CONVEX FUNCTIONS

Lecture 8 - CMSC764

Tom Goldstein

CONVEX SETS

Def: A set is convex is every line between two points stays in the set?

$$\theta x_1 + (1 - \theta)x_2, \quad 0 \le \theta \le 1$$

More General:

All convex combinations

lie in set

$$\sum \theta_i x_i = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

$$\sum \theta_i = \theta_1 + \theta_2 + \theta_3 = 1, \quad \theta_i \ge 0 \,\forall i$$

These definitions are the same!

IS IT CONVEX?

What if the square was round?

figures form Boyd and Vandenberghe

CONVEX HULL

All convex combinations of points an a set

...it's always the **smallest** convex superset

IMPORTANT EXAMPLES?

Are these convex?

Hyperplane
$$\{x|a^Tx=b\}$$
Half-space $\{x|a^Tx\geq b\}$
Sphere $\{x|\|x-x_0\|=b\}$
Ball $\{x\|\|x-x_0\|\leq b\}$
Polynomials $\{f|f=\sum_i a_i x_i^i\}$

FUNCTIONS OVER NON-CONVEX DOMAIN

Convex??

 $f:\Omega \to \mathbb{R}$

EXAMPLE: LINEAR STRESS IN FINITE ELEMENTS

Functions space over non-convex domain is convex

Biharmonic equation $\min_{u:\Omega \to R} \|\Delta u\|^2 - \langle u, r \rangle$

UNIT BALL

$$\{x| \quad \|x\| \le b\}$$

Convex??

Does it depend on which norm??

No! Because of triangle inequality.

CONES

$$x \in C \Longrightarrow ax \in C, \quad \forall a \ge 0$$

Second-order cone:

$$C_2 = \{(x,t) | \|x\| \le t\} \in \mathbb{R}^{n+1}$$

SEMIDEFINITE CONE

$$S^n = \{ A \in \mathbb{R}^{n \times n} | A = A^T, A \succeq 0 \}$$

Set of PSD matrices?

Why is this a cone?

ALLOWED OPERATIONS

The intersection of convex sets is convex

SIMPLEX

 $\{x: Ax \le b\}$

Is it convex? Why?

SEMIDEFINITE CONE

$$x^T A x \ge 0, \forall x$$

$$\mathbb{S}_{+} = \bigcap_{x \in \mathbb{R}^{N}} \{ A \mid x^{T} A x \ge 0 \}$$

Convex???

OTHER ALLOWED OPERATIONS

$$A + B = \{x + y | x \in A, y \in Y\}$$

$$A \times B = \{(x, y) | x \in A, y \in Y\}$$

What about union?

$$A \cup B$$

CONVEX FUNCTIONS

Jensen's Inequality $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$

EPIGRAPH

EPIGRAPH

$$epi(f) = \{(x, y) \mid f(x) \le y\}$$

convex function = convex epigraph

convex

non-convex

SOME DEFINITIONS

Theorem

"Any proper, closed, function with bounded level sets has a minimizer"

Proper: epigraph is non-empty

Coercive:

$$||x|| \to \infty \implies f(x) \to \infty$$

Bounded level sets:

$$\forall \alpha \, \exists r, \, f(x) \leq \alpha \implies ||x|| \leq r$$

SOME DEFINITIONS

$$epi(f) = \{(x, y) \mid f(x) \le y\}$$

Closed: epigraph is closed or level sets are closed

Lower semi-continuous:

$$\forall \epsilon > 0, \exists \delta > 0, |x - x_0| < \delta$$

$$\implies f(x) \ge f(x_0) - \epsilon$$
Proper+closed = LSC

WHY DO WE CARE ABOUT CONVEX FUNCTION?

Any closed function with bounded level sets has a minimizer (by compactness)

...but, for a convex function,

Any minimizer is global (why)

Set of minima is convex (why)

Therefore, we can find global minimizers

WHY DO WE CARE ABOUT CONVEX FUNCTIONS?

This can't happen!

Minimizers of **convex** problems form a **convex** set

If you found one you found them all!

