INTERIOR POINT METHODS



WHAT'S AN INTERIOR POINT
METHOD!

minimize f(x)

solve: invert Hessian Ve Ags = — i)

lIne search TP o

minimize f(x)
subject to Ax =0

Lagrangian L(x,\) = f(x) + (A, Az — b)

(5 -

What about inequality constraints?



e ICH FORS
CONSTRAINTS

minimize f(x)

subiject to Ax =0 0. if 2 <0
J Y. () =
g(r) <0

l

minimize f(z)+ X_(g(x))
subject to Ax =0

00, otherwise



INTERIOR POINT METHODS

minimize f(z) + X_(g(x)) {0, if 2 <0

subject to Ax = b dai 00, otherwise

IP methods solve this

VWhen objective Is smooth,

WEe can use constrained
Newton, BFGS, CG, etc. ..



LOG BARRIER FUNCTION

minimize f(x)+ X_(g(x)) {O, b < (]

subject to Ax = b dai 00, otherwise

DO | —




BARRIER METHOD

minimize f(x) — plog(—g(x))
subject to Ax =0

Pick some “'small’

Solve the problem
with Newton's method

1
o . M a -1t
Problem: Newton direction 2

iIs bad! Excessive backtrackingt—————————7
why!



GEOMETRIC INTERPRETATION

Minimize this!
How far should you go!

/

Newton's
method only
sees this



GEOMETRIC INTERPRETATION

Smoothing globalizes information

smoothed curve
(big w)

al /
Newton'’s

method only
sees this



GEOMETRIC INTERPRETATION

Smoothing globalizes information

smoothed curve
T (big ©)

al /
Newton'’s

method only
sees this

minimMizer



GEOMETRIC INTERPRETATION

Smoothing globalizes information

smoothed curve
z, (small f )

s

Newton's
method only
sees this

minimMizer



GEOMETRIC INTERPRETATION

Smoothing globalizes information

smoothed curve
e (small f )

s

Newton's
method only
sees this

minimMizer



BARRIER IP METHOD

“centering step” “central path”

While “not converged:”

e Choose some large u

e Solve for z,,
minimize fo(x) — plog(—g(x))
subject to Ax =0

o 1<+ /10

idea: collapse the quadratic region around the solution



CENTRAL PATH

minimize f(x Z,ulog —g; (@

subject to Ax =0

optimality condrtion

— Y V@) < + ATy =0

gi(x)

Lagrangian

L(x,\v)= f(z)+ (v,g) + (\, Az — b)



CENTRAL PATH

optimality condition

ngz “ - ATy =0

Lagrangian

L(vavy) T f(m) T <V79> 2k <>‘7A33 [ b>
optimality condrtion

0:L=Vf(z)+» Vg(x)v;+ ATA=0
—

Lagrange multipliers v; =
gi(x)



LAGRANGIAN
INTERPRETATION

A central point minimizes the Lagrangian with

Lagrange multipliers
v

gi ()

V; =

Given x,:
primal objective: f(x,)

Wk )l = JilEan) o Zuzgz @) = (O Alasy, — b
=l

2 oz

duality gap = f(x,) — d(\,v) = mu



DUALITY GEl

Points on the central path have small
duality gap!

duality gap = f(x,) — d(\,v) = mu

This proves that as p gets small, we approach
a solution.

T we shrink by constant factor of 10, then
gap< € after log,y(€) iterations!



O MPLEATER

Interior point methods achieve polynomial complexity
for most convex programs, including LP's!

Theorem

The total number of Newton steps needed to get
a duality gap less than € I1s bounded by path-following

e (122)] (& Fv)

where 7 Is a constant that only depends on the
backtracking parameters for the Armijo line search.

centering

see Boyd and Vandenberghe, sec | .5



PRIMAL-DUAL [P'S

Shamclarea o e

minimize ¢l

subject to Ax =0

x> 0
Lagrangian
ILfss, o w)) = @ a8 == =5 == (O I — Al
KKT system
ANy =¢ primal optimality
Axr =b dual optimality

v, =0, Vi comp slaekiis=

> primal/dual feasibility



PRIMAL-DUAL [P'S

Primal-Dual IP's use Newton’'s method for non-linear
equations to solve the KKT system

X
problem: remind you of anything?
this equation
IS NON-SMooth 1)
KKT system
A dA+v=c primal optimalrty
Ax = b dual optimality

v,z =0, Vi compslaekii==

> primal/dual feasibility



SO0 | HED KINE

it — () ——y LT

X
Let u — 0
v
KKT system
At +v=c primal optimalrty
Axr = b dual optimality

VL, = b, Vi comp slacikiic

wrl =) primal/dual feasibility



NEWTON STEP

T
el X = diag(x)
RGN V) = Ax — b .
el 1 — dlag(u)
modified e ey
. X = diag(x), V = diag(v)
solve Bl hm) =10
KKT system
ANy =¢ primal optimality
Ax = b dual optimality

