
INTERIOR POINT METHODS



WHAT’S AN INTERIOR POINT 
METHOD?

minimize f(x)

r2f(x)�x = �rf(x)

x x+ ↵�x

solve:  invert Hessian
line search

minimize f(x)

subject to Ax = b

L(x,�) = f(x) + h�, Ax� biLagrangian
✓

r2f(x) AT

A 0

◆✓
�x
��

◆
=

✓
�rf(x)

b

◆

What about inequality constraints?



IMPLICIT FORM 
CONSTRAINTS

X�(z) =

(
0, if z  0

1, otherwise

minimize f(x) + X�(g(x))

subject to Ax = b

minimize f(x)

subject to Ax = b

g(x)  0



INTERIOR POINT METHODS

X�(z) =

(
0, if z  0

1, otherwise

IP methods solve this

When objective is smooth,
we can use constrained 

Newton, BFGS, CG, etc…

minimize f(x) + X�(g(x))

subject to Ax = b



LOG BARRIER FUNCTION

X�(z) =

(
0, if z  0

1, otherwise

X�(z) ⇡ �µ log(�z)
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minimize f(x) + X�(g(x))

subject to Ax = b



BARRIER METHOD

X�(z) ⇡ �µ log(�z)
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Pick some “small” 

Solve the problem 
with Newton’s method

µ

Problem: Newton direction 
is bad!  Excessive backtracking!

why?

minimize f(x)� µ log(�g(x))

subject to Ax = b



GEOMETRIC INTERPRETATION
Minimize this?

How far should you go?

Newton’s
method only

sees this



GEOMETRIC INTERPRETATION

Newton’s
method only

sees this

smoothed curve
(big     )µ

Smoothing globalizes information



GEOMETRIC INTERPRETATION

Newton’s
method only

sees this

smoothed curve
(big     )µ

minimizer

xµ

Smoothing globalizes information



GEOMETRIC INTERPRETATION

Newton’s
method only

sees this

smoothed curve
(small     )µ

minimizer

xµ

Smoothing globalizes information



GEOMETRIC INTERPRETATION

Newton’s
method only

sees this

smoothed curve
(small     )µ

minimizer

xµ

Smoothing globalizes information



BARRIER IP METHOD

minimize f0(x)� µ log(�g(x))

subject to Ax = b

• µ µ/10

While “not converged:”

xµ

• Choose some large µ

• Solve for xµ

“central path”“centering step”

idea:  collapse the quadratic region around the solution



CENTRAL PATH
minimize f(x)�

mX

i=1

µ log(�gi(x))

subject to Ax = b

optimality condition

Lagrangian
L(x,�, ⌫) = f(x) + h⌫, gi+ h�, Ax� bi

rf(x)�
mX

i=1

rgi(x)
µ

gi(x)
+AT ⌫ = 0



CENTRAL PATH
optimality condition

Lagrangian

optimality condition

Lagrange multipliers

L(x,�, ⌫) = f(x) + h⌫, gi+ h�, Ax� bi

@xL = rf(x) +
X

rgi(x)⌫i +AT� = 0

rf(x)�
mX

i=1

rgi(x)
µ

gi(x)
+AT ⌫ = 0

⌫i = � µ

gi(x)



LAGRANGIAN 
INTERPRETATION

A central point minimizes the Lagrangian with
 Lagrange multipliers 

Given xµ:
primal objective: f(xµ)

⌫i = � µ

gi(x)

d(�, ⌫) = f(xµ) +
mX

i=1

⌫igi(xµ) + h�, Axµ � bi

= f(xµ)�
mX

i=1

µ

gi(xµ)
gi(xµ) + h�, 0i

= f(xµ)�mµ

duality gap = f(xµ)� d(�, ⌫) = mµ



DUALITY GAP

Points on the central path have small
duality gap!

