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HVTR: Hybrid Volumetric-Textural Rendering

for Human Avatars

— Goal & Motivation

— Our Approach

Goal: Learn 3D human avatars from videos, Representations Renderer Eff'c'e_nt Geometry
, _ Rendering Recons
which can be rendered under arbitrary poses
d viewpoints efficiently and at high quali 2D Flus GAN v X
and viewpoints efficiently and at high quality. (e.q.. SMPL + DNR [1])
Motivation: We propose a hybrid rendering 3D Volume X v
method, which learns geometry reconstructions (e.9., Neural Body [2]) | Rendering
by optimizing a pose-conditioned downsampled 3D (ours) Hybrid Y Y
NeRF, and uses a GAN for efficient rendering.

-~ Experiments & Results

Methods LPIPS | FID |

SMPL + DNR [1] 113 85.752 5.4
Neural Body [2] 210 149.924 0.05
Ours 100 72.142 2.9

—— Render Loose Clothing

* We learn rough geometry (PD-NeRF) from low-resolution images.
* Yet our method can render loose clothing with the rough geometry.
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Solve Self-Occlusions

Time (FPS) in inference « Our method can handle boundaries, solve
occlusions, and render high-quality images.
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[1] Thies et al. Deferred Neural Rendering. TOG 2019.
[2] Peng et al. Neural Body. CVPR 2021.
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A novel neural rendering pipeline, Hybrid Volumetric-Textural Rendering (HVTR), which has four components:

« Pose Encoding in UV space: Parameterize poses on the UV manifold of human body surface.

« 2D Textural Encoding: Transform the features from UV space to 2D image space for rendering.

3D Volumetric Representation: To handle self-occlusions, we learn a pose-conditioned downsampled NeRF.
 Hybrid Rendering: Get 3D vol-features by volume rendering, which are then up-sampled to avatars by GAN.
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Differences from Existing Methods
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- DNR [1] uses a GAN for one-stage rendering, which suffers from artifacts (closeup (1)) due to geometric
misalignments.

« Our method works at two stages by first constructing a PD-NeRF to handle geometric alignments, and then utilizing
a GAN for appearance synthesis. We can handle self-occlusions ((2) vs. (1)) better than DNR, and preserve more
details ((3)(4)) than Neural Body [2].




