
Real–Time Rendering of Translucent Meshes

XUEJUN HAO and AMITABH VARSHNEY

University of Maryland at College Park

Subsurface scattering is important for photo-realistic rendering of translucent materials. We
make approximations to the BSSRDF model and propose a simple lighting model to simulate the
effects on translucent meshes. Our approximations are based on the observation that subsurface
scattering is relatively local due to its exponential falloff.

In the preprocessing stage we build subsurface scattering neighborhood information, which

includes all the vertices within effective scattering range from each vertex. We then modify the

traditional local illumination model into a run-time two-stage process. The first stage involves

computation of reflection and transmission of light on surface vertices. The second stage bleeds

in scattering effects from a vertex’s neighborhood to generate the final result. We then merge the

run-time two-stage process into a run-time single-stage process using pre-computed integrals, and

reduce the complexity of our run-time algorithm to O(N), where N is the number of vertices.
The selection of the optimum set size for pre-computed integrals is guided by a standard image-
space error-metric. Furthermore, we show how to compress the pre-computed integrals using
spherical harmonics. We compensate for the inadequacy of spherical harmonics for storing high
frequency components by a reference points scheme to store high frequency components of the pre-
computed integrals explicitly. With this approach, we greatly reduce memory usage without loss
of visual quality under a high frequency lighting environment and achieve interactive frame rates
for medium-sized scenes. Our model is able to capture the most important features of subsurface
scattering: reflection and transmission due to multiple scattering.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation—
Viewing algorithms; I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data
structures and data types; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Real-
ism—Color, shading, shadowing, and texture

General Terms: Algorithms, Performance

Additional Key Words and Phrases: BSSRDF, local illumination, reflection models, subsurface
scattering

1. INTRODUCTION

Illumination models are important for photo-realistic image synthesis. Correctly
modelling the physical interaction of light with objects is an exciting, but difficult
task. Over the years, many illumination models have been developed for image
synthesis. They can be classified as either empirically-based or physically-based.
For example, the Phong illumination model [Phong 1975] is an empirically-based
model. Physically-based models are derived from principles of light-object inter-

Authors’ address: Department of Computer Science and UMIACS, 1103 A.V. Williams Building,
University of Maryland, College Park, MD 20742. Email: {hao, varshney}@cs.umd.edu
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 0730-0301/2004/0100-0001 $5.00

ACM Transactions on Graphics, Vol. V, No. N, February 2004, Pages 1–0??.

2 · X. Hao and A. Varshney

action, using either geometrical optics or wave optics. Most of them model the
bidirectional reflectance distribution function (BRDF).
One example of physically-based models using geometrical optics is the Cook-

Torrance [1981] model, which can compute directional distribution of light and color
shift with incident angles and materials. Other geometrical-optics-based models
include microfacet-based approaches [Ashikhmin et al. 2000; Blinn 1977]. Inverse
rendering methods can produce high-quality illumination models from images [Basri
and Jacobs 2001; Cabral et al. 1987; Debevec et al. 2000; Ramamoorthi and Han-
rahan 2001; Sato et al. 1997; Yu et al. 1999]. Significant efforts have been devoted
to determining the BRDF of an object. Researchers have also developed methods
to directly measure the BRDF [Greenberg et al. 1997; Marschner et al. 1999; Ward
1992].
Compared with geometrical-optics-based models, wave-optics-based models are

more complicated, but have the advantage of being able to model phenomena which
cannot be directly modelled using geometrical optics, such as interference and
diffraction patterns. Kajiya [1985] has used scalar-form Kirchhoff approximation
to compute the BRDF of surfaces with anisotropy. He et al. [1991] have presented
a general local reflection model based on vector-formed Kirchhoff wave diffraction
theory and have given an analytical formula to compute the BRDF for surfaces
with roughness, including polarization and directional Fresnel effects. Bahar and
Chakrabarti [1987] have computed the differential scattering cross-section of a wave
from rough metallic surfaces using electromagnetic theory. Stam [1999] and Sun
et al. [2000] have extended the He-Torrance model [1991] to handle anisotropic
reflections and demonstrated diffraction effects on a compact disk.
A good BRDF model, either derived or measured, can give highly realistic visual

effects. The basic assumption of BRDF models is that light enters and exits an
object on the same surface point. In most cases this assumption is valid and the
resulting BRDF models provide convincing visual appearance for simulating many
visual effects. But for some cases, the assumption is not valid. For example, BRDF
models alone are inadequate to simulate the appearance with subsurface scattering,
where light enters an object at one point and exits at another. This effect is very
important for simulating the appearance of translucent materials, such as marble,
skin, and milk. To simulate these materials, we have to go back to the more general
bidirectional surface scattering reflectance distribution function (BSSRDF) models.
While BRDF models are just approximations of BSSRDF models.
Many researchers have successfully simulated subsurface scattering effects. Han-

rahan and Krueger [1993] have modelled subsurface scattering in layered surfaces
in terms of one-dimensional linear transport theory, and derived analytical expres-
sions for single scattering events. They have incorporated their results into a BRDF
model. The model is fast but also has the shortcoming of the BRDF assumption.
More recently, Dorsey et al. [1999] have simulated subsurface transfer by solving the
radiative transfer equation using photon maps. Koenderink and van Doorn [2001]
model light scattering in translucent objects as a diffusion process. Stam [2001]
used a discrete-ordinate solution of the radiative transfer equation to model mul-
tiple anisotropic scattering for human skin layer bounded by two rough surfaces.
Another contribution of [Stam 2001] is derivation of a bidirectional transmittance
ACM Transactions on Graphics, Vol. V, No. N, February 2004.

Real–Time Rendering of Translucent Meshes · 3

distribution function (BTDF) to complement BRDF models. Pharr and Hanra-
han [2000] have taken a different approach. Instead of simulating energy transport,
they have focused on scattering behavior and solve a non-linear integral scattering
equation using Monte Carlo evaluation. Jensen et al. [1999] have used path tracing
to simulate subsurface scattering in wet materials.

The approaches above are able to simulate all the effects of subsurface scattering
and generate impressive images, but are slow. Jensen et al. [2001] have suggested
a more efficient approach to simulate scattering media by using a dipole diffusion
approximation for multiple scattering events, with an exact solution for single scat-
tering events. With this simple approximation, they achieve more than two orders
of magnitude speedup compared with the approach of using full Monte Carlo sim-
ulation. As an example, for one scene they have reduced the rendering time from
1250 minutes to 5 minutes with nearly indistinguishable visual difference. Jensen
and Buhler [2002] have taken this one step further. They decouple the computation
of the incident illumination from the evaluation of the BSSRDF with a two-pass ap-
proach. The first pass samples the irradiance at selected points on the surface. The
second pass evaluates the diffusion approximation using a fast hierarchical scheme.
They achieve up to 7 seconds per frame using ray-tracing for a teapot dataset with
150K vertices, using a dual 800MHz Pentium III PC. Lensch et al. [2002] have
used a preprocessing step to compute the impulse response for each surface point
under subsurface scattering. They separate the response into a local and a global
effect. While the local effect is modelled as a filter kernel and stored in a texture
map, the global response is stored as vertex-to-vertex throughput factors. The
local and global responses are combined during run-time to form the final image.
They achieve 5 frames per second on a dataset with about 9K vertices, using a
dual 1.7GHz Xeon computer. In addition, they can accommodate non-homogenous
material properties. All these make practical simulation of subsurface scattering
phenomena feasible. The next step is to enable subsurface scattering effects for
interactive rendering of larger datasets.

