OPTIMIZATION PROBLEMS
OVERVIEW
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WHATI IS OPTIMIZATION!?

convex!

A: Minimizing things

In college you learned:
set derivative to zero

sounds easy.



PO THENTS

What If there's no closed-

orm selileR

What If the problem has | BIL

|ON dimensions!?

What If the problem iIs non-convex?

What if the function has no derivative!

What If there are constraints!
What If the objective function has a BILLION terms?

Does this ever really

3

happen!



RODEL HT TING PROBLERSS



BASIC OF [ IMIZATICHS
PROBLEMS: MODEL FIT TING

training data / inputs  label data / outputs Example:
\ / linear model
o i
f(diaw)_yi d; w = b;
mode] parameters

least-squares

loss function g(dia w, bz‘) = (d;rw T bz‘)2



BASIC OF [ IMIZATICHS
PROBLEMS: MODEL FIT TING

minzf(di,wayi) minHDw = bH2

1
\ | {(d;, w,b;) = (df w — b;)?

loss function

penalized regressions

minJ(w) + 32 € ws)  min o] + | Dw — bl

\ /

“prior” ridgse penalty



Why would you want a penalty!

Poor conditioning.



cIGENVALUE
DECOMPOSITION

» Spectral theorem: symmetric matrices have a
complete, orthogonal set of eigenvalues

R
.t "

N v

Change of basis
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cIGENVALUE
DECOMPOSITION

» Action of matrix Is described by eigenvalues

—'.-"l.

r = [1e1 + Poez + Pzes

Az = A(Br1e1 + Baez + Bses)
= $1Aeq + B2 Aes 4 B3Aes
= p1A1€1 + [aAzez + [S3Azes

..,l
-

-




MATRIX INVERSE

» Action of matrix Is described by eigenvalues

Az = A(Bre1 + [ae2 + [zes)
= (1 Aey + BaAes + [3Aes
= 1 A1e1 + PaAeea + P3Azes

A 'z = B ATTey + By e + 53)\5193



ES TIMATION PROBLEM

EipEeses T\ — 1. Xy = 0.1 S5 =R 0EHl

Ax'= b = 5161 aF 0.16262 = 0.015363

| tell you b:b_|_77\

CElil el ee@vel 3¢

Does this ever really happen!



CONDITION NUMBER

» Ratio of largest to smallest singular value

Omax >\ma,a:

i e = [lA| A7)
0 & —z|| _ ||b—b|
VS <
e ] o]

Why are these definitions the same for symmetric matrices!

What is the condition number of our problem?
17



BROES | HIS EVER HAPPENS.
REAL TIFE

« No. The situation Is never this good.
« Common in optimization: regularizations and [PM's

» Example: Convolution

Signal

ot

Kernel Output




BROES | HIS EVER HAPPENS.
REAL TIFE

Signal

N\

Output




BROES | HIS EVER HAPPENS.
REAL TIFE

Signal

o

Output




BROES | HIS EVER HAPPENS.
REAL TIFE

Signal

Kernel 44/////,\\\\\\~
\ 4

N\

Output




BROES | HIS EVER HAPPENTS
REAL TIFE

Signal

Kernel /\

AW

Output




CONVOLUTION MATRIX

Condition number: =
3,500,000
| 8

4



CONVOLUTION: 2D
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DEBLURRING

Relative difference 0.0092




Why would you want a penalty!

Under-determined systems.

2|



UNDER-DE ERMINED
STy

* Another problem: What It matrix isn't even full-rank?

U= Gthal M <N
b= Ax +n
e error Is bounded ( (||| < e ) solve
minimize ||x|| subject to |[Ax —b| <€

“Occan;z’s tzlao)r



GEOMETRIC INTERPRETATION

RN

All points on the red line
satisty

Vi — A

N’fint with the smallest

¢>norm




RIDGE REGRESSION

» |t the erroris bounded ( ||n|| <€ ) solve

b=Ax +n

minimize ||x|| subject to |[[Azx —b| <€

* [his Is equivalent to
minimize Allz||® + ||b — Az||?

lEc@lic value of )\

L



RIDGE REGRESSION

minimize )\Htz + ||b — A:EH2

Closed form solution!