VL, = b, Vi comp slacikiic

wrl =) primal/dual feasibility



NEW TON STEP

AR e :
e = ql
RGN V) = Ax — b %ag(x)

solve Bl ) =1

Ax
Sl AN = R
Ax

Newton system

AL T Ax =
A 0 0 AN — —Tp
a0 X Av @l 4



ERIMAL DUAL [P METFICHS

Secret Sauce
PD methods do not have separate centering steps.
They shoot straight for the solution

While “not converged:”
Tl/

e (Calculate average “duality measure:” p© = xT

e (Calculate target duality measure: ou agressiveness

e Solve the Newton system k'/

NS Ax —7.
A 0 0 AN — —Tp
AR ()10 Av —XV1i4opul

e Update iterates stepsize
T T+ ap,Ar 44— CNOsEhiTEanN

()\7 V) — ()\’ y) i CVd(A)\, AV) /near central path



ADAPTIVE PARAMETER
Sl G

0 = 5 =P Ol NG
(A, v) < (A, v) + ag(AN Av)

find largest steps that don't violate feasibility —x,v >0

: ) , s
@i Iin = i)
Ax; <0 AQEZ Av; <0 Ayi
liti=a max S x max
ap = ming 1, noy g = min{l, na;***}

Mtarget — O

E (= o, Az)T (v + agAv) > new duality
o 0 old dualrty

see Necedal and Wright, chapter |-




COMPOSITE NEW TON'S
[IE LA

/\ classical Newton

factorizing this J(x)Az = —F(x)
S expensive! T — 1 4+ alAzx

Let's try to use 1t twicel

predictor J(z)Azp = —F ()
corrector J(z)Az, = —F(z + Az,)
update T+ ¢+ o(Azx, + Az,.)

Why would you do this?



COMPOSITE NEW TON'S
[IE LA

predictor J(z)Azp = —F(x)
corrector J(z)Az, = —F(z + Az,)
update 75 <= g O AIE = N

Allows you to use the Hessian 2X!
Can prove eubic convergence (vs quadratic)

L better than Newton? why!
t's free!

see lapia, Zhang, Saltzman, Weiser ‘90



REFIRO | RA'S PREDICTCSS
CORRECTOR METHOD

D | Ax -7,
A 0 0 AN — —Tp
a0 X Av —XV1
subtract
from here

EEN N Ay — 2ty ot Ay vt Ap - Ap AT WA

=0 | wanted J

this to be 0!



BIERIRO T RAS METHICHES

predictor

0 AT 1 AZEP =B
() Ay 1l = o
Ve =0 X Av, —XV1

Wwe NowW have
(z + Azp)' (v + Avp) = Az, Ay,

corrector
0 AT 1 AZ‘C —
A 0 0 A, — —ry
a0 X Av, — X V1 -+ ot =N
finally

70 = T == Cly AR,
(A, v) + (A, v) + ag(Axg, Av,)



FASE | VS PHASES

IP's require strict feasibility

starting point satisfies
minimize f(x)

: Axi—Hh
subject to Axr = b
g(x) <0
g(x) <0
Sl = J
A phase | - . .pbase ]
minimize 2 minimize f(x)
———— .
subject to Ax = b subject to Ax = b

ailwis = e g(x) <0



MOST PROBLEMS HAPPEN IN
PHASE |

redundant constraints

minimize f(x)
subject to Ax < b
Ax > b

minimize f(r) —mo—>
subject to Ax =0

will this work?

(very) poor conditioning
minimize f(x)
subject to Ax =0

difficult to
iNnvert \_/g(x) =5



BROUFER | IES OF 1P METRICHS.

pro’s
fast linear/superlinear convergence
very high precision achievable
no asymptotic slowdown

extremely reliable
totally automated
con’s
high per-iteration complexity
useless for more than |0K unknowns



EOMPLEXITTS

1979 Ellipsoid method : Leonid Khachiyan

First polynomial-time proof for / e

LP method J//% R
4 e

=

Solves LP’'s with n variables and : A W\
b bits of precision in  O(N°L) e §% v
time | N

Solves most standard convex
problems in poly time



EOMPLEXITTS

| 984Projection Algorithm : Narendra Karmarkar

First polynomial-time proof for ARSI
efficient LP method [l NNy

i | I TR—— o

Solves LP's with n variables and ~_o¢
b bits of precision in O(N>®°L) ~ s
with smaller constant ol

0

“Faster than barrier method,”
but Philip Gill proved they are
the same

Other IP methods proved polynomial: Yurii Nesterov and
others



BIG OPEN PROBLEMS

s there a strongly polynomial time algorithm for LP?

Strongly polynomial: runtime independent of input size
ex: sorting

VWeakly polynomial: number of operations depends on size
of Input numbers, not just on how many numbers are input

ex: buclidean GCD algorithm

Does a polytope with N faces and D dimensions
have polynomial diameter?

Diameter: maximum distance/edges connecting 2 vertices

T not then impossible to prove polynomial runtime for
simplex method



