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a b s t r a c t

In recent years, we have witnessed a striking increase in research concerning how to
describe a meshed surface. These descriptors are commonly used to encode mesh proper-
ties or guide mesh processing, not to augment existing computations by replication. In this
work, we first define a robust surface descriptor based on a local height field representa-
tion, and present a transformation via the extraction of Zernike moments. Unlike previous
work, our local surface descriptor is innately rotationally invariant. Second, equipped with
this novel descriptor, we present SAMPLE – similarity augmented mesh processing using
local exemplars – a method which uses feature neighbourhoods to propagate mesh pro-
cessing done in one part of the mesh, the local exemplar, to many others. Finally, we show
that SAMPLE can be used in a number of applications, such as detail transfer and
parameterization.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Surfaces discretized as triangular meshes are ubiqui-
tous in Computer Graphics. The vast majority are gener-
ated by artists or scanned from real-world objects.
Almost all surfaces, artificial or natural, feature regions
with nearly identical properties, such as colour, shape, or
texture. In this paper, we are interested in repeated shape
patterns and how we can use them to propagate mesh
processing.

Symmetries are most commonly detected and de-
scribed as planar reflections among parts of a mesh
[1–3]. In addition to these mirror-like symmetries, resem-
blances among details on a surface can also be found [4–6].
The concept of self-similarity of a meshed surface is
defined by such resemblances, and naturally generalizes
. All rights reserved.

e by Jarek Rossignac.

o), rob@cs.umd.edu
), rfarias@cos.ufrj.br
the concept of reflective symmetries. We say that two or
more parts of a mesh are similar when they share local sur-
face features, either reflective or not. Although the detec-
tion and structural analysis of reflective symmetries may
be used to improve several mesh processing tasks [7],
there have only been a few papers [8,9] dealing with re-
peated patterns with a close notion of mesh processing
propagation as presented by our method.

The goal of this paper is to take advantage of a local sur-
face descriptor over a mesh in order to propagate process-
ing performed on a region to several other similar regions.
The idea of similarity-augmented processing has been the
target of study for many years in the Computer Vision
community [10]. Recently, surface descriptors to measure
similarity have draw the attention of the Computer Graph-
ics community, mainly because of a large growth in the
mathematical theory underpinning the discrete geometry
of meshes; namely, discrete differential geometry [11,12].
Mean and Gaussian curvatures, the Laplace-Beltrami oper-
ator, and heat-diffusion processes on a triangular mesh
have been used in defining vertex signatures based on their
differential properties [4,6,13–15]. At the same time,
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Fig. 2. Surface descriptor example for a given vertex (in red). The
descriptor is a heightmap lying on the vertex tangent plane. The red and
green arrows are the vertex principal directions, and the blue arrow is the
vertex normal. The heights are the Euclidean distances from the plane to
the mesh, where the blue and red colours represent low and high values,
respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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descriptors relying purely on the positions of vertices on
the embedded surface also exist, such as the ones using
Euclidean distances [16,17]. In this paper, we are inter-
ested in these types of descriptors and present a method
to compute a novel local surface descriptor to measure
similarity in Section 3; we extend this descriptor to con-
sider surface regions rather than singular vertices in
Section 4.1.

To build our surface descriptor, we use the Zernike-
basis representation of the heightmap of the surface sur-
rounding a given vertex as its descriptor (see an example
of a vertex’s heightmap in Fig. 1a). This simple 2D descrip-
tor naturally encodes the surrounding shape, is robust with
respect to the mesh triangulation, is efficient to compute
and is rotationally invariant (see a more illustrative exam-
ple in Fig. 2). This approach is similar to the spherical-
harmonic representation employed by Kazhdan et al. [18]
and to the work of Novotni and Klein[19] that uses 3D Zer-
nike descriptors of the entire surface for shape retrieval. In
contrast with these approaches, our descriptors encode a
two-dimensional local surface signal rather than a three-
dimensional representation of the entire mesh. This results
in a similarity measurement which allows us to build a fea-
ture-neighbourhood space based on similar local shapes,
explained in Section 4.2. We use this neighbourhood to
propagate mesh processing operations in Section 4.3, such
as mesh parameterization shown in Fig. 1c.

