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CONVEX SETS

Def: A set Is convex Is every line between two points stays In the set!
Ox1+ (1—0)x, 0<0<1

More General:
All convex combinations
lle In set

Z 0;x; = 0121 + 0220 + 0323

» 0;=01+6+63=1, 0;>0Vi

These definitions are the same!



S [T CONVEX!

What If the square was round?

fisures form Boyd and Vandenberghe



CONVEX RULE

All convex combinations of points an a set

...It's always the smallest convex superset



IMPORTANT EXAMPLES!

Are these convex!

Hyperplane 45 o'z = b}

Half-space {z]a" x > b}
Sphere e les — gzl = b
Ball {x| |z — x| < b}

Polynomials U= Z a;z;}



FUNCTIONS OVER NON-
CONVEX DOMAIN

(2

Convex!!

0 —




EXAMPLE:
LINEAR STRESS IN FINITE ELEMENTS

Functions space over non-convex domain IS convex

Biharmonic equation  min ||AuH2 — {u, 1)
u:Q—R




UNIT BALL
| [lz]] < b;

Convex?!
Does it depend on which norm??

No! Because of triangle inequality.



CCINES

e O — ar € O, " Yozl

Second-order cone:

Cy={(z,?)] |z| <t} eR™™

- —

( ) "_“"‘"“"“"““‘"



BEMIDEFINI T E COPSE

S" = {A e R " A= AT, A >0}

Set of PSD matrices!?

-
o 0.0

Why iIs this a cone!



ALLOWED OPERATIONS

The intersection of convex sets Is convex




SIMPLEX
S AT -0

s it convex! Why!

s (1-3




SEMIDEFINITE CONE

! Az > 0,Vz




OTHER ALLOWED
OPERATIONS

Set sum A+B={x+ylre A,yeY}

Set Product A Xx B={(z,y)lre A,y e Y}

VWhat about union?

AUB



CONVEX FUNCTIONS

Jensen'’s Inequality

flOz+(1—-0)y) <0f(z)+ (1-0)f(y)




EPIGRAPH

epi(f) = {(z,y)| f(z) <y}




EPIGRAPH

epi(f) = {(z,y)| f(z) <y}

convex function = convex epigraph

convex

non=-convex




SOME DEFINITIONS

Theorem

“Any proper, closed, function with bounded level sets has a
minimizer”

bounded level sets

N

Proper : epigraph is non-empty

Coercive:

|z|| > 00 = f(x) = o0
unbounded level sets

f(z) = —In(x)

Bounded level sets :
fe i) < 0 — ||z|| <7



SOME DEFINITIONS

epi(f) = {(z,y) | f(z) <y}

AN

Closed : epigraph is closed closed, LSC

or level sets are closed \’:/

Lower semi-continuous

Ve > 0,46 > 0,|r —xo| < 6 open, USC

— f(z) = f(zo) — ¢ \’a/

Proper+closed = LSC



WHY DO WE CARE ABOUT
CONVEX FUNCTION?

Any closed function with bounded level sets has a minimizer (by
compactness)

...but, for a convex function,

Any minimizer is global (why)
Set of minima Is convex (why)

Therefore, we can find global minimizers



WHY DO WE CARE ABOUT
CONVEX FUNCTIONS?

Minimizers of convex problems
This cant happen! form a convex set

N

T you found one you found them alll



CONVEX FUNCTIONS HAVE
EONVEX SUB-LEVEL SETS

f(x) convex contours

I
)

sub-level set

fa:{x\f(x)goz}

e > |




QUASI-CONVEX

Non-convex problems can still have nice properties...
convex contours = quasi-convex < convex

strict minima and always global mins
f(z) = log(|x| +.1) flz) = |z| + .1

This function is “log=convex"



WHY DO WE CARE ABOUT
CONVEX FUNCTION?

Any minimizer is global (why)
Set of minima Is convex (why)

Therefore, we can find global minimizers

But why convex?

Convex functions are closed under many operations



POSITIVE WEIGHTED SUM

RN el convex Tunctions are convex
= § i)

Example: = |z |* = Za:

Bl i



AFFINE COMPOSITION

Affine composition with convex function = convex

f(z)

_yf(Af

b)

VWhat does this say about epigraphs!

——




EAAMPEES

Least squares  ||Az — b||* = Z(A;rx — b)°

1

1
s Sllwl?+C 3 At — dfw)

| ogistic Regression Z log(1 4 exp(—¢;d; x))



POINTWISE-MAX

preserves convexity

g(z) = max fi(x)

Absolute value z| = max{z, —x}
Infinity norm |2||o = P ;)
Max eigenvalue || A||2 = max v’ Av

U

What does this say about epigraphs?



