
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, JUNE 1997 171

Adaptive Real-Time Level-of-detail-based
Rendering for Polygonal Models

Julie C. Xia, Jihad El-Sana, Amitabh Varshney

Abstract— We present an algorithm for performing adaptive real-time
level-of-detail-based rendering for triangulated polygonal models. The
simplifications are dependent on viewing direction, lighting, and visibility
and are performed by taking advantage of image-space, object-space, and
frame-to-frame coherences. In contrast to the traditional approaches of
precomputing a fixed number of level-of-detail representations for a given
object our approach involves statically generating a continuous level-of-
detail representation for the object. This representation is then used at
run-time to guide the selection of appropriate triangles for display. The
list of displayed triangles is updated incrementally from one frame to the
next. Our approach is more effective than the current level-of-detail-based
rendering approaches for most scientific visualization applications where
there are a limited number of highly complex objects that stay relatively
close to the viewer. Our approach is applicable for scalar (such as distance
from the viewer) as well as vector (such as normal direction) attributes.

I. I NTRODUCTION

The scientific visualization and virtual reality communities
have always faced the problem that their “desirable” visualiza-
tion dataset sizes are one or more orders of magnitude larger
than what the hardware can display at interactive rates. Re-
cent research on graphics acceleration for the navigation of
such three-dimensional environments has been motivated by at-
tempts to bridge the gap between the desired and the actual
hardware performance, through algorithmic and software tech-
niques. This research has involved reducing the geometric and
rendering complexities of the scene by using
� statically computed level-of-detail hierarchies [10], [14], [22],
[25], [31], [32], [35],
� visibility-based culling that is statically computed [1], [34]
and dynamically computed [17], [18], [27],
� various levels of complexity in shading and illumination mod-
els[4],
� texture mapping [5], [6], and
� image-based rendering [7], [8], [13], [29], [33].

In this paper we will focus on reducing the geometric com-
plexity of a three-dimensional environment by using dynam-
ically computed level-of-detail hierarchies. Research on sim-
plification of general three-dimensional polygonal objects (non-
convex, non-terrain, possibly high genus) has spanned the en-
tire gamut of highly local to global algorithms, with several ap-
proaches in between that have both local and global steps.

Local algorithms work by applying a set of local rules, which
primarily work under some definition of alocal neighborhood,
for simplifying an object. The local rules are iteratively applied
under a set of constraints and the algorithm terminates when it is
no longer possible to apply the local rule without violating some
constraint. The global algorithms optimize the simplification
process over the whole object, and are not necessarily limited to

Contact Address: Department of Computer Science, State University
of New York at Stony Brook, Stony Brook, NY 11794-4400, Email:
chaoyujjihadjvarshney@cs.sunysb.edu

the small neighborhood regions on the object. Some of the local
approaches have been – vertex deletion by Schroederet al [32],
vertex collapsing by Rossignac and Borrel [31], edge collaps-
ing by Hoppeet al [26] and Guéziec [20], triangle collapsing by
Hamann [21], and polygon merging by Hinker and Hansen [24].
Some of the global approaches have been – redistributing ver-
tices over the surface by Turk [35], minimizing global energy
functions by Hoppeet al [26], using simplification envelopes by
Varshney [36] and Cohenet al [10], and wavelets by DeRoseet
al [14]. The issue of preservation or simplification of the genus
of the object is independent of whether an algorithm uses local
rules, or global rules, or both, to simplify. Recent work by Heet
al [22] provides a method to perform a controlled simplification
of the genus of an object.

Simplification algorithms such as those mentioned above are
iteratively applied to obtain a hierarchy of successively coarser
approximations to the input object. Such multiresolution hierar-
chies have been used in level-of-detail-based rendering schemes
to achieve higher frame update rates while maintaining good vi-
sual realism. These hierarchies usually have a number of distinct
levels of detail, usually5 to 10, for a given object. At run time,
the perceptual importance of a given object in the scene is used
to select its appropriate level of representation from the hierar-
chy [9], [11], [12], [16], [28], [30]. Thus, higher detail represen-
tations are used when the object is perceptually more important
and lower detail representations are used when the object is per-
ceptually less significant. Transitions from one level of detail to
the next are typically based on simple image-space metrics such
as the ratio of the image-space area of the object (usually imple-
mented by using the projected area of the bounding box of the
object) to the distance of the object from the viewer.

Previous work, as outlined above, is well-suited for virtual re-
ality walkthroughs and flythroughs of large and complex struc-
tures with several thousands of objects. Examples of such en-
vironments include architectural buildings, airplane and subma-
rine interiors, and factory layouts. However, for scientific vi-
sualization applications where the goal often is to visualize one
or two highly detailed objects at close range, most of the pre-
vious work is not directly applicable. For instance, consider a
biochemist visualizing the surface of a molecule or a physician
inspecting the iso-surface of a human head extracted from a vol-
ume dataset. It is very likely during such a visualization ses-
sion, that the object being visualized will not move adequately
far away from the viewer to allow the rendering algorithm to
switch to a lower level of detail. What is desirable in such a
scenario is an algorithm that can allow several different levels
of details to co-exist across different regions of the same object.
Such a scheme needs to satisfy the following two important cri-
teria:
1. It should be possible to select the appropriate levels of detail

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, JUNE 1997 172

across different regions of the same object in real time.
2. Different levels of detail in different regions across an object
should merge seamlessly with one another without introducing
any cracks and other discontinuities.