We have built a simpler, approximate model [Hao et al. 2003] based on previous
methods and accommodated it into a local illumination model to make the effects
more widely accessible for different applications. Our approach is based on the
observation that subsurface scattering, although a global effect, is largely a local
one due to its exponential falloff, which limits the volume it can affect. Therefore
even though the light does not necessarily exit an object at the same point where it
enters, as required by a BRDF model, it will for all practical purposes exit within
a short distance of its entry point. This enables us to make modifications to ex-
isting local illumination models to accommodate subsurface scattering effects. We
approximate the BSSRDF for subsurface scattering based on both, the underlying
physical processes and visual appearance. Jensen and Buhler [2002] have shown
that the visual appearance for translucent materials can be almost entirely simu-
lated by only considering multiple scattering. We have used this fact and developed
a macroscopic appearance-driven approach to capture the most important features
of subsurface scattering: multiple scattered reflection and transmission. We mod-
ify local illumination process into a run-time two-stage process: a traditional local
lighting stage and a scatter-bleeding stage. We then merge the run-time two-stage

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

4 · X. Hao and A. Varshney

process into a run-time single-stage process by using pre-computed integrals and
improve the complexity of our run-time algorithm from O(N2) to O(N). The local
illumination characteristics and the preprocessed scattering neighborhood informa-
tion make our approach very efficient. We have achieved 7.5 frames per second on
a teapot dataset with 150K vertices, using a 2GHz Pentium 4 PC [Hao et al. 2003].

Recently, Sloan et al. [2003] have incorporated surface scattering effects into their
pre-computed radiance transfer scheme and have achieved 27 frames per second on
a Buddha dataset with 50K vertices, using a 2.2GHz Pentium 4 machine. They
represent pre-computed view-independent subsurface scattered radiance using low-
order spherical harmonics. In addition to subsurface scattering effects, their scheme
has successfully simulated many of the global illumination effects, such as soft shad-
ows, inter-reflections, and caustics. If their approach is used only for simulating
subsurface scattering effects, they can achieve significantly faster frame rates. They
have assumed low-frequency lighting environments. We instead, focus on subsur-
face scattering effects, but for high-frequency lighting environments (for example,
a single directional point light source). Carr et al. [2003] have modelled multiple-
scattering subsurface light transport to resemble a single radiosity gathering step.
By using their GPU algorithm for radiosity with a hierarchy of precomputed sub-
surface links, they have achieved about 30 frames per second for a dataset with
70K triangles, using GeForce FX card. Mertens et al. [2003] use a hierarchical
boundary element method to solve the integral describing subsurface scattering
and achieve more than 5 frames per second on a dataset with 132K triangles, us-
ing a dual 2.4GHz Xeon computer. Their algorithm allows users to change object
geometry, subsurface scattering properties, lighting, as well as viewpoint at run
time. Dachsbacher and Stamminger [2003] extend shadow maps to store depth and
incident light information, and compute subsurface scattering effects by filtering
the shadow map neighborhood using a hierarchical approach. They have imple-
mented their algorithm on graphics hardware and achieved 5.7 frames per second
on a dataset with 100K vertices, using a 2.4GHz Pentium 4 machine with ATI
Radeon 9700 graphics card.

In this paper, we show how to greatly reduce memory storage requirements for
our pre-computed integrals by using reference points with spherical harmonics.
We demonstrate that using only low-order spherical harmonics for representing
pre-computed integrals produces somewhat unsatisfactory image quality for high
frequency lighting (e.g., single directional light source). To address this we have
designed a reference points scheme. In our scheme we select a subset of the input
mesh vertices and store the pre-computed integrals at these reference points. We
use spherical harmonics for efficiently representing low frequency integral differences
between the reference points and the remainder mesh vertices. This results in little
extra storage for pre-computed integrals (less than 28 bytes per vertex instead of
about 200 bytes per vertex as reported in [Hao et al. 2003]) without loss of image
quality and a further improvement in the efficiency of our algorithm. In addition,
we discuss the techniques presented in [Hao et al. 2003] in more detail, compare
the image error using different number of light sources in the preprocessing stage
and show that about 200 light source directions is a good tradeoff between image
quality and storage and preprocessing requirements.
ACM Transactions on Graphics, Vol. V, No. N, February 2004.

Real–Time Rendering of Translucent Meshes · 5

2. SUBSURFACE SCATTERING MODEL AND OUR SIMPLIFICATIONS

To describe subsurface scattering effects for translucent (i.e., highly-scattering) ma-
terials, we need general BSSRDF models instead of BRDF models. A BSSRDF
model relates the illumination of one surface point with light distribution at other
surface points by the following formula [Jensen et al. 2001]:

dLo(xo,
−→ωo) = S(xi,

−→ωi;xo,
−→ωo)dΦi(xi,

−→ωi)

where Lo(xo,
−→ωo) is the outgoing radiance at point xo in direction −→ωo, Φi(xi,

−→ωi)
is the incident flux at point xi in direction −→ωi, and S(xi,

−→ωi;xo,
−→ωo) is the BSS-

RDF. Thus the total outgoing radiance is computed by an integral over incoming
directions and area A [Jensen et al. 2001]:

Lo(xo,
−→ωo) =

∫
A

∫
2π

S(xi,
−→ωi;xo,

−→ωo)Li(xi,
−→ωi)(−→ni · −→ωi)dωidA(xi)

where −→ni is the surface normal at xi. As can be seen in Figure 1, the effect of
BSSRDF results in a scatter-bleeding of a surface point from its neighborhood.

Fig. 1. Scattering of light in BSSRDF models (based on [Jensen et al.,2001])

In the following sections, we will assume static geometry with homogeneous
translucency and given scattering properties where multiple scattering dominates,
and each vertex of the mesh represents a small area on the surface.

2.1 Locality of Subsurface Scattering Effects

To improve efficiency and achieve interactive frame rates for simulating translucent
material properties, we intend to incorporate subsurface scattering effect with local
illumination. The main rationale behind a possible combination of a local illumina-
tion model with subsurface scattering effects is based on the key observation that
the effects are well localized. First, scattering within one object will have very little
effect on the appearance of another object; the influence between different objects
can be well described by the reflectance values on their surfaces only. So unlike
the situation addressed by radiosity methods where every patch has an effect on
every other patch in the same scene, subsurface scattering only has prominent effect
within an object. Second, even within the same object, the subsurface scattering
due to light entering from one surface point will have little effect on another sur-
face point on the same object if the distance between the two points is large. This
property is a result of the exponential falloff of light intensity due to absorption
and scattering within the material. Therefore, subsurface scattering, although a

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

6 · X. Hao and A. Varshney

global illumination property in the sense that the illumination on one surface point
is affected by the illumination on other surface points, is still largely a local effect.
Although, the local-effect property of subsurface scattering is useful for efficiency
reasons at the preprocessing stage, it is not required for our method to work and
will not affect the run-time efficiency of our algorithm. We discuss this further in
Section 5.
We therefore conclude that to model the appearance of a surface point with

subsurface scattering to a first approximation, we only need to know its scattering
neighborhood and associated material properties.

