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Abstract

We consider the problem of isosurface extraction and rendering for large scale time-varying data. Such data sets have been appearing at an
increasing rate especially from physics-based simulations, and can range in size from hundreds of gigabytes to tens of terabytes. Isosurface
extraction and rendering is one of the most widely used visualization techniques to explore and analyze such data sets. A common strategy
for isosurface extraction involves the determination of the so-called active cells followed by a triangulation of these cells based on linear
interpolation, and ending with a rendering of the triangular mesh. We develop a new simple indexing scheme for out-of-core processing of
large scale data sets, which enables the identification of the active cells extremely quickly, using more compact indexing structure and more
effective bulk data movement than previous schemes. Moreover, our scheme leads to an efficient and scalable implementation on multiprocessor
environments in which each processor has access to its own local disk. In particular, our parallel algorithm provably achieves load balancing
across the processors independent of the isovalue, with almost no overhead in the total amount of work relative to the sequential algorithm. We
conduct a large number of experimental tests on the University of Maryland Visualization Cluster using the Richtmyer–Meshkov instability
data set, and obtain results that consistently validate the efficiency and the scalability of our algorithm.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

During the past few years, we have seen an increasing trend
towards the generation and analysis of very large time-varying
data sets in scientific simulation. Such data sets are charac-
terized by their very large sizes ranging from hundreds of gi-
gabytes to tens of terabytes with multiple superposed scalar
and vector fields, demanding an imperative need for new in-
teractive exploratory visualization capabilities. As an example
of such a data set, consider the fundamental mixing process
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of the Richtmyer–Meshkov instability in inertial confinement
fusion and supernovae from the ASCI team at the Lawrence
Livermore National Labs. 2 This data set represents a simula-
tion in which two gases, initially separated by a membrane, are
pushed against a wire mesh. These are then perturbed with a
superposition of long wavelength and short wavelength distur-
bances and a strong shock wave. This simulation took 9 days
on 960 CPUs and produced about 2.1 TB of simulation data.
The data show the characteristic development of bubbles and
spikes and their subsequent merger and break-up over 270 time
steps. Each time step, simulated over a 2048 × 2048 × 1920
grid, has isosurfaces exceeding 500 million triangles with an
average depth complexity of 50. Such high-resolution simu-
lations allow elucidation of fine scale physics; in particular,
when compared with coarser resolution cases, the data allow

2 http://www.llnl.gov/CASC/asciturb/.
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observations of a possible transition from a coherent to a tur-
bulent state with increasing Reynolds number. Although there
are a large set of visualization systems and techniques, they are
usually targeted for several orders of magnitude smaller data
sets, may just consider the issues of data representation and
visualization in a fragmented manner, and do not scale to the
terabyte-sized data sets. Visual interaction with large databases
of dynamic simulation data sets requires the development of a
high-performance graphics software infrastructure running on
visualization platforms with access to large scale storage. In
this paper, we develop provably scalable and efficient strategies
for the parallel out-of-core isosurface extraction and rendering
of time-varying scalar fields. Compared with other published
algorithms, our approach has the following advantages:

• Our serial algorithm uses a smaller indexing structure and a
more effective bulk data movement than the best known pre-
vious algorithms while achieving similar asymptotic bounds.
In particular, the size of our indexing structure is shown to
be orders of magnitude smaller than that of the interval tree
for a number of well-known data sets.

• Our scheme can be implemented on a distributed storage
multiprocessor environment such that the data distribution
across the local disks of the different processors results in
a provably balanced workload irrespective of the isovalue.
Moreover, the total amount of work across the different pro-
cessors is about the same as that required by our efficient
serial algorithm.

• Our experimental results show that we can generate and ren-
der isosurfaces at the rate of 3.5 ∼ 4.0 million triangles per
second on the Richtmyer–Meshkov data set using our algo-
rithm on a single processor. On a 16-node cluster, we achieve
scalable performance across widely different isovalues with
a performance of up to 60 million triangles per second. The
experimental results also show that our algorithm achieves
excellent load balancing for a variety of data sets over a wide
range of isovalues.

We make use of the University of Maryland visualization clus-
ter in which each node consists of a two-way symmetric multi-
processor with 8 GB of main memory, a 60 GB local disk, and
an NVIDIA GPU (Graphics Processing Unit). The nodes are
interconnected via a 10 Gbps InfiniBand, with four nodes re-
served for compositing the image frame buffer outputs of other
processors and displaying the results on a wall-sized screen
(multi-projector display).

