
Accepted,IEEE Visualization 97, October 19 – 24, 1997, Phoenix, AZ

Controlled Simplification of Genus for Polygonal Models

Jihad El-Sana Amitabh Varshney

State University of New York at Stony Brook

Abstract

Genus-reducing simplifications are important in constructing mul-
tiresolution hierarchies for level-of-detail-based rendering, espe-
cially for datasets that have several relatively small holes, tunnels,
and cavities. We present a genus-reducing simplification approach
that is complementary to the existing work on genus-preserving
simplifications. We propose a simplification framework in which
genus-reducing and genus-preserving simplifications alternate to
yield much better multiresolution hierarchies than would have been
possible by using either one of them. In our approach we first iden-
tify the holes and the concavities by extending the concept of�-
hulls to polygonal meshes under theL1 distance metric and then
generate valid triangulations to fill them.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation — Display algorithms; I.3.5
[Computer Graphics]: Computational Geometry and Object
Modeling — Curve, surface, solid, and object representations.

1 Introduction

The recent growth in the complexity of three-dimensional graphics
datasets has outpaced the advances in the graphics hardware. Sev-
eral software and algorithmic solutions have been recently proposed
to bridge the increasing gap between hardware capabilities and the
complexity of the visualization datasets. These solutions are based
on creating multiresolution hierarchies [38, 34, 33, 9, 26, 13, 23,
24, 39] and then using them with level-of-detail-based rendering
[7, 10, 11, 20, 32, 28], visibility-based culling [1, 37, 22, 27, 21, 40],
and image-based rendering [6, 5, 29, 36, 12]. The approach pre-
sented in this paper falls under the first category – creation of mul-
tiresolution hierarchies.

Level-of-detail-based rendering involves rendering perceptually
less significant objects in a scene at lower levels of detail and per-
ceptually more significant objects at higher levels of detail. Auto-
matic creation of multiresolution hierarchies is a crucial first-step
in any level-of-detail-based rendering system. Most algorithms for
creating multiresolution hierarchies preserve the topology of the in-
put object. For certain applications, such as molecular modeling,
this is truly a desirable feature. For example, consider a molecular
surface that shows a tunnel through the molecule. Such tunnels of-
ten act as atomic sieves aiding biochemical processes. Information
about the presence of tunnels and cavities in a molecule is quite
important in biochemistry applications such as rational drug de-
sign. Regardless of the degree of surface simplification, it is crucial
for these applications that such topological features be preserved.
Similarly, adaptive simplifications for finite-element structures and
study of fine tolerances between nearby parts in mechanical CAD
necessitates the use of genus-preserving simplifications.

However for certain applications, such as virtual reality,
topology-preservation in multiresolution hierarchy creation is not
a prerequisite. For example, consider a mechanical part as shown

Contact address: Department of Computer Science, State Univer-
sity of New York at Stony Brook, Stony Brook, NY 11794-4400, Email:
jihadjvarshney@cs.sunysb.edu

in Figure 1. As this part is moved farther away from the view-plane,
a level-of-detail-based rendering algorithm will progressively sub-
stitute lesser and lesser detailed versions of the object. However, if
the multiresolution hierarchy for this object is topology preserving,
then even the simplest representation of this object will have all the
holes. On the other hand, if we create a genus-reducing multireso-
lution hierarchy for this object we will be able to achieve a simpler
representation without the holes. Our experience has been that such
objects often occur in real-life engineering datasets.

(a)

(b)

Figure 1: Hierarchical simplifications of the genus

Topology-preservation criterion can actually be a costly con-
straint for a vast majority, if not all, of the objects that are used
in an interactive walkthrough of a virtual environment. Most ob-
jects can be only simplified to a limited amount before it becomes
necessary to switch to a simplified topological representation. We
propose a method that will reduce the genus of an object in acon-
trolled fashion. Our technique allows rejection of all holes, tunnels,
and cavities in an object that are less than a user-specifiable thresh-
old. We give the details of our approach in Section 3. In addi-
tion to two-manifold polygonal objects our approach also works in
presence of some limited cases of non-manifold polygonal objects
including those that have T-junctions and T-edges (shown in Fig-
ure 2). Such degeneracies are quite common in mechanical CAD
datasets from the manufacturing industry as well as some scientific
visualization datasets (such as the results of an incorrect marching
cubes implementation). Like other multiresolution hierarchy gen-
eration algorithms, the running times for our approach depend on
the choice of the object and the error tolerance. We have empiri-
cally observed the running times for our genus-reducing stages to
be usually much lesser compared to the genus-preserving simplifi-
cation stage times. The reason behind this is that for a typical object
there are few candidate regions for genus-reducing simplifications

face f

edge e

(a) T-Junction

Vertex v

Edge e

(b) T-Edge

Figure 2: Permissible non-manifold degeneracies

and their rapid identification speeds up the entire process. Details
of our implementation are given in Section 4.

