LINEAR PROGRAMMING

THE ORIGINAL "BIG DATA"

1948: Soviets blockade West Berlin

- One week later: airlift begins
- Big operation: \$250 million
- 3 Billion today in 2 weeks

Difficult scheduling problem!

- 3 routes
- 5 nations
- Plane landed every 30 seconds
- 2,346,000 tons of freight

THE ORIGINAL "BIG DATA"

- George B. Dantzig (this guy)
 appointed to solve problem
- LP formulation
- Simplex method
- US Air Force implementation
- IBM calculation machines
- · Conclusion: Intractable

50 unknowns

SIMPLEX

 $\{x: Ax \le b\}$

Is it convex? Why?

SIMPLEX METHOD

maximize $c^T x$ subject to $Ax \leq b$

Solution is always on vertex, why?

How could you solve this?

SIMPLEX METHOD

maximize $c^T x$ subject to $Ax \leq b$

Solution is always on vertex, why?

How could you solve this?

Gradient descent!

SIMPLEX METHOD

maximize $c^T x$ subject to $Ax \leq b$

YOU JUST WON A NOBEL PRIZE!

(if you lived 60 years ago)

Dantzig wins
National Medal of Science

Leonid Kantorovich, Tjalling Koopmans win Nobel Prize

THE BIG IDEA

Q: How many constraints are active at each vertex?

maximize $c^T x$ subject to $Ax \le b$

THE BIG IDEA

Q: How many constraints are active at each vertex?

maximize $c^T x$ subject to $Ax \le b$

A: N

Pick NI oquations solve the

• Pick N equations, solve them

• Drop an equation, swap in a new one

Solve new system

Try to decrease energy

SETUP

maximize
$$c^T x$$
 maximize t subject to $Ax = b$
$$x \ge 0$$

$$x \ge 0$$

$$x \ge 0$$

$$x \ge 0$$

Simplex Tableau

$$\begin{pmatrix}
1 & -c_1 & -c_2 & -c_3 & -c_4 & -c_5 & 0 \\
0 & a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & b_1 \\
0 & a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & b_2
\end{pmatrix}$$

represent constraints in matrix form

STEP I: CHOOSE BASIC SOLUTION

Basic Solution: A set of N variables that are feasible: they satisfy both equality and inequality constraints

All non-basic variables are assumed to be zero in candidate solution

STEP I: CHOOSE BASIC SOLUTION

$$\begin{pmatrix}
1 & -c_1 & -c_2 & -c_3 & -c_4 & -c_5 & 0 \\
0 & a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & b_1 \\
0 & a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & b_2
\end{pmatrix}$$

$\begin{pmatrix} 1 & 0 & 0 & -c_3 & -c_4 & -c_5 & b_0 \\ 0 & 1 & 0 & a_{13} & a_{14} & a_{15} & b_1 \\ 0 & 0 & 1 & a_{23} & a_{24} & a_{25} & b_2 \end{pmatrix}$ $x_1 = b_1$

basic solution

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

STEP 2: CHOOSE ENTERING COLUMN

pick something with $c_i > 0$

this guarantees objective will increase

STEP 3: CHOOSE LEAVING ROW

pick row with minimal b_i/a_{ri} this guarantees all basic variables remain non-negative

STEP 4: ELIMINATE/PIVOT

pick row with minimal b_i/a_{ri} this guarantees all basic variables remain non-negative

$$\begin{pmatrix} 1 & 0 & 0 & -c_3 & -c_4 & -c_5 & b_0 \\ 0 & 1 & 0 & a_{13} & a_{14} & a_{15} & b_1 \\ 0 & 0 & 1 & a_{23} & a_{24} & a_{25} & b_2 \end{pmatrix}$$

$$\begin{pmatrix} b_0 \\ 0 \\ b_2 \\ 0 \\ b_1 \\ 0 \\ 0 \\ a_{21} & 1 & a_{23} & 0 & a_{25} & b_2 \end{pmatrix}$$
solution