2. Previous work

The Marching Cubes algorithm developed in [14] scans the
entire cell set, one cell at a time, and determines whether a cell
is cut by the isosurface, and in the affirmative generates a local
triangulation of the isosurface intersection with the cell. The
overall triangular mesh is then rendered on a screen. Many im-
provements to this initial algorithm have been reported in the
literature. Some algorithms attempt to reduce the number of ex-
amined cells by using a spatial data structure such as the octree
[21,22], while others partition the range of the scalar field val-

ues and construct an index on such a partition [19]. Note that
the spatial data structures can only be used for structured grids
(such as the Richtmyer–Meshkov data set), while the range par-
titioning schemes can be used for both structured and unstruc-
tured grids. A hybrid scheme that works only for structured
grids determines a collection of “seed cells” and perform con-
tour propagation starting from some seed cells that depend on
the isovalue [3,13]. A theoretically optimal algorithm was de-
scribed in [9], and involves the construction of an interval tree
on the scalar field intervals defined by the cells [2]. Such a data
structure enables the exploration of only the active cells (cells
that intersect the isosurface) and hence it is output sensitive.
This algorithm was later generalized into a theoretically optimal
out-of-core isosurface extraction strategies in [7,8]. For multi-
processor environments, several parallel algorithms have been
reported for the case when the data can fit in the main memory
[10,11,15,17–19]. Of more interest to us are the parallel out-of-
core algorithms such as those reported in [4,6,20,23–25]. We
proceed to briefly discuss some of the recent algorithms and
relate them to the work described in this paper.

We assume a multiprocessor environment in which each pro-
cessor has its own local disk. The processors communicate and
exchange data through an interconnection network using mes-
sage passing. There is no shared storage pool. The initial input
is assumed to be partitioned among the disks of the different
processors. Therefore, a parallel out-of-core algorithm has to
deal with (i) data layout among the parallel disks and the in-
dexing structure to access the data; (ii) determining active cells
and generating the corresponding triangles using the available
processors; and (iii) rendering and displaying the output. Crit-
ical factors that influence the performance include the amount
of work required to generate the index and organize the data
on the different disks (preprocessing step); the relative compu-
tational loads of the different processors corresponding to an
arbitrary isovalue; the performance of the rendering and ras-
terization into a single display; and the total amount of work
relative to the (best) sequential algorithm. The preprocessing
step described in [8,5,6] involves partitioning the data set into
metacells, where each metacell is a cluster of neighboring cells
and occupies about the same number of disk blocks (in partic-
ular, the metacell is trivially a subcube in the case of structured
grids), and building a B-tree like interval tree, called binary-
blocked I/O interval tree (BBIO tree). The computational cost
of this step is asymptotically similar to an external sort, which
is likely to be expensive in practice. The isosurface genera-
tion requires that a host traverses the BBIO tree to determine
the indices of the active metacells, after which jobs are dis-
patched on demand to the available processors. In addition to
the substantial preprocessing overhead, a significant bottleneck
with this scheme is the host overhead in coordinating and dis-
patching jobs, and the unpredictability of the access pattern to
the available disks. The algorithm described in [23] attempts
to solve the load balancing problem by distributing the data
based on a range space partition. The range of possible field
values is partitioned into a number of intervals. Blocks are then
assigned to triangular matrix entries depending on which in-
tervals a block spans. An external interval tree (BBIO tree) is
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then built separately for the data on each processor. Again this
strategy involves a very expensive preprocessing step but in ad-
dition there is no guarantee of load balancing among the pro-
cessors. In fact, it is easy to construct a data set that will result
in extremely unbalanced loads among the processors. More-
over, while the BBIO is “asymptotically optimal” for I/O per-
formance (in terms of the number of active metacells brought
to memory and not necessarily the active cells), it does incur
a significant overhead in terms of size and performance. The
extracted local surface is then streamed to parallel rendering
servers, followed by compositing the outputs of the different
frame buffers to a tiled-display. The preprocessing algorithm
described in [25] is based on partitioning the range of scalar
values into equal-sized subranges, creating afterwards a file
of subcubes for each subrange. The blocks in each range file
are then distributed across the different processors, based on
a work estimate of each block. As in [23], the preprocessing
is computationally expensive and there is no guarantee that
the loads of the different processors will be about the same in
general.

In summary, existing parallel out-of-core algorithms ei-
ther require unpredictable data accesses to the disks, which
can cause a considerable overhead, or use complex index-
ing schemes with no guaranteed load balancing. The parallel
out-of-core algorithm presented in this paper uses a simple
indexing scheme with provable load balancing among the pro-
cessors (regardless of the data set or the isovalue) and incurs
almost no overhead relative to the efficient sequential version
of the algorithm.