In this paper we present a general scheme that can construct
such seamless and adaptive level-of-detail representations on-
the-fly for polygonal objects. Since these representations are
view-dependent, they take advantage of view-dependent illumi-
nation, visibility, and frame-to-frame coherence to maximize vi-
sual realism and minimize the time taken to construct and draw
such objects. Our approach shows how one can adaptively de-
fine such levels of detail based on (a) scalar attributes such as
distance from the viewpoint and (b) vector attributes such as the
direction of vertex normals. An example using our approach is
shown in Figure 1.

(a) Sphere with 8192 triangles (uniform LOD)

(b) Sphere with 512 triangles (uniform LOD)

(c) Sphere with 537 triangles (adaptive LOD)

Fig. 1. Uniform and adaptive levels of detail

II. PREVIOUS WORK

Adaptive levels of detail have been used in terrains by Gross
et al [19] by using a wavelet decomposition of the input data
samples. They define wavelet space filters that allow changes to

the quality of the surface approximations in locally-defined re-
gions. Thus, the level of detail around any region can adaptively
refine in real-time. This work provides a very elegant solution
for terrains and other datasets that are defined on a regular grid.

Some of the previous work in the area of general surface sim-
plification has addressed the issue of adaptive approximation of
general polygonal objects. Turk [35] and Hamann [21] have
proposed curvature-guided adaptive simplification with lesser
simplification in the areas of higher surface curvature. In [10],
[36], adaptive surface approximation is proposed with different
amounts of approximation over different regions of the object.
Guéziec [20] proposes adaptive approximation by changing the
tolerance volume in different regions of the object. However in
all of these cases, once the level of approximation has been fixed
for a given region of the object, a discrete level of detail corre-
sponding to such an approximation is statically generated. No
methods have been proposed there that allow free intermixing of
different levels of detail across an object in real time in response
to changing viewing directions.

Work on surface simplification using wavelets [14], [15] and
progressive meshes [25] goes a step further. These methods pro-
duce a continuous level-of-detail representation for an object in
contrast to a set of discrete number of levels of detail. In par-
ticular, Hoppe [25] outlines a method for selective refinement –
i.e. refinement of a particular region of the object based upon
view frustum, silhouette edges, and projected screen-space area
of the faces. Since the work on progressive meshes by Hoppe
[25] is somewhat similar to our work we overview his method
next and discuss how our method extends it.

Progressive meshes offer an elegant solution for a continu-
ous resolution representation of polygonal meshes. A polygonal
meshM̂ = Mk is simplified into successively coarser meshes
M i by applying a sequence of edge collapses. An edge collapse
transformation and its dual, the vertex split transformation, is
shown in Figure 2.

Vertex Split

 Edge Collapse

n1n0

n2

n3n4

n5

n6

n0

n2

n3n4

n5

n6

c

p p

n1

Fig. 2. Edge collapse and vertex split

Thus, a sequence ofk successive edge collapse transforma-
tions yields a sequence of successively simpler meshes:

Mk collapsek�1
! Mk�1 collapsek�2

! : : :M1 collapse0
! M0 (1)

We can retrieve the successively higher detail meshes from
the simplest meshM0 by using a sequence of vertex-split trans-
formations that are dual to the corresponding edge collapse
transformations:

M0 split0
! M1 split1

! : : :Mk�1 splitk�1
! (M̂ = Mk) (2)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, JUNE 1997 173

Hoppe [25] refers to(M0; fsplit0; split1; : : : ; splitk�1g) as
a progressive meshrepresentation. Progressive meshes present
a novel approach to storing, rendering, and transmitting meshes
by using a continuous-resolution representation. However we
feel that there is some room for improvement in adapting them
for performing selective refinement in an efficient manner. In
particular, following issues have not yet been addressed by pro-
gressive meshes:
1. The sequence of edge collapses is aimed at providing good
approximationsM i to (M̂ = Mk). However, if a sequence
of meshesM i are good approximations tôM under some dis-
tance metric, it does not necessarily mean that they also pro-
vide a “good” sequence of edge collapse transformations for
selective refinement. Let us consider a two-dimensional anal-
ogy of a simple polygon as shown in Figure 3. Assume that
verticesv0; v6; v7; andv8 are “important” vertices (under say
some perceptual criteria) and can not be deleted. An approach
that generates approximations based on minimizing distances to
the original polygon will collapse vertices in the orderv1 !
v2; v2 ! v3; v3 ! v4; v4 ! v5; v5 ! v6 to get a coarse
polygon(v0; v6; v7; v8). Then if selective refinement is desired
around vertexv1, verticesv6; v5; v4; v3; v2 will need to be split
in that order before one can get to vertexv1. An approach that
was more oriented towards selective refinement might have col-
lapsedv1 ! v2; v3 ! v4; v5 ! v6; v2 ! v4; v4 ! v6 for
better adaptive results, even though the successive approxima-
tions are not as good as the previous ones under the distance
metric.

v0

v1

v2

v3

v4

v5

v6

v7v8

Fig. 3. Good versus efficient selective simplification

2. Since the edge collapses are defined in a linear sequence, the
total number of child links to be traversed before reaching the
desired node isO(n).
3. No efficient method for incrementally updating the selective
refinements from one frame to the next is given. The reverse
problem of selective refinement – selective simplification too is
not dealt with.

In this paper we provide a solution to the above issues with
the aim of performing real-time adaptive simplifications and re-
finements. We define a criterion for performing edge collapses
that permits adaptive refinement around any vertex. Instead of
constructing a series of sequential edge collapses we construct a
merge treeover the vertices of mesĥM so that one can reach any
child vertex inO(logn) links. We then describe how one can
perform incremental updates within this tree to exploit frame-

to-frame coherence, view-dependent illumination, and visibility
computations using both scalar and vector attributes.