We view the simplification of an object of arbitrary topological
type as a two-stage process – simplification of the topology (i.e.
reduction of the genus) and simplification of the geometry (i.e. re-
duction of the number of vertices, edges, and faces). One can mix
the execution of these two stages in any desired order. We have
observed that genus reductions by small amounts can lead to large
overall simplifications. This observation together with the fact that
genus-reducing simplifications are usually faster (since they do less
work) than genus-preserving simplifications, makes such an ap-
proach quite attractive for generating multiresolution hierarchies.
The results of our approach are presented in Section 5.

2 Previous work

Most of the existing work on creation of multiresolution hierarchies
for polygonal models works with the genus-preservation constraint
and is complementary to our approach presented in this paper. No-
table exceptions include algorithms by Rossignac and Borrel [33]
and Heet al [25].

Rossignac and Borrel’s algorithm [33] subdivides the model by
a global grid and uses a vertex clustering approach within each grid
cell. All vertices that lie within a grid cell are combined and re-
placed by a new vertex. The polygonal mesh is suitably updated
to reflect this. The nice properties of this approach are that it is
quite fast and can work in presence of degeneracies often found in
real-life polygonal datasets. This approach simplifies the genus if
the desired simplification regions fall within a grid cell. However,
it makes no guarantees about genus reduction and fine control over
the genus simplification is not easy to achieve.

He et al [25] present an algorithm to perform a controlled sim-
plification of the genus of an object. It is a good approach that
is applicable to volumetric objects on a voxel grid. It can handle
degeneracies. However, since it works in the volumetric domain,
polygonal objects have to be first voxelized. This often results in
an increased complexity that is related to the volume of the object,
not to its original representation complexity. Besides, the results
from this approach lead to a scaled-down version of the simplified
object that needs to be scaled back up to maintain the same size as
the original object. This is not difficult but it adds another stage to
the overall simplification process.

The�-hull has been defined as a generalization of the convex
hull of point-sets by Edelsbrunner, Kirkpatrick, and Seidel [15, 14].
Given a set of pointsP , a ballb of radius� is defined as anempty
�-ball if b \ P = �. For 0 � � � 1, the�-hull of P is de-
fined as the complement of the union of all empty�-balls [14].
Three-dimensional�-shapes have been defined on the Delaunay
tetrahedralizationD of the input pointsP by Edelsbrunner and
Mücke [17]. LetbT be the circumsphere of ak-simplex�T and
let its radius be�T . LetGk;�; 1 � k � 3 be the set ofk-simplices
2 D for which bT is empty and�T < �. An �-complex ofP ,
denoted byC� is the cell complex whosek-simplices are either in
Gk;� or they bound the(k + 1)-simplices ofC�. The�-shape of

P denoted byS� is the union of all simplices ofC�. Thus, an�-
shape of a set of pointsP is a subset of the Delaunay triangulation
of P . Edelsbrunner [14], has extended the concept of�-shapes to
deal with weighted points (i.e. spheres with possibly unequal radii)
in three dimensions. An�-shape of a set of weighted pointsPw is
a subset of the regular triangulation ofPw. Recent work by Bernar-
dini and Bajaj [3] uses�-hulls to elegantly deal with point-sets that
represent a sampling of mechanical CAD (polygonal or otherwise)
models. Their work primarily deals with reconstruction of surfaces
from unorganized sets of points, although it could potentially be
used for genus-simplification of reconstructed surfaces if the input
is either (a) a collection of unorganized set of points, or (b) a sam-
pling of points from a given polygonal dataset. The existing work
for �-hulls deals with only point- and sphere-based datasets.

Our research extends the concept of�-hulls to polygonal
datasets for performing genus-reducing simplifications. The pri-
mary targets of our research are the interactive three-dimensional
graphics and visualization applications where topology can be sac-
rificed if (a) it does not directly impact the application underlying
the visualization and (b) produces no visual artifacts. Both of these
goals are easier to achieve if the simplification of the topology is
finely controlledand has a sound mathematical basis. In the next
section we outline our approach that has these properties.