In this paper, we introduce a novel robust surface
descriptor based on a local height field representation of
a surface, along with a transformation which makes these
descriptors rotationally invariant. Equipped with these
descriptors, we present a system dubbed SAMPLE –
similarity augmented mesh processing using local exem-
plars – which allows for the propagation of computation
throughout the mesh, explained in detail in Section 4.
The propagation is achieved by employing a feature-
neighbourhood space, where similar regions are spatially
proximate, illustrated by similar colours in Fig. 1b. We
investigate two applications where SAMPLE can be used:
detail transfer and mesh parameterization; discussed in
Section 5. Nonetheless, any mesh processing task in which
replication of processing is suitable can be augmented
using our method. Results of the feature-neighbourhood
Fig. 1. Illustrative example of SAMPLE: (a) The Asian Dragon model with a vert
descriptor of that vertex. (b) The model painted by the degree of similarity betw
similar (in red). (c) The parameterization done on the surrounding region of the s
scales, the same texture (1) is mapped to each region. (For interpretation of the
version of this article.)
space and replication ideas are presented in Section 6
and discussions about our work and similar approaches
is delineated in Section 7. Conclusions and future work
directions are given in Section 8.
2. Related work

Measurements of the self-similarity of meshes are
employed as a tool in many applications, such as reme-
shing [20–22], rendering [23], shape matching [9,24],
shape retrieval [25,26], and scene understanding [27].
These self-similarity detection techniques generally em-
ploy reflection as the base comparison method to deter-
mine similar regions. The use of reflection in the majority
of these techniques comes from the fact that symmetries
in nature tend to have repeated patterns between halves,
such as a human face, an animal body, or a plant leaf. How-
ever, both natural and artificial objects may also contain
more general classes of self-similarities, for instance a
computer keyboard has most of its keys sharing one
ex (in red) selected on the centre of one of its scales, and the heightmap
een regions and the selected vertex, from most similar (in blue) to least

elected vertex (bottom right) is propagated to several other similar dragon
references to colour in this figure legend, the reader is referred to the web
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identical shape. One of the contributions of this paper is a
method to detect self-similarities not limited to the ones
based on reflection, which is adequate for scanned or mod-
eled meshes, inspired by either natural or man-made
objects.

One of the aspects which makes self-similarity identifi-
cation especially challenging is the lack of a reasonable
measurement tool for local shape comparison. Gatzke
et al. [13] present a method to compare different local
regions, introducing the curvature map of a point. They
evaluate the mean and Gaussian curvature as a function
of distance, using either neighbourhood rings or geodesic
fans as Zelinka and Garland [8], for each point of the mesh.
Thereafter, the self-similarity is measured as the difference
among these curvature functions. In this work, we define a
robust and efficient map of a point based on the heightmap
of its surrounding region (see one example in Fig. 1a) in-
stead of the curvature function. Section 7 further enumer-
ates the differences of our work and the work of Zelinka
and Garland [8].

Techniques aiming to identify self-similarities mainly
depend on the shape properties of a surface. Much recent
work in geometry processing considers the coordinate
functions, or a more general function, as a signal defined
over the meshed surface. One example is the method of
spectral compression of meshes proposed by Karni and
Gotsman [28]. This method encodes geometry information
as a compact linear combination of the orthogonal eigen-
vectors of the discrete graph Laplacian. Vallet and Lévy’s
work [29] describes how to use eigenvectors of a geome-
try-aware formulation of the Laplace-Beltrami operator
as a function basis for mesh geometry representation;
namely the Manifold Harmonic Basis. Ovsjanikov et al. [5]
present a method to compute global intrinsic symmetries
using eigenfunctions. Their method determines pose-
invariant correspondence over the shape, i.e. symmetries
that remain intact under isometric deformations. Unfortu-
nately, they restrict their method to reflective symmetries
around the principal axes. Sun et al. [6] improve this meth-
od by defining a local vertex signature, called the Heat Ker-
nel Signature (HKS). The HKS is a multi-scale descriptor of
the shape surrounding the vertex based on the temporal
evolution of a heat-diffusion process on a meshed surface.
Although this method provides a concise descriptor, it does
not readily admit a region-based descriptor that we need
in our approach.

After the identification of self-similarities on a mesh,
the question that remains is how to succinctly describe
these similarities. Methods defining signatures per vertex,
such as the HKS, are one way to describe similarities.
Another way is to use a more global data structure. Simari
et al. [30] present an algorithm to compute the folding tree,
a compact data structure using planar symmetry. Their
algorithm, however, is restricted to find symmetry about
principal axes. Symmetry detection about more general
planes, such as those based on Principal Component
Analysis (PCA), has been explored by Kazhdan et al. [1]
and Cheng et al. [31]. Perhaps the most general method
for symmetry analysis of the entire object is the planar-
reflective symmetry transform (PRST) [2] that captures
reflective symmetries with respect to any plane. Xu et al.
[3] improve the PRST idea to allow for the detection of par-
tial intrinsic rotational symmetries.

Surface descriptors, ranging from local (per vertex) to
global (the entire mesh), add information about a surface.
Golovinskiy et al. [7] present a framework to exploit such
information, describing mesh processing tools to detect
and preserve symmetries using the PRST and Mitra et
al.’s [16] work on partial symmetry detection. The symme-
try-aware mesh processing of Golovinskiy and colleagues
is guided by the symmetries of a surface, while our method
discovers more general similarities on the surface and al-
lows for the processing to be carried out among similar
regions.