CONVEX FUNCTIONS HAVE CONVEX SUB-LEVEL SETS

f(x)

sub-level set

$$f_{\alpha} = \{x \mid f(x) \le \alpha\}$$

convex contours

QUASI-CONVEX

Non-convex problems can still have nice properties...

convex contours = quasi-convex < convex

strict minima and always global mins

$$f(x) = \log(|x| + .1)$$

$$f(x) = |x| + .1$$

This function is "log-convex"

WHY DO WE CARE ABOUT CONVEX FUNCTION?

Any minimizer is **global** (why)

Set of minima is convex (why)

Therefore, we can find global minimizers

But why convex?

Convex functions are closed under many operations

POSITIVE WEIGHTED SUM

Sums of convex functions are convex

$$g(x) = \sum_{i} f_i(x)$$

Example:
$$f(x) = ||x||^2 = \sum_{i} x_i^2$$

Example:
$$f(x) = x + x^2 + x^6 + |x|$$

AFFINE COMPOSITION

Affine composition with convex function = convex

$$f(x)$$
 $f(Ax+b)$

What does this say about epigraphs?

FXAMPIES

Least squares

$$||Ax - b||^2 = \sum_{i} (A_i^T x - b)^2$$

SVM
$$\frac{1}{2} \|w\|^2 + C \sum_{i} h(1 - d_i^T w)$$

Logistic Regression

$$\sum_{i} \log(1 + \exp(-\ell_i d_i^T x))$$

POINTWISE-MAX

preserves convexity

$$g(x) = \max_{i} f_i(x)$$

Absolute value

$$|x| = \max\{x, -x\}$$

Infinity norm

$$||x||_{\infty} = \max_{i} |x_i|$$

Max eigenvalue
$$||A||_2 = \max_v v^T A v$$

What does this say about epigraphs?

WHY ARE THESE CONVEX?

Trace

$$f(X) = \operatorname{trace}(A^T X)$$
 Linear operator

Distance over set

$$f(x) = \max_{y \in C} \|x - y\| \text{ Max over convex}$$

Distance to set

$$f(x) = \min_{y \in C} ||x - y||$$

Min of convex (special case)

Max eigenvalue

$$f(x) = \|b + \sum_i A_i x_i\|_2$$
 Affine comp

If g(x,y) is convex, then minimizing for y preserves convexity

WHY ARE THESE NON-CONVEX?

Neural Net

$$y = \sigma(X_3 \sigma(X_2 \sigma(X_1 D)))$$

Comp of Convex

Dictionary learning
$$f(X,Y) = ||XY - B||_{fro}$$

NOT affine

DIFFERENTIAL PROPERTIES

IMPORTANT PROPERTY

Convex functions lie ABOVE their linear approximation

OPTIMALITY CONDITIONS

First-order conditions = optimality for convex funcs only

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

$$= \mathbf{0}$$

$$f(y) \ge f(x)$$

This doesn't happen!!

Any minima is a global minima

SECOND ORDER CONDITIONS

A smooth function is convex iff $\nabla^2 f(x) \succeq 0$, $\forall x$

For non-convex functions, minima satisfy: $\nabla^2 f(x^*) \succeq 0$

remember - the Hessian is a good local model of a smooth function

STRONG CONVEXITY

What about when there's no Hessian?

$$f(y) \ge f(x) + (y - x)^T \nabla f(x) + \frac{m}{2} ||y - x||^2$$

holds for any convex f min curvature

When Hessian exists...

$$f(y) \approx f(x) + (y - x)^{T} \nabla f(x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x)$$

$$\geq f(x) + (y - x)^{T} \nabla f(x) + \frac{\lambda_{min}}{2} ||y - x||^{2}$$

...and so
$$\nabla^2 f(x) \succeq mI$$

UPPER BOUND ON CURVATURE

Lower
$$f(y) \ge f(x) + (y - x)^T \nabla f(x) + \frac{m}{2} ||y - x||^2$$

upper
$$f(y) \le f(x) + (y - x)^T \nabla f(x) + \frac{M}{2} ||y - x||^2$$

$$f(y) \approx f(x) + (y - x)^{T} \nabla f(x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x)$$

$$\leq f(x) + (y - x)^{T} \nabla f(x) + \frac{\lambda_{max}}{2} ||y - x||^{2}$$

LIPSCHITZ CONSTANT

$$\|\nabla f(x) - \nabla f(y)\| \le M\|y - x\|$$

upper

$$f(y) \le f(x) + (y - x)^T \nabla f(x) + \frac{M}{2} ||y - x||^2$$

We use this when there's no Hessian (ex: Huber function)