III. SIMPLIFICATION WITH IMAGE-SPACE FEEDBACK

Level-of-detail-based rendering has thus far emphasized
object-space simplifications with minimal feedback from the
image space. The feedback from the image space has been in
the form of very crude heuristics such as the ratio of the screen-
space area of the bounding box of the object to the distance of
the object from the viewer. As a result, one witnesses coarse
image-space artifacts such as the distracting “popping” effect
when the object representation changes from one level of detail
to the next [23]. Attempts such as alpha-blending between the
old and the new levels of detail during such transitions serve to
minimize the distraction at the cost of rendering two represen-
tations. However alpha blending is not the solution to this prob-
lem since it does not address the real cause – lack of sufficient
image-space feedback to select the appropriate local level of de-
tail in the object space; it merely tries to cover-up the distracting
artifacts.

Increasing the feedback from the image space allows one to
make better choices regarding the level of detail selection in the
object-space. We next outline some of the ways in which image-
space feedback can influence the level of detail selection in the
object-space.

A. Local Illumination

Increasing detail in a direction perpendicular to, and propor-
tional to, the illumination gradient across the surface is a good
heuristic [2]. This allows one to have more detail in the regions
where the illumination changes sharply and therefore one can
represent the highlights and the sharp shadows well. Since sur-
face normals play an important role in local illumination one
can take advantage of the coherence in the surface normals to
build a hierarchy over a continuous resolution model that allows
one to capture the local illumination effects well. We outline in
Section IV-C how one can build such a hierarchy.

B. Screen-Space Projections

Decision to keep or collapse an edge should depend upon the
length of its screen-space projection instead of its object-space
length. At a first glance this might seem very hard to accomplish
in real-time since this could mean checking for the projected
lengths of all edges at every frame. However, usually there is
a significant coherence in the ratio of the image-space length to
the object-space length of edges across the surface of an object
and from one frame to the next. This makes it possible to take
advantage of a hierarchy built upon the the object-space edge
lengths for an object. We use an approximation to the screen-
space projected edge length that is computed from the object-
space edge length. We outline in Section IV-B how one can
build such a hierarchy.

C. Visibility Culling

During interactive display of any model there is usually a sig-
nificant coherence between the visible regions from one frame
to the next. This is especially true of the back-facing polygons

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, JUNE 1997 174

that account for almost half the total number of polygons and
do not contribute anything to the visual realism. A hierarchy
over a continuous resolution representation of an object allows
one to significantly simplify the invisible regions of an object,
especially the back-facing ones. This view-dependent visibility
culling can be implemented in a straightforward manner using
the hierarchy on vertex normals discussed in Section IV-C.

D. Silhouette boundaries

Silhouettes play a very important role in perception of detail.
Screen-space projected lengths of silhouette edges (i.e., edges
for which one of the adjacent triangles is visible and the other is
invisible), can be used to very precisely quantify the amount of
smoothness of the silhouette boundaries. A hierarchy built upon
a continuous-resolution representation of a object allows one to
do this efficiently.

IV. CONSTRUCTION OFMERGE TREE

We would like to create a hierarchy that provides us a
continuous-resolution representation of an object and allows us
to perform real-time adaptive simplifications over the surface
of an object based upon the image-space feedback mechanisms
mentioned in Section III. Towards this end we implement a
merge treeover the vertices of the original model. In our current
implementation, the merge tree stores the edge collapses in a hi-
erarchical manner. However, as we discuss in Section VII the
concept of a merge tree is a very general one and it can be used
with other local simplification approaches as well. Note that the
merge tree construction is done as an off-line preprocessing step
before the interactive visualization.

A. Basic Approach

In Figure 2, the vertexc is merged with the vertexp as a result
of collapsing the edge(pc). Conversely, during a vertex split the
vertexc is created from the vertexp. We shall henceforth refer
to c as the child vertex of the parent vertexp. The merge tree
is constructed upwards from the high-detail meshM̂ to a low-
detail meshM0 by storing these parent-child relationships in a
hierarchical manner over the surface of an object.

At each levell of the tree we determine parent-child relation-
ships amongst as many vertices at levell as possible. In other
words, we try to determine all vertices that can be safely merged
based on criterion defined in Section IV-D. The vertices that are
determined to be the children remain at levell and all the other
vertices at levell are promoted to levell + 1. Note that the ver-
tices promoted to levell+1 are a proper superset of the parents
of the children left behind at levell. This is because there are
vertices at levell that are neither parents nor children. We dis-
cuss this in greater detail in the context ofregions of influence
later in this section. We apply the above procedure recursively
at every level until either (a) we are left with a user-specified
minimum number of vertices, or (b) we cannot establish any
parent-child relationships amongst the vertices at a given level.
Case (b) can arise because in determining a parent-child rela-
tionship we are essentially collapsing an edge and not all edge
collapses are considered legal. For a detailed discussion on le-
gality of edge collapses the interested reader can refer to [26].

Since in an edge collapse only one vertex merges with another,
our merge tree is currently implemented as a binary tree.

To construct a balanced merge tree we note that the effects of
an edge collapse are local. Let us define theregion of influence
of an edge(v0; v1) to be the union of triangles that are adjacent
to eitherv0 or v1 or both. The region of influence of an edge
is the set of triangles that can change as an edge is gradually
collapsed to a vertex, for example, in a morphing. Thus, in Fig-
ure 2 as vertexc merges to vertexp, (orp splits toc), the changes
to the mesh are all limited to within the region of influence of
edge(pc) enclosed byn0; n1; : : : n6. Note that all the triangles
in region of influence will change if verticesp andc are merged
to form an intermediate vertex, say(p + c)=2. In our current
implementation, the position of the intermediate vertex is the
same as the position of the parent vertexp. However our data-
structures can support other values of the intermediate vertex
too. Such values could be used, for example, in creating inter-
mediate morphs between two level-of-detail representations.