The usage of a descriptor to aid mesh processing guided
by similarity is also explored by Yoshizawa et al. [32]. They
use radial basis functions (RBFs) to approximate local ver-
tex neighbourhoods, and describe similarity by the differ-
ence among local shapes encoded in these RBFs. These
differences are used as weights to remove noise from
meshes based on non-local image denoising techniques.
Another work aiming to filter noise from meshes is pre-
sented by Schall et al. [17]. In contrast with Yoshizawa et
al.’s work, they deal with range data, computing a point-
wise height difference of the neighbourhood rather than
using RBFs. Our method also computes height differences
around a vertex; however, it can be used for any type of
mesh, not only range image data. In addition, we show
how our approach can be applied to several mesh process-
ing tasks, such as parameterization and detail transfer.
3. Robust and rotationally invariant local descriptor

One of the main contributions of this paper is a novel
local surface descriptor, as well as a procedure allowing
the comparison of these descriptors in a robust and rota-
tionally invariant manner. In this section, we describe both
our descriptor and this procedure.
3.1. Local heightmap descriptor

We define the surface descriptor as a heightmap for
each vertex, relying simply on Euclidean-distance mea-
surements. The heightmap descriptor is computed either
by hardware Z-buffer or by shooting rays from the vertex
tangent plane to the meshed surface (see an example in
Fig. 2). The tangent plane is defined by the vertex position
and normal. The normal is computed using the area-
weighted average of the surrounding face normals. The
heightmap grid lying on the tangent plane is aligned with
the two principal curvature directions computed at the
vertex. The estimation of such differential geometric prop-
erties is not always robust. However, the usage of principal
directions does not significantly impact the efficiency of
the descriptors, as the alignment of the grid axes can be de-
scribed by a simple rotation, and the descriptors are com-
pared in a rotationally-invariant manner.

To compute the heightmap, we consider a bounded
square sub-region of the tangent plane, with sides of
length � = 2.5% of the diagonal of the mesh’s bounding
box. This sub-region is divided into a 16 � 16 grid, guiding
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the casting of rays through each grid cell. We find that
these values (grid size and sampling rate) captured the
local shape features well in our experiments. Fig. 2 illus-
trates one example of a heightmap grid on the spine of
the XYZ RGB Asian Dragon model.

For each grid cell, we cast one ray perpendicular to the
tangent plane in both directions, keeping the closest hit as
the height value for that cell. Heightmap cells without a hit
value are set to an infinity value (1.5�) and cells outside a
fixed radius of � are discarded (ignored in the following
computations). The result is a 16 � 16 resolution image
(see one example on the top-left corner of Fig. 2) describ-
ing the shape surrounding the vertex. This approach is
robust to poorly shaped triangles, non-manifoldness and
surfaces with holes, since it computes only ray-triangle
intersections. A more complex approach using discrete
differential geometric properties, such as the HKS [6],
could result in a more descriptive signature, but our
experiments indicate that such approaches are generally
sensitive to triangle quality and topological singularities.

3.2. Achieving rotational invariance

Once we have the heightmap of each vertex, we can
measure similarity between two vertices by computing
the pixel-wise difference of the two heightmap images.
Unfortunately, this leads to poor results. The main problem
is that the principal directions of each vertex do not always
align the heightmap properly (see Fig. 3). We address this
problem by making use of a basis function which has
proved useful in providing rotational invariance in the field
of Computer Vision; the orthogonal Zernike polynomial
functions [33].
Fig. 3. Zernike expansions for heightmaps. Only the magnitudes of the
complex values for the coefficients (top three row numbers) and Zernike
polynomials (images after the equal signs) are shown. Although vertices A
and B (in red) are similar, their heightmaps have improper alignment
based on principal directions. By converting them to Zernike coefficients,
the heightmaps are correctly compared. Vertex C (in green) is also
correctly classified as different than vertices A and B. (For interpretation
of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
The straightforward approach for the alignment prob-
lem is to compute the difference for every rotation and
choose the minimum value as the similarity. While this
brute-force approach would yield the correct result, it is
very inefficient. Instead of this approach, we convert each
heightmap to Zernike coefficients and compare these coef-
ficients rather than the image pixels. The Zernike polyno-
mials constitute an orthogonal basis for functions defined
on the unit disk. Each Zernike polynomial, Vq

