SEMIDEFINITE PROGRAMMING

WHAT'S AN SDP

linear program

minimize
$$\langle x, c \rangle$$

subject to $Ax = b$
 $x > 0$

semdefinite program

minimize
$$\langle X, C \rangle$$

subject to $\langle A_i, X \rangle = b_i, \ \forall i$
 $X \succ 0$

WHAT'S AN SDP

semdefinite program

minimize
$$\langle X, C \rangle$$

subject to $\langle A_i, X \rangle = b_i, \ \forall i$
 $X \succeq 0$

LP with infinite constraint

minimize
$$\langle X, C \rangle$$

subject to $\langle A_i, X \rangle = b_i, \ \forall i$
$$u^T X u = \langle u u^T, X \rangle \ge 0, \ \forall u$$

WHY DO WE CARE?

$$Y = \left(\begin{array}{cccc} | & | & | & | \\ y_1 & y_2 & \dots & y_n \\ | & | & | & | \end{array}\right)$$

minimize f(Y)subject to $||y_i|| = 1$

Is this convex?

constraint: $||y_i|| = 1$

WHY DO WE CARE?

$$Y = \left(\begin{array}{cccc} | & | & | & | \\ y_1 & y_2 & \dots & y_n \\ | & | & | & | \end{array}\right)$$

minimize f(Y)subject to $||y_i|| = 1$

convexify

Let
$$X = Y^T Y \longrightarrow X_{ii} = ||y_i||^2$$

minimize $g(X)$
subject to $X_{ii} = 1$

constraint: $||y_i|| = 1$

EXAMPLE: STRUCTURAL PROGRAMING

$$Y = \begin{pmatrix} | & | & | & | \\ y_1 & y_2 & \dots & y_n \\ | & | & | & | \end{pmatrix}$$

Find a structure given the following...

I tell you the length of all vectors

$$||y_i|| = l_i$$

I tell you the distance between vectors

$$d_{ij}^l \le \|y_i - y_j\| \le d_{ij}^u$$

I tell your the angle between vectors

$$a_{ij}^l \le \frac{\langle y_i, y_j \rangle}{\|y_i\| \|y_j\|} \le a_{ij}^u$$

Let
$$X = Y^T Y$$

EXAMPLE: STRUCTURAL PROGRAMING

$$X = Y^{T}Y = \begin{pmatrix} y_{1}^{T}y_{1} & y_{1}^{T}y_{2} & y_{1}^{T}y_{3} \\ y_{2}^{T}y_{1} & y_{2}^{T}y_{2} & y_{2}^{T}y_{3} \\ y_{3}^{T}y_{1} & y_{3}^{T}y_{2} & y_{3}^{T}y_{3} \end{pmatrix}$$

I tell you the **length** of all vectors

 $||y_i|| = l_i$

convex constraint

$$X_{ii} = l_i$$

EXAMPLE: STRUCTURAL PROGRAMMING

$$X = Y^{T}Y = \begin{pmatrix} y_{1}^{T}y_{1} & y_{1}^{T}y_{2} & y_{1}^{T}y_{3} \\ y_{2}^{T}y_{1} & y_{2}^{T}y_{2} & y_{2}^{T}y_{3} \\ y_{3}^{T}y_{1} & y_{3}^{T}y_{2} & y_{3}^{T}y_{3} \end{pmatrix}$$

I tell you the **distance** between vectors $d_{ij}^l \leq ||y_i - y_j|| \leq d_{ij}^u$

$$d_{ij}^{l} \le ||y_i - y_j|| \le d_{ij}^{u}$$

$$||y_i - y_j||^2 = ||y_i||^2 + 2\langle y_i, y_j \rangle + ||y_j||^2$$
$$= l_i^2 + X_{ij} + l_j^2$$

convex constraint

$$(d_{ij}^l)^2 - l_i^2 - l_j^2 \le X_{ij} \le (d_{ij}^u)^2 - l_i^2 - l_j^2$$

EXAMPLE: STRUCTURAL PROGRAMING

$$X = Y^{T}Y = \begin{pmatrix} y_{1}^{T}y_{1} & y_{1}^{T}y_{2} & y_{1}^{T}y_{3} \\ y_{2}^{T}y_{1} & y_{2}^{T}y_{2} & y_{2}^{T}y_{3} \\ y_{3}^{T}y_{1} & y_{3}^{T}y_{2} & y_{3}^{T}y_{3} \end{pmatrix}$$