To create a reasonably balanced merge tree we try to collapse
as many edges as possible at each level such that there are no
common triangles in their respective regions of influence. Since
this step involves only local checks, we can accomplish this step
in time linear in the number of triangles at this level. If we as-
sume that the average degree (i.e. the number of neighboring
triangles) of a vertex is6, we can expect the number of trian-
gles in an edge’s region of influence to be10. After the collapse
this number of triangles reduces to8. Thus the number of tri-
angles can be expected to reduce roughly by a factor of4=5
from a higher-detail level to a lower-detail level. Thus, in an
ideal situation, the total time to build the tree will be given by
n + 4n

5
+ 16n

25
+ : : : = O(n). However, this assumes that we

arbitrarily choose the edges to be collapsed. A better alterna-
tive is to sort the edges by their edge lengths and collapse the
shortest edges first. Collapsing an edge causes the neighboring
edges to change their lengths. However as mentioned above,
since changes are local we can maintain the sorted edge lengths
in a heap for efficient updates. With this strategy one can build
the merge tree in timeO(n logn).

B. Scalar Subtree Attributes

To allow real-time refinement and simplification we can store
at every parent node (i.e. a node that splits off a child vertex)
of the merge tree, a range of scalar attributes of the children in
the subtree below it. Then image-space feedback can be used to
determine if this range of scalar attributes merits a refinement of
this node or not. We explain this process of incremental refine-
ment and simplification in greater details in Section V-A.

In our current implementation every merge tree nodev stores
the Euclidean distances to its child and parent that determine
whenv’s child will merge intov and whenv will merge into its
parent. The former is called thedownswitch distanceand the lat-
ter is called theupswitch distance. These distances are built up
during the merge tree creation stage. If the maximum possible
screen-space projection of the downswitch distance at the ver-
tex v in the object space is greater than some pre-set threshold,
we permit refinement atv. However, if the maximum possible
screen-space projection of the upswitch distance atv in the ob-
ject space is less than the threshold, it means that this region

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, JUNE 1997 175

occupies very little screen space and can be simplified.

C. Vector Subtree Attributes

Our implementation also allows incremental simplification
and refinement based upon the coherences of the surface nor-
mals. This allows us to implement view-dependent real-time
simplifications based on local illumination and visibility. The
regions with low intensity gradients are drawn in lower detail,
while the regions with high intensity gradients are drawn in
higher detail. Similarly, regions of the object that are back-
facing are drawn at a much lower detail then the front-facing
regions.

Fig. 4. Bounding cone for normal vectors

Since we are using frame-to-frame coherences in computing
the levels of detail we need to adopt a data-structure that repre-
sents the variation in the normal vectors amongst all the descen-
dents of any given vertex. To identify a possible representation,
let us consider the idea behind a Gauss map. A Gauss map is a
mapping of the unit normals to the corresponding points on the
surface of a unit sphere. Thus, all the normal variations in a sub-
tree will be represented by a closed and connected region on the
surface of a sphere using a Gauss map. To simplify the compu-
tations involved, we have decided to approximate such regions
by circles on the surface of the unit sphere, i.e. bounding cones
containing all the subtree normal vectors. This is demonstrated
in Figure 4 where the normal vectors in the surface shown on
the left are contained within the cone (i.e. a circle on the Gauss
map) on the right.

At the leaf-level, each vertex is associated with a normal-cone
whose axis is given by its normal vector and whose angle is zero.
As two vertices merge, the cones of the child and parent vertices
are combined into a new normal cone that belongs to the parent
vertex at the higher level. The idea behind this merging of cones
is shown in Figure 5.

D. Merge Tree Dependencies

By using techniques outlined in Section V-A, one can de-
termine which subset of vertices is sufficient to reconstruct an
adaptive level-of-detail for a given object. However, it is not
simple to define a triangulation over these vertices and guaran-
tee that the triangulation will not “fold back” on itself or other-
wise represent a non-manifold surface (even when the original
was not so). Figure 6 shows an example of how an undesirable
folding in the adaptive mesh can arise even though all the edge
collapses that were determined statically were correct.A shows
the initial state of the mesh. While constructing the merge tree,

b)Merged Parent Conea) Child Cones

Fig. 5. Cone merging

we first collapsed vertexv2 to v1 to get meshB and then col-
lapsed vertexv3 to v4 to get meshC. Now suppose at run-time
we determined that we needed to display verticesv1; v2, andv4
and could possibly collapse vertexv3 to v4. However, if we
collapsev3 to v4 directly, as in mesh D, we get a mesh fold
where there should have been none. One could devise elaborate
procedures for checking and preventing such mesh fold-overs at
run-time. However, such checks involve several floating-point
operations and are too expensive to be performed on-the-fly.

A B

CD

v1
v3 v1(v2) v3

v1(v2)

v4(v3)

v4 v4

v4(v3)

v2
v1

v2

Fig. 6. Mesh folding problem

To solve the above problem we introduce the notion of depen-
dencies amongst the nodes of a merge tree. Thus, the collapse
of an edgee is permitted only when all the vertices defining the
boundary of the region of influence of the edgee exist and are
adjacent to the edgee. As an example, consider Figure 2. Vertex
c can merge with vertexp only when the verticesn0; n1; : : : ; nk
exist and are adjacent top andc. From this we determine the
following edge collapse dependencies, restricting the level dif-
ference between adjacent vertices:
1. c can collapse top, only whenn0, n1, . . . ,nk are present as
neighbors ofp andc for display.
2. n0; n1; : : : ; nk can not merge with other vertices, unlessc
first merges withp.