p, has an asso-
ciated order p and repetition q, and they are defined over
the domain D ¼ fðp; qÞjq 2 Z; p 2 ZP0; jqj 6 p; jp� qj 2
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Zernike polynomials form a basis upon which an image f
can be projected. The result of this projection is the Zernike
moments of the image, the magnitudes of which are
invariant to rotation [33]. In practice, each of the Zernike
basis functions is represented as a set of discrete samples
on a k � k grid. However, analogously to the continuous
case, the samples take on a value of zero outside a
circular region centred at ½cx; cy� ¼ k
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For our heightmap images (with 16 � 16 resolution), we
project f(x,y) onto 25 Zernike polynomials (corresponding
to non-negative repetitions and up to the 8th polynomial
order) resulting in a vector zi of Zernike moments for each
vertex vi. We have noticed that 25 coefficients are
sufficient to represent the vertex’s descriptor. Fig. 3 shows
an example of two heightmap images (A and B) with an
improper alignment using the principal directions,
whereas the Zernike coefficients of the two images have
close values, correctly classifying as similar the two verti-
ces on the spine of the Asian Dragon model. The processing
time spent in computing the brute-force approach is three
orders of magnitude greater than the computation using
Zernike coefficients. More specifically, employing Zernike
coefficients reduces the similarity measurement time of
entire meshes from hours to seconds.



Fig. 4. Difference between vertex-to-vertex (left) and region-to-region
(right) comparison methods. The similarity measurement based on
individual vertices yields the incorrect comparison of the selected vertex
(in red) to the strap region close to the shoulder (top-right corner). The
model is painted from most similar (in blue) to least similar (in red). (For
interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 5. The feature space of the Dama model further illustrates the
difference from vertex-based (left) to region-based (right) comparisons.
Excessive blue colour in the left image shows that the vertex-based
technique is not as discriminative as the region-based technique shown
in the right image. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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4. Similarity augmented mesh processing

The main idea behind SAMPLE – similarity augmented
mesh processing using local exemplars – is to provide a
method to propagate computations from an exemplar
region to many other similar regions of a mesh. The con-
cept of similarity in this scenario depends on the mesh
properties needed by the mesh processing task. For exam-
ple, if the processing takes into account the local shape
properties, such as normals and curvatures, the surface
descriptor should encode these features. When propagat-
ing mesh processing, the descriptor is used to establish
feature neighbourhoods where the computation can be
replicated throughout the mesh.

We use two spaces to accomplish similarity augmented
mesh processing: geometry and feature spaces. The geome-
try space defines the regular neighbourhood of a local
surface patch, given by the mesh connectivity and geome-
try, and the feature space defines the similarity neighbour-
hood, given by the distance between surface descriptors.
The geometry space is widely used by many existing mesh
processing tasks, such as Laplacian smoothing [34]. The
feature space, on the other hand, is scarcely used in mesh
processing, and it is normally employed as a feature neigh-
bourhood for averaging values [32,17]. We use the feature
space in a more comprehensive manner. In our case, the
feature neighbours define correspondences across regions
in addition to the geometry neighbours, aiding in the rep-
lication of processing done on an exemplar region to other
close regions in the feature space.

Once the geometry and feature spaces are established,
the non-local propagation of mesh processing can be
carried out. We illustrate our idea by applying the propaga-
tion algorithm in transferring the same details to many
similar regions seamlessly, and by reusing the parameter-
ization computed for a patch over the mesh to others
similar patches. Both applications are well-suited for prop-
agation through a similarity-based descriptor using local
shape features, as explained in detail in the next section.
However, additional mesh processing tasks could use dif-
ferent descriptors, e.g. planar-reflective symmetry [2] or
a saliency-based descriptor [35].
4.1. Establishing the feature space

With the technique explained in Section 3.2, we have a
robust similarity measurement among vertices. Typically,
the feature neighbourhood is established by considering
the point-wise self-similarity of a triangulated mesh, i.e.
distances between the shape descriptors of its constituent
vertices. However, the feature space resulting from
computing descriptors of isolated vertices may have
misplaced similarity correspondences for nearby vertices,
and it may ignore distinctive shape features in favour of
large flat regions (see example in Figs. 4 and 5, left). We
solve this problem by considering entire neighbourhoods
rather than single vertices when building the feature space.
For each vertex, we apply Gaussian weights to the Zernike
coefficients, adding the coefficients of nearby vertices
within a fixed radius of �. The Gaussian filter cut-off is
set to be at a distance of 2r, where r is set to �/2 to include
all vertices inside the region considered by the heightmap.

Recall that we have defined zi to be the vector of Zernike
coefficients for the vertex vi. Our region-based comparison
method uses the geometry space of vi, denoted by Nðv i;rÞ,
which includes vertices within a distance r of vi. To apply
our Gaussian-weighted comparison scheme, we consider a
new vector of Zernike coefficients for each vertex defined
as follows:

zr
i ¼

P
v j2Nðv i ;2rÞzie

�
jv i�vj j

2

2r2

P
v j2Nðv i ;2rÞe

�
jvi�vj j

2

2r2

ð5Þ

The zr
i is defined as a Gaussian-weighted average of the

Zernike coefficient vectors of all vertices within a radius
2r of vi. These newly formed vectors of Gaussian-weighted
Zernike coefficients replace the original vectors, resulting
in the generation of a smooth and high quality feature
space. Note that this new vectors are still defined over each
vertex of the mesh, though now they include information
about other vertices in the surrounding region. Figs. 4
and 5 illustrate the 3DScanCo Angel and Dama models
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using vertex-based comparison and the Gaussian-
weighted region method.