3 Our approach

The intuitive idea underlying our approach is to simplify the genus
of a polygonal object by rolling a sphere of radius� over it and
filling up all the regions that are notaccessible to the sphere. This
is the same as the underlying idea of�-hulls over point-sets. The
problem of planning the motion of a sphere amidst polyhedral ob-
stacles in three-dimensions has been very nicely worked out by Ba-
jaj and Kim [2]. We use these ideas in our approach. Let us first
assume that our polygonal dataset consists of only triangles; if not,
we can triangulate the individual polygons [35, 8, 31]. Planning
the motion of a sphere of radius�, sayS(�), amongst triangles is
equivalent to planning the motion of a point amongst “grown” tri-
angles. Mathematically, a grown triangleTi(�) is the Minkowski
sum of the original triangleti with the sphereS(�). Formally,
Ti(�) = ti � S(�), where� denotes the Minkowski sum which
is equivalent to the convolution operation. Thus, our problem re-
duces to efficiently and robustly computing the union of the grown
trianglesTi(�). The boundary of this union,@

S
n

i=1
Ti(�), where

n is the number of triangles in the dataset, will represent the locus
of the center of the sphere as it is rolled in contact with one or more
triangles and can be used to guide the genus simplification stage.
We should point out here that our choice of theL1 metric over the
L2 metric buys us robustness and efficiency but sacrifices the ro-
tational invariance of error tolerance in the conventional Euclidean
(L2) sense.

3.1 Alpha prisms

We refer to an�-grown triangleTi(�) as an�-prism. For general
polygons, computing a constant radius offsetting is a difficult oper-
ation in which several degeneracies might arise [2]. However, for
triangles this is an easy, robust, and constant-time operation. Com-
puting the union ofTi(�); 1 � i � n can be simplified by con-
sidering the offsetting operation in theL1 or theL1 metrics. This
is equivalent to convolving the triangleti with an oriented cube
(which is the constant distance primitive in theL1 or theL1 met-
rics, just as a sphere is in theL2 metric). Offsetting a triangleti in
theL1 or theL1 metrics yields aTi(�) that is a convex polyhedron
(result of the convolution of an oriented cube with the triangleti).
Example of a two-dimensional�-prism in theL1 distance metric
is shown in Figure 3.

Figure 3: An�-prism around a triangle in two dimensions

We choose theL1 distance metric over theL1 metric because
the former results in axially-aligned unit-distance cubes, which are
easier to deal with in union and intersection operations. We have
efficiently implemented the construction of�-prisms for theL1
metric as outlined in Section 4.1.

3.2 Overview of our approach

Figure 4 gives the overview of the stages involved. For clarity, the
overview in the figure is given in two dimensions; extension to three
dimensions (which we have implemented) is straightforward. Let
us consider the behavior of our approach in the region of a two-
dimensional “hole”abcde (shown unfilled). We first generate the
�-prisms (Figure 4(b)), compute their union (Figure 4(c)), and gen-
erate a valid surface triangulation from the union (Figure 4(d)). The
result of this process as shown for this example adds an extra tri-
angleabe in the interior of the regionabcde. This extra triangle is
added in the region where the orientedL1 cube of side2� could
not pass through.

The computation of the union of the�-prisms,
S

n

i=1
Ti(�), un-

der theL1 metric is simply the union ofn convex polyhedra. The
union ofn convex polyhedra can be computed from their pairwise
intersections. Intersection of two convex polyhedra withp andq
vertices can be accomplished in optimal time O(p+ q) [4]. A sim-
pler algorithm to implement takes time O((p+ q) log(p+ q)) [30].

With our approach one could, in principle, compute the union
of �-prisms over the entire polygonal object (and not just along
the boundary of the region of interest as shown in Figure 4). This
will result in automatic identification of the regionabcde as being
partially inaccessible to theL1 cube of side2�, and therefore a
candidate for getting filled. In practice, we have observed that the
regions on an object that actually participate in simplification of the
genus are few. As a result, a lot of effort is spent in processing
those regions of the object that ultimately do not result in any sim-
plifications. To avoid this extra computation and rapidly identify
such regions that can be partially or completely triangulated we use
a heuristic as outlined next.

