RANDOM TOPICS

stochastic gradient descent

&

Monte Carlo
massive model fitting

minimize \[f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \]

least squares

\[\text{minimize} \quad \frac{1}{2} \| Ax - b \|^2 = \sum_i \frac{1}{2} (a_i x - b_i)^2 \]

SVM

\[\text{minimize} \quad \frac{1}{2} \| w \|^2 + h(LDw) = \frac{1}{2} \| w \|^2 + \sum_i h(l_i d_i w) \]

low-rank factorization

\[\text{minimize} \quad \frac{1}{2} \| D - XY \|^2 = \sum_{ij} \frac{1}{2} (d_{ij} - x_i y_j)^2 \]
THE BIG IDEA

minimize $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$

True gradient

$\nabla f = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x)$

Idea: choose a subset of the data

$\Omega \subset [1, N]$

$\nabla f \approx g_{\Omega} = \frac{1}{|\Omega|} \sum_{i \in \Omega} \nabla f_i(x)$

usually just one sample
INFINITE SAMPLE VS FINITE SAMPLE

finite sample

\[\text{minimize } f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \]

We can solve finite sample problem to high accuracy....

infinite sample

...but true accuracy is limited by sample size

\[\text{minimize } f(x) = \mathbb{E}_s[f_s(x)] = \int_s f_s(x)p(s)ds \]
SGD

compute gradient

$$g^k = \frac{1}{M} \sum_{i=1}^{M} \nabla f_i(x, d_i)$$

update

$$x^{k+1} = x^k - \tau_k g^k$$

select data

small error solutions gets worse

big error solution improves
SGD

compute gradient

\[g^k \approx \nabla f(x, d_8) \]

update

\[x^{k+1} = x^k - \tau_k g^k \]

Error must decrease as we approach solution

classical solution

shrink stepsize \(\lim_{k \to \infty} \tau_k = 0 \) slow convergence \(O(1/\sqrt{k}) \)

Variance reduction

Correct error in gradient approximations
EXAMPLE: WITHOUT DECREASING STEPSIZE

minimize $\frac{1}{2} \|Ax - b\|^2$

inexact gradient
why does this happen?

what's happening?
DECREASING STEP SIZE

\[x^{k+1} = x^k - \tau_k \nabla f_k(x) \]

\[\tau_k = \frac{a}{b + k} \]

why?

(almost) equivalent to choose larger sample

used for **strongly convex** problems

big stepsize

small stepsize
AVERAGING

\[x^{k+1} = x^k - \tau_k \nabla f_k(x) \]

\[\tau_k = \frac{a}{\sqrt{k} + b} \]

“ergodic” averaging

\[\bar{x}^{k+1} = \frac{1}{k+1} \sum x_i \]

why is this bad?

used for \textbf{weakly convex} problems

\[\bar{x} \] does this limit convergence rate?
AVERRAGING

ergodic averaging

$$\bar{x}^{k+1} = \frac{1}{k + 1} \sum x_i$$

compute without storage

$$\bar{x}^{k+1} = \frac{k}{k + 1} \bar{x}^k + \frac{1}{k + 1} x^{k+1}$$

short memory version

$$\bar{x}^{k+1} = \frac{k}{k + \eta} \bar{x}^k + \frac{\eta}{k + \eta} x^{k+1}$$

tradeoff variance for bias

$\eta \geq 1$
Suppose f is convex, $\|\nabla f(x)\| \leq G$, and that the diameter of $\text{dom}(f)$ is less than D. If we use the stepsize

$$\tau_k = \frac{c}{\sqrt{k}},$$

then

$$\mathbb{E}[f(\bar{x}_k) - f^*] \leq \left(\frac{D^2}{c} + cG \right) \frac{2 + \log(k)}{\sqrt{k}}$$
Theorem

Suppose f is strongly convex with parameter m, and that $\|\nabla f(x)\| \leq G$. If you use stepsize $\tau_k = 1/mk$, and the limited memory averaging

$$\bar{x}^{k+1} = \frac{k}{k + \eta} \bar{x}^k + \frac{\eta}{k + \eta} x^{k+1}$$

with $\eta \geq 1$, then

$$\mathbb{E}[f(\bar{x}_k) - f^*] \leq 58(1 + \eta/k) \left(\eta(\eta + 1) + \frac{(\eta + .5)^3(1 + \log k)}{k} \right) \frac{G^2}{mk}$$
EXAMPLE: SVM