AT A

What does this do to condition numbenr?
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RIDGE REGRESSION

minimize A||z||® + ||b — Az||?

Closed form solution!

AT A

New condition number

2
Omax A
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TIKHONOV REGULARIZATION

minimize A||z||* + ||b — Az||?

* Has many names (ridge regression in stats)
 Advantage: Easier to solve new problem
* Improved condition number (less noise sensitivity)
B erneter A can De set:

» Empirically (e.g. cross-validation)

= oise bounds + theory (BIC, etc...)



BAYESIAN INTERPRETATION

...How to cook up a Bayesian model...

» Model data formation: write distribution of data given parameters
» Observe data from random process

» Use Bayes rule: write distribution of parameters given data
 Find “most likely” parameters given data

» Optional: uncertainty quantification / confidence

28



fo(x)

Gaussian or
"normal"
distribution

| |

.1359 | .3413 |.3413 | .1359 ]

GAUSSIAN

The bell curve

! |’
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GAUSSIAN

The bell curve

aussian or 2
G"nc?rsmal" = 'CU
aV, 6 20 2

distribution

001 350214 vy 00135 1 (x—p) =
36 26 © 0 6 26 30 — 2 G 2
V2102
2 2
oF =l [QE ]



Probability Density

MULTIVARIATE GAUSSIAN

The bell curve

012 <.

006

o
RN
!

004\ “ &

1 (wi_ﬁéi)Q 1 ||m—;§||2

31



MULTIVARIATE GAUSSIAN

The bell curve

>y =1H

Covariance matrix 7
t

=
e —ar: il 6—%a:t2 x

B



BAYESIAN INTERPRETATION

minimize A||z||* + ||b — Az||?

* Assumptions:

e | [ 2
Prior: we know expected signal power  E{z:} = F

* Linear measurement model  h = Ax + 7
* Noise is i.i.d. Gaussian: 1 = N(0,0)
« MAP (maximum a-posteriori) estimate:

maximize p(z|b)
Do LRt



BAYESIAN INTERPRETATION

maximize p(x|b)

Bayes' Rule g
p(X]Y) o p(Y|X)p(X)

max1m1ze p(xz|b) < p(blz)p

¢

b~ N(Ax, o)

pnor
model

B



BAYESIAN INTERPRETATION

maxirilize p(z|b) = p(blz)p(x)

1 bi—(Az);)2
p(bla) = 1
probability 1:[ oV 2T
ofdata :(27‘_0_) m/26 202 ||b A:UH
prior o) = (2wl )~ n/2,— 75z =’

. (—Hb—A«%‘HQ) (—Hfbll2>
Xlmize exp exp

202 2F72

515



NEGATIVE LOG-LIKELIHOOD

maxirilize p(z|b) = p(blz)p(x)

. (fNU—AMP> (fﬂﬂ?)
maximize exp exp

202 2F>

|b— Az|®  |z||?
202 2F?

maximize

NLL

2
. ° ° O-
minimize ﬁHQL‘HQ i Hb—Atz

36



SPARSE PRIORS

* Priors add information to the problem
» Ridge/ Tikhonov priors require a lot of assumptions
* Prior only good when assumptions true!

* A very general prior: sparsity

B



WHAT IS SPARSITY?