2.2 Multiple Scattering Approximation

As mentioned earlier, a BSSRDF model is needed to describe subsurface scattering
effects. The complete BSSRDF model S for subsurface scattering is a sum of a
single scattering term S(1) and a multiple scattering term Sd [Jensen et al. 2001]:

S(xi,
−→ωi;xo,

−→ωo) = S(1)(xi,
−→ωi;xo,

−→ωo) + Sd(xi,
−→ωi;xo,

−→ωo)

Jensen and Buhler [2002] have shown that multiple scattering alone can suffi-
ciently simulate the visual appearance of highly-scattering translucent materials.
We follow their results and focus here on modelling multiple scattering effects only.
Jensen et al. [2001] have also shown that the dipole diffusion method is a good ap-
proximation for volumetric effects due to subsurface multiple scattering. The dipole
approximation of the diffusion equations is expressed by the following formula:

Sd(xi,
−→ωi;xo,

−→ωo) =
1
π
Ft(η,−→ωi)Rd(‖xi − xo‖)Ft(η,−→ωo)

where Ft is the Fresnel transmission term and Rd is the single dipole approximation
for multiple scattering [Jensen and Buhler 2002]:

Rd(r) = −D
(−→n · −→�φ(xs))

dΦi

=
α

′

4π
[zr(σtr +

1
dr
)
e−σtrdr

d2
r

+ zv(σtr +
1
dv
)
e−σtrdv

d2
v

]

where D is the diffusion constant, φ is the radiant fluence, Φi is the incident flux,
α′ is the reduced albedo, σtr is the effective transport coefficient, zr and zv are the
distance from the dipole lights to the surface, dr is the distance from x to the real
source, and dv is the distance from x to the virtual source. The configuration is
shown in Figure 2. From this equation, we can see that if the scattering property
of a material is homogeneous, i.e., the scattering cross-sections are constant, then
the formula relates reflectance at one surface point to incident flux at other surface
points. Since subsurface scattering has a limited effective range, we can obtain the
reflectance of a surface point due to multiple scattering by integrating flux incident
at points within a certain distance.
The multiple scattering term, Sd(xi,

−→ωi;xo,
−→ωo), depends on the transmission

terms at the entering and exiting surface points, and the dipole factor Rd(r). We
note that the dipole factor, Rd(r), only depends on the distance between two points
and decays exponentially with the distance. We define the scattering neighborhood
ACM Transactions on Graphics, Vol. V, No. N, February 2004.

Real–Time Rendering of Translucent Meshes · 7

r

Zv

Zr

Fig. 2. Dipole approximation of multiple scattering (based on [Jensen et al.,2001])

N(xo) of a vertex xo, to include all vertices xi of that object that lie within the ef-
fective scattering range from xo. We then compute multiple scattering contribution
from the scattering neighborhood of each vertex during the pre-processing stage.
Every such neighboring vertex xi is assumed to represent a small surface area whose
size can be approximately defined. We assign the integral of Rd(‖xi − xo‖) over
this small surface area as the contribution to the multiple scattering at xo due to xi

and append this information to xo’s list of multiple scattering contributors. Then
at rendering time, once we have Ft(η,−→ωi) and Ft(η,−→ωo) from the local illumination
computation, the contribution of point xi to xo due to subsurface scattering is just
the multiplication of Ft(η,−→ωi) with Ft(η,−→ωo) and the pre-computed Rd(‖xi − xo‖)
factor of xi from xo’s neighborhood list. The values of Fresnel terms and their
associated relative indices of refraction that we used in our work can be found
in [Jensen et al. 2001]. The pre-computation and storing of the dipole factors is
similar to the approach taken by Lensch et al. [2002]. In their algorithm, instead of
storing vertex-to-vertex dipole factors for every vertex in the scattering neighbor-
hood, they distinguish between local responses and global responses. They store
the global responses as vertex-to-vertex throughput factors, and the local ones as
texture atlas. We have not made that distinction here, and store all of them as
vertex-to-vertex factors.

2.3 Run-Time Two-Pass Local Illumination Model

We incorporate subsurface scattering effects into a local illumination model by ex-
tending the model into a run-time two-pass one. The traditional local illumination
model computes the outgoing radiance from a surface point according to lighting di-
rection, surface normal, and viewing direction in a single pass, using the particular
light and material properties.
In our run-time two-pass approach, the first pass generates reflection and trans-

mission radiance at each surface point as if there is no subsurface scattering, using
the Fresnel terms for reflection or transmission. After we compute the illumination
at all surface points, we come to the second pass, i.e., the bleeding pass. Dur-
ing this pass, we combine on-surface reflection with subsurface scattering to get
the total radiance at the exterior surface points according to the multiple scatter-
ing factors given in Section 2.2, using each point’s weighted contributions from its
neighbors. This bleeding pass adds subsurface reflection and transmission effects
on the surface.

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

8 · X. Hao and A. Varshney

3. IMPROVING EFFICIENCY

Our run-time two-pass process is somewhat similar, but still quite different from
the approach proposed by Jensen and Buhler [2002]. The main difference is when
to compute the scattering neighborhood factors. We pre-compute the factors at
the preprocessing stage, so bleeding the neighboring effects due to scattering in
the second pass is quite efficient, instead of traversing a hierarchical N-body data
structure for each frame as in [Jensen and Buhler 2002].
The run-time complexity of this version of our algorithm is O(N2), where N is

the number of surface points, assuming the size of the object and the scattering
properties remain constant. This is due to the fact that the number of vertices at
which we have to perform the bleeding step is N , and the scattering neighborhood
size is proportional to surface point density, which in turn is proportional to the
number of surface points N . While Jensen and Buhler [2002] build a hierarchical
O(N logN) data structure to solve the inherent O(N2) complexity problem, we
propose a quantized light source scheme to merge the two stages of our run-time
lighting process into a single stage process to further improve the efficiency of
our algorithm. We can thus reduce the complexity of our run-time algorithm to
O(N) with quite small constant factors. It enables us to achieve interactive frame
rates for simulating subsurface scattering effects on larger datasets. However, the
preprocessing also means that any change of the material subsurface scattering
properties will require a new pre-computation, which is a limitation not incurred
by Jensen and Buhler [2002]. As we stated earlier, our model is an appearance-
driven one using local illumination, so its accuracy sometimes can not exactly match
the one proposed in [Jensen and Buhler 2002].

3.1 Quantized Light Sources for Pre-computed Neighborhood Factor

We make further simplifications to reduce the complexity of our algorithm based
on the fact that each surface point in the neighborhood of another surface point
represents a small area on the surface and that real surfaces are usually rough.
The subsurface scattering contribution to the appearance of a surface point from a
directional light source with fixed direction ωi can be pre-processed as follows:

Lo(xo,
−→ωo) =

∫
A

S(xi,
−→ωi;xo,

−→ωo)Li(xi,
−→ωi)(−→ni · −→ωi)µidA

≈
∫

A

Sd(xi,
−→ωi;xo,

−→ωo)Li(xi,
−→ωi)(−→ni · −→ωi)µidA

=
∫

A

Ft(η,−→ωi)[
1
π
Rd(‖xi − xo‖)]Ft(η,−→ωo) · Li(xi,

−→ωi)(−→ni · −→ωi)µidA

=
{∫

A

Ft(η,−→ωi)(
1
π
Rd)Li(xi,

−→ωi)−→niµidA

}
· −→ωi · Ft(η,−→ωo)

≡ −→
Q(η, xo,

−→ωi) · −→ωi · Ft(η,−→ωo)

where µi is defined as:

µi =

{
1 (−→ni · −→ωi) ≥ 0
0 otherwise

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

Real–Time Rendering of Translucent Meshes · 9

This means we can pre-compute the vector integral
−→
Q(η, xo,

−→ωi) for the scattering
factor during the preprocessing stage, and at run time perform the dot-product
and multiplication operations. Due to the discrete nature of input mesh geome-
try, the vector integral above will be expressed as a vector summation in a real
implementation:

−→
Q(η, xo,

−→ωi) =
∑

xi∈N(xo)

Ft(η,−→ωi)(
1
π
Rd)Li(xi,

−→ωi)−→niµi∆A(xi)

where the summation is over all the vertices in the scattering neighborhood N(xo)
of xo. ∆A(xi) is the area represented by vertex xi, which is a constant if vertices are
distributed uniformly as in [Jensen and Buhler 2002]. For non-uniformly distributed
vertices, we can either resample the geometry, or use one third of the total area of
the triangles sharing the vertex as an approximation to ∆A at the vertex. So we
actually pre-compute the summation

−→
Q(η, xo,

−→ωi) for each vertex. Note, if a vertex
at xi in the scattering neighborhood of xo is in shadow, then it will not contribute
to

−→
Q(η, xo,

−→ωi), because xi receives no direct irradiance from light source. The
summation will not be affected by presence of shadow on xo, though. We use a
technique similar to shadow maps to determine if a vertex is in shadow. We first
generate a depth image of the scene as seen by the light source. Then for each
vertex, we transform it into light space and compare its depth value against the
value on the depth image. If the depth value of the vertex is bigger, the vertex is
in shadow.
It will be impossible to compute the vector integral

−→
Q for each possible light

source direction, of which the number is infinite. Instead, we quantize the direc-
tional space and pre-compute

−→
Q for a set of uniformly distributed light source

directions. For each light source j within the set, we compute the scattering neigh-
borhood integral

−→
Qj at each vertex during the preprocessing stage. An alternative

to pre-computing and storing a vector integral
−→
Q(η, xo,

−→ωi) is to pre-compute a
scalar dot-product value q(η, xo,

−→ωi) instead:

Lo(xo,
−→ωo) =

 ∑
xi∈N(xo)

Ft(η,−→ωi)(
1
π
Rd)Li(xi,

−→ωi)(−→ni · −→ωi)µi∆A(xi)

 · Ft(η,−→ωo)

≡ q(η, xo,
−→ωi) · Ft(η,−→ωo)

The advantage of using q instead of
−→
Q is the reduction of memory usage. The

pseudo-code for pre-computing q(η, xo,
−→ωi) for vertex xo is shown below (assume

the area ∆A(xi) and incoming flux Li(xi,
−→ωi) associated with each vertex xi has

been computed, and the effective scattering range is represented by RANGE):
Find–Scalar–Integral (η, xo,

−→ωi)

q = 0
for i from 1 to N

if (xi == xo OR xi in shadow)
skip

else
r = ‖xi − xo‖

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

10 · X. Hao and A. Varshney

if (r > RANGE)
skip

else
q + = Ft(η,−→ωi)(1

πRd(r))Li(xi,
−→ωi)(−→ni · −→ωi)µi∆A(xi)

return q

It is clear that the pre-processing stage shown above has complexity of O(N2).
If we use an octree-based data structure as in [Jensen and Buhler 2002], then the
complexity will go down to O(N logN).
This sampling of the lighting directional space to pre-compute a set of subsur-

face scattered radiance is similar, in spirit, to Debevec et al. [2000]. In their paper,
they measure the reflectance field of a human face, by sampling densely the inci-
dent illumination directions (2000 lighting directions) and sparsely the viewpoints.
The 8-D (eight-dimensional) reflectance field is equivalent to BSSRDF if the field
surface is coincident with a physical surface [Debevec et al. 2000]. For non-local
reflectance fields where the incident illumination field originates far from the sur-
face, reflectance field becomes 6-D (i.e., 2-D incoming light direction, 2-D exiting
radiance surface point location, and 2-D viewing direction). Their reflectance field
includes the on-surface reflected, as well as subsurface scattered radiance. With a
clever technique of separating diffuse and specular parts, they are able to render
interactively for any new lighting direction with fixed viewer, or several minutes
per frame for moving viewer. What we have shown here is that, the subsurface
scattered reflectance field is only 4-D once we take out the viewer-dependent Fres-
nel term, which can be added back easily at run-time. Furthermore, we show that
subsurface scattered reflectance field alone can be sampled at a much sparser rate
(200 instead of 2,000 directions). All these enable us to interactively move both the
viewer and the light source direction.

3.2 Rendering from Quantized Light Sources

After we pre-compute either the vector integral
−→
Q or scalar integral q for a set

of directional light sources, we use interpolation at run time to find the scattering
integral

−→
Q or q for a specific light source direction. We use quaternion-based vector

interpolation [Pletinckx 1989] to compute
−→
Q from its four closest

−→
Qj ’s in the set (as

Q1

Q4

Q3

Q2

Q

Fig. 3. Interpolation of the vector integral for a new light source direction from its

four nearest neighbors in the pre-computed set

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

Real–Time Rendering of Translucent Meshes · 11

in Figure 3). Then we compute dot-product of the interpolated scattering integral−→
Q with real light source direction. This kind of interpolation is similar to the normal
interpolation scheme used in Phong shading, though quaternion interpolation gives
a more accurate result and avoids a vector re-normalization step. To compute q, we
simply use a linear scalar interpolation scheme, which is similar to the interpolation
used in the Gouraud shading algorithm.
During the rendering of the scene we combine scattering effects with direct on-

surface reflected light (including shadow), to give the final appearance of each
vertex. As an example, for a light source in direction −→ωi, the scattering amount
for vertex xo along viewing direction −→ωo will be Ft(η,−→ωo) multiplied with the pre-
computed factor q(η, xo,

−→ωi), and scaled by this light source’s actual intensity. We
compute direct on-surface reflected light by a local illumination model.
The pseudo-code for computing the outgoing radiance L(xo,

−→ωo) for vertex xo in
direction −→ωo appears below. Here we assume the use of scalar integral q.

Find–Outgoing–Radiance (η,−→ωi, xo,
−→ωo)

L(xo,
−→ωo) = 0

Find 4 nearest matches qj from the pre-computed set of {q} for xo

Interpolate the 4 matched values based on −→ωi to get q(−→ωi)
Lscattered = q(−→ωi) · Ft(η,−→ωo)
Compute reflected radiance Lreflected(xo,

−→ωo) using a local illumination model
L(xo,

−→ωo) = Lscattered + Lreflected(xo,
−→ωo)

return L(xo,
−→ωo)

The visual difference between using
−→
Q and q for the models we have tested is

insignificant. This can be attributed to the diffuse nature of subsurface scattering.
Hence we are currently using the pre-computed scalar dot-products. Figure 4(a)
shows a image generated using

−→
Q on a horse model, and Figure 4(b) shows the

image generated using q on the same model. The difference image is shown in
Figure 4(c). The image space root-mean-square error between Figure 4(a) and 4(b)
is 5.26× 10−3.
What we have shown is that the light flux at a vertex on the surface due to direct

reflection and subsurface scattering can now be computed at the same time under

(a) Scattering using
−→
Q (b) Scattering using q (c) Difference of (a) and (b)

Fig. 4. Comparison of subsurface scattering using pre-computed vector integral and
scalar integral on the horse model (14,521 vertices)

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

12 · X. Hao and A. Varshney

a local illumination model. Thus with pre-computed integral, the run-time two-
pass algorithm we suggested before now becomes a run-time single-pass algorithm.
Furthermore, this pre-computed integral scheme also indicates that the run-time
computation of the scattering effect on a vertex is just an interpolation of the four
nearest neighbors in the set of the pre-computed integrals which have the same size
as the light source set we have selected. So the complexity of computing the scat-
tering component at run-time is constant, and not related to surface point density.
The total complexity of our run-time algorithm becomes O(N), instead of O(N2),
where N is the number of vertices. Subsurface scattering increases if the translu-
cency of the material increases or the physical size of the object decreases. This
increases the scattering neighborhood size that needs to be considered. However,
since the scattering neighborhood size only affects the pre-computation of integrals−→
Q or q, the rendering-time complexity of our display algorithm stays O(N).