I tell your the angle between vectors

$$a_{ij}^l \le \frac{\langle y_i, y_j \rangle}{\|y_i\| \|y_j\|} \le a_{ij}^u$$

$$\frac{X_{ij}}{l_i l_j} = a_{ij}$$

convex constraint

$$l_i l_j a_{ij}^l \le X_{ij} \le l_i l_j a_{ij}^u$$

EXAMPLE

Find "largest" X that satisfies structural constraints

maximize $\log \det X$ subject to

length constraints

$$X_{ij} = l_{ij}$$

angle/distance constraints

$$\alpha_{ij} \le X_{ij} \le \beta_{ij}$$

SDP constraint

$$X \succeq 0$$

recovery solution using Cholesky factorization

$$X = Y^T Y$$

what if the problem is infeasible?

SOLUTION SYMMETRY

Is it possible to find a convex problem in Y that solves this?

I tell you the length of all vectors

$$||y_i|| = l_i$$

I tell you the distance between vectors

$$d_{ij}^{l} \le \|y_i - y_j\| \le d_{ij}^{u}$$

I tell your the angle between vectors

$$a_{ij}^l \le \frac{\langle y_i, y_j \rangle}{\|y_i\| \|y_j\|} \le a_{ij}^u$$

recovery solution using Cholesky factorization

$$X = Y^T Y = Y^T U^T U Y = (UY)^T (UY)$$

CONVEX RELAXATION

replace a non-convex set with a (larger) convex set

FAMOUS EXAMPLE: MAX CUT

Value of cut = number of edges sliced

maximize $\sum_{(ij)\in E} \frac{1 - v_i v_j}{2}$

subject to $v_i \in \{-1, 1\}$

easy relaxation

$$v_i \in [-1, 1]$$

why is this bad?

GOEMANS-WILLIAMSON

integer program

maximize
$$\sum_{(ij)\in E} \frac{1 - v_i v_j}{2}$$

subject to
$$v_i \in \{-1, 1\}$$

relaxation

maximize
$$\sum_{(ij)\in E} \frac{1 - \langle v_i, v_j \rangle}{2}$$

subject to
$$||v_i|| = 1$$

GOEMANS-WILLIAMSON

relaxation

maximize

$$\sum_{(ij)\in E} \frac{1 - \langle v_i, v_j \rangle}{2}$$

subject to
$$||v_i|| = 1$$

SDP

maximize

$$\sum_{(i,j)\in E} \frac{1-X_{ij}}{2}$$

subject to $X_{ii} = 1, \forall i$

$$X \succeq 0$$

GOEMANS-WILLIAMSON

SDP

maximize

$$\sum_{(i,j)\in E} \frac{1-X_{ij}}{2}$$

subject to $X_{ii} = 1, \forall i$

$$X \succeq 0$$

Use random rounding to convert to original solution

Expected value = 0.87856 (optimal)

This is the **best** polynomial-time approximation if you believe the unique games conjecture

METRIC LEARNING

learn a similarity measure between data point that preserves classification

LARGE-MARGIN NEAREST NEIGHBORS

given data with multiple labels

feature vectors $d_i \in \mathbb{R}^n$

labels

$$l_i \in \{1, 2, 3, \dots, c\}$$

neighborhood

$$N_i = \{d_j\}$$

Every point should lie closer to "neighbors" than members of another other class

$$S(d_i, d_j) + 1 \le S(d_i, d_k), \ \forall (i, j) \in N, l_i \ne l_k$$

remember
$$S(d_i, d_j) = ||Ld_i - Ld_j||^2$$

CONVEX FORMULATION

neighbors should be close together

$$\sum_{(i,j)\in N} S(d_i,d_j) + \sum_{i,j,k} \eta_{ijk}$$

subject to $S(d_i, d_j) + 1 \le S(d_i, d_k) + \eta_{ijk}, \ \forall (i, j) \in N, l_i \ne l_k$ $\eta_{ijk} \ge 0$ classes should be far apart

convexify

$$S(d_i, d_j) = ||Ld_i - Ld_j||^2 = (d_i - d_j)^T L^T L(d_i - d_j) = (d_i - d_j)^T M(d_i - d_j)$$

CONVEX FORMULATION

minimize
$$\sum_{(i,j)\in N} S(d_i,d_j) + \sum_{i,j,k} \eta_{ijk}$$

subject to
$$S(d_i, d_j) + 1 \le S(d_i, d_k) + \eta_{ijk}, \ \forall (i, j) \in N, l_i \ne l_k$$

