/e), which then leads to Corollary 13.

Theorem 11 Let k < n be any positive integers, € € (0,1), and n' = [2k?/€]. Suppose S’ is
an explicit indexible (¢/2)-approzimation for ’R,”m' Then we can explicitly construct an indezible
e-approzimation S" for RT ,, with log|S"| =log|S’| + O(loglogn + logk + log(1/e)).

m,k?

We start with a simple hashing lemma.
Lemma 12 Suppose k and n > k are positive integers. Let 6 € (0,1), £ = [k%?/8], and p =

§/(k%L). Suppose Y = (Y1,Ys,...,Y,) is sampled uniformly at random from Sgop .. Then for any
{a1,a9,...,a5} C [n] with s < k, Pr(Yy,,,Ys,,...Y,, are all pairwise distinct) > 1 — 4.
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Proof: By the definition of Sy, , we have, for any 1 <4 < j < s and for any p € {0,1,...,£—1},
that Pr(Ye, =Y, =p) < 1/£2 4 p. Thus, Pr(Yy, =Y,;) < 1/£+€p = 1/£+ §/k>. Hence,

Pr(Y,,,Ya,, ... Y,, not all distinct) <> Pr(Y,, =Y,,) < (k*/2)(1/¢ + 6/k%),
1<j

which is at most § by our choice of /. [

Proof of Theorem 11: We first describe S” by saying how to generate a uniformly random
sample X = (X1, Xs,...,X,) from it. Let § = €/2 and p = §/(k?n'). Sample Y = (Y1,Ys,...,Y,)
uniformly at random from Sy 2, 5, and define f(i) =Y; + 1, for each ¢ € [n]; note that f(i) € [n/].
Independent of this random choice, sample Z = (Z1,Zs,. .., Zy) uniformly at random from S,
and define the final desired sample X to be (Zrays Zp)s -+ -5 Zgmy)- S" is indexible, since Sy 2p
and S’ are. Clearly, log|S"| = log|S’| + O(loglogn + log k + log(1/e)).

We now show that for any R = S1 xSy x--- xS, € Ry, 4, | Pr(X € R)—vol(R)| < ¢ holds, where the
volume vol(R) is defined to be (I];|Si|)/m™. Suppose R is nontrivial in dimensions a1, ag, ..., as,
where s < k. Now, by Lemma 12, f(a1), f(az),..., f(as) are all distinct with a probability of at
least 1 — ¢/2; conditional on this, the definition of $’ implies that |Pr(X € R) — vol(R)| < €/2.
Also, if f(a1), f(az2),..., f(as) are not all distinct (which happens with a probability of at most

¢/2), |Pr(X € R) — vol(R)| can be at most 1, with probability 1. Hence,

P

|Pr(X € R) — vol(R)| < (1 —€¢/2)e/2 +€¢/2 <,

as required. [

Recall that an indexible e-approximation S’ for R”, with log|S'| = O(logm + logn’ + log%(1/€)),
is presented in [6]. Using this with Theorem 11 gives the following.

Corollary 13 There is an ezplicit indezible e-approzimation S" for Ry . with log|S"| =
O(loglogn + log k + logm + log?(1/e)).

5.2 The main construction

Theorem 17, the main theorem here, constructs an indexible e-approximation S for R} ,, with
log|S| = O(loglogn + (logm)log(1/e) + log(1/€)log([k/log(1/€)])). We start with Lemma 14,
which shows how to reduce the approximation of combinatorial rectangles to the corresponding
question for axis-parallel rectangles, with appropriate parameters. We stress that this lemma is in
itself quite simple, but will be useful later on when we show how to reduce our basic problem to

the case of “small” ¢: ¢ = O(log(1/¢)).

Lemma 14 For any positive integer t < n, there is an explicitly constructible and indezible e-
approzimation Tmtn.e for Ry, ;, with log | T t.n,e| = O(loglogn + tlogm + log(1/e)).