3.3 Determination of tessellation regions

We define atessellation regionon an object as the region that is
partially or completely inaccessible to anL1 cube of side2�. A
tessellation region is a closed-connected region bounded by ates-
sellation chain. A tessellation chain consists of a linear sequence
of edges – thetessellation edges. In Figure 4, the tessellation edges
arefab; bc; cd;de; eag, the tessellation chain is(abcdea), and the
tessellation region is the unfilled polygonal region(abcde).

There are three main stages in determination of the tessellation
regions. We first determine the global set of tessellation edges that
forms the boundaries of all the regions that need to be tessellated
on an object. We next organize the tessellation edges into a set of
tessellation chains. A tessellation chain is defined as a sequence
of connected tessellation edges whose every vertex is adjacent to
exactly two tessellation edges, except the first and the last vertices
which can have a different degree of tessellation edges. The third

(a)

(d)

(c)

(b)

d
e

a

b
c

a

b c

d
e

a

b

e
d

c
g1

g2

d
e

b

a
c

g1

g2

Figure 4: Overview of our approach

stage involves orienting each tessellation chain so that the tessel-
lation region lies on its left side (assuming that the polygons are
oriented counterclockwise).

Determination of tessellation edges In principle, it is pos-
sible to determine all tessellation regions (and hence tessellation
edges) from the union of�-prisms over the entire polygonal object.
However, this is rather slow and we have observed that in practice
for most mechanical CAD models the genus-reducing simplifica-
tions occur in well-defined regions. To efficiently determine the
tessellation edges we currently use the heuristic that genus-reducing
simplifications usually occur in the neighborhood of sharp edges.
We define asharp edgeto be one for which the dihedral angle be-
tween the neighboring triangles is greater than some threshold�;
we currently use the constant� = 700. We have found this to be a
good heuristic for mechanical CAD models.

Determination of tessellation chains After we have deter-
mined the tessellation edges, they are initially stored as anedge
soup– an unorganized collection of edges. We organize the tessel-
lation edges into tessellation chains by using a linear-time depth-
first scanning strategy. At the end of this stage we have tessellation
chains as shown in Figure 5 that may be closed (chaina) or open
(chainsb andc).

b

c

a

Figure 5: Tessellation chains

Orienting tessellation chains For each tessellation chain we
need to determine the side on which the tessellation region will lie.
Once this side has been determined, we orient the tessellation chain
such that the tessellation region lies on its left. If we were to use
the global information from a completely computed�-hull of the
polygonal object, determination of the orientation would be quite
easy, although expensive. To speed-up this stage, we use the heuris-
tic that the tessellation regions have a larger variation of the sur-
face normal. This heuristic works quite well for mechanical CAD
models for which almost all genus-reducing simplifications occur
in holes, tunnels, or sharp concavities in regions that are otherwise
flat. Orientation of the tessellation chains helps in tiling as well as
removal of the internal triangles as discussed next.

3.4 Generating a valid surface triangulation

We consider those verticesui of the union of �-prisms,S
n

i=1
Ti(�), that belong to two or more�-prisms. For each vertex

ui, we consider every pair of�-prismsTj(�) andTk(�) to which
ui belongs. If we center theL1 cube of side2� atui, it will touch
two edges (sayel andem), one from each triangletj andtk. Let the
edgeel = (vl0 ; vl1), and the edgeem = (vm0

; vm1
) For example

in Figure 4,ui = g1, el = ab, andem = ae. If theL1 cube of side
2� centered at the pointui contains a pair of non-adjacent vertices
vp andvq out of fvl0 ; vl1 ; vm0

; vm1
g (in this example, verticesb

ande), then we add the edge(vp; vq) (in this example, we add edge
be) to the set of diagonal edges that will be used to generate the
surface triangulation. In this example if theL1 cube atg1 did not
contain either of the verticesb or e, we would not have added any
diagonal edge.

At the end of this stage we have the superset of the diagonals
required for the final triangulation as well as a collection of ori-
ented tessellation chains. The diagonals and the oriented tessella-
tion chains are used in the surface reconstruction approach as out-
lined in [19]. The objective function that we use for optimization
in the surface reconstruction is minimizing the length of the diag-
onal edges used (shortest edge first). This gives us a unique and
consistent triangulation.