PEGASOS: Primal Estimated sub-GrAdient SOlver for SVM

\[\text{minimize} \quad \frac{1}{2} \| w \|^2 + C h(Aw) \]

\[\nabla h(x) = \begin{cases}
-1, & x < 1 \\
0, & \text{otherwise}
\end{cases} \]

note: this is a "subgradient" descent method
PEGOSOS: Primal Estimated sub-GrAdient SOlver for SVM

\[
\text{minimize } \sum_{i} \frac{\lambda}{2} \|w\|^2 + h(a_i w)
\]

While “not converged”:

\[
\tau^k = \frac{1}{\lambda k}
\]

If \(a_k^T w^k \geq 1 \):

\[
w^{k+1} = w^k - \tau^k \lambda w^k
\]

If \(a_k^T w^k < 1 \):

\[
w^{k+1} = w^k - \tau^k (\lambda w^k - a_i^T)
\]

\[
\hat{w}^{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} w^k
\]

not used in practice
PEGOSOS

stochastic methods

finite sample method

gradient method
You hope to converge before SGD gets slow!
but if you don’t…
use SGD as warm start for iterative method

Agarwal. “Effective Terascale Linear Learning.” ‘12
SGD

select data

compute gradient

$$g^k \approx \nabla f(x, d_k)$$

update

$$x^{k+1} = x^k - \tau_k g^k$$

Error must decrease as we approach solution

variance reduction solution
make gradient more accurate
preserve fast convergence
SGD+VARIANCE REDUCTION

select data

\[g^k \approx \nabla f(x, d_8) - \text{error}^8 \]

compute gradient

Error must decrease as we approach solution

update

\[x^{k+1} = x^k - \tau_k g^k \]

variance reduction solution

make gradient more accurate

preserve fast convergence
VR APPROACHES

SVRG
Johnson, Zhang, 2013
The original: requires full gradient computations

SAGA
Defazio, Bach, Lacoste-Julian, 2014
Avoid full gradient computations

SAG
Le Roux, Schmidt, Bach, 2013

Central VR
A VR approach targeting distributed ML

“Efficient Distributed SGD with Variance Reduction,” ICDM 2016

shameless self-promotion
SVRG

First epoch

gradient tableau

\[
\begin{align*}
\nabla f_1(x_{m}^1) \\
\nabla f_2(x_{m}^2) \\
\nabla f_3(x_{m}^3) \\
\vdots \\
\nabla f_{n-1}(x_{m}^{n-1}) \\
\nabla f_{n}(x_{m}^{n})
\end{align*}
\]
SVRG

gradient tableau

\[
\begin{align*}
\nabla f_1(x_m^1) \\
\nabla f_2(x_m^2) \\
\n\vdots \\
\n\vdots \\
\n\nabla f_{n-1}(x_m^{n-1}) \\
\n\nabla f_n(x_m^n)
\end{align*}
\]

Average gradient over last epoch

\[
\bar{g}_m = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x_m^i)
\]
SVRG

gradient tableau

<table>
<thead>
<tr>
<th>$\nabla f_1(x_m^1)$</th>
<th>$\nabla f_2(x_m^2)$</th>
<th>$\nabla f_3(x_m^3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>$\nabla f_{n-1}(x_{m-1}^{n-1})$</td>
<td>$\nabla f_n(x_m^n)$</td>
<td></td>
</tr>
</tbody>
</table>

Average gradient over last epoch

$$\bar{g}_m = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x_m^i)$$

corrected gradient

$$\nabla f_3(x_{m+1}^3) - (\nabla f_3(x_m^3) - \bar{g}_m)$$

new gradient

corrected gradient

error
Suppose of objective terms are m strongly convex with L Lipschitz gradients. If the learning rate is small enough, then

$$\mathbb{E} f(w^k) - f^* \leq c^k [f(w^0) - f^*]$$

for some $c < 1$.

Theorem
MONTI CARLO METHODS

Methods that involve randomly sampling a distribution

Monte Carlo casino
BAYESIAN LEARNING

estimate parameters in a model

\[\text{data} = M(\text{parameters}) \]

ingredients...