It is important to note that this region-based compari-
son benefits greatly from the rotational invariance of our
descriptor. While this property is not strictly necessary to
define a descriptor, it allows for the agglomeration of
local descriptors without explicit concern of their align-
ment. In the absence of the rotational invariance property,
an attempt to build a region-based descriptor from an
agglomeration of vertex-based descriptors (e.g. geodesic
fans) must address the challenging question of how these
descriptors should be aligned and combined. A brute-force
approach is difficult, because attempting to find the
best alignment between all vertex descriptors in the region
is a significantly more difficult problem than simply
finding the minimum distance alignment between two
descriptors.

4.2. Similarity measurement

After extracting the descriptors as explained in Section
3 and accounting for local regions as explained in Section
4.1, we obtain 25 coefficients for each vertex, which consti-
tute its embedding coordinates in the feature space. Our
feature space can simply be viewed as R25, where similar
vertices can be found by searching for nearest neighbours
in this space, under a Euclidean metric, for any given
vertex.

The similarity distance s in the feature space between
vertices vi and vj is defined as follows:

sðv i; v jÞ ¼ d zr
i ; z

r
j

� �
ð6Þ

where d(�, �) denotes the Euclidean distance. The mesh
feature space depends only on the Gaussian-weighted Zer-
nike coefficients of each vertex, zr

i , which can be
pre-computed and stored in an auxiliary data structure
for similarity measurements. The feature neighbours of a
Fig. 6. Illustration of the geometry and feature spaces. Several geometry
neighbours of the selected vertex (in red) on a dragon scale are shown in
blue (box 0). While some of the feature neighbours are shown in green
(boxes 1–3). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
vertex vi are defined as the set of vertices within a distance
s, where s(vi,vj) < s. Fig. 6 shows a number of feature space
neighbours of one vertex on the scale of the Asian Dragon
model, the vertices in the geometry neighbourhood are
illustrated for comparison.

4.3. Propagating mesh processing

The SAMPLE algorithm propagates mesh processing by
using the feature space and a local exemplar. An exemplar
region is any region of the mesh with desired features,
which is used to guide the propagation of a target process-
ing task. For example, to paint all the scales of the Asian
Dragon model with the same drawing, one of the scales
can be selected as the exemplar region and, as the texture
painting occurs, all regions locally similar to the exemplar
are painted with the same pattern. The disadvantage of
this approach is that it depends on the size of the local
exemplar, which is directly related to the size of the
heightmap descriptor explained in the previous section. If
the exemplar region is much smaller or larger than the
heightmap, then the feature space fails to capture the
distinctive features of the local shape, providing the incor-
rect similar neighbours upon which the processing is prop-
agated. In these cases, the feature space has to be
recomputed considering an � value chosen to match the
size of the desired region and yield the correct result.

The feature space plays the main role in the propagation
of mesh processing. It is responsible for describing the
similarity correspondences among vertices, which are used
to propagate computation across similar regions. These
regions are defined using the geometric neighbourhood
of similar vertices. After a local exemplar is chosen, we
can determine its feature neighbours by finding vertices
whose feature space embedding reside within a user-
defined distance threshold s from the embedding of the
exemplar’s centre vertex. Then, the operations performed
on the exemplar can be carried out on these other similar
regions through the centre vertices. The similarity thresh-
old defines which regions are affected by the propagation.
Smaller threshold values affect fewer regions, while larger
values affect more regions.

Although the comparison method used to build our fea-
ture space considers entire mesh regions, the feature
neighbourhood is defined among mesh vertices. The fea-
ture neighbours of a given vertex may also be close to this
vertex in the geometry space. This scenario can compro-
mise the propagation of mesh processing. We solve this
problem by considering only neighbouring vertices in the
feature space whose geometric regions do not overlap each
other. That is, the size of the exemplar region defines the
minimum distance in the geometry space that we will
require between any pair of vertices before we consider
them for the propagation of processing.