As a result of our triangulation above, some triangles that were
initially on the surface of the object now become interior as shown
in Figures 6 and 10. We identify and remove the internal trian-
gles as follows. All the tessellation regions that we covered have
oriented tessellation boundaries. Walking along the direction of the
tessellation chain, we classify the left side as interior (i.e. the re-
gion that has just been covered) and the right side as exterior (this
assumes counter-clockwise orientation of polygons). We start from

a triangle belonging to the input object that lies to the left (i.e.
the interior) of an oriented tessellation chain and spread out in a
breadth-first manner until we hit one of the hole edges or another
triangle that has been similarly traversed. All triangles that are thus
traversed are marked as interior and eliminated. In Figure 10(c) the
patched triangles are shown in green and the interior triangles that
are eliminated are shown in yellow.

(a) (b)

Figure 6: Determination of internal triangles

4 Implementation details

4.1 Efficiently constructing alpha prisms

The �-prism is the convex hull of the three axially alignedL1
cubes, each of side2� units, centered at each of the three vertices
of a triangle. There are several sets of coplanar points for this case
and as a result the traditional methods of computing convex hulls
do not work robustly here. One solution to this robustness problem
is to perform perturbation of all the input points [16, 18]. Although
such approaches guarantee removal of all degeneracies, they require
multi-precision arithmetic which is slow. Besides, such perturba-
tions lead to generation of unnecessary sliver triangles in the union
of the �-prisms. To overcome these limitations, we decided to
adopt a different, although specialized, approach That works quite
efficiently and robustly. We next outline the basic idea of this ap-
proach.

1000

1000 0000

0000

0001 0001

0000 0000

01000000

01100010

1000

0001

0010

0100

0000

0000

0000

00000000

0000

0000

0000

Figure 7: Fast computation of alpha prisms

We associate a 6-bit vector with each vertex, edge, and face of
the threeL1 cubes. Each of the six bits of the bit-vector associ-
ated with a vertexv is 1 if and only if the corresponding property
holds amongst all of the24 vertices :fminimum x, maximum x,
minimum y, maximum y, minimum z, maximum zg. Thus, bit[0]
of a vertex will be1 if its x-coordinate has the minimum value
amongst all the24 vertices; it will be0 otherwise. The edge bit-
vector is computed as the logical bit-wise AND of its two vertices’
bit-vectors. The face bit-vector is the logical bit-wise AND of its
four edges’ bit-vectors. The�-prism can be computed by using the
information from these vertex, edge, and face bit-vectors. For in-
stance, all the cubes’ faces that have non-zero bit-vectors belong to
the�-prism. Details of this approach are outside the scope of this
paper; they will be described elsewhere. The computation of the

�-prism using this strategy for the two-dimensional case (where
we use 4-bit vectors) is shown in Figure 7. Notice that only those
edges of theL1 squares that have non-zero bit-vectors are a part
of the two-dimensional�-prism (analogous to the faces of theL1
cubes in three dimensions).

4.2 Efficiently intersecting alpha prisms

The�-neighborhoodof a triangleti is defined as the set of all tri-
anglestj such that the intersection of their�-prisms is non-null,
Ti(�)

T
Tj(�) 6= �. Every such pair of�-prisms is defined to be

�-closeto each other. The first stage in generating a valid surface
triangulation is to identify the pairs of�-prisms that are�-close to
each other.

For practical values of�, which are relatively small, the aver-
age size of the�-neighborhood of a triangle has been empirically
observed to be a small constant. We use a global grid to speed
up the determination of the�-neighborhood for each triangleti.
Each side of the cubical grid is2� units, to minimize the number
of neighboring cubes that have to be considered for determining the
�-neighborhood of a given triangle.

5 Results and discussion

We have implemented the approach outlined above and have ob-
tained very encouraging results. We ran our implementation on one
R10000 processorof SGI Challenge for all the results reported here.
The various mechanical parts on which we tested our algorithm and
reported our results are shown in Figures 8– 12.

We chose the Simplification Envelopes [9] approach to perform
our genus-preserving simplifications. All error tolerances (� and
�) given in this section are specified as the percentage of the di-
agonal of the bounding box of the object. We first simplified the
given objects using the genus-preserving approach with a tolerance
of �. Then on this simplified object we compared the results of the
following two simplification strategies:

(a) genus-reducing simplifications with a tolerance of� followed
by genus-preserving simplifications with a tolerance of�

(b) genus-preserving simplifications with a tolerance of�+ �

(a) 5180 triangles (b) 1438 triangles

Figure 8: Genus reduction for an industrial CAD part

The results of our comparisons are given in Table 1. As can
be seen, performing genus-reducing simplification with genus-
preserving simplifications vastly improves the overall simplifica-
tion ratio. The timings in the following table are in units of sec-
onds, minutes, and hours and are accordingly marked by s, m, and
h, respectively. Not only did we observe the genus-reducing simpli-
fications improved the overall simplification ratio substantially, we
also observed that the times taken by the genus-reducing stage were
reasonably small. Part of the reason behind the latter is our use of
heuristics as given in Section 3.3 that we have observed work quite
well for mechanical CAD datasets.