Similarly, to make a safe split fromp to p andc, we determine
the following vertex split dependency:
1. p can split toc andp, only whenn0; n1; : : : ; nk are present
as neighbors ofp for display.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, JUNE 1997 176

2. n0; n1; : : : ; nk can not split, unlessp first splits top andc.

The above dependencies are followed during each vertex-split
or edge collapse during real-time simplification. These depen-
dencies are easily identified and stored in the merge tree during
its creation. Considering Figure 6 again, we can now see that
collapse of vertexv3 to v4 depends upon the adjacency of vertex
v1 to v3. If vertexv2 is present thenv1 will not be adjacent to
v3 and thereforev3 will not collapse tov4. Although having de-
pendencies might sometimes give lesser simplification than oth-
erwise, it does have the advantage of eliminating the expensive
floating-point run-time checks entirely. The basic idea behind
merge tree dependencies has a strong resemblance to creating
balanced subdivisionsof quad-trees as presented by Baumet al
in [3] where only a gradual change is permitted from regions of
high simplifications to low simplifications. Details of how these
merge tree dependencies are used during run-time are given in
Section V-A.

The pseudocode outlining the data-structure for a merge tree
node is given in Figure 7. The pseudocode for building and
traversing the merge tree is given in Figure 8. We are repre-
senting the triangular mesh by the winged-edge data-structure
to maintain the adjacency information.

struct NODE {
struct VERTEX *vert ; /* associated vertex */
struct NODE *parent ; /* parent node for merging */
struct NODE *child[2] ; /* child nodes for refinement */
float upswitch ; /* threshold to merge */
float downswitch; /* threshold to refine */
struct CONE *cone ; /* range of subtree normals */
struct VERTEX **adj_vert ; /* adjacent vertices */
int adj_num ; /* number of adjacent vertices */
struct VERTEX **depend_vert;/* dependency list for merge */
int depend_num ;/* number of vertices in the */
}; /* dependency list */

Fig. 7. Data-structure for a merge tree node

/* Given a mesh, build_mergetree() constructs a list of merge trees - one
* for every vertex at the coarsest level of detail.
*/

build_mergetree(struct MESH *mesh, struct NODE **roots)
{ struct HEAP *current_heap, *next_heap ;

int level ;

current_heap = InitHeap(mesh);
next_heap = InitHeap(nil) ;
for (level = 0 ; HeapSize(current_heap) > MIN_RESOLUTION_SIZE; level ++)
{ while (HeapSize(current_heap) > 0)

{ edge = ExtractMinEdge(current_heap);
node = CreatNode(edge);
SetDependencies(node);
SetCone(node); /* Set vector attributes */
SetSwitchDistances(node); /* Set scalar attributes */
InsertHeap(next_heap, node);

}
FreeHeap(current_heap);
current_heap = next_heap ;
next_heap = InitHeap(nil);

}
FlattenHeap(roots, current_heap);

}

/* Given a list of nodes of the merge tree that were active in the previous
* frame, traverse_mergetree() constructs a list of new merge tree nodes by
* either refining or simplifying each of the active merge tree nodes.
*/

traverse_mergetree(struct NODE **current_list,
struct VIEW view, struct LIGHTS *lights)

{ int switch ;

for each node in current_list do
{ switch = EvalSwitch(node, view, lights);

if (switch == REFINE)
RefineNode(node);

else if (switch == SIMPLIFY)
MergeNode(node);

}
}

Fig. 8. Pseudocode for building and traversing the merge tree

V. REAL-TIME TRIANGULATION

Once the merge tree with dependencies has been constructed
off-line it is easy to construct an adaptive level-of-detail mesh
representation at run-time. Real-time adaptive mesh reconstruc-
tion involves two phases – determination of vertices that will be
needed for reconstruction and determination of the triangulation
amongst them. We shall refer to the vertices selected for display
at a given frame asdisplay verticesand triangles for display as
display triangles. The phases for determination of display ver-
tices and triangles are discussed next.

A. Determination of display vertices

In this section we outline how we determine the display ver-
tices using the scalar and vector attribute ranges stored with the
nodes of the merge tree. We first determine theprimary dis-
play verticesusing the screen-space projections and the normal
vector cones associated with merge tree nodes. These are the
only vertices that would be displayed if there were no triangula-
tion constraints or mesh-folding problems. Next, from these pri-
mary display vertices we determine thesecondary display ver-
ticesthat are the vertices that need to be displayed due to merge
tree dependencies to avoid the mesh fold-overs in run-time tri-
angulations.

A.1 Primary Display Vertices

Screen-Space Projection
As mentioned earlier, every merge tree nodev stores a Eu-

clidean distance for splitting a vertex to its child (downswitch
distance) as well as the distance at which it will merge to its par-
ent (upswitch distance). If the maximum possible screen-space
projection of the downswitch distance at the vertexv in the ob-
ject space is greater than some pre-set thresholdT , we permit
refinement atv and recursively check the children ofv. How-
ever, if the maximum possible screen-space projection of the
upswitch distance atv in the object space is less than the thresh-
old T , it means that this region occupies very little screen space
and can be simplified, so we markv asinactivefor display.
Normal Vectors

We need to determine the direction and the extent of the nor-
mal vector orientation within the subtree rooted at a display ver-
tex, with respect to the viewing direction as well as light source,
to accomplish view-dependent local illumination and visibility-
based culling.

To determine silhouettes and the back-facing regions of an
object, we check to see if the normal vector cone at a vertex lies
entirely in a direction away from the viewer. If so, this vertex
can be marked inactive for display. If not, this vertex is a display
vertex and is a candidate for further refinement based on other
criteria such as screen-space projection, illumination gradient,
and silhouette smoothness. In such a case we recursively check
its children. The three possible cases are shown in Figure 9.