After these considerations, we can now describe how to
propagate mesh processing between the local exemplar
and a target region. We define a local coordinate frame
for each vertex undergoing the propagation in order to
replicate processing consistently. This frame is based on
the same vectors used to compute and align the heightmap
descriptor over the vertex tangent plane, and it is used to



Fig. 7. SAMPLE application: mesh parameterization. One of the dragon
scales is elected to be the exemplar region (top); the exemplar is
parameterized using a standard procedure (bottom right); the infinity
logo image (bottom left) is used to texture the similar dragon scales
seamlessly.
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assign local (u,v,w) coordinates for each vertex inside the
affected regions. These coordinates replace the original
(x,y,z) coordinates while processing similar regions, creat-
ing a common coordinate system throughout the propaga-
tion. The size of each affected region is defined by the
exemplar region, where the desired local shape resides.
Since our similarity measurement is rotationally invariant
and the heightmaps of the affected regions may not be
aligned, we rotate the (u,v) coordinates by an angle (a)
which is chosen to achieve the minimum similarity differ-
ence between the affected and exemplar regions. Although
a technique exists to retrieve the rotational angle using
Zernike moments [36], in our experiments, this method
yields several local minima for a, degrading the propaga-
tion. Since we generally have a small number of regions
among which to propagate results, we compute the a angle
using the brute-force approach discussed in Section 3.2, i.e.
evaluating the differences for all discrete rotations and
choosing the angle resulting in the minimum value.

Finally, the local coordinates are used to find the near-
est vertices in the exemplar region and interpolate an
approximate result value of any processing done on the
local exemplar for the vertex on the target affected region.
The quality of this approximation depends on the process-
ing performed and the quality of the mesh samples. A more
regularly sampled mesh generally yields better results
when propagating processing operations than a poorly
sampled one. In the next section, we illustrate this idea
using our SAMPLE algorithm in two applications: detail
transfer and mesh parameterization.
Fig. 8. SAMPLE application: detail transfer. One exemplar region (top left)
of a dragon scale is edited to resemble a crater (bottom left). Our
similarity augmented algorithm propagates the editing result naturally
over the similar scales.
5. Applications

We present two illustrative applications of our SAMPLE
method in order to demonstrate the feature space and the
propagation ideas. The first replicates the parameterization
computed for one exemplar region to several other similar
regions, preserving scale and local orientation of the
parameterization domain. The second propagates a given
detail mask to many similar regions, preserving local
consistency.

The first application aims to reuse a local mesh param-
eterization taking advantage of the feature space to repli-
cate the computed parameters. We perform a simple
parameterization, using the Floater Mean Value Coordinates
algorithm [37], on the selected exemplar region, and sub-
sequently visit a number of similar regions which reside
within a given similarity distance threshold in the feature
space. For each similar region, we assign values from the
exemplar parameterization corresponding to the local
coordinates (u,v,w) explained in Section 4.3. In this way,
the same parameterization domain is shared among re-
gions with similar local shape. Fig. 7 shows the replication
process applied to the XYZ RGB Asian Dragon model.

Note in Fig. 7 that a small number of scales are not
affected by the process, since they consist of vertices
whose feature space embedding reside beyond the
specified distance threshold from the exemplar scale. We
chose this distance threshold because it allows us to select
most of the similar scales without producing false posi-
tives, i.e. similar non-scale regions, which tend to occur
at greater similarity distance thresholds. Also, note that
although the replication procedure induces a maximum
error displacement of 0.047 units on the parameterization
disk domain, the textures are not visibly distorted.

The second application aims to use the feature space to
propagate mesh editing throughout meaningful regions.
We use a simple editing mask, a Gaussian-weighted extru-
sion of a fixed radius (shown in the bottom-left corner of
Fig. 8), applied to the same exemplar dragon scale used
in the first application. We also use the same similarity
distance threshold to affect the identical scales, illustrating
that our SAMPLE algorithm can be employed in a similar
manner for a broad range of mesh processing tasks. In this
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application, the mesh that results from the propagation of
the editing performed on the single exemplar region is
identical to the mesh which would result if all of the
similar regions had been edited manually. This illustrates
how the SAMPLE system can be used to reduce the burden
on an artist, who would otherwise have to manually edit
each of the similar regions to obtain the same result.

Note that in Figs. 8 and 11 we choose to use, respec-
tively, rotationally-symmetric displacements and textures.
This is done mainly because the local coordinate frame
alignment may lead to unintended effects globally, even
though the replication is locally coherent.
Fig. 10. Symmetry example using the feature space. For a vertex on the
right hand (in red), the model is painted from close (in blue) to far (in red)
regions in the feature space. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this
article.)
6. Results

We have introduced the concept of the feature space of
a mesh, defining a novel local surface descriptor and how
to use it to embed vertices in the mesh feature space. In
addition to the use of this space to augment mesh process-
ing tasks exploring similarity, the Euclidean distances
among points in this space can also reveal reflective
symmetries. These symmetries can be viewed as a sub-
set of the more general class of similarities described by
our SAMPLE method. Fig. 9 depicts the Stanford Armadillo
model and its feature space with respect to one vertex.
Note the symmetric patterns which appear naturally when
colouring vertices by the distance order in feature space.