This proves that as     gets small, we approach
a solution.
µ

If we shrink by constant factor of 10,  then
after                iterations! gap< ✏ log10(✏)

duality gap = f(xµ)� d(�, ⌫) = mµ



COMPLEXITY

The total number of Newton steps needed to get 
a duality gap less than     is bounded by

lp
m log2

⇣mµ0

✏

⌘m✓ 1

2�
+ log2 log2 ✏

◆
✏

where        is a constant that only depends on the
 backtracking parameters for the Armijo line search.

�

see Boyd and Vandenberghe, sec 11.5

Theorem

Interior point methods achieve polynomial complexity 
for most convex programs, including LP’s!

centering

path-following



PRIMAL-DUAL IP’S

minimize cTx

subject to Ax = b

x � 0

standard form LP

L(x,�, ⌫) = cTx+ h⌫,�xi+ h�, b�Axi
Lagrangian

AT�+ ⌫ = c

Ax = b

⌫ixi = 0, 8i
x, ⌫ � 0

primal optimality
dual optimality
comp slackness

primal/dual feasibility

KKT system



PRIMAL-DUAL IP’S

AT�+ ⌫ = c

Ax = b

⌫ixi = 0, 8i
x, ⌫ � 0

primal optimality
dual optimality
comp slackness

primal/dual feasibility

KKT system

Primal-Dual IP’s use Newton’s method for non-linear
 equations to solve the KKT system

problem:
this equation

is non-smooth

x

⌫

remind you of anything?



SMOOTHED KKT

primal optimality
dual optimality
comp slackness

primal/dual feasibility

KKT system

x

⌫

⌫ixi = 0 ⌫ixi = µ

Let µ ! 0

AT�+ ⌫ = c

Ax = b

⌫ixi = µ, 8i
x, ⌫ � 0



primal optimality
dual optimality
comp slackness

primal/dual feasibility

KKT system
AT�+ ⌫ = c

Ax = b

⌫ixi = µ, 8i
x, ⌫ � 0

NEWTON STEP

F (x,�, ⌫) = 0solve

F (x,�, ⌫) =

0

@
AT�+ ⌫ � c

Ax� b
XV � µ

1

A

X = diag(x), V = diag(⌫)

X = diag(x)

V = diag(⌫)

modified
equation



NEWTON STEP

F (x,�, ⌫) = 0solve

J(x,�, ⌫)

0

@
�x
��
�x

1

A = �F (x,�, ⌫)

F (x,�, ⌫) =

0

@
AT�+ ⌫ � c

Ax� b
XV � µ

1

A X = diag(x)

V = diag(⌫)

Newton system
0

@
0 AT I
A 0 0
V 0 X

1

A

0

@
�x
��
�⌫

1

A =

0

@
�rc
�rb

�XV 1+ µ1

1

A

<latexit sha1_base64="Z65qf/l8a0tV6UDuDL6P6KDUYR0="></latexit>



PRIMAL DUAL IP METHOD
Secret Sauce

PD methods do not have separate centering steps. 
They shoot straight for the solution

While “not converged:”

• Calculate average “duality measure:” µ = xT ⌫
n

• Calculate target duality measure: �µ

• Solve the Newton system

• Update iterates stepsize
chosen to stay

near central path

agressiveness

0

@
0 AT I
A 0 0
V 0 X

1

A

0

@
�x
��
�⌫

1

A =

0

@
�rc
�rb

�XV 1+ �µ1

1

A

x x+ ↵p�x

(�, ⌫) (�, ⌫) + ↵d(��,�⌫)



ADAPTIVE PARAMETER 
CHOICE

µtarget = �µ

↵max
p = min

�xi<0

xi

�xi
↵max
d = min

�⌫i<0

⌫i
�⌫i

find largest steps that don’t violate feasibility x, ⌫ � 0

↵p = min{1, ⌘↵max
p } ↵d = min{1, ⌘↵max

d }

new duality 
old duality 

x x+ ↵p�x

(�, ⌫) (�, ⌫) + ↵d(��,�⌫)

� =

✓
(x+ ↵p�x)T (⌫ + ↵d�⌫)

µ

◆3

see Necedal and Wright, chapter 14



COMPOSITE NEWTON’S 
METHOD
J(x)�x = �F (x)

x x+ ↵�x

classical Newton

factorizing this
is expensive!