Similarly, for normal-based local illumination, such as Phong
illumination, we use the range of the reflection vectors and de-
termine whether they contain the view direction or not to deter-
mine whether to simplify or refine a given node of the merge
tree.

We follow the procedures outlined above to select all those

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, JUNE 1997 177

Silhouette

Back-facing Front-facing

Fig. 9. Selective refinement and simplification using normal cones

vertices for display that either (a) are leaf nodes and none of
their parents have been marked as inactive, or (b) have their im-
mediate child marked as inactive. This determines the list of
primary display vertices.

A.2 Secondary Display Vertices

We follow the merge dependencies from the list of primary
display vertices to select the final set of display vertices in the
following manner. If a vertexv is in the initial list of display
vertices and for it to be created (via a vertex split), the ver-
tices vd0 ; vd1 ; : : : ; vdk had to be present, we add the vertices
vd0 ; vd1 ; : : : ; vdk to the list of display vertices and recursively
consider their dependencies. We continue this process until no
new vertices are added.

When determining the vertices for display in framei+ 1 we
start from the vertex list for display used in framei. We have
found a substantial frame-to-frame coherence and the vertex dis-
play list does not change substantially from one frame to the
next. There are minor local changes in the display list on ac-
count of vertices either refining or merging with other vertices.
These are easily captured by either traversing the merge tree up
or down from the current vertex position. The scalar and vector
attribute ranges stored in merge tree nodes can be used to guide
refinements if the difference in the display vertex lists from one
frame to the next becomes non-local for any reason. We com-
pute the list of display vertices for first frame by initializing the
list of display vertices for frame0 to be all the vertices in the
model and then proceeding as above.

B. Determination of display triangles

If the display triangles for framei are known, determination
of the display triangles for framei+1 proceeds in an interleaved
fashion with the determination of display vertices for framei+1

from framei. Every time a display vertex of framei merges in
framei+1we simply delete and add appropriate triangles to the
list of display triangles as shown in Figure 10. The case where
a display vertex in framei splits for framei+1 is handled anal-
ogously. Incremental determination of display triangles in this
manner is possible because of the dependency conditions men-
tioned in Section IV-D. The list of display triangles for the first
frame is obtained by initializing the list for frame0 to be all the
triangles in the model and then following the above procedure.

VI. RESULTS AND DISCUSSION

We have tried our implementation on several large triangu-
lated models and have achieved encouraging results. These are
summarized in Table I The images of teapot, bunny, crambin,

n1n0

n2

n3n4

n5

n6

n0

n2

n3n4

n5

n6

c

p p

n1

- -

-
-

- +
+ + Edge Collapse

Fig. 10. Display triangle determination

phone, sphere, buddha, and dragon models that were produced
for the times in Table I are shown in Figures 1, 11, 13, and
14 respectively. All of these timings are in milliseconds on a
Silicon Graphics Onyx with RE2 graphics, a 194MHz R10000
processor, and 640MB RAM. It is easy to see that the time to
traverse the merge tree and construct the list of triangles to be
displayed from frame to frame is relatively small. This is be-
cause of our incremental computations that exploit image-space,
object-space, and frame-to-frame coherences. The above times
hold as the user moves through the model or moves the lights
around. The triangulation of the model changes dynamically to
track the highlights as well as the screen-space projections of
the faces.

Highest detail Crambin surface Simplified Crambin surface

Highest detail Bunny Simplified Bunny

Highest detail Teapot Simplified Teapot

Highest detail Phone Simplified Phone

Fig. 11. Dynamic adaptive simplification

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, JUNE 1997 178

Highest Detail Adaptive Detail Reduction Ratio

Dataset Display Display Display Tree Traverse Display Total Display Display

Tris Time Tris Levels Tree Time Time Tris Time

Teapot 3751 57 1203 36 10 17 27 32.0% 47.3 %

Sphere 8192 115 994 42 8 16 24 12.1% 20.8 %

Bunny 69451 1189 13696 65 157 128 285 19.7% 23.9 %

Crambin 109884 1832 19360 61 160 194 354 17.6% 19.3 %

Phone 165963 2629 14914 63 112 144 256 8.9 % 9.7 %

Dragon 202520 3248 49771 66 447 394 842 24.5% 25.9 %

Buddha 293232 4618 68173 69 681 546 1227 23.2% 26.5 %

TABLE I

ADAPTIVE LEVEL OF DETAIL GENERATION TIMES

Highest detail model – bottom light source

Dynamic adaptive simplification – top light source

Dynamic adaptive simplification – top light source

Fig. 12. Dynamic adaptive simplification for the head of the Dragon

As can be seen from the merge tree depths, the trees are not
perfectly balanced. However, they are still within a small factor
of the optimal depths. This factor is the price that has to be paid
to incorporate dependencies and avoid the expensive run-time
floating-point checks for ensuring good triangulations. For each
dataset, we continued the merge tree construction till8 or fewer
vertices were left. As expected, the factor by which the number
of vertices decreases from one level to the next tapers off as we
reach lower-detail levels since there are now fewer alternatives
left to counter the remaining dependency constraints. As an ex-

ample, for sphere, only64 vertices were present at level30 and
it took another12 levels to bring down the number to8. If the
tree depth becomes a concern one can stop sooner, trading-off
the tree traversal time for the display time.