Another interesting result is the 3DScanCo Angel model,
shown in Fig. 10. Unlike the Armadillo, the Angel does not
exhibit a simple plane of symmetry, yet it still contains an
underlying symmetric structure. The feature space for this
model also highlights the symmetric patterns when col-
ouring the vertices by similarity distance.
Fig. 9. Feature space example for a given vertex (in red). The surrounding
vertex region is used to map the entire mesh using the similarity
neighbourhood. Regions with wrinkles similar to the selected vertex on
the nose are painted with blue, such as the ones in the arms and feet,
while more dissimilar regions are gradually painted from green to red.
(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
While the feature space can reveal global symmetries,
considering only the k nearest neighbours in this space is
an interesting special case. In particular, when k = 1, the
feature space provides a result which closely matches one’s
intuition. Fig. 11 illustrates how the mesh parameteriza-
Fig. 11. Application example of the immediate feature neighbour. The
vertices in the centre of each eye are immediate neighbours in feature
space, choosing either vertex and applying our similarity augmented
mesh parameterization leads to the automatic mapping of a texture
(bottom left) to both eyes.



Fig. 12. Nearest similarities (in blue) of the XYZ RGB Thai Statue model. Three vertices (in red) are used in this example: on the bottom of the statue (left)
finding several toes; finding the three elephants’ trunk in the middle; and on the top (right) finding several knees. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Computation time for establishing the feature space. The first column
shows the number of vertices (#v) and faces (#f), while the last three
columns show the time spent in each pre-computation step of our
algorithm – Heightmap descriptor (H), Zernike expansion (Z) and Gaussian
average (G).

Model #v/#f (K) H (min) Z (s) G (min)

Dama 106/207 3.20 5.53 2.47
Dragon 108/216 2.56 5.54 1.83
Statue 125/250 2.98 6.58 2.07
Armadillo 172/345 6.12 9.01 5.34
Angel 237/474 17.76 12.15 18.45
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tion of one eye of the Armadillo model can be duplicated to
the other eye.

Analyzing the k nearest neighbours in feature space is
also interesting to reveal symmetric regions in highly-
detailed models. Take for example the XYZ RGB Thai Statue
model shown in Fig. 12. Even with a large number of
details on the surface, our feature space is able to capture
small similarities using k = 0.5% of the total number of
vertices.

The pre-computation time required to build the feature
space is shown in Table 1 and depends on the following
computations: the heightmap descriptor, which is a stan-
dard procedure linear in the number of vertices; the
expansion in Zernike coefficients of each heightmap im-
age; and the computation of Gaussian-weighted Zernike
coefficients, which is a fixed neighbourhood summation
also linear in the number of vertices. The timings for the
heightmap descriptor and Gaussian average computations
are only preliminary, since we do a serial ray-casting ap-
proach to compute the heightmaps and a straightforward
regular grid to find neighbours for the Gaussian averaging.
In practice, this step can be almost completely parallelized
across the different vertices. The computation of Zernike
coefficients requires, for the XYZ RGB Asian Dragon model
(with 108 K vertices), 5.54 s on a 2.33 GHz Intel Xeon
E5345 CPU with 4 GB RAM. Moreover, the XYZ RGB Thai
Statue model (with 125 K vertices), the Stanford Armadillo
(with 172 K vertices) and 3DScanCo Angel (with 237 K ver-
tices) models require 6.58, 9.01 and 12.15 s, respectively,
providing empirical validation that the computation of
the Zernike coefficients also scales linearly in the number
of vertices.

The run time to compute feature neighbours for a given
vertex using the pre-computed feature space depends on
the evaluation of similarity differences and nearest neigh-
bourhood searching. We sort the similarity differences,
making the search trivial. The computation of the differ-
ences and the sorting operations for a selected vertex re-
quire 0.02 s for the Asian Dragon model. The propagation
time, on the other hand, mainly depends on the mesh pro-
cessing task to propagate. In our experiments, the parame-
terization of one dragon scale consumed 0.01 s, while the
propagation to the 57 similar scales consumed 0.26 s.
Finally, the detail transfer applied to the same scales con-
sumed 0.29 s.
7. Discussion

In this section we enumerate the main differences,
advantages and disadvantages of our method and other
approaches.

The descriptor provided by the HKS method [6] can be
used to build a feature space similar to our approach, as
shown in Fig. 13. For this example, we use the same
logarithmically scaled temporal domain as the original pa-
per to build the HKS for each vertex (with 100 sampled val-
ues), and choose a range for the time parameter t to



Fig. 13. Feature space using HKS. The colours show the Euclidean
differences between the HKS of the selected vertex (in red) and all other
vertices, considering the time parameter t of the heat-diffusion process to
be in range [12,32] over the same sampled scale of the original paper [6].
The difference increases as the colour changes from blue to green to red.
(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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capture the shape of one dragon scale. Unfortunately, there
is no direct relation between the time parameter and the
geometric neighbourhood, making a region-based similar-
ity comparison based on HKS difficult.