» Signal has very few non-zeros: small €, norm

38



OTHER NOTIONS OF
SPARSITY

» “Low density’ signals - rapid decay of coefficients

* Fast decay: = Small Weak £, norm



s Y

- SIGNA

oA

RS

i\

- R

S

=

*Sounds produced by vibrating objects
*Energy Is concentrated at resonance frequencies of

object
*Defined by eigenvalues of the Laplacian of vibrating surface

Audio Signal

40
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DENSE SIGNAL / SPARSE REPRESENTATION:
AUDIO

Echolocation chirp: brown bat Gabor transform (STFT)

|

frequency

time

» Bat hears convolution of signal with environment

» Chirps: generate well-condrtioned convolution matrices
i source: Christoph Studer



-NSE SIGNAL / SPARSE REPRESENTATION:
IMAGES

* Approximately Piecewise constant
*High correlations between adjacent pixels within objects
* High variation across edges

Wavelet transform of natural image

it: Mark aenport



NEURAL EVENTS

* Neural potentials: convolution of spike train with

cernel

Real recording

Spiking events l |I I I |
Kernel \\




MACHINE LEARNING:
OVERFHT TING

/'AZE — b <+ | abels

Features/Data X

Model Parameters

*Happens when you can design the measurement matrix
*More features = better fit

Underfitting




ERAMPLE: POLYNOIMISS
@B

Noisy data drawn from polynomial
what degree Is best?

=20
% P
e

415



POLYNOMIAL

@B

ERANMPLE

20

n:

0.35

o
o

0.25

“
o

JOJJS 3uml} |spowd

0.05f

Gecies

46



ERAMPLE: POLYNOIMISS
@B

degree = |/




ERAMPLE: POLYNOIMISS
@B

Fit SIGNAL not NOISE!

bad "out of sample” error



Gecies

455

VYT DID RIS RAPPERNS

JOJJS 3uml} |spowd
; %

& -

"

n 00 000




VYT DID RIS RAPPERNS

We know we're overfitting
just from condrtion number.

Why!

model fitting error

Gecies :
|

50



BIAS-VARIANCE TRADEOFE

Fitting a model with random data: ~ f(x; D)

Expected model: flz) = Bp )

‘LD,m,y[y = f(ﬂ:‘, D)]2 =

Ny

=St ercor

eyl = F@) +Epaylf(z, D) - F@) +0°

N 7

Bias Variance

Irreducible
Ecrel

S|



BIAS-VARIANCE TRADEOFE

Example: linear estimation wit

AL —07n

Unregularized solution
z=A""(b+mn)

Bias

AT b+ )] =A"10) - A (D) +E

|s this a good estimator? It has no bias!

il

N Mean-zero nolse




BIAS-VARIANCE TRADEOFE

variance

Validation Error

Complexity (controlled by lambda)

Lots of regularization No regularization

i



BIAS-VARIANCE TRADEOFE

1eler mlvien
variance

\

|
|
|
|
!

Too much
blas

Juuuuust
right

Validation Error

| .
----------------

Complexity (controlled by lambda)

D2



BIAS-VARIANCE TRADEOFE

Poorly Conditioned
Polynomial interp
Deconvolution

Validation Error

Complexity (controlled by lambda)

)5



BIAS-VARIANCE TRADEOFE

Well Conditioned
Orthogonal matrix inversion
Boosted trees

Validation Error

Complexity (controlled by lambda)

56



Validation Error

POUBLE DESCERNS

Threshold of
interpolation

“Classical regime”

"Over-parameterized
regime’”

Neural nets live over here

Complexity (controlled by lambda)

57



AR

Decision boundaries in neural networks
ResNet |8 on CIFARIO with 20% label noise

Bad conditioning

|

10 20

First-layer network width

58 Somepalli “Can You | earn the Same Model Twice?"



https://somepago.github.io/files/db_preprint.pdf

SPARSE RECOVERY PROBLEMS

used to control over-fitting

minimize ||x||g subject to Ax =1b

/ f Dense
measurements

“Fat” matrix
(underdetermined)

COMPLEXITY ALERT: NP-Complete

Sparse solution

(Reductions to subset cover and SAT)

Nonetheless: can solve by greedy methods

» Orthogonal Matching Pursuit (OMP)
& e ise methods: StOMPE CoSAMIE e
)