An interesting aspect of allowing dependencies in the merge
tree is that one can now influence the characteristics of the
run-time triangulation based upon static edge-collapse decisions
during pre-processing. As an example, we have implemented
avoidance of slivery (long and thin) triangles in the run-time tri-
angulation. As Gu´eziec [20], we quantify the quality of a trian-
gle with areaa and lengths of the three sidesl0; l1; andl2 based
on the following formula:

Quality =
4
p
3a

l2
0
+ l2

1
+ l2

2

(3)

Using Equation 3 the quality of a degenerate triangle evaluates
to 0 and that of an equilateral triangle to1. We classify all edge
collapses that result in slivery triangles to be invalid, trading-off
quantity (amount of simplification) for quality.

One of the advantages of using normal cones for back-face
simplification and silhouette definition is that it allows the
graphics to focus more on the regions of the object that are per-
ceptually more important. Thus, for instance, for generating the
given image of the molecule crambin, 8729 front-facing vertices
were traversed as compared to 3361 backfacing vertices; 1372
were classified as silhouette vertices. Similarly, for the model of
phone, our approach traversed 6552 front-facing vertices com-
pared to only 1300 backfacing vertices; 900 were classified as
silhouette vertices.

Clearly, there is a tradeoff here between image-quality and
amount of simplification achieved. The results for our simpli-
fications given in this section correspond to the images that we
thought were comparable to the images from the original highest
detail models. Higher levels of simplifications (that are faster to
incrementally compute and display) with correspondingly lower
quality images are obviously possible, allowing easy implemen-
tations of progressive refinement for display.

VII. C ONCLUSIONS ANDFUTURE WORK

We have outlined a simple approach to maintain dynamically
adaptive level of detail triangulations. Crucial to this approach

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, JUNE 1997 179

Highest detail Simplified

Fig. 13. Dynamic adaptive simplification for the Buddha

Highest detail Simplified

Fig. 14. Dynamic adaptive simplification for the Dragon

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, JUNE 1997 180

is the notion of merge trees that are computed statically and
are used during run-time to take advantage of the incremental
changes in the triangulation. In our current implementation we
are using the method of edge collapses. However the idea be-
hind merge trees is pretty general and can be used in conjunc-
tion with other local heuristics for simplification such as vertex
deletion and vertex collapsing. We plan to study some of these
other heuristics in the future and compare them with our current
implementation that uses edge collapses.

At present we do not store color ranges at the nodes of the
merge tree. Storing and using these should improve the quality
of the visualizations produced using merge trees even further.
Also of some interest will be techniques that create better bal-
anced merge trees while still incorporating dependencies. We
plan to investigate these issues further.

Of course, our approach also makes dynamically-specified
manual simplifications possible, where the user can interactively
specify the amounts of approximation desired at various regions
of the object. Using this, certain parts of the object can be ren-
dered at lower or higher details than otherwise. However, in this
paper we have only considered automatic object simplifications
during interactive display.

ACKNOWLEDGEMENTS

We would like to acknowledge several useful discussions
with Arie Kaufman and Greg Turk. We should like to thank
Greg Turk, Marc Levoy, and the Stanford University Computer
Graphics laboratory for generously sharing models of the bunny,
the phone, the dragon, and the happy Buddha. We should also
like to acknowledge the several useful suggestions made by the
anonymous reviewers that have helped improve the presentation
of this paper. This work has been supported in part by the Na-
tional Science Foundation CAREER awardCCR-9502239 and a
fellowship from the Fulbright/Israeli Arab Scholarship Program.

REFERENCES

[1] J. M. Airey. Increasing Update Rates in the Building Walkthrough Sys-
tem with Automatic Model-Space Subdivision and Potentially Visible Set
Calculations. PhD thesis, University of North Carolina at Chapel Hill,
Department of Computer Science, Chapel Hill, NC 27599-3175, 1990.

[2] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards image realism with
interactive update rates in complex virtual building environments. In Rich
Riesenfeld and Carlo Sequin, editors,Computer Graphics (1990 Sympo-
sium on Interactive 3D Graphics), volume 24, No. 2, pages 41–50, March
1990.

[3] D. R. Baum, Mann S., Smith K. P., and Winget J. M. Making radiosity
usable: Automatic preprocessing and meshing techniques for the genera-
tion of accurate radiosity solutions.Computer Graphics: Proceedings of
SIGGRAPH’91, 25, No. 4:51–60, 1991.

[4] L. Bergman, H. Fuchs, E. Grant, and S. Spach. Image rendering by adap-
tive refinement. InComputer Graphics: Proceedings of SIGGRAPH’86,
volume 20, No. 4, pages 29–37. ACM SIGGRAPH, 1986.

[5] J. F. Blinn. Simulation of wrinkled surfaces. InSIGGRAPH ’78, pages
286–292. ACM, 1978.

[6] J. F. Blinn and M. E. Newell. Texture and reflection in computer generated
images.CACM, 19(10):542–547, October 1976.

[7] S. Chen. Quicktime VR – an image-based approach to virtual environment
navigation. InComputer Graphics Annual Conference Series (SIGGRAPH
’95), pages 29–38. ACM, 1995.

[8] S. Chen and L. Williams. View interpolation for image synthesis. InCom-
puter Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages 279–
288, August 1993.

[9] J. Clark. Hierarchical geometric models for visible surface algorithms.
Communications of the ACM, 19(10):547–554, 1976.

[10] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. P.
Brooks, Jr., and W. V. Wright. Simplification envelopes. InProceed-

ings of SIGGRAPH ’96 (New Orleans, LA, August 4–9, 1996), Computer
Graphics Proceedings, Annual Conference Series, pages 119 – 128. ACM
SIGGRAPH, ACM Press, August 1996.

[11] M. Cosman and R. Schumacker. System strategies to optimize CIG image
content. InProceedings of the Image II Conference, Scottsdale, Arizona,
June 10–12 1981.

[12] F. C. Crow. A more flexible image generation environment. InComputer
Graphics: Proceedings of SIGGRAPH’82, volume 16, No. 3, pages 9–18.
ACM SIGGRAPH, 1982.