The feature space in Fig. 13 is illustrated in the same
way as presented in our method, by colouring the model
from most similar (in blue) to least similar (in red).
Although the HKS method is able to find several similar
dragon scales in the middle, it loses several others and
incorrectly classifies as similar regions in the spine and
ears of the Asian Dragon model.

The pioneering work of Zelinka and Garland [8] intro-
duced the idea of similarity based (non-local) mesh pro-
cessing in earnest. They developed a local surface
descriptor, based on geodesic fans, capturing a notion of
similarity which largely agrees with intuition. It is impor-
tant to note that while our work is motivated by the suc-
cess of Zelinka and Garland’s approach, our descriptors
provide several benefits over geodesic fans. In particular,
we would like to draw two distinctions between these
works. First, the geodesic fan concept relies upon the
accurate computation of geodesic strips, which may be
difficult or impossible to compute in cases of non-mani-
foldness or holes in the mesh. Also topological inconsisten-
Fig. 14. Test of our feature space using the Asian Dragon model with
holes and inconsistencies. While the dragon scales with holes are
classified as different than the selected scale, the other scales remain
correctly classified.
cies, which result in regions with similar appearance but
distinct topology, will not be discovered by the geodesic-
fan descriptor. However, the heightmap descriptor intro-
duced in this paper is robust to such holes and topological
artifacts (see Fig. 14). As a result, we find that our descrip-
tor also behaves in an intuitive manner, and that regions
presenting visual similarities are discovered as similar by
our approach.

The second distinction is that the geodesic fans require
alignment to compute similarity. To make their represen-
tation rotationally invariant, Zelinka and Garland consider
storing all possible (discrete) rotations of their descriptor
linearizing each fan into a high-dimensional feature vector.
Then, an indexing structure, such as a kd-tree, may be used
to quickly perform a similarity search. The problem of this
approach is that it increases the storage burden consider-
ably. To offset the negative effects on storage, they show
that the resultant feature vectors can then be reduced in
dimensionality by applying tree-structured vector quanti-
zation (TSVQ). In contrast with Zelinka and Garland’s ap-
proach, our method avoids such complexity by directly
providing a rotationally invariant representation of our
surface descriptor. Once we extract the Zernike moments
of our descriptors, only a single inner product is required
to compute similarity between two descriptors. Though
we have not found the addition of TSVQ and indexing steps
necessary, we would like to note that it is possible to fur-
ther increase the comparison performance of our local sur-
face descriptors and their effective size by applying the
same type of fast indexing methods exploited by Zelinka
and Garland. Finally, our descriptors admit a natural exten-
sion to a region-based descriptor, while such an extension
using geodesic fans is not clear.
8. Conclusion

We have introduced a new robust and rotationally
invariant surface descriptor for similarity and SAMPLE, a
framework for similarity augmented mesh processing,
and shown how processing and editing operations per-
formed on one region of a meshed surface can be automat-
ically transferred to other similar regions. One of the
primary constituents of our framework is a novel mesh
surface descriptor. For a given vertex, we build a height-
map by considering the distance from its tangent plane
to the meshed surface. Moreover, we show how these
descriptors can be effectively compared. First, we compute
the Zernike polynomial expansion of the heightmap
descriptor, the coefficients of which yield a rotationally
invariant representation. Second, we devise a region-based
descriptor, rather than vertex-based, by applying Gaussian
weights to the Zernike coefficients of nearby vertices.

After defining a similarity measurement, we introduce
the idea of feature space. We define this space in which
mesh vertices are embedded using the Gaussian-weighted
Zernike coefficients of their corresponding descriptors.
This space provides a powerful tool for a new form of
similarity-driven mesh processing. We show how the fea-
ture space can be used to propagate processing across sim-
ilar regions, using parameterization and editing as two
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examples. The latter tool can be used to replicate mesh
editing operations automatically across similar regions;
for instance, reducing the burden on artists of repeatedly
performing the same editing operation.

We believe that our similarity augmented mesh pro-
cessing framework shows promising results and presents
numerous avenues for future research. One future direc-
tion of research is to consider different and more robust
ways to compute the vertex normals, since it has a direct
impact in our descriptor. Another consideration is to study
other formulations for the local surface descriptor. The
heightmap we currently use can be viewed as a scalar
function parameterized over the tangent plane of the cen-
tre vertex. It may be possible to form more informative
descriptors by considering different parameterizations,
such as authalic or conformal, for the region surrounding
the centre vertex. A third possibility is to consider different
scalar functions, such as curvature or saliency, to be evalu-
ated over the parameter domain. One final interesting ave-
nue for future research is to extend our surface descriptor
to take into account surface regions at multiple scales. The
success of multi-scale descriptors in the field of image
processing suggests that such an approach might have sig-
nificant benefits over the current single-scale implementa-
tion of our SAMPLE method.
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