UIS NOT CONVER

minimize ||x||g subject to Ax =1b

<

minimize |x| subject to Ax =1




RviiY USELH

» LI 1sthe "tightest” convex relaxation of LO

6|



CONVEX RELAXATION

minimize |x| subject to Ax =1b




CONVEX RELAXATION

minimize |x| subject to Ax =1b

¢1 ball touches the affine plane



BEARSE OF | IMIZATICHS
FROBLENTS

Basis Pursuit minimize |x| subject to Az =10

Basis Pursuit

Ak 1 5
B i minimize \|x|+ §HA$ — b

1
Lasso minimize §HA$ — b||* subject to |z| < A

64



BAYESIAN LAND!

Basis Pursurt
Denoising

1
| Az — b||*
2

minimize \|x]

/‘

What prior Is this!

0.5

Laplace distribution

04r

—|z|

p(r) =€

EhebLUst to outliers’ o1l




FOVY (O SET LAMBLSSE

minimize out-of-sample error
training data

1
minimize \|x|+ §HA$ — b||?

} 30% test set

66



CROSS VALIDATION

minimize out-of-sample error

training data

test data

1
minimize \|z| + 5”14«’17 — b||?

S ——————————————————

choose lambda to minimize
test crror

6/



CROSS VALIDATION

minimize out-of-sample error

training data |

m—training error

09k — {rE @TOF 7 'teS't data

0.8

0.7

06

051

error

0.4

03

02F

0.1F

0 1 1 ] ] 1 -1 1 ] 1
0 0.1 02 03 04 05 06 07 08 089 1
model complexity

idealistic curves: no sampling noise
68



CROSS VALIDATION

Do CV on multiple split of data to reduce noise

K-fold CV

leave-one-out CV

(O)
O

random sampling CV




RETER MODEL SELEC TICHS

1
minimize A|x| + §||At,,~x — I
de-biasing ensemble learning

S 1 1
minimize §|\Aaua: ~ Dol minimize A|x| + §||A1$ — by ||?
subject to = € C

1
minimize A|z| + §||A2$ — "
s . 1 2
minimize \|x| + §||AK$ e Uzl

These methods work best on small problems!

70



CO-SPARSITY

B %HA;E _ |2
Sometimes signal I1s sparse under a transform
When transtorm is invertible, can use synthesis
. %HAgb_lv _ |2
Otherwise, use the analysis formulation

The thing in the LI norm is sparse!

7



A ANMELE
IMAGE PROCESSING



IMAGE GRADIENT
Stencil [—1 1 O]

Neumann ( Z; :2(1) ) ‘_»‘_»‘_»‘

ugz — U2

E o009
. Uos — U
Uus — U9
/s

Up — us



TOTALVARIATION
RVA () — Z @,

» Discrete gradient operator
V= (x2 — 21,23 — Ta,Tq4 — T3)

* Linear filter with “Stencll” (-1, 1)

TR e — s
s Alalls Bl ne ey

74



Anisotropic

Foitonie [|(Vz)i;] = \/(



BOMPUTING TV ON IMAGES

(=1 .
* [wo linear filters
°x—sten;il =1 0) | | | t

ev-stencil = (-1 | 0) )

6.
| );:;:

. | |(0||>
. yker I(OII)




BOMPUTING TV ON IMAGES

'Tvvo |ine volutio
| (O | I)
nel = (0 | -1Y)

Fast Transforms: use FFT




TOTALVARIATION: 2D




IMAGE RESTORATION

Original Noisy

7



TOTALVARIATION
DENOISING

1
minimize A|Vz|? + ||z — f||? minimize V| + 2|l - flI?
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TV IMAGING PROBLEMS

1
Denoising (ROF)  minimize A|Vzx|+ §H$ 2

1
Deblurring minimize A|Vz| 2HK:1J—f||2

TV | minimize AVz|+ |z — f]

82