[13] L. Darsa, B. Costa, and A. Varshney. Navigating static environments using
image-space simplification and morphing. InProceedings, 1997 Sympo-
sium on Interactive 3D Graphics, pages 25 – 34, 1997.

[14] T. D. DeRose, M. Lounsbery, and J. Warren. Multiresolution analysis
for surface of arbitrary topological type. Report 93-10-05, Department of
Computer Science, University of Washington, Seattle, WA, 1993.

[15] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuet-
zle. Multiresolution analysis of arbitrary meshes. InProceedings of
SIGGRAPH 95 (Los Angeles, California, August 6–11, 1995), Computer
Graphics Proceedings, Annual Conference Series, pages 173–182. ACM
SIGGRAPH, August 1995.

[16] T. A. Funkhouser and C. H. S´equin. Adaptive display algorithm for inter-
active frame rates during visualization of complex virtual environments. In
Proceedings of SIGGRAPH 93 (Anaheim, California, August 1–6, 1993),
Computer Graphics Proceedings, Annual Conference Series, pages 247–
254. ACM SIGGRAPH, August 1993.

[17] N. Greene. Hierarchical polygon tiling with coverage masks. InProceed-
ings of SIGGRAPH ’96 (New Orleans, LA, August 4–9, 1996), Computer
Graphics Proceedings, Annual Conference Series, pages 65 – 74. ACM
Siggraph, ACM Press, August 1996.

[18] N. Greene and M. Kass. Hierarchical Z-buffer visibility. InComputer
Graphics Proceedings, Annual Conference Series, 1993, pages 231–240,
1993.

[19] M. H. Gross, R. Gatti, and O. Staadt. Fast multiresolution surface meshing.
In G. M. Nielson and D. Silver, editors,IEEE Visualization ’95 Proceed-
ings, pages 135–142, 1995.

[20] A. Guéziec. Surface simplification with variable tolerance. InProceedings
of the Second International Symposium on Medical Robotics and Com-
puter Assisted Surgery, MRCAS ’95, 1995.

[21] B. Hamann. A data reduction scheme for triangulated surfaces.Computer
Aided Geometric Design, 11:197–214, 1994.

[22] T. He, L. Hong, A. Varshney, and S. Wang. Controlled topology sim-
plification. IEEE Transactions on Visualization and Computer Graphics,
2(2):171–184, June 1996.

[23] J. Helman. Graphics techniques for walkthrough applications. InInterac-
tive Walkthrough of Large Geometric Databases, Course Notes 32, SIG-
GRAPH ’95, pages B1–B25, 1995.

[24] P. Hinker and C. Hansen. Geometric optimization. In Gregory M. Nielson
and Dan Bergeron, editors,Proceedings Visualization ’93, pages 189–195,
October 1993.

[25] H. Hoppe. Progressive meshes. InProceedings of SIGGRAPH ’96 (New
Orleans, LA, August 4–9, 1996), Computer Graphics Proceedings, Annual
Conference Series, pages 99 – 108. ACM SIGGRAPH, ACM Press, Au-
gust 1996.

[26] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh
optimization. InProceedings of SIGGRAPH 93 (Anaheim, California,
August 1–6, 1993), Computer Graphics Proceedings, Annual Conference
Series, pages 19–26. ACM SIGGRAPH, August 1993.

[27] D. Luebke and C. Georges. Portals and mirrors: Simple, fast evaluation of
potentially visible sets. InProceedings, 1995 Symposium on Interactive
3D Graphics, pages 105 – 106, 1995.

[28] P. W. C. Maciel and P. Shirley. Visual navigation of large environments
using textured clusters. InProceedings of the 1995 Symposium on Inter-
active 3D Computer Graphics, pages 95–102, 1995.

[29] L. McMillan and G. Bishop. Plenoptic modeling: An image-based render-
ing system. InComputer Graphics Annual Conference Series (SIGGRAPH
’95), pages 39–46. ACM, 1995.

[30] J. Rohlf and J. Helman. IRIS performer: A high performance multipro-
cessing toolkit for real–Time 3D graphics. In Andrew Glassner, editor,
Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994),
Computer Graphics Proceedings, Annual Conference Series, pages 381–
395. ACM SIGGRAPH, July 1994.

[31] J. Rossignac and P. Borrel. Multi-resolution 3D approximations for render-
ing. In Modeling in Computer Graphics, pages 455–465. Springer-Verlag,
June–July 1993.

[32] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle
meshes. InComputer Graphics: Proceedings SIGGRAPH ’92, volume 26,
No. 2, pages 65–70. ACM SIGGRAPH, 1992.

[33] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder. Hierarchical

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 3, NO. 2, JUNE 1997 181

image caching for accelerated walkthroughs of complex environments. In
Proceedings of SIGGRAPH ’96 (New Orleans, LA, August 4–9, 1996),
Computer Graphics Proceedings, Annual Conference Series, pages 75–82.
ACM SIGGRAPH, ACM Press, August 1996.

[34] S. Teller and C. H. S´equin. Visibility preprocessing for interactive walk-
throughs. Computer Graphics: Proceedings of SIGGRAPH’91, 25, No.
4:61–69, 1991.

[35] G. Turk. Re-tiling polygonal surfaces. InComputer Graphics: Proceed-
ings SIGGRAPH ’92, volume 26, No. 2, pages 55–64. ACM SIGGRAPH,
1992.

[36] A. Varshney. Hierarchical geometric approximations. Ph.D. Thesis TR-
050-1994, Department of Computer Science, University of North Car-
olina, Chapel Hill, NC 27599-3175, 1994.