Let’s try to use it twice!

J(x)�xp = �F (x)

J(x)�xc = �F (x+�xp)

x x+ ↵(�xp +�xc)

predictor
corrector
update

Why would you do this?



COMPOSITE NEWTON’S 
METHOD
J(x)�xp = �F (x)

J(x)�xc = �F (x+�xp)

x x+ ↵(�xp +�xc)

predictor
corrector
update

Allows you to use the Hessian 2X!
Can prove cubic convergence (vs quadratic)

better than Newton? why?

It’s free!

see Tapia, Zhang, Saltzman, Weiser ‘90



MEHROTRA’S PREDICTOR-
CORRECTOR METHOD

=0

(x+�x)T (⌫ +�⌫) = xT ⌫ + xT�⌫ + ⌫T�x+�xT�⌫ = �xT�⌫

I wanted
this to be 0!

subtract 
from here

0

@
0 AT I
A 0 0
V 0 X

1

A

0

@
�x
��
�⌫

1

A =

0

@
�rc
�rb

�XV 1

1

A



MEHROTRA’S METHOD
0

@
0 AT I
A 0 0
V 0 X

1

A

0

@
�xp

��p

�⌫p

1

A =

0

@
�rc
�rb

�XV 1

1

A

predictor

we now have
(x+�xp)

T (⌫ +�⌫p) = �xT
p �⌫p

0

@
0 AT I
A 0 0
V 0 X

1

A

0

@
�xc

��c

�⌫c

1

A =

0

@
�rc
�rb

�XV 1+ �µ1��Xp�Vp

1

A

x x+ ↵p�xc

(�, ⌫) (�, ⌫) + ↵d(��c,�⌫c)

finally

corrector



PHASE I   VS   PHASE II
IP’s require strict feasibility

minimize f(x)

subject to Ax = b

g(x)  0

Ax = b

g(x) < 0

starting point satisfies

strict

minimize z

subject to Ax = b

gi(x)  z, 8i

phase I
minimize f(x)

subject to Ax = b

g(x)  0

phase II
if  z<0



MOST PROBLEMS HAPPEN IN 
PHASE I

minimize f(x)

subject to Ax  b

Ax � b

redundant constraints

will this work?

minimize f(x)

subject to Ax = b

minimize f(x)

subject to Ax = b

g(x)  0

(very) poor conditioning

difficult to
invert



PROPERTIES OF IP METHODS

fast linear/superlinear convergence
pro’s

high per-iteration complexity

very high precision achievable

extremely reliable
no asymptotic slowdown

totally automated

con’s

useless for more than 10K unknowns



COMPLEXITY
Ellipsoid method : Leonid Khachiyan1979

Solves LP’s with n variables and 
b bits of precision in               
time

First polynomial-time proof for 
LP method

Solves most standard convex 
problems in poly time

O(N6
L)



COMPLEXITY
Projection Algorithm :  Narendra Karmarkar1984

Solves LP’s with n variables and 
b bits of precision in               
with smaller constant

First polynomial-time proof for 
efficient LP method

“Faster than barrier method,” 
but Philip Gill proved they are 
the same

O(N3.5
L)

Other IP methods proved polynomial:  Yurii Nesterov and 
others



BIG OPEN PROBLEMS
Is there a strongly polynomial time algorithm for LP?

Weakly polynomial:  number of operations depends on size 
of input numbers, not just on how many numbers are input

Strongly polynomial: runtime independent of input size

ex:  Euclidean GCD algorithm

ex:  sorting

Does a polytope with N faces and D dimensions 
have polynomial diameter?

Diameter: maximum distance/edges connecting 2 vertices
If not then impossible to prove polynomial runtime for 
simplex method