prior

probability distribution of unknown parameters

likelihood

probability of data given (unknown) parameters

measure these

estimate these

Thomas Bayes
BAYES RULE

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

likelihood \[P(\text{parameters}|\text{data}) = \frac{P(\text{data}|\text{parameters})P(\text{parameters})}{P(\text{data})} \]

prior

we really care about this "posterior distribution"
EXAMPLE: LOGISTIC REGRESSION

\[P(y_i = 1|x_i) = \frac{\exp(x_i^T w)}{1 + \exp(x_i^T w)} \]

\[P(y, X|w) = \prod_i \frac{\exp(y_i \cdot x_i^T w)}{1 + \exp(y_i \cdot x_i^T w)} \]

\[P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters}) \]
EXAMPLE: LOGISTIC REGRESSION

\[P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters}) \]

\[P(w|y, X) = \left(\prod_i \frac{\exp(y_i \cdot x_i^T w)}{1 + \exp(y_i \cdot x_i^T w)} \right) P(w) \]

\[\log P(w|y, X) = \log P(w) + \sum_i -\log(1 + \exp(-y_i \cdot x_i^T w)) \]

Example: \[\log P(w) = -|w| \]
BAYESIANS OFFER NO SOLUTIONS

Monte Carlo methods randomly sample this solution space

\[P(w|D, l) \]
WHY MONTE CARLO?

You need to know more than just a max/minimizer

“error bars”

\[\text{Var}(w) = \mathbb{E} \left[(w - \mu)(w - \mu)^T \right] = \int w w^T P(w) \, dw - \mu \mu^T \]

\[\mathbb{E}(w) = \int w P(w) \, dw \]
EXAMPLE: POKER BOTS

You can’t solve your problem by other (faster) methods

\[\text{maximize } \log P(w) \]

we don’t know derivative

poker bots

model parameters describe player behavior

2.5M different community cards

10 players = 59K raise/fold/call perms per round
WHY MONTE CARLO?

You’re incredibly lazy

\[\text{maximize} \quad \log P(w) \]

I could differentiate this, I just don’t wanna

\[\arg \max \log P(w) \approx \max_k \{ P(w^k) \} \]
MARKOV CHAINS

What is an MC?

Irreducible: can visit any state starting at any state

Aperiodic: does not get trapped in deterministic cycles
METROPOLIS HASTINGS

Ingredients

- Proposal distribution: $q(y|x)$
- Posterior distribution: $p(x)$

MH Algorithm

Start with x^0

For $k = 1, 2, 3, \ldots$

Choose candidate y from $q(y|x^k)$

Compute acceptance probability

$$\alpha = \min \left\{ 1, \frac{p(y)q(x^k|y)}{p(x^k)q(y|x^k)} \right\}$$

Set $x^{k+1} = y$ with probability α

otherwise $x^{k+1} = x^k$
CONVERGENCE

Irreducible: support of q must contain support of p

Aperiodic: there is positive probability of jumping anywhere

Theorem

Suppose the support of q contains the support of p. Then the MH sampler has a stationary distribution, and the distribution is equal to p.
METROPOLIS ALGORITHM

ingredients

proposal distribution \[q(y|x) \]

posterior distribution \[p(x) \]

Assume proposal is symmetric

\[q(x^k|y) = q(y|x^k) \]

Metropolis Hastings

\[
\alpha = \min \left\{ 1, \frac{p(y)q(x^k|y)}{p(x^k)q(y|x^k)} \right\}
\]

Metropolis

\[
\alpha = \min \left\{ 1, \frac{p(y)}{p(x^k)} \right\}
\]
EXAMPLE: GMM

histogram of Metropolis iterates

Andrieu, Freitas, Doucet, Jordan ‘03
PROPERTIES OF MH

Pro’s
- We don’t need a normalization constant for posterior
- We can run many chains in parallel (cluster/GPU)
- We don’t need any derivatives

\[
P(\text{parameters}|\text{data}) = \frac{P(\text{data}|\text{parameters})P(\text{parameters})}{P(\text{data})}
\]

\[
P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters})
\]
PROPERTIES OF MH

This is bad…

• “Mixing time” depends on proposal distribution
 • too wide = constant rejections = slow mixing
 • too narrow = short movements = slow mixing

Samples only meaningful at stationary distribution
• “Burn in” samples must be discarded
• Many samples needed because of correlations
SIMULATED ANNEALING

\[\text{maximize} \quad p(x) \]

Easy choice: run MCMC, then

\[\max_k p(x^k) \]

Better choice: sample the distribution

\[p \frac{1}{T_k} (x^k) \]

“temperature”

Why is this better?

Where does the name come from?
COOLING SCHEDULE

Andrieu, Freitas, Doucet, Jordan ‘03
CONVERGENCE

SA solves non-convex problem, even NP-complete problems, as time goes to infinity.

Theorem

Suppose the MCMC mixes fast enough that epsilon-dense sampling occurs in finite time starting at every temperature. For an annealing schedule with temperature

\[T_k = \frac{1}{C \log(k + T_0)} \]

simulated annealing converges to a global optima with probability 1.