3.3 Determining the Size of Light Source Set

The above sections show that if we use a quantized light source scheme for pre-
computation of scattering integrals and do interpolation at run-time, then we will
have a linear complexity single-pass run-time algorithm for rendering translucent
materials. We have not yet mentioned how to pick the size of light source set.
As we know, the scattering integral

−→
Q(η, xo,

−→ωi) or q(η, xo,
−→ωi) is a continuous

function of the directional space variable −→ωi. Quantization of light source directions
is a sampling process and interpolation is a reconstruction process. Similar to other
sampling processes, there is a tradeoff between sampling rate and time and storage
needed to process them. Using lower sampling rate is time and memory efficient,
but gives us less accurate results. Even worse, low sampling rate may introduce
aliasing problems when the sampling frequency is lower than the Nyquist rate. A
general frequency-space analysis for the scattering integrals is difficult because the
scattering integrals depend on geometry and scattering properties of the object and
different vertices will have different frequency distributions.
We instead experiment with different sizes of the light source set. We measure

the image space root-mean-square error for our test datasets and pick the smallest
size which introduces little visual artifacts:

erms =

[
1

MN

M−1∑
x=0

N−1∑
y=0

[
f̂(x, y)− f(x, y)

]2
]1/2

Here f(x, y) represents the image generated without the specified approximation,
f̂(x, y) denotes an estimate of the image, either interpolated or approximated ver-
sion of the image, M ×N is the image size, and the range for f(x, y) is [0, 1].
The results of the experiment are summarized in Figure 5. The root-mean-

square error is measured by comparing the results obtained by interpolation using
pre-computed scalar integrals q with the exact results. We compute this error for
about 100 randomly generated view directions and take the maximum RMS error
as the representative. We can see from Figure 5 that with a set of about 200 light
sources, the root-mean-square error is 3× 10−3 for all the four datasets. So we use
200 light source directions to pre-compute the scalar integrals q.
This directional quantization scheme can also be extended to include point light

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

Real–Time Rendering of Translucent Meshes · 13

Horse model

Venus model

Santa model

Teapot model

10 100 1000

0.004

0.008

0.012

0.016

0.020

Number of Light Sources

R
oo

t-
m

ea
n-

sq
ua

re
 E

rr
or

Fig. 5. Root-mean-square error as a function of the number of light sources

sources. We can add one more dimension to the interpolation, i.e., we quantize the
distance from light source to the object along with quantization of its direction.
Then we can trilinearly interpolate 8 nearest neighbors to get an O(N) complexity
algorithm for directional and point light sources.
Here we limit ourselves to local illumination, so we ignore on-surface inter-

reflections between vertices during computation of the pre-computed integral q(η, xo,
−→ωi).

If we use ray-tracing or Monte Carlo simulation in the preprocessing stage, we can
incorporate it in our algorithm and get more accurate q(η, xo,

−→ωi).

4. CONTROLLING THE MEMORY USAGE

For a set of 200 lights, we need to store 200 integrals per vertex. Instead of storing a
floating-point value per integral, we store a normalized unsigned byte value to serve
as an index to a lookup table. Thus we need 200 bytes of extra storage per vertex.
We have used the Lloyd quantizer algorithm [Gersho and Gray 1992] to design
the lookup table. As an example of the quantized result, the signal-to-noise ratio,
SNR [Gersho and Gray 1992] is 50.99dB for pre-computed integrals of the teapot
dataset by using this quantization, with a resulting image space root-mean-square
error of 8.83× 10−4. Normally at each vertex we need to store three numbers each
for position and normal direction, and other numbers such as texture coordinates
and color, if any. If we assume floating-point numbers to store these values, we
will need 24 bytes to store the position and normal direction alone. Even with this
uncompressed number, the extra storage needed for pre-computed integrals will
increase it by a factor of 8, which is quite a disadvantage of using our algorithm.
The number can be reduced though. In the following subsections we show how to
dramatically reduce this number so that the extra storage is comparable with the
original storage required for the vertex data.

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

14 · X. Hao and A. Varshney

4.1 Decomposition by Spherical Harmonic Basis Functions

Due to the diffuse-like nature of subsurface scattering effects, we apply spherical
harmonic functions as used by [Basri and Jacobs 2001; Cabral et al. 1987; Kajiya
and Von Herzen 1984; Ramamoorthi and Hanrahan 2001; 2002; Sillion et al. 1991;
Sloan et al. 2002; Sloan et al. 2003; Westin et al. 1992] to compress the directional
integrals. Spherical harmonic functions form an efficient basis to represent functions
defined over the directional space, such as incident radiance, BRDFs [Basri and
Jacobs 2001; Cabral et al. 1987; Ramamoorthi and Hanrahan 2001; 2002; Sillion
et al. 1991; Sloan et al. 2002; Sloan et al. 2003; Westin et al. 1992], and phase
function of particles in clouds [Kajiya and Von Herzen 1984]. Using the spherical
harmonic functions for expansion and storing the coefficients up to a given order is
similar to a filtering process of the angularly distributed signal [Ramamoorthi and
Hanrahan 2001].
The real-valued spherical harmonic basis functions [Sloan et al. 2002] are:

ym
l =


√
2Km

l cos(mϕ)Pm
l (cos θ), m > 0√

2Km
l sin(−mϕ)P−m

l (cos θ), m < 0
K0

l P
0
l (cos θ), m = 0

where l ∈ N , −l ≤ m ≤ l, Pm
l are the associated Legendre polynomials, and Km

l

are the normalization constants:

Km
l =

√
(2l + 1)
4π

(l − |m|)!
(l + |m|)!

The projection of the pre-computed scalar integral of q(η, xo,
−→ωi) onto the spher-

ical harmonic basis is given by:

qm
l (η, xo) =

∫
q(η, xo,

−→ωi)ym
l (

−→ωi)d−→ωi

The reconstructed function up to the n-th order is:

q̃(η, xo,
−→ωi) =

n−1∑
l=0

l∑
m=−l

qm
l (η, xo)ym

l (
−→ωi)

where
−→ωi = (x, y, z) = (sin θ cosϕ, sin θ sinϕ, cos θ)

As an example, we apply the above projection and reconstruction scheme to
the subsurface scattered teapot and results are shown in Figure 6 as the order n
varies from 1 to 7. Closeup versions are shown in Figure 7. The number of the
basis functions is equal to n2, which results in 1 to 49 basis functions being used.
For each basis function, we store a normalized short integer value (2 bytes) for
qm
l (η, xo). We therefore need 98 bytes per vertex for n = 7. We have not gone to
higher n because then the storage required becomes comparable to the method that
does not use spherical harmonics. From Figure 6 and Figure 7 we can see that the
image quality increases with the number of spherical basis functions. With 49 basis
functions, the visual quality is close to the one without compression. However, if
ACM Transactions on Graphics, Vol. V, No. N, February 2004.