(a) Original (b) Simplified
Disk

(a) Original (b) Simplified
Box

(a) Original (b) Simplified
Sphere

Figure 9: Genus-reducing simplifications for various objects

An example of a deeper level-of-detail hierarchy can be seen in
Figure 11. Here the object complexity was reduced as follows:
(a) original object had 44892 triangles, (b) genus-preserving sim-
plification with tolerance� = 0:5 resulted in 24532 triangles, (c)
further genus-reducing simplification with tolerance� = 2:0 re-
sulted in 24427 triangles (but with only one hole remaining), (d)
further genus-preserving simplification with tolerance� = 1:0 re-
sulted in 2685 triangles, (e) further genus-reducing simplification
with tolerance� = 5:0 resulted in 2681 triangles (but with no
remaining holes), (f) further genus-preserving simplification with
tolerance� = 2:0 resulted in 878 triangles. Such high levels of
simplifications would not have been easy to achieve without using
genus-reducing simplifications.

Original Genus-Preserving Genus-Reducing and Genus-Preserving
Object Simplification Genus-Preserving Simplification Simplification Ratio of

Name Num � Time Num Genus Genus Num � Time Num Simplifcation
Tris Tris Reducing Preserving Tris + Tris Improvement

� Time � Time �

Disk 752 1.0 7.9 s 554 2.0 0.3 s 1.0 8.4 s 146 3.0 14.6 s 462 3.09
Box 1612 1.0 30 s 166 2.0 0.3 s 1.0 2.0 s 14 3.0 4.2 s 138 9.86

Sphere 2058 5.5 100 s 432 11.0 0.3 s 5.5 7.3 s 136 16.5 19.2 s 162 1.19
Block 17644 0.4 24 m 2054 0.8 5.6 s 0.4 20 s 78 1.2 280 s 1622 20.79
Fixture 74396 0.3 5:30 h 10806 0.6 129 s 0.3 42 s 62 0.9 11:22 m 7300 117.7

Table 1: Results of genus-reducing and genus-preserving simplifications

(a) (b) (c) (d)

Figure 10: Overview of the genus-reducing simplification

(a) (b) (c)

(d) (e) (f)

Figure 11: Alternating genus-preserving and genus-reducing simplifications

(a) Original (b) Simplified
Block

(a) Original (b) Simplified
Fixture

Figure 12: Genus-reducing simplifications

6 Conclusions and future work

We have presented an approach that performs a controlled simpli-
fication of the genus of polygonal objects. This approach works
quite well in conjunction with the traditional genus-preserving sim-
plification approaches and yields substantially lower representa-
tion complexity objects than otherwise possible. Our approach can
also work in presence of limited kinds of degeneracies, such as T-
junctions and T-edges, that are quite widespread in real-life me-
chanical CAD datasets.

We currently use heuristics that rapidly detect holes and other
cavities commonly found in CAD models. We plan to further ex-
plore other heuristics that will rapidly determine the tessellation re-
gions on other kinds of scientific visualization datasets. Our ap-
proach currently works only for polygonal objects. Its generaliza-
tion to objects described by higher-order algebraic patches will be
an interesting area for future work.

Our approach does not at present handle certain degeneracies
such as coincident polygons, self-intersecting meshes, and meshes
with inconsistent orientations of polygons. Alpha hulls have been
shown to work quite well for reconstructing surfaces from unor-
ganized collections of points. It should be possible to extend the
current work and merge it with that line of research to be able to
handle the above degeneracies as well.

Acknowledgements

The first author has been supported by a Fulbright/Israeli Arab
Scholarship. This work has been supported in part by the National
Science Foundation CAREER award CCR-9502239. The CAD ob-
ject in Figure 8 is a part of the dataset of a notional submarine pro-

vided to us by the Electric Boat Division of General Dynamics. We
would like to acknowledge the valuable suggestions made by the
anonymous referees that helped us in improving the presentation.