OBJECTIVE ERROR BOUNDS

$$f(y) \ge f(x) + (y - x)^T \nabla f(x) + \frac{m}{2} ||y - x||^2$$

$$f(y) \le f(x) + (y - x)^T \nabla f(x) + \frac{M}{2} ||y - x||^2$$

We can bound the objective error in terms of distance from minimizer

$$f(y) - f(x^*) \ge \frac{m}{2} ||y - x^*||^2$$

$$f(y) - f(x^*) \le \frac{M}{2} ||y - x^*||^2$$

CONDITION NUMBER

SUB-DIFFERENTIAL

$$\partial f(x) = \{g : f(y) > f(x) + (y - x)^T g, \ \forall y\}$$

Optimality: $0 \in \partial f(x^*)$

EXAMPLE

$$\partial f(0) = [-1, 1]$$

MONOTONICITY

The (sub) gradient of any convex function is monotone

$$\langle y-x, \nabla f(y)-\nabla f(x)\rangle \geq 0$$

or

 $\langle y-x, g_y-g_x\rangle \geq 0$

for any

 $g_x\in\partial f(x), \text{ and } g_y\in\partial f(y)$

This generalizes the concept of PSD Hessian

$$(y-x)^{T}(\nabla f(y) - \nabla f(x)) = (y-x)^{T}H(y-x) \ge 0$$

CONJUGATE FUNCTION

$$f^*(y) = \max_{x} \ y^T x - f(x)$$

Is it convex?

EXAMPLE: QUADRATIC

$$f(x) = \frac{1}{2}x^{T}Qx$$

$$f^{*}(y) = \max_{x} y^{T}x - \frac{1}{2}x^{T}Qx$$

$$y - Qx^{*} = 0$$

$$x^{*} = Q^{-1}y$$

$$f^{*}(y) = y^{T}Q^{-1}y - \frac{1}{2}y^{T}Q^{-1}QQ^{-1}y$$

$$f^{*}(y) = \frac{1}{2}y^{T}Q^{-1}y$$

CONJUGATE OF NORM

$$f(x) = ||x||$$

 $f^*(y) = \max_{x} |y^T x - ||x||$

dual norm

$$||y||_* \triangleq \max_x y^T x / ||x||$$

$$||y||_* \le 1 \longrightarrow f^* = 0$$

$$||y||_* > 1 \longrightarrow f^* = \infty$$

Holder inequality

$$y^T x \le \|y\|_* \|x\|$$

why?

why?

$$f^*(y) = \begin{cases} 0, & \|y\|_* \le 1\\ \infty, & \text{otherwise} \end{cases}$$

EXAMPLES

Holder inequality for p-norms

$$|\langle x, y \rangle| \le ||x||_p ||y||_q, \quad \frac{1}{p} + \frac{1}{q} = 1$$

$$f(x) = ||x||_2,$$
 $f^*(y) = \mathcal{X}_2(y) = \begin{cases} 0, & ||x||_2 \le 1 \\ \infty, & ||x||_2 > 1 \end{cases}$

$$f(x) = |x|,$$
 $f^*(y) = \mathcal{X}_{\infty}(y) = \begin{cases} 0, & ||x||_{\infty} \le 1\\ \infty, & ||x||_{\infty} > 1 \end{cases}$

$$f(x) = ||x||_{\infty}, \qquad f^*(y) = \mathcal{X}_1(y) = \begin{cases} 0, & |x| \le 1\\ \infty, & |x| > 1 \end{cases}$$

Useful when we study duality

PROPERTIES OF CONJUGATE

conjugate

$$f^*(y) = \max_{x} \ y^T x - f(x)$$

x is the point where f has gradient y (why?)

$$y \in \partial f(x)$$

The gradient of conjugate = the "adjoint" of the gradient (why?)

$$y = \nabla f(x) \iff \nabla f^*(y) = x$$

...and in general

$$y \in \partial f(x) \iff x \in \partial f^*(y)$$

also important for convergence proofs!