Granville, "Simulated annealing: A proof of convergence"
WHEN TO USE SIMULATED ANNEALING

flow chart

Should I use simulated annealing?

no.

No practical way to choose temperature schedule
Too fast = stuck in local minimum (risky)
Too slow = no different from MCMC
Act of desperation!
GIBBS SAMPLER

Want to sample

\[P(x_1, x_2, x_3) \]

on stage \(k \), pick some coordinate \(j \)

\[q(y|x^k) = \begin{cases}
 p(y_j|x_j^k), & \text{if } y_{jc} = x_j^k \\
 0, & \text{otherwise}
\end{cases} \]

\[p(y) = p(y_j \text{ and } y_{jc}) \]

\[\alpha = \frac{p(y)q(x^k|y)}{p(x^k)q(y|x^k)} = \frac{p(y)p(x_j^k|x_{jc}^k)}{p(x^k)p(y_j|x_{jc})} \]

\[= \frac{p(y_{jc})}{p(x_{jc}^k)} = 1 \]

\[P(B) = \frac{P(A \text{ and } B)}{P(A|B)} \]
Want to sample \(P(x_1, x_2, x_3) \)

iterates

\[
x^2 \sim P(x_1 | x_2^1, x_3^1, x_4^1, \ldots, x_n^1)
\]

\[
x^3 \sim P(x_2 | x_2^1, x_3^2, x_4^1, \ldots, x_n^2)
\]

\[
x^4 \sim P(x_3 | x_3^1, x_2^3, x_4^3, \ldots, x_n^3)
\]

\[
\vdots
\]
APPLICATION: SAMPLING
GRAPHICAL MODELS

Restricted Boltzmann Machine (RBM)

\[E(v, h) = -a^T v - b^T h - v^T W h \]

\[P(v, h) = \frac{1}{Z} e^{-E(v, h)} \]

binary random variables 0/1

weights

“partition function”
APPLICATION: SAMPLING GRAPHICAL MODELS

Restricted Boltzmann Machine (RBM)

\[E(v, h) = -a^T v - b^T h - v^T Wh \]

\[P(v, h) = \frac{1}{Z} e^{-E(v,h)} \]

\[P(v_i = 1|h) = \frac{P(v_i = 1|h)}{P(v_i = 0|h) + P(v_i = 1|h)} \]

\[= \frac{\exp(-a_i + \sum_j w_{ij} h_j + C)}{\exp(C') + \exp(-a_i + \sum_j w_{ij} h_j + C)} \]

\[= \frac{\exp(-a_i + \sum_j w_{ij} h_j)}{1 + \exp(-a_i + \sum_j w_{ij} h_j)} \]

\[= \sigma(-a_i + \sum_j w_{ij} h_j) \]

- remove normalization
- aggregate constant
- cancel constants
- sigmoid function
BLOCK GIBBS FOR RBM

stage 1
freeze hidden
randomly sample visible

\[P(v_i = 1|h) = \sigma(-a_i + \sum_j w_{ij} h_j) \]

stage 2
freeze visible
randomly sample hidden

\[P(h_j = 1|v) = \sigma(-b_j + \sum_i w_{ij} v_i) \]
DEEP BELIEF NETS

visible

hidden

DBN = layered RBM

Each layer **only** depends on layer beneath it (feed forward)

Probability for each hidden node is sigmoid function
EXAMPLE: MNIST

Gan, Henao, Carlson, Carin ‘15

Train 3-layer DBN with 200 hidden units

pre-training: layer-by-layer training

training: train all weights simultaneously

training done using Gibbs sampler

Gibbs sampler used to explore final solution
EXAMPLE: MNIST

Training data

Learned features

Observations sampled from deep belief network using Gibbs sampler.
<table>
<thead>
<tr>
<th>Method</th>
<th>Rate</th>
<th>When to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient/</td>
<td>e^{-ck}</td>
<td>you value reliability and precision (moderate speed, high accuracy)</td>
</tr>
<tr>
<td>Splitting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGD</td>
<td>$1/k$</td>
<td>you value speed over accuracy (high speed, moderate accuracy)</td>
</tr>
<tr>
<td>MCMC</td>
<td>$1/\sqrt{k}$</td>
<td>you value simplicity (no gradient) or need statistical inference (slow and inaccurate)</td>
</tr>
</tbody>
</table>
DO MATLAB EXERCISE
MCMC