Proof: Let ¢ =¢/m'. We shall show that taking Ty, ¢ = Sm.t.n,e Will suffice; the proof is then
completed by invoking (12). Let X be sampled uniformly at random from S, ¢y ¢, and let R =
Sy X +++ x Sy be an arbitrary member of R7, ;. We now show that |Pr(X € R) — ([1; |S:])/m"| < e,
which will complete the proof. Assume w.l.o.g. that R is trivial in dimensions ¢ + 1,¢ + 2,...,n;
hence, Si11 = Sppo=---=85,={0,1,...,m —1}. For any g = (p1,p2,..-,pt) where p; € S1,p2 €
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So,...,pt € St, let R'(p) denote {p1} X -+ x {pt} X Spy1 X -+« X Sp. R'(P) is trivially a member of
BOXES; . Thus,

|Pr(X € R'(p)) — 1/m'| <€ (13)
Now,
[Pr(X e R) - (] ISih/m" = | > (Prx(X € R(5) - 1/m")]
i€[n] P1ES1,..,PtESE
< Y IP(X e R(H) - 1/m|
P1EST,...,PtES
< H 1Si|)€' (by (13)) < mle =,
as required. [

Our approach now is to reduce the problem of constructing an e-approximation for R" k. to that
of constructing an €’-approximation for Ry, ;, where ¢ is “small” (O(log(1/¢))) and w1th ¢’ chosen
appropriately. We may then invoke Lemma 14. Next, a useful lemma from the full version of [11]:

Lemma 15 Let Yy,...,Y; be arbitrary binary r.v.s, and let Z1, ..., Z; be independent binary r.v.s.
Then, for any posztwe integer s < t, |Pr(/\Ze (Y; =0)) — Pr(/\ZE (Z; = 0))| is at most 27° +

! =5/ £ 55 Yacigiaj=e| Pr(Aica(Yi = 1)) = Pr(Aiea(Zi = 1))

We also need a well-known proposition (see, e.g., [9] and [11] for proofs):
Proposition 16 For any positive integers r,t, 7 < t, we have Y ;_ (:) < (te/r)".

Define
E =min{p e N: 2P 4+ e.e P/ <¢/2}, and € = (¢/2) - (K'/(ke))* . (14)

Note that &' = ©(log(1/e€)), and that 1/¢' < poly(1/e, ([k/log(1/e)])198(1/9)). We now present our
main result on approximating combinatorial rectangles:

Theorem 17 There is an explicit and indexible e-approrimation S for R s with log |S| being

O(loglogn + (log m) log(1/€) + log(1/e) log([k/log(1/€)])).

Proof: Let k' and € be as in (14). We now show that taking S = Tj;, js 5, ¢ (as introduced in
the statement of Lemma 14) will suffice; the upper bound on log |7}, 4/ n | from the statement of
Lemma, 14 will then complete the proof.

To show this, let R = 51 X --+ x S, be an arbitrary member of Ry, .. We now prove that for X

sampled uniformly at random from T, jr p, ¢, |Pr()? € R) — (I1;1Si])/m™| < ¢, as required. We
assume w.l.o.g. that R is trivial in dimensions k+1,k+2,...,n. For each i € [k], let: (i) ¥; € {0,1}
be a random variable that is 1 iff X; ¢ S;, and (ii) Z; € {0,1} be a random variable that is 1 iff a
point drawn uniformly at random from [0,m — 1] does not lie in S;. Thus, our goal is to show that

|Pr( A\ (Y; =0)) = Pr( A\ (Z:=0))| <e (15)

i€[k] i€[k]
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The proof technique now borrows largely from [11]. For each i € [k], let T; = {0,1,...,m—1}— ;.
Note that the condition “s < #” in the statement of Lemma 15 is not crucial: if s > ¢, we can
always reset s := t for Lemma 15 to hold. Similarly, in our current context, if ¥’ > k, we can set
k := k'. By Lemma 15 and from the fact that 27% 4+ e . e=%/(2¢) < ¢/2 by definition of k', we see
that

[Pr( A\ (Zi =0)) - Pr( A\ (X; =0))|

i€[k] i€[k]

< e/2+2 Z |Pr( A\ (Yi = 1)) = Pr( A\ (Zi = 1))|
=1 AC[k]:|A|=¢t i€A i€A

< e/2+2 Z IPr( A\ (Xi €T) — (J] |T]) /m?. (16)
=1 AC[k]:|A|=¢ i€A i€A

We now bound | Pr(A;e4(X; € T;) — (I1;ea |Ti]) /m?|, for any generic set A C [k] with |A| = £ < k'
Since (i) Tk’ n,e 18 an €'-approximation for R, ,/ by Lemma 14, and (ii) A C [k] with |[4| < &', we
see that | Pr(A;c4(Xi € T3)) — (ILica | T3 |)/mé| < €. Thus, by the bound (16), \Pr(/\ie[k](Zi =0))—