Real–Time Rendering of Translucent Meshes · 15

(a) Scattering by q (b) Scattering by qm
l (n = 1, erms = 0.18)

(c) Scattering by qm
l (n = 2, erms = 0.072) (d) Scattering by qm

l (n = 3, erms = 0.027)

(e) Scattering by qm
l (n = 4, erms = 0.020) (f) Scattering by qm

l (n = 5, erms = 0.012)

(g) Scattering by qm
l (n = 6, erms = 0.0096) (h) Scattering by qm

l (n = 7, erms = 0.0056)

Fig. 6. Comparison of subsurface scattered teapot using q and qm
l (150,510 vertices)

one notices carefully, some differences near the shadow boundaries are still visible
(Figure 7(a) and (f)). The reason is that the spatial frequency of the pre-computed
integral q is beyond the spatial frequency that 49 spherical harmonic basis functions
can completely cover. So with spherical harmonics, we can achieve a factor of two

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

16 · X. Hao and A. Varshney

(a) Closeup of scattering by q (b) Closeup of scattering by qm
l (n = 1)

(c) Closeup of scattering by qm
l (n = 2) (d) Closeup of scattering by qm

l (n = 3)

(e) Closeup of scattering by qm
l (n = 4) (f) Closeup of scattering by qm

l (n = 5)

(g) Closeup of scattering by qm
l (n = 6) (h) Closeup of scattering by qm

l (n = 7)

Fig. 7. Closeup of Figure 6

compression ratio with small loss of image quality. For low frequency lighting
environments an interesting alternative is to use clustered principal component
analysis (CPCA) based compression of spherical harmonic coefficients to achieve
faster rendering [Sloan et al. 2003]. For general lighting environments, we have to
find some way to suppress the spatial frequency of q.
ACM Transactions on Graphics, Vol. V, No. N, February 2004.

Real–Time Rendering of Translucent Meshes · 17

4.2 Reference Points with Spherical Harmonic Basis Functions

We observe that the scattering from light entering one particular vertex and exiting
at two other points will not differ much if those two points are close to each other.
This is due to the diffuse nature of multiple scattering. The fact that each point
receives contribution from all its scattering neighborhood will smooth out the differ-
ence even further. This means, the difference of the scattering integrals ∆q between
nearby points will have much lower spatial frequency. So we can pick some refer-
ence vertices across the surface and store their scattering integrals q explicitly. For
other vertices, we compute differences of the integrals by subtracting their original
values from a weighted average of the values from its closest neighboring reference
vertices. We can then expect that the spherical harmonic functions can be applied
readily to those frequency-suppressed ∆q. Ramamoorthi and Hanrahan [2002] have
treated similar problem with a different perspective. Instead of trying to compress
the frequency before applying the spherical decomposition, they instead determine
the necessary number of basis functions for a faithful representation of the original
signal using a signal-processing framework.

Fig. 8. Construction of Reference Points

We can build reference points using a mesh simplification algorithm similar
to [Cohen et al. 1996; Garland and Heckbert 1997; Hoppe 1996] or a re-tiling
scheme of Turk [1992]. We prefer to generate the reference points as a subset of
the original vertices to reduce the storage overhead (as shown in Figure 8). After
we find the reference points, we generate the differences of pre-computed integrals
for each vertex with respect to its reference points as discussed next.
We first determine the three reference points for each vertex. Re-tiling schemes

such as by Turk [1992] keep track of which triangle each vertex has been flattened
to. For other mesh simplification algorithms we know one reference point for the
vertex, which is its parent in the simplification hierarchy. The vertex will lie in one
of the simplified triangles sharing this reference point. To find out the triangle the
vertex lies in, we project the vertex onto planes defined by those triangles, then do
a simple orientation test of the projected vertex relative to the three edges of each
triangle. Once we find the triangle the vertex V lies in, we compute the barycentric
coordinates of the projection V ′ of V onto the triangle.

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

18 · X. Hao and A. Varshney

Assume the reference points are V1, V2, and V3 with barycentric coordinates
w1, w2, and w3. Let {q1j}, {q2j}, and {q3j} (j is the quantized light source index)
be the pre-computed integrals for V1, V2, and V3, respectively. The {∆qj} set for
vertex V can then be computed as:

∆qj = qj −
3∑

k=1

ωkqkj

Finally, we decompose the integral differences {∆qj} by spherical harmonic basis
functions as before.
Figure 9 shows the root-mean-square error of using different number of reference

points and with 9(n = 3) and 36(n = 6) spherical harmonic basis functions on the
teapot dataset.

100 1000 10000 100000

0.0025

0.0050

0.0075

0.0100

0.0125

Number of Reference Points

R
oo

t-
m

ea
n-

sq
ua

re
 E

rr
or

n = 3
n = 6

Fig. 9. Root-mean-square error as a function of the number of reference points for
teapot dataset with 9(n = 3) and 36(n = 6) spherical harmonic basis functions

Figure 10 shows the scattered teapot images generated using different number
of reference points with 9(n = 3) spherical harmonic basis functions. Closeup
versions are shown in Figure 11. From Figure 11, we can see that even with about
1, 200 reference vertices and 9(n = 3) basis functions (Figure 11(d)), the result is
better (with smaller root-mean-square error) than the one using 49(n = 7) basis
functions alone (Figure 7(h)). For 5K reference vertices (about 3% of the total) and
9(n = 3) basis functions, the image is almost indistinguishable from the original
one (Figure 11(a)), even for the closeup version.
Now let us consider the storage requirements for the above case. We need 200

bytes for each vertex in the 5K reference set to store their original pre-computed
integrals, 4 bytes for each vertex to store its weight to its three nearest neighbors
(the first two values stored as normalized short integers, while the third value can
ACM Transactions on Graphics, Vol. V, No. N, February 2004.

Real–Time Rendering of Translucent Meshes · 19

(a) Scattering by q (b) 390 Ref pts (erms = 0.010)

(c) 614 Ref pts (erms = 0.0065) (d) 1,264 Ref pts (erms = 0.0034)

(e) 2,526 Ref pts (erms = 0.0022) (f) 5,176 Ref pts (erms = 0.0017)

Fig. 10. Comparison of subsurface scattered teapot using q and different number of
reference points with 9(n = 3) spherical harmonic basis functions (150,510 vertices)

be computed at run-time by one minus the first two values), and 9 bytes for each
vertex to store the spherical harmonic basis functions’ coefficients (each stored as a
normalized byte because the range for the coefficients has also been reduced a lot).
Overall, on average we need the following number of bytes per vertex to store the
pre-computed integrals:

200× 5176 + (4 + 9)× 150510
150510

≈ 20

So we only need 20 bytes per vertex. We know that each vertex needs a position
vector and a normal vector. If we assume floating-point numbers to store them
we will need (3 + 3) × 4 = 24 bytes for each vertex. Then the storage required
by the pre-computed integrals is less than the storage required by the position
and normal alone. Of course, one can compress positions and normals for vertices,
too. Nevertheless, this storage overhead seems quite reasonable for the interactive

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

20 · X. Hao and A. Varshney

(a) Closeup of scattering by q (b) Closeup of 390 Ref pts

(c) Closeup of 614 Ref pts (d) Closeup of 1,264 Ref pts

(e) Closeup of 2,526 Ref pts (f) Closeup of 5,176 Ref pts

Fig. 11. Closeup of Figure 10

simulation of translucent materials. Even better, the rendering speed increases
from 7.5 frames/second to 8.6 frames/second, which is about 15% speedup. We
achieve similar results on other datasets we have tested. The extra storage will be
no more than 27 bytes per vertex, and it decreases as the complexity of the object
increases (Table I).