References

[1] J. M. Airey. Increasing Update Rates in the Building Walk-
through System with Automatic Model-Space Subdivision and
Potentially Visible Set Calculations. PhD thesis, University
of North Carolina at Chapel Hill, Department of Computer
Science, Chapel Hill, NC27599-3175, 1990.

[2] C. Bajaj and M.-S. Kim. Generation of configuration space
obstacles: the case of a moving sphere.IEEE Journal of
Robotics and Automation, 4, No. 1:94–99, February 1988.

[3] F. Bernardini and C. Bajaj. Sampling and reconstructing man-
ifolds using alpha-shapes. Technical Report CSD-97-013, De-
partment of Computer Sciences, Purdue University, 1997.

[4] B. Chazelle. An optimal algorithm for intersecting three-
dimensional convex polyhedra.SIAM J. Comput., 21(4):671–
696, 1992.

[5] S. Chen. Quicktime VR – an image-based approach to virtual
environment navigation. InComputer Graphics Annual Con-
ference Series (SIGGRAPH ’95), pages 29–38. ACM, 1995.

[6] S. Chen and L. Williams. View interpolation for image syn-
thesis. InComputer Graphics (SIGGRAPH ’93 Proceedings),
volume 27, pages 279–288, August 1993.

[7] J. Clark. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM, 19(10):547–554,
1976.

[8] K. Clarkson, R. E. Tarjan, and C. J. Van Wyk. A fast Las
Vegas algorithm for triangulating a simple polygon.Discrete
Comput. Geom., 4:423–432, 1989.

[9] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. P. Brooks, Jr., and W. V. Wright. Simplification
envelopes. InProceedings of SIGGRAPH ’96 (New Orleans,
LA, August 4–9, 1996), Computer Graphics Proceedings, An-
nual Conference Series, pages 119 – 128. ACM SIGGRAPH,
ACM Press, August 1996.

[10] M. Cosman and R. Schumacker. System strategies to optimize
CIG image content. InProceedings of the Image II Confer-
ence, Scottsdale, Arizona, June 10–12 1981.

[11] F. C. Crow. A more flexible image generation environment. In
Computer Graphics: Proceedings of SIGGRAPH’82, volume
16, No. 3, pages 9–18. ACM SIGGRAPH, 1982.

[12] L. Darsa, B. Costa, and A. Varshney. Navigating static envi-
ronments using image-space simplification and morphing. In
Proceedings, 1997 Symposium on Interactive 3D Graphics,
pages 25 – 34, 1997.

[13] T. D. DeRose, M. Lounsbery, and J. Warren. Multiresolution
analysis for surface of arbitrary topological type. Report 93-
10-05, Department of Computer Science, University of Wash-
ington, Seattle, WA,1993.

[14] H. Edelsbrunner. Weighted alpha shapes. Technical Re-
port UIUCDCS-R-92-1760, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign, 1992.

[15] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the
shape of a set of points in the plane.IEEE Transactions on
Information Theory, IT-29(4):551–559, July 1983.

[16] H. Edelsbrunner and E. P. M¨ucke. Simulation of simplicity:
a technique to cope with degenerate cases in geometric algo-
rithms. In Proc. 4th Annu. ACM Sympos. Comput. Geom.,
pages 118–133, 1988.

[17] H. Edelsbrunner and E. P. M¨ucke. Three-dimensional alpha
shapes.ACM Transactions on Graphics, 13(1):43–72, Jan-
uary 1994.

[18] I. Emiris and J. Canny. An efficient approach to removing ge-
ometric degeneracies. InEighth Annual Symposium on Com-
putational Geometry, pages 74–82, Berlin, Germany, June
1992. ACM Press.

[19] H. Fuchs, Z. M. Kedem, and S. P. Uselton. Optimal surface
reconstruction from planar contours.Commun. ACM, 20:693–
702, 1977.

[20] T. A. Funkhouser and C. H. S´equin. Adaptive display algo-
rithm for interactive frame rates during visualization of com-
plex virtual environments. InProceedings of SIGGRAPH 93
(Anaheim, California, August 1–6, 1993), Computer Graph-
ics Proceedings, Annual Conference Series, pages 247–254.
ACM SIGGRAPH, August 1993.