3. Computational model

Due to their electromechanical components, disks have two
to three orders of magnitude longer access time than random-
access main memory. In order to amortize the access time over
a large amount of data, a single disk access reads or writes a
block of contiguous data at once, typically of size 4 or 8 KB. We
will use the standard model [1] to measure the I/O performance
of our algorithm. We denote the input size by N, the disk block
size by B, and the size of the main memory by M. In this work,
we are assuming that N is much larger than M, which is in
turn much larger than B. The I/O performance of an external
memory algorithm is measured by the number of I/O operations,
each such operation involving the reading or writing of a single
disk block. As a result, scanning contiguously the input data
requires O(N/B) I/O operations.

Our parallel computation model consists of a number of
processors, each with its own local main memory and disk,
interconnected through an interconnection network. The pro-
cessors communicate and exchange data through message
passing using the interconnection network. Since we are in-
terested in large scale data, we assume that the input data
resides on the disks of the available processors. A prepro-
cessing step involves rearranging the data among the disks
with the goal to optimizing the access patterns to the data,
and to distributing the computational load equally among the
processors.

4. Compact interval tree indexing scheme

Our algorithm can handle both structured and unstructured
grids and makes use of the metacell notion introduced in [8].
In general, a metacell consists of a cluster of neighboring cells.
All the metacells are about the same size, which is a small mul-
tiple of the disk block size. In particular, for the structured grid
of the Richtmyer–Meshkov data set, our metacell consists of a
subcube of size 9 × 9 × 9, represented by a list of the scalar
values appearing in a predefined order. Our indexing structure
and isosurface query algorithm are designed upon the con-
cept of metacell. With each metacell, we associate an interval
(vmin, vmax) corresponding, respectively, to the minimum and
maximum values of the scalar field over the metacell. Our com-
pact interval tree structure makes use of the span space concept
to organize the data layout. Before introducing this structure,
we begin with a brief review of the standard binary interval
tree.

Given a set of intervals, to build the binary interval tree, we
store the median of the endpoints of the intervals at the root
and assign all the intervals containing that value to the root. We
then recursively build the left and right subtrees corresponding,
respectively, to the intervals completely to the left and the right
of the value stored at the root. More specifically, each node of
the tree holds a splitting value vm and two secondary lists of the
intervals (vmin, vmax) satisfying the condition vmin �vm �vmax,
one list in increasing order of vmin values and the second in
decreasing vmax values. The remaining intervals with vmax <

vm are assigned to the left subtree while the intervals with vm <

vmin are assigned to the right subtree.
Our compact interval tree is similar to the interval tree ex-

cept that we do not store the two sorted lists of intervals at each
node. Instead, we store the distinct values of the vmax endpoints
of these intervals, sorted in decreasing order, and associate with
each such value a pointer to a list of intervals sorted in in-
creasing order of left endpoint value vmin. We now explain the
compact interval tree in the context of the isosurface problem
and its relationship to the metacells generated from the input
data. Consider the span space consisting of all possible combi-
nations of the (vmin, vmax) values of the scalar field. With each
such pair we associate a list containing the metacells whose
minimum scalar field value is vmin and whose maximum scalar
field value is vmax. The essence of the scheme for our com-
pact interval tree is illustrated through Fig. 1 representing the
span space, and Fig. 2 representing the compact interval tree
built upon the n distinct values of the endpoints of the intervals
corresponding to the metacells.

Let vm0 be the median of all the endpoints. The root of the
interval tree corresponds to all the intervals whose vmin values
fall in the range [v0, . . . , vm0], and whose vmax values fall in the
range [vm0, . . . , vn]. Such intervals are represented as points
in the square of Fig. 1 whose bottom right corner is located at
(vm0, vm0). We group together all the metacells having the same
vmax value in this square, and store them consecutively on disk
from left to right in increasing order of their vmin values. We
refer to this contiguous arrangement of all the metacells having
the same vmax value within a square as a brick. The bricks within
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the square are in turn stored consecutively on disk in decreasing
order of the vmax values. The root will contain the value vm0,
the number of non-empty bricks in the corresponding square

Fig. 1. Span space partitioning scheme for our indexing structure.

Fig. 2. Compact interval tree structure and the associated metacell lists.

Table 1
Size comparison between standard and compact interval trees

Data set name Scalar field size N n Size of interval tree

Standard Compact

LLNLa One bytes 18,970 227 222.3 KB 6.0 KB
MRBrainb Two bytes 756,982 2894 11.6 MB 22.6 KB
CTHeadb Two bytes 817,642 3238 12.5 MB 25.3 KB
Pressurec Four bytes 24,507,104 20,748,433 560.9 MB 237.4 MB
Velocityc Four bytes 24,444,597 17,548,131 559.5 MB 200.8 MB

N denotes the number of distinct intervals and n represents the number of distinct vmax values.
aRichtmyer–Meshkov data set from http://www.llnl.gov/CASC/asciturb/.
b3D CT images from http://graphics.stanford.edu/data/voldata/.
cSimulation data of a Hurricane from http://vis.computer.org/vis2004contest/data.html.

