SEMIDEFINITE PROGRAMMING



WHAI'S AN SDP

iInear program
minimize (x,c)
I

subject to Ax =0
x>0

semdefinite program

minimize (X,C)
i

subject to (A;, X) =b;, Vi
X =0



WHAI'S AN SDP

semdefinite program

minimize (X, C)
b

subject to (A;, X) = b;, V¢
X >0

L P with infinite constraint

minilglcize (X, C)

subject to (A;, X) = b;, V¢
! Xu = (uu', X) >0, Vu



WHY DO WE CARE!

e — Uil U e )

minimize f(Y)

subject to ||y;|| =1

Is this convex?



WHY DO WE CARE!

minimize f(Y)
subject to ||y;|| =1
convexify
Let X =YTY —> Xii = il
minimize ¢g(X)
subject to X;; =1



EXAMPLE: STRUCTURAL
PROGRAMMING

B i s
Y(yl Yy2 ... Yn
s AP

Find a structure given the following. ..

| tell you the length of all vectors lyill = 1

| tell you the distance between vectors déj < llyi —y;ll < djj

| tell your the angle between vectors af;j < Hi/y][\ﬁyu < a;;
AIEY

Ben @ — e



EXAMPLE: STRUCTURAL
PROGRAMMING

" Z/1Tyl y{yg 3/1Tys
Y Y= | B e wY

Ysh Y3Y2 Y3 Y3

| tell you the length of all vectors lyill = 1

convex
constraint

gy =l



EXAMPLE: STRUCTURAL
PROGRAMMING

" y1Tyl y{yg y1TyS
By Y | e e

Ysh Y3Y2 Y3 Y3

| tell you the distance between vectors déj < |lyi —y;ll < dj;

e vl = llwll” + 200 0
— I+ Xk U
convex constraint
(di;)? — 17 — 12 < Xy < () -1 - 12



EXAMPLE: STRUCTURAL
PROGRAMMING

’ ylyr  yiys yiys

Y Y = | B Y
g5 i E

Ys Y1 Yz Y2 Y3 Ys

B

| tell your the angle between vectors af;j — Hi/yznﬁj‘
AN

), o
il

convex constraint

bila;. < Xy <Llial



EXANIFLE

Find “largest’” X that satisfies structural constraints

maximize logdet X
subject to

length constraints Xij = i

angle/distance constraints @ < X5 < Dy

R Gemsiraint X >0 /\

why!
recovery solution using Cholesky factorization
X~ 1

what If the problem s infeasible?



BOLU T TON SYMMETHSS

|s It possible to find a convex problem InY that solves this?
| tell you the length of all vectors lenll = i

| tell you the distance between vectors déj < |lyi —y;ll < dg;

lyalllly;

| tell your the angle between vectors a

recovery solution using Cholesky factorization

W =We =3t = (o) ()



CONVEX RELAXATION

replace a non-convex set
with a (larger) convex set

relaxation




FAMOUS EXAMPLEE
AKX CUE

Value of cut =
number of edges sliced

N I —
maximize E
(ij)eE

subject to v; € {—1,1}

>

easy relaxation

el [—1,1] /-\

why Is this bad? b= —




GOEMANS-WILLIAMSON

integer program

i Z 1 —v,v;
Maximize

(ij)eE -
subject to v; € {—1,1} —1 +1
relaxation
s L — G, 05) ) = 1
maximize Z 5
(¢j)eE

subject to ||v;|| =1



GOEMANS-WILLIAMSON

relaxation
Il = 1y Ug
maximize Z <v i >
“ 2
(ij)eE <4
. —1 +1
subject to ||v;|| =1
SDP
b Sl Joll =1
maximize Z :
(4,J)€EE

subject to X;; =1, Vi
X >0



GOEMANS-WILLIAMSON

SIDIF

L LGy
maximize Z ;
(¢,7)EE

subject to X;; =1, V¢
X >0

Use random rounding
to convert to original solution

Expected value = 0.8/856 (optimal)

This I1s the best polynomial-time approximation
T you believe the unique games conjecture



METRIC LEARNING

learn a similarity measure between data point
that preserves classification

dq;
nearest
\ O prototype
® o L
O
O L Q .
—
prototype O
O
O e
O
O
O

S(d;,d;) = | Ld; — Ld;||?