Pr(Aiepg(Xi = 0))| is at most €/2+¢ S ( ), which is at most €/2+ (ke/k')* ¢ by Proposition 16;
this in turn is at most € by definition of ¢’. Thus, as (15) has been established, and the proof is
complete. 0

Note that the above proof will work with any €-approximation S for Rk in place of the specific
choice S = Tip, g/ n,e- Thus we get the following bootstrapping result:

Theorem 18 Let k' and € be as in (14). Then, any indezible €' -approzimation for R, ,, is also an
indezible e-approzimation for R .. In particular, suppose, for all (n,m,k,¢€), there is an indezible
e-approzimation S' for Ry, with log|S'| = O(loglogn + k + logm + log(1/¢)). Then , for all
(n,m,k,¢€), there is an mdea:zble e-approzimation S" for Ry, , with log|S"| = O(loglogn + log k +
logm + log(1/e€) + log(1/€) log([k/log(1/€)])).

Consider the particular case alluded to in the statement of Theorem 18. We note that explicit
construction of an e-approximation S for R}, | with log [S’| = O(loglogn+k+logm+log(1/e)), is
an open problem as of now. However, we see even this specific result as promising, since: (i) log|S’| is
allowed to be quite high as a function of k& (we just ask for linear dependence on k, while logarithmic
dependence on k can be shown existentially), and, indeed, such a construction has been achieved
for axis-aligned rectangles [14, 11], and (ii) log |S”| would be optimal for the common situation of
k = O(log(1/¢)). Even if k is, say, O(polylog(1/¢)), we would have log|S"| = O(log logn + logm +
log(1/€) log log(1/€)), a significant improvement over the O(loglogn + logm + log?(1/€)) that we
derive above from [6].

6 Constructing certain Ramsey-type graphs

Recall the notion of an (s,?,n)-graph from the introduction; as mentioned there, we shall assume
throughout w.l.o.g. that s < ¢ (if we wish to construct an (s,¢,n)-graph where s > t, we can always
take the complement of a (¢, s,n)-graph). The basic probabilistic approach to showing that an
(s,t,n)-graph exists, is to construct a random graph G on n vertices, in which each edge is put in
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with a certain probability p = p(s,t,n), independent of the other edges The probability that any
given subset A of the vertices with |A| = s + 1 induces a clique is p( ) the probablhty that any
given subset B of the vertices with |B| =t + 1 induces an independent set is (1 — )( ). Thus, if

s,t,n and p satisfy
" (e " la-p(3) <1 1
<3+1)p 2 +<t+1>( p)l 2/ <1, (17)

we get an (s,t,n)-graph with positive probability, i.e., we have shown that an (s,?,n)-graph exists.
There are more involved probabilistic approaches than this to show the existence of (s, ¢, n)-graphs,
e.g., using the “deletion method” [5] or, even stronger, the Lovdsz Local Lemma [35] or certain
large-deviation inequalities [23]. If the basic probabilistic method (the usage of (17)) shows that an
(s,t,m)-graph exists, these more refined methods usually help show that an (s,t*,n)-graph exists,
where o < 1 is some constant. Since there are still enormous gaps between the nonconstructive
and known constructive bounds for Ramsey-type graphs, we just follow the basic approach of using
(17) for our simple constructive method. See [30] for an approach to constructing Ramsey graphs
via derandomization techniques, which has a different motivation than our present one.

It can be checked that the method of conditional probabilities can be used to “constructivize” the
simple approach above, leading to a deterministic sequential algorithm of time complexity poly( (’Z) )-
(Interestingly, this is also the best-known bound to check if a given graph is an (s,t,n)-graph.)
The two drawbacks here are that (i) the running time is rather high, and (ii) this approach seems
inherently sequential, i.e., not parallelizable. We tackle the first problem by a “graph product”
result of [1], and the second via e-approximations for axis-parallel rectangles.