[21] N. Greene. Hierarchical polygontiling with coverage masks.
In Proceedings of SIGGRAPH ’96 (New Orleans, LA, August
4–9, 1996), Computer Graphics Proceedings, Annual Confer-
ence Series, pages 65 – 74. ACM Siggraph, ACM Press, Au-
gust 1996.

[22] N. Greene and M. Kass. Hierarchical Z-buffer visibility. In
Computer Graphics Proceedings, Annual Conference Series,
1993, pages 231–240, 1993.

[23] A. Guéziec. Surface simplification with variable tolerance. In
Proceedings of the Second International Symposium on Med-
ical Robotics and Computer Assisted Surgery, MRCAS ’95,
1995.

[24] B. Hamann. A data reduction scheme for triangulated sur-
faces.Computer Aided Geometric Design, 11:197–214, 1994.

[25] T. He, L. Hong, A. Varshney, and S. Wang. Controlled topol-
ogy simplification. IEEE Transactions on Visualization and
Computer Graphics, 2(2):171–184, June 1996.

[26] H. Hoppe. Progressive meshes. InProceedingsof SIGGRAPH
’96 (New Orleans, LA, August 4–9, 1996), Computer Graph-
ics Proceedings, Annual Conference Series, pages 99 – 108.
ACM SIGGRAPH, ACM Press, August 1996.

[27] D. Luebke and C. Georges. Portals and mirrors: Simple, fast
evaluation of potentially visible sets. InProceedings, 1995
Symposium on Interactive 3D Graphics, pages 105 – 106,
1995.

[28] P. W. C. Maciel and P. Shirley. Visual navigation of large envi-
ronments using textured clusters. InProceedings of the 1995
Symposium on Interactive 3D Computer Graphics, pages 95–
102, 1995.

[29] L. McMillan and G. Bishop. Plenoptic modeling: An image-
based rendering system. InComputer Graphics Annual Con-
ference Series (SIGGRAPH ’95), pages 39–46. ACM, 1995.

[30] D. E. Muller and F. P. Preparata. Finding the intersection
of two convex polyhedra.Theoret. Comput. Sci., 7:217–236,
1978.

[31] A. Narkhede and D. Manocha. Fast polygon triangulation
based on seidel’s algorithm.Graphics Gems 5, pages 394–
397, 1995.

[32] J. Rohlf and J. Helman. IRIS performer: A high performance
multiprocessing toolkit for real–Time 3D graphics. In An-
drew Glassner, editor,Proceedings of SIGGRAPH ’94 (Or-
lando, Florida, July 24–29, 1994), Computer Graphics Pro-
ceedings, Annual Conference Series, pages 381–395. ACM
SIGGRAPH, July 1994.

[33] J. Rossignac and P. Borrel. Multi-resolution 3D approxima-
tions for rendering. InModeling in Computer Graphics, pages
455–465. Springer-Verlag, June–July 1993.

[34] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decima-
tion of triangle meshes. InComputer Graphics: Proceedings
SIGGRAPH ’92, volume 26, No. 2, pages 65–70. ACM SIG-
GRAPH, 1992.

[35] R. Seidel. A simple and fast incremental randomized algo-
rithm for computing trapezoidal decompositions and for tri-
angulating polygons.Comput. Geom. Theory Appl., 1:51–64,
1991.

[36] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder.
Hierarchical image caching for accelerated walkthroughs of
complex environments. InProceedings of SIGGRAPH ’96
(New Orleans, LA, August 4–9, 1996), Computer Graphics
Proceedings, Annual Conference Series, pages 75–82. ACM
SIGGRAPH, ACM Press, August 1996.

[37] S. Teller and C. H. S´equin. Visibility preprocessing for in-
teractive walkthroughs.Computer Graphics: Proceedings of
SIGGRAPH’91, 25, No. 4:61–69, 1991.

[38] G. Turk. Re-tiling polygonal surfaces. InComputer Graphics:
Proceedings SIGGRAPH ’92, volume 26, No. 2, pages 55–64.
ACM SIGGRAPH, 1992.

[39] J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time
level-of-detail-based rendering for polygonal models.IEEE
Transactions on Visualization and Computer Graphics, 3, No.
2:171 – 183, June 1997.

[40] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility
culling using hierarchical occlusion maps. InProceedings
of SIGGRAPH ’97 (Los Angeles, CA), Computer Graphics
Proceedings, Annual Conference Series. ACM SIGGRAPH,
ACM Press, August 1997.