WHY ARE THESE CONVEX!

Trace f(X) =trace(A* X) Linear operator

Bt liccacrset flx) = max |z — y|| Max over convex
Yy

- : Min of convex
Rislichce to set —m hal
f(z) ye%l |z =yl (special case)

Max eigenvalue  f(z) = b+ >  Aizill  Affine comp

T g(xy) Is convex, then minimizing for y preserves convexity



WHY ARE [HESE NON-
CONVEX!?

Neural Net = o(X30(Xzo(X, D))  SOmP of

s | NOT
Dictionary learning  f(X,Y) = || XY — B||fro affine



DIFFERENTIAL PROPERTIES



FIPOR AN T PROPERTSS

Convex functions lie ABOVE their linear approximation

f(y)
f(x) + Vf(x)" (y — )



BETIMALITY CONDITICORNS

First-order conditions = optimality for convex funcs only

f(y) 2 f(z) + Vi(@) (y - 2)

=0
fly) > f(x)

7—/0\
\ B
jlEl = io=sn t happen!! ——> -

Any minima is a global minima




SECOND ORDERS
CONDITIONS

A smooth function is convex iff V2 f(z) = 0, Vx

For non-convex functions, minima satisfy: V< f(z*) = 0

remember - the Hessian Is a good local model of a smooth function



DTRONG CONVEXTRS

What about when there's no Hessian?

fy) = f(@) + (y— )"V f(2) + S lly — all

holds for any convex f min curvature
When Hessian exists. ..
fl@)+(y—2)"Vi(@)+ 5y —2)" V' f(z)(y — o)

> f(2) + (y — )TV (@) + T |ly — 2l

o

&

2
> DN~




UPPER BOUND ON
CURVATURE

L ower Hlo) = ) =0 = i) T;Hy — z||°

wpper () < F(@) + (y— =)V (@) + -lly ]

fly) = f(2) + (y—2)" V(@) + 5y —2)" V2 f(2)(y — 2)

<f@)+@-2)'ViE+ =y -2’

> DN =




BIESC Nl 1 £ CONS AN

IVi(z) = V)l < My — |

\

spper  f(y) < f(z) + (y— )TV F(2) + =

i 2
lly — 2

VWe use this when there's no Hessian (ex: Huber function)



OBJECTIVE ERROR BOUNDS

L ower Hlo) = ) =0 = i) T;H?J — z||°

wpper () < F(@) + (y— =)V (@) + -lly ]

VWe can bound the objective error
in terms of distance from minimizer



CONDITION NUMBER

By | O oA ol smooth
function minor axis functions

k ~ cond(V?f(x)) &~ For differentiable

it g functions
e M k=5

10 . .

8- . 8| _
6 . 6 _
4 — 4 -
2 - oL _
o 4 ot |
4+ . |
6~ 4  -6r _
8 8
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]




SUB-DIFFERENTIAL

Of(x) ={g: fly) > f(x)+ (y—x)"g, Vy}

/,f(332) + g3 (2 — x2)

o f(@2) + 95 (z — x2)

Cpirelie Qe gyl



PAAMPLE

\f(2) = 2]

A

0f(0)

[_171]



MONOTONICITY

The (sub) gradient of any convex function iIs monotone

W—x,Vf(y) —Vf(z)) =0
or
<y_x79y _9x> > (
for any

g. € 0f(x), and g, € 0f(y)
This generalizes the concept of PSD Hessian

(y—2)" (Vfly) - V() =(@y—=2) Hly—=z) >0



CONJUGATE FUNCTION
f*(y) = max y"z — f(2)

(z)
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0= w)

s 1t convex!?



EXAMPLE: QUADRATIC

F0) =y QM — 2T QQ ™y

@) = 597



CONJUGATE OF NORM

dual norm Holder inequality

lyll = maxy”z/| x| yTz < |yll«lz
gl =1— " =10 why?
lyll« >1— f* =00 why?

o0, otherwise



EXAMPLES

Holder inequality for p-norms

T
[z, 9)| < [lzllpllyllg, —+-=1
p q D q

O, ‘ZE‘QSl

eeitlinalio > Il

flx) = llzll2,  f7(y) = A2(y) ={

Uizl o = 1l

eepillnllies = 1l

i | < 1

oo a7 = 1l

vl fTy) =Xy = {

Useful when we study duality



EROPER | 1ES OF CONJUGATSS

conjugate
f*(y) = max " — f(x)

X Is the point where f has gradient y (why?)
y € Of(x)

The gradient of conjugate = the "adjoint” of the gradient (why?)
Vil == ViU

...and In general
y€0f(z) <= z€df (y)

also Important for convergence proofs!