Graph products. Given undirected graphs G1 = (Vi,E1) and Gy = (Va, Ey), the following
product graph G; x Go = (Vi x Vi, H) is considered in [1]: {(u1,v1), (u2,v2)} € H iff either (i)
u1 # ug and (u1,u) € Ey, or (ii) u1 = ug and (v1,v2) € E. The following fact is shown in [1]: if Gy
is an (s1,%1,n1)-graph and Gy is an (s9,t2,n2)-graph, then G; X Gy is an (s189, t1t, n1n9)-graph.
Applying this some r times on a given (s,t,£)-graph G thus shows that G is an (s",t",£")-graph.
Thus, if for some “small” ¢, we can efficiently construct an (s, t,£)-graph G, we can then efficiently
construct a much larger graph G” that has ¢" vertices, with s and ¢ getting replaced by s" and ¢"
respectively.

Approximations of distributions. Let X, Xo,..., X, be independent random variables taking
on values in some finite set, say {0,1,...,m — 1}. We call a sample space (multi-set) D (whose
elements are members of {0,1,...,m — 1}") a (k, €¢)-approximation for (X1, Xo,...,X,) iff Y =
(Y1,Ys,...,Y,) chosen uniformly at random from D satisfies:

VI C [n] with || <k, Vai,...,ap €{0,1,...,m—1}, |Pr(Aie;(Y; = a;)) — [[ Pr(Xi = a))| < e
el

Suppose S is an explicit indexible (e/2)-approximation for BOXESy, ,, ¢, where £ = [4k/€]. Then,
it is shown in [14] that there exists a (k, €)-approximation Sy for (X1, Xs,...,X,), such that: (a)
|S2| = |S1], and (b) given a uniformly random sample from S;, a uniformly random sample from
So can be generated deterministically in time polynomial in n and m, and in NC. In fact, the
sample space Sy, k. (see (12)) of [11] can be constructed in polylog(n + |Sm kn,|) time using
poly(n, |Sm kn,e|) processors in an EREW PRAM. Thus we have, in particular,
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Lemma 19 Let X1, Xo,..., X, be i.i.d. binary random variables. Then, for any k < a, there is
a (k, €)-approzimation Sy for (X1, ..., Xa), such that: |Sq| < poly(log a,1/e, ([k/log(1/e)])'e(/€).
Also, Sy can be constructed by poly(a, |So|) processors in polylog(a+|Sy|) time on an EREW PRAM.

Theorem 20 There are absolute constants cy,c1 > 0 such that the following holds. Let £ > s > 3
be any positive integers, r be any positive integer, and t = [col/*log ] > s. Then, an (s", ", £7)-
graph G can be constructed by poly(¢', (g), [t/ logﬁwlog((f))) processors on an EREW PRAM, in
polylog((‘f) + ) time.

Proof: We just show how to construct an (s, ¢,£)-graph H; we can then take the above-seen graph
product r times to “boost” the construction to get the desired graph G.

If we construct a random graph on £ vertices 1,2, ..., ¢ with each edge probability being p = £=¢/5
for an appropriate constant co > 0, it can be verified that s,¢,p and £ satisfy

(s _i 1>p(831) + (tf 1) 1-p)(*) <172 (18)

(The constant 1/2 in the r.h.s. is arbitrary; it can be replaced by 1 — =9 to get slightly better
values for s and ¢. We do not attempt this optimization here.) We can imagine the above random
graph being constructed by generating (5) i.i.d. binary random variables {X;; : 1 < i < j < £},
where Pr(X; ; = 1) = p and where ¢ and j are connected by an edge iff X; ; = 1.

Construct, in parallel, a ((t'gl),e)—approximation So for {X;;:1 <4 < j </{}, as guaranteed by
Lemma 19; the value of € will be determined below. Take a random sample (i.e., graph) from Sj.
Since Sy is a ((H;), €)-approximation, it is easily checked that the expected value of the sum of the
number of induced cliques with s 4+ 1 vertices and the number of induced independent sets with

t + 1 vertices, is at most
l (s+1) / (t+1)
1-— .
<s+1>(p 2 +6)+<t+1)(( P>/ +e)

For large enough £, t < £/2 — 1; hence, since s < t, (sfl) < (tfl). Thus, if we take € = (4(tf1))*1,
(18) shows that the above expected value is strictly smaller than 1. That is, at least one of the
samples (graphs) in Sy must be an (s, t,£)-graph, and hence can be found by parallel exhaustive
search in Sy. (Note that we can easily check if a given £-vertex graph is an (s,t,£)-graph, using

poly((tfl)) processors and polylog((tfl)) time, on an EREW PRAM.)