$$\begin{pmatrix} b_0 \\ 0 \\ b_2 \\ 0 \\ b_1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -c_1 & 0 & -c_3 & 0 & -c_5 & b_0 \\ 0 & a_{11} & 0 & a_{13} & 1 & a_{15} & b_1 \\ 0 & a_{21} & 1 & a_{23} & 0 & a_{25} & b_2 \end{pmatrix}$$

basic solution

$$\begin{pmatrix} b_0 \\ 0 \\ b_2 \\ 0 \\ b_1 \\ 0 \end{pmatrix}$$

...rinse and repeat

PHASE I PROBLEM

want to solve this

maximize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

Need feasible solution: solve "phase I" problem

minimize
$$t$$
 subject to $Ax = b$ measure infeasibility $x \ge -t$ $t \ge 0$

TWO APPROACHES

Two phase approach

18 t>0

REINFORCEMENT LEARNING

Space Invaders

Montezuma's revenge

You start in a STATE

You choose an ACTION

You start in a STATE

You choose an ACTION

Get a REWARD

You start in a STATE

You choose an ACTION

Get a REWARD

VALUE of a state

$$V_s = \sum_{k=0}^{\infty} \gamma^k r_{s_k, a_k}$$

VALUE of a state

$$V_s = \sum_{k=0}^{\infty} \gamma^k r_{s_k, a_k}$$

Bellman equation: value of optimal policy

$$V_s = \max_a \{r_{s,a} + \gamma * V_{s,a}\}$$

Bellman equation: value of optimal policy

$$V_s = \max_a \{r_{s,a} + \gamma * V_{s,a}\}$$

LP formulation

$$\min_{v} \mathbf{1_n}^T v$$
 subject to
 $v_s \geq r_{s,a} + \gamma V_{s,a}, \forall (s,a,r)$

Inequality constraint for every (s,a,r) observation

Bellman equation: value of optimal policy

$$V_s = \max_a \{r_{s,a} + \gamma * V_{s,a}\}$$

LP formulation

$$v_s \ge r_{s,a} + \gamma V_{s,a}, \forall (s,a,r)$$

Inequality constraint for every (s,a,r) observation

Add an equation every time you explore the environment

MODIFYING THE PROBLEM

MODIFYING THE PROBLEM

Note: this happens all the times in reinforcement learning

MODIFYING THE PROBLEM

can't we just "snap" back onto the simplex?

DUAL SIMPLEX METHOD

primal problem

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

Lagrangian

$$\max_{\lambda,\eta \le 0} \min_{x} c^{T} x + \langle \lambda, Ax - b \rangle + \langle \eta, x \rangle$$
or
$$\max_{\lambda,\eta \le 0} \min_{x} \langle c + A^{T} \lambda + \eta, x \rangle - \langle \lambda, b \rangle$$

$$= 0$$

dual

maximize
$$-b^T \lambda$$

subject to 30 $A^T \lambda \ge -c$

DUAL SIMPLEX METHOD

primal problem

minimize
$$c^T x$$
subject to $Ax = b$
 $x \ge 0$

dual

maximize $-b^T \lambda$ subject to $A^T \lambda \ge -c$

Adding a constraint (row) to the primal is like adding a variable (column) to the dual!

DUAL SIMPLEX METHOD

solve dual simplex tableau

$$\begin{pmatrix} 1 & -c_1 & 0 & -c_3 & 0 & -c_5 & 0 \\ 0 & a_{11} & 0 & a_{13} & 1 & a_{15} & b_1 \\ 0 & a_{21} & 1 & a_{23} & 0 & a_{25} & b_2 \end{pmatrix}$$

put new row here

$$\begin{pmatrix}
1 & -c_1 & 0 & -c_3 & 0 & -c_5 & -c_6 & 0 \\
0 & a_{11} & 0 & a_{13} & 1 & a_{15} & a_{16} & b_1 \\
0 & a_{21} & 1 & a_{23} & 0 & a_{25} & a_{16} & b_2
\end{pmatrix}$$

basic/feasible solution is still feasible

COMPLEXITY

Simplex has exponential worst-case behavior

Holds for most common pivot rules

Average case complexity is polynomial for random constraints

Is there a polynomial time algorithm for LP?

Klee-Minty Cube