5. RESULTS AND DISCUSSIONS

In this section, we show the results obtained by our algorithm on polygonal datasets.
We have used a 2GHz Pentium 4 PC running Windows 2000 with a nVIDIA
GeForce3 graphics card. The results are summarized in Table I and in Figures
6, 7, and 9 – 14. The images usually have about 1024 pixels in each dimension,
though their sizes nearly have no effect on the total rendering time, because we use
the graphics hardware mainly to do rasterization.
As one can see from Table I, our scattering model can generate subsurface scat-

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

Real–Time Rendering of Translucent Meshes · 21

Model No. of No. of No. of Extra Compression Frame rate(fps)

Name Vertices Triangles ref pts storage ratio by with without
(Bytes/vert) using ref pts scattering scattering

Horse 14,521 29,054 1,034 27 7.4 79.1 181

Venus 42,656 90,044 2,827 26 7.7 27.3 62.5

Santa 75,781 151,558 3,458 22 9.1 14.6 31.7

Teapot 150,510 292,168 5,176 20 10.0 8.6 19.5

Dragon 437,645 871,414 10,285 18 11.1 2.7 6.3

Buddha 543,652 1,087,716 12,330 18 11.1 2.4 5.2

Table I. Total rendering times for our approach

tered images within a few tenths of a second for a model with over one million
triangles, and achieve interactive frame rates for objects with less than 300K tri-
angles. We compute the BSSRDF for all the sample vertices as in Table I. The
subsurface scattered color of vertices is computed on the CPU, while the non-
scattered color is computed on the GPU. All the vertex data (position, color or
normal) are uploaded to the GPU at each frame. The GPU memory has not been
exploited. Our algorithm has an effective O(N) complexity (N is the number of
vertices), with small constant factors. The extra storage for pre-computed integrals
is less than 28 bytes per vertex using the scheme specified in section 4.2. This small
overhead should give most applications the opportunity to include the subsurface
scattering effects for more photo-realistic rendering without sacrificing interactive
frame rates.
Figure 12 shows increasing subsurface scattering effects on a horse model from

left to right. Figure 13 shows the effects of varying light source direction with
fixed viewer position on subsurface scattered teapot. We have used the Perlin noise
function [Ebert et al. 2003; Perlin 1985] to generate the marble texture on the Venus
model. Here we have made the assumption that the marble texture is on surface,
and will affect both xi and xo. Figures 12 and 14 show how the object will appear
if either its size shrinks or its material property changes to allow greater subsurface
scattering.
Our algorithm can also use a full Monte Carlo simulation in the preprocessing

stage. This will allow us to not only have an accurate subsurface scattering term,
but we can then also include the single scattering term, treat inhomogeneity, and
relieve the algorithm from the limitation of the dipole diffusion approximations for
multiple scattering. Subsurface scattering is also characterized by color-shift effects.
The correct way to simulate color shifts is to do a full spectral rendering. However,
the three channel RGB approximation can also give visually appealing results. If
one would like to use the three-channel approximation of the subsurface scattered
color shifts in our algorithm, we can compute three different sets of integrals, one
for each channel. The storage requirements will then be a little less than three
times as before, because we only need to store the barycentric coordinates once,
instead of three times. That means we will need about 46 bytes extra per vertex
for large datasets.

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

22 · X. Hao and A. Varshney

(a) Without Scattering (181 fps) (b)(c)(d) With scattering (79.1 fps)

Fig. 12. Rendering the horse model with subsurface scattering increasing from left
to right (14,521 vertices with 10% vertices in N(xo) at (b), 20% vertices in N(xo) at
(c), and 30% vertices in N(xo) at (d))

Fig. 13. Rendering the subsurface scattered teapot model with varying light source

direction (150,510 vertices, 8.6 fps)

6. CONCLUSIONS AND FUTURE WORK

In this paper we integrate subsurface scattering effects into a run-time single-pass
local illumination model with an efficient O(N) run-time complexity using pre-
computed scattering integrals for a set of quantized light source directions. We
also show that a reference points scheme, together with spherical harmonics can
be applied to greatly reduce the storage requirements of pre-computed integrals
and improve the run-time efficiency of our algorithm even further. The results
ACM Transactions on Graphics, Vol. V, No. N, February 2004.

Real–Time Rendering of Translucent Meshes · 23

(a) Without Scattering (b)(c)(d) With scattering
(62.5 fps) (27.3 fps)

Fig. 14. Rendering the Venus model with subsurface scattering increasing from left
to right (42,656 vertices with 10% vertices in N(xo) at (b), 20% vertices in N(xo) at
(c), and 30% vertices in N(xo) at (d))

capture the most important effects of subsurface scattering, such as neighborhood
bleeding and smooth illumination transitions between regions separated by sharp
edges. Our method provides an approximation of subsurface scattering for applica-
tions that need to maintain the interactivity with a small memory overhead while
preserving the realistic appearance for translucent materials. Our approach, by a
little modification, can also be incorporated into shadow algorithms to generate
soft shadow effects.
One direction for future work is to optimize the algorithm for determining the

reference points, given the desired number of points to be referenced and the pre-
computed sets of integrals. Currently we use simplification or retiling schemes,
which only take geometry into account. Factors related to illumination, such as
shadows, have not yet been fully considered during search for reference points.
Considering both geometry and illumination in determination of reference points

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

24 · X. Hao and A. Varshney

will produce a better image quality versus compression ratio tradeoff. It will also
be interesting to determine the linear combination weights that minimize error
instead of just using the spatial barycentric coordinates by solving a constrained
optimization problem.
Another interesting direction is to take advantage of current advances in graphics

hardware technology, to implement the rendering stage on the graphics card itself
using pixel and vertex shaders. This will not only allow much faster rendering
speeds, but might also result in insights to inspire further algorithmic improvements
in subsurface scattering.

ACKNOWLEDGMENTS

We would like to thank Henrik Wann Jensen, Pat Hanrahan, and Juan Buhler
for providing the lighting and material parameters for generating the images in
this paper. We would like to acknowledge Cyberware for providing us the Santa
model. We would also like to acknowledge the anonymous referees for their detailed
and constructive comments which have led to a much better presentation of our
results. This work has been supported in part by the NSF grants: IIS-00-81847,
and ACR-98-12572/02-96148.

REFERENCES

Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In
Proceedings of SIGGRAPH 2000. 65–74.

Bahar, E. and Chakrabarti, S. 1987. Full-wave theory applied to computer-aided graphics for
3D objects. IEEE Computer Graphics and Applications 7, 7, 46–60.

Basri, R. and Jacobs, D. 2001. Lambertian reflectance and linear subspaces. In Proceedings of
International Conference On Computer Vision. 383–390.

Blinn, J. F. 1977. Models of light reflection for computer graphics. Computer Graphics 11, 2,
192–198.

Cabral, B., Max, N., and Springmeyer, R. 1987. Bidirectional reflection functions from surface
bump maps. Computer Graphics 21, 4, 273–281 (Proceedings of SIGGRAPH ’87).

Carr, N. A., Hall, J. D., and Hart, J. C. 2003. GPU algorithms for radiosity and subsurface
scattering. In Proceedings of Graphics Hardware 2003. 51–59.

Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P., Brooks, Jr.,

F. P., and Wright, W. 1996. Simplification envelopes. In Proceedings of SIGGRAPH ’96.
119–128.

Cook, R. L. and Torrance, K. E. 1981. A reflectance model for computer graphics. Computer
Graphics 15, 3, 307–316 (Proceedings of SIGGRAPH ’81).

Dachsbacher, C. and Stamminger, M. 2003. Translucent shadow maps. In Proceedings of the
14th Eurographics Symposium on Rendering. 197–201.

Debevec, P., Hawkins, T., Tchou, C., Duiker, H., Sarokin, W., and Sagar, M. 2000. Ac-
quiring the reflectance field of a human face. In Proceedings of SIGGRAPH 2000. 145–156.

Dorsey, J., Edelman, A., Legakis, J., Jensen, H. W., and Pedersen, H. K. 1999. Modeling
and rendering of weathered stone. In Proceedings of SIGGRAPH ’99. 225–234.

Ebert, D., Musgrave, F. K., Peachey, D., Perlin, K., and Worley, S. 2003. Texturing and
Modeling, 3rd ed. Morgan Kaufmann, San Francisco, CA.

Garland, M. and Heckbert, P. 1997. Surface simplification using quadric error metrics. In
Proceedings of SIGGRAPH ’97. 209–216.

Gersho, A. and Gray, R. M. 1992. Vector Quantization and Signal Compression. Kluwer
Academic, Boston, MA.

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

Real–Time Rendering of Translucent Meshes · 25

Greenberg, D. P., Torrance, K. E., Shirley, P., Arvo, J., Ferwerda, J. A., Pattanaik, S.,

Lafortune, E. P. F., Walter, B., Foo, S.-C., and Trumbore, B. 1997. A framework for
realistic image synthesis. In Proceedings of SIGGRAPH ’97. 477–494.

Hanrahan, P. and Krueger, W. 1993. Reflection from layered surfaces due to subsurface

scattering. Computer Graphics 27, 3, 165–174 (Proceedings of SIGGRAPH ’93).

Hao, X., Baby, T., and Varshney, A. 2003. Interactive subsurface scattering for translucent

meshes. In Proceedings of 2003 ACM Symposium on Interactive 3D Graphics. 75–82.

He, X. D., Torrance, K. E., Sillion, F. X., and Greenberg, D. P. 1991. A comprehen-
sive physical model for light reflection. Computer Graphics 25, 4, 175–186 (Proceedings of
SIGGRAPH ’91).

Hoppe, H. 1996. Progressive meshes. In Proceedings of SIGGRAPH ’96. 99–108.

Jensen, H. W. and Buhler, J. 2002. A rapid hierarchical rendering technique for translucent
materials. ACM Transactions on Graphics 21, 3, 576–581 (Proceedings of SIGGRAPH 2002).

Jensen, H. W., Legakis, J., and Dorsey, J. 1999. Rendering of wet materials. In Rendering
Techniques ’99. Springer Verlag, 273–282.

Jensen, H. W., Marschner, S., Levoy, M., and Hanrahan, P. 2001. A practical model for
subsurface light transport. In Proceedings of SIGGRAPH 2001. 511–518.

Kajiya, J. T. 1985. Anisotropic reflection models. Computer Graphics 19, 3, 15–21 (Proceedings
of SIGGRAPH ’85).

Kajiya, J. T. and Von Herzen, B. P. 1984. Ray tracing volume densities. Computer Graph-
ics 18, 3, 165–174 (Proceedings of SIGGRAPH ’84).

Koenderink, J. J. and van Doorn, A. J. 2001. Shading in the case of translucent objects. In
Proceedings of SPIE. Vol. 4299. 312–320.

Lensch, H., Gosele, M., Bekaert, P., Kautz, J., Magnor, M., Lang, J., and Seidel, H.-P.

2002. Interactive rendering of translucent objects. In Proceedings of Pacific Graphics 2002.
214–224.

Marschner, S. R., Westin, S. H., Lafortune, E. P. F., Torrance, K. E., and Greenberg,

D. P. 1999. Image-based BRDF measurement including human skin. In Rendering Techniques
’99. Springer Verlag, 139–152.

Mertens, T., Kautz, J., Bekaert, P., Seidel, H.-P., and Van Reeth, F. 2003. Interactive ren-
dering of translucent deformable objects. In Proceedings of the 14th Eurographics Symposium
on Rendering. 130–140.

Perlin, K. 1985. An image synthesizer. Computer Graphics 19, 3, 287–296 (Proceedings of
SIGGRAPH ’85).

Pharr, M. and Hanrahan, P. 2000. Monte carlo evaluation of non-linear scattering equations
for subsurface reflection. In Proceedings of SIGGRAPH 2000. 75–84.

Phong, B.-T. 1975. Illumination for computer generated pictures. CACM 18, 6, 311–317.

Pletinckx, D. 1989. Quaternion calculus as a basic tool in computer graphics. The Visual
Computer 5, 1/2, 2–13.

Ramamoorthi, R. and Hanrahan, P. 2001. A signal-processing framework for inverse rendering.
In Proceedings of SIGGRAPH 2001. 117–128.

Ramamoorthi, R. and Hanrahan, P. 2002. Frequency space environment map rendering. ACM
Transactions on Graphics 21, 3, 517–526 (Proceedings of SIGGRAPH 2002).

Sato, Y., Wheeler, M. D., and Ikeuchi, K. 1997. Object shape and reflectance modeling from
observation. In Proceedings of SIGGRAPH ’97. 379–388.

Sillion, F. X., Arvo, J. R., Westin, S. H., and Greenberg, D. P. 1991. A global illumination
solution for general reflectance distributions. Computer Graphics 25, 4, 187–196 (Proceedings
of SIGGRAPH ’91).

Sloan, P., Hall, J., Hart, J., and Snyder, J. 2003. Clustered principal components for pre-
computed radiance transfer. ACM Transactions on Graphics 22, 3, 382–391 (Proceedings of
SIGGRAPH 2003).

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

26 · X. Hao and A. Varshney

Sloan, P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time render-

ing in dynamic, low-frequency lighting environments. ACM Transactions on Graphics 21, 3,
527–536 (Proceedings of SIGGRAPH 2002).

Stam, J. 1999. Diffraction shaders. In Proceedings of SIGGARPH ’99. 101–110.

Stam, J. 2001. An illumination model for a skin layer bounded by rough surfaces. In Rendering
Techniques ’01. Springer Verlag, 39–52.

Sun, Y., Fracchia, F. D., Drew, M. S., and Calvert, T. W. 2000. Rendering iridescent colors
of optical disks. In Rendering Techniques ’00. Springer Verlag, 341–352.

Turk, G. 1992. Re-tiling polygonal surfaces. Computer Graphics 26, 2, 55–64 (Proceedings of
SIGGRAPH ’92).

Ward, G. J. 1992. Measuring and modeling anisotropic reflection. Computer Graphics 26, 2,
265–272 (Proceedings of SIGGRAPH ’92).

Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from
complex surfaces. Computer Graphics 26, 2, 255–264 (Proceedings of SIGGRAPH ’92).

Yu, Y., Debevec, P., Malik, J., and Hawkins, T. 1999. Inverse global illumination: recovering
reflectance models of real scenes from photographs. In Proceedings of SIGGARPH ’99. 215–224.

ACM Transactions on Graphics, Vol. V, No. N, February 2004.