Using the cardinality of and construction time for Sy specified by Lemma 19, we complete the proof
of the theorem. 0

The two extremes for Ramsey-type n-vertex graphs are (i) where s ~ ¢, and (ii) where s < t,
i.e., s = ¢ (some constant), and ¢ = nf(9). While Theorem 20 can be used to construct a range of
Ramsey-type graphs, the following corollary just lists these two extremes:

Corollary 21 For any n, the following Ramsey-type graphs can be constructed in parallel on an
EREW PRAM. (i) (20(\/@),20(\/@),n)—gmphs using nO(10818m)*) processors and polylog(n)
time, and (ii) for any desired constants €,6 > 0, € < 1, (c,n,n)-graphs using exp(n’) processors
and O(n®) time, where ¢ = c(€,0) is a constant.
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Proof: We apply Theorem 20 using the following values for the parameters. For (i), we take both
s and t to be O(y/Tognloglogn), £ = 2V108nloslosn and - = ©(y/Togn/loglogn). For (ii), we take
s = (e, 0), i.e., a suitably large constant, ¢t = n¢, 0 =n% and r = d, where ¢ and § are sufficiently
small positive constants, and d is a sufficiently large constant. 0
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A Proof of Lemma 4

If X is a set, and G is a set of {0,1} valued functions defined on X, define
VCAim(G) = max{d : 3z1,...,zq € X, {(9(21),---,9(xq)) : g € G} = {0,1}¢}.

We will make use of the following lemma. “Permissibility” is a technical measurability constraint
(see Pollard’s [34] Appendix C).

Lemma 22 ([37]) There is a constant ¢ such that, for all X, for all permissible sets G of {0,1}
valued functions defined on X, for all probability distributions D on X and m € N, and for all
0<ed<1/2,if VCdim(G) =1, and m > 6%log%, then

> 6} <é.

Next, we record the VC-dimension of the set of random variables whose probabilities are the oy (b)’s
as b varies. The proof is the same as the known proof for {(—oc,b] : b € R}.

D™ {a‘:’: JdJge G ‘ (% ig(%)) — Eyuen(g(u))

Lemma 23 Choose n,k € N, k < n. For each b, define g, : R™ — {0, 1}, by gp(%0) = 1 < uy, > b.
Then VCdim({g : b € R}) < 1.

Proof: Choose 4,7 € R". Assume without loss of generality that u; < vg. Then there is not a b
such that g,(%) = 1 and g,(¥) = 0. U

Now we analyze the VC-dimension relating to the ¢k (b)’s.
Lemma 24 Choose n,k,7 € N, k <n, @ € R". For each b, define gy : (R")" — {0, 1}, by

{ 1 ifuyg > b and ¥, (U1, ..., ) =0

0 otherwise.

Then VCdim({gy : b€ R}) < 1.
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Proof: Assume for contradiction that VCdim({g, : b € R}) > 1. Then there exist iy, ..., %, and
1, ..., Up such that

{(gp (1, e ), g (T, ooy ) : b € R} = {0, 1}2.

Since there exists b such that (gy(%1,...,4dr), gp(01, ..., 7)) = (1,1), we have ¢p,(d1,...,U,) =
Y8, (U1, ...,0,) = 0. Thus, for any b € R

U1yennyliy) =1 & >b
gb("il "jr) U1k (19)
(U1, .0y Up) =1 v > b

The fact that there is a b such that (g(iy1, ..., @), gp(¥1, ..., Tr)) = (1,0) implies in conjunction with
(19) that uyj > vk, but the fact that there is a b such that (g (1, ..., 4r), g5 (01, -.-, ¥r)) = (0,1)
implies in conjunction with (19) that u; , < v, a contradiction. []

Proof of Lemma 4: Applying the usual Hoeffding bound (see [34, Appendix B]) proves (9).
Combining Lemma 22 (the permissibility of the relevant sets of r.v.’s is easily verified), Lemma 23
and Lemma 24, proves (10). 0
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(05} (b)

B1(b)
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Caption for Figure 1: If b and the target rectangle B are as indicated, «(b) is the probability of
the horizontally striped region, (31(b) is the probability of the vertically striped region, and ¢1(b)
is the probability of drawing the first instance from the portion of the horizontally striped region
that does not overlap with the vertically striped region, and drawing the remaining instances from

outside B.
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