 $\eta_{ijk} \ge 0$

convexify

$$S(d_i, d_j) = ||Ld_i - Ld_j||^2 = (d_i - d_j)^T L^T L(d_i - d_j) = (d_i - d_j)^T M(d_i - d_j)$$

linear objective / linear constraints

minimize
$$\sum_{(i,j)\in N} \|d_i - d_j\|_M^2 + \sum_{i,j,k} \eta_{ijk}$$

subject to
$$||d_i - d_j||_M^2 + 1 \le ||d_i - d_k||_M^2 + \eta_{ijk}, \forall (i, j) \in N, l_i \ne l_k$$

$$\eta_{ijk} \ge 0$$

$$SDP \longrightarrow M \succeq 0$$

linear

GENERALIZATION

learn prototypes and mapping at the same time

$$S(d_i, d_j) = ||Ld_i - Ld_j||^2$$

GENERALIZATION

forward model

Given

Data matrix: D

Prototypes: P

Learn the linear transform

$$L = \mathop{\arg\min}_{L} \sum_{i} \|p_i - Ld_i\|^2 + \lambda \|L\|^2 \qquad \text{ridge}$$

$$L = \mathop{\arg\min}_{L} \|PJ - LD\|^2 + \lambda \|L\|^2 \qquad \text{penalty}$$

column selector

L is a function of P

$$L = PJD^{T}(DD^{T} + \lambda I)^{-1} = PA$$

A

PROJECTED DATA

$$L = PJD^{T}(DD^{T} + \lambda I)^{-1} = PA$$

$$A$$

Projected data: $LD = PAD = P\hat{D}$ \hat{D}

$$||p_{l_i} - Ld_i||^2 + 1 \le ||p_{l_j} - Ld_i||^2, \ \forall l_j \ne l_i$$

$$||p_{l_i} - PAd_i||^2 + 1 \le ||p_{l_j} - PAd_i||^2, \ \forall l_j \ne l_i$$

$$||p_{l_i} - P\hat{d}_i||^2 + 1 \le ||p_{l_j} - P\hat{d}_i||^2, \ \forall l_j \ne l_i$$

in matrix form

$$||Pe_{l_i} - P\hat{d}_i||^2 + 1 \le ||Pe_{l_j} - P\hat{d}_i||^2, \ \forall l_j \ne l_i$$

FORMULATION

minimize
$$\sum_{ijk} \eta_{ijk}$$
 subject to $\|Pe_{l_i} - P\hat{d}_i\|^2 + 1 \le \|Pe_{l_j} - P\hat{d}_i\|^2 + \eta_{ijk}, \ \forall l_j \ne l_i$ convexify
$$\|Pz\|^2 = z^T P^T P z = z^T M z$$

SDP

minimize
$$\sum_{ijk} \eta_{ijk}$$
 subject to
$$||e_{l_i} - \hat{d}_i||_M^2 + 1 \le ||e_{l_j} - \hat{d}_i||_M^2 + \eta_{ijk}, \ \forall l_j \ne l_i$$

$$M \succeq 0$$

NUMERICS

semidefinite program

minimize
$$\langle X, C \rangle$$
subject to $\langle A_i, X \rangle = b_i, \ \forall i$
 $X \succeq 0$

barrier: $-\log \det X$

minimize $\langle X, C \rangle - \mu \log \det X$ subject to $\langle A_i, X \rangle = b_i, \ \forall i$ $X \succeq 0$

NUMERICS

log-barrier form

minimize
$$\langle X, C \rangle - \mu \log \det X$$

subject to $\langle A_i, X \rangle = b_i, \ \forall i$
 $X \succeq 0$

solve by Newton's method

barrier (primal) method

 $n \times n$ matrix $\longrightarrow n^2 \times n^2$ system $O(n^6)$ complexity

primal-dual method

 $n^2 \times m$ matrix

Why IP methods? you're **doomed** to factorization

ALTERNATIVES

simple methods may be faster for specific problem forms

FBS / ADMM methods

minimize
$$f(X)$$

subject to $X \succeq 0$ $\longrightarrow L(X, Y, \lambda) = f(X) + \mathcal{X}_{S^+}(Y) + \frac{\tau}{2} ||X - Y - \lambda||^2$

Approximation methods

$$X = L^T L$$

minimize
$$f(X)$$
 minimize $f(L^T L)$ subject to $X \succeq 0$

example: Wiberg method

WHENTO USE SDP?

Only when you have to!

your problem is non-convex

can be effectively relaxed

you have a great solver

small number of unknowns:

m constraints, $n \times n$ matrix: $O(mn^2)$ runtime