L ARGE-MARGIN NEARES T
NEIGHBORS

oiven data with multiple labels

e labels nelighborhood
d; € R" l@'E{l,z,S,...,C} NZ:{CZJ}

Every point should lie closer to “neighbors”
than members of another other class

‘ S(d;,dy)
remember
S(ds, d;) = || Ld; — Ld;|? ®
S(di,dj)
g

k




CONVEX FORMULATION

/_ neighbors should be close together

minimize Z S(di,d;) + Z ik

(4,5)EN 1,7,k
smbject to S(d;,d;) + 1 < S(d;,di) + 15, (0, 7)€ NElE=cR

Nijk = 0 classes should be far apart

convexity
S(di,d;) = |Ld; — Ld;||* = (d; — d;)" L' L(d; — d;) = (d; — d;)" M (d; — d;)



CONVEX FORMULATION

minimize Z S(di,d;) + Z ik

(i.4)EN gk
Sllbje(}t to S(dz, dj) + 1 S S(dz, dk) == Tk s \V/(’l/,]) - N, lz # lk
Tty 228
convexify

S(di,d;) = |Ld; — Ld;||* = (d; — d;)" L' L(d; — d;) = (d; — d;)" M (d; — d;)

inear objective / linear constraints
minimize Z ||dz TE d]H%W - Z T)ijk
(i,7)eN 1,7,k
subject to ||d; — d;||5; + 1 < ||d; — di||3; + mijn, V(i,5) € N,I; £ I

SDP —» A >0 Inear



GENERALIZATION

learn prototypes and mapping at the same time

prototype
» \;
® L o .
—— .O
(ot
O
prototype ®

S(d;,d;) = | Ld; — Ld;||?



GENERALIZATION

forward model

Given
Data matrix: D Prototypes: P

L earn the linear transform

L =argmin }  p; — Ldi[|* + Al|L]? ridge

penalty
L = argmin |PJ — LDH2 g )\HLHQ
I

column selector
L is a function of P

L= B0 IDID LT = 1P A
A



PROJECTED DATA

L = BPJUDADIDE =N = P4

A

Projected data: LD = PAD = PD

lei — La;
lei e PAd’L|
lei =T PCZZ

I
Y <
EE

AN

D
pr, — Ld;i|°, Vi #1;
plj T PAdZHZ, \V/l] # lz
|plj R PCZZHQ? \v/l] # L

N Mmatrix form

|Pei, — Pd;||?> + 1 < ||Pe;, — Pdy||?, Vi; # 1



FORMULATION

minirgize Z Tk
ijk
subject to ||Pe;, — Pd;||? +1 < etz = Pd;|)? + nije, Vi # 1,
convexity

1Pz |* =2 B oy = 27 iz

S

minirﬁize Z ik
ijk
subject to |le;, — d;||2; +1 < e = di||%; + misn, Vi # 1

M =0



NUMERICS

semidefinite program

minimize (X,C)
& log barrier

subject to (A;, X) =b;, V¢ \

Az X g+

| Ny
barrier: —logdet X

minimize (X,C) — plogdet X
subject to (A;, X) =b;, V¢
X =0



N practice

NUMERICS
#constraints = m

log-barrier form T

minimize (X,C) — plogdet X

solve by Newton's method

subject to (A;, X) =b;, Vi g SVD
s s
A =0 - O(n*m?)
~
X
~

barrier (primal) method
n X n matrix — n? x n? system

O(n®) complexity

; Why IP methods!
pr|m2al-dual method you're doomed to

n< X m matrix factorizaties



ALTERNATIVES

simple methods
may be faster for specific problem forms

FBS / ADMM methods
minimize f(X) :
: AT L(X,YJ\)Zf(X)+XS+(Y)+§\|X_Y_)\”2
subject to X = 0

Approximation methods
g
minimize f(X)

5 minimize f5EEH
subject to X = 0 =

example: Wiberg method



VN 1O USE SIS

Only when you have to!
your problem Is hon-convex
can be effectively relaxed
you have a great solver

small number of unknowns:

m constraints, n X n matrix: O(mn?) runtime