(of the span space), and an index list of the corresponding
bricks. This index list consists of at most n/2 entries corre-
sponding to the non-empty bricks, each entry containing three
fields: the vmax value of the brick, the smallest vmin value of the
metacells in the brick, and a pointer that indicates the start po-
sition of the brick on the disk. Each brick contains contiguous
metacells in increasing order of vmin values, and each meta-
cell consists of its vmin value, its location information such as
metacell ID, and a list of the scalar field values of the vertices
(in a predefined order) within the metacell. We recursively re-
peat the process for the left and right children of the root. We
will then obtain two smaller squares whose bottom right cor-
ners are located, respectively, at (vm10, vm10) and (vm11, vm11)

in the span space, where vm10 and vm11 are the median values
of the endpoints of the intervals associated, respectively, with
the left and right subtrees of the root. In this case, each child
will have at most n/4 non-empty index entries associated with
its corresponding bricks on the disk. This recursive process is
continued until all the intervals are exhausted. At this point we
have captured all possible (vmin, vmax) pairs and their associ-
ated metacell lists.

Note that the size of the standard interval tree is typically
much larger than the size of our indexing structure. We can
upper bound the size of our compact interval tree as follows.
There are at most n/2 index entries at each level of the compact
interval tree and the height of the tree is no more than O(log2 n).
Hence our compact interval tree consists of O(n log n) index
entries, each entry having three fields. Therefore the total size
of our compact interval tree is O(n log n), while the size of
the standard interval tree is �(N), where N is the total number
of intervals and hence can be as large as �(n2). In fact, the
standard interval tree is always at least twice as large as our
indexing structure regardless of the relative values of N and n
since the interval tree stores each interval (vmin, vmax) twice
while our indexing structure stores each such interval at most
once (the extra space required for pointers to the corresponding
data on disk is the same in both cases). In Table 1 we compare
the sizes of the two indexing structures for some well-known
data sets from LLNL, the Stanford Volume Data Archive and
IEEE visualization. As can be seen from the table, our indexing
structure is substantially smaller than the standard interval tree,
even in the case when N ≈ n.
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5. Efficient and scalable isosurface extraction algorithm

Given a query isovalue �, consider the unique path from the
leaf node labeled with the largest value �� to the root. Each
internal node on this path contains an index list with pointers
to some bricks. For each such node, two cases can happen
depending on whether � belongs to the right or left subtree of
the node.

Case 1: � falls within the range covered by the node’s right
subtree. In this case, the active metacells associated with this
node can be retrieved from the disk sequentially starting from
the first brick until we reach the brick with the smallest value
vmax larger than �.

Case 2: � falls within the range covered by the node’s left
subtree. The active metacells are those whose vmin values satisfy
vmin ��, from each of the bricks on the index list of the node.
These metacells can be retrieved from the disk starting from the
first metacell on each brick until a metacell is encountered with
a vmin > �. Note that since each entry of the index list contains
the smallest vmin of the corresponding brick, no I/O access will
be performed if the brick contains no active metacells.

Once an active metacell is in memory, any of the sev-
eral variations of the Marching Cubes algorithm can be used
to precisely determine the active cells within the metacell
and generate the appropriate triangles defining the isosurface
mesh.

5.1. Parallel processing

Assume that we have p processors, each with its own local
disk, and the processors are interconnected with some type of
a high-speed interconnection network. We will show how to
partition the input data among the p local disks and apply our
compact tree indexing structure to extract and render isosur-
faces in a scalable and efficient way. The main challenge is to
ensure load balancing among the processors for any isovalue
while maintaining the same total amount of work as that of our
sequential algorithm. We start by showing how to distribute the
N input metacells among the local disks in such a way that the
active metacells corresponding to any isovalue are spread al-
most evenly among the processors. We first sort N metacells in
decreasing order of their vmax values. The N sorted metacells
are then divided evenly into

√
N/p sets, each set containing√

pN consecutive metacells in the sorted order. Then, we re-
sort the metacells within each set by increasing order of vmin
values. We now stripe all the N metacells as they appear after
the two sorting steps across the p disks. That is, the first meta-
cell is stored on the disk of the first processor, the second on
the disk of the second processor, and so on wrapping around
as necessary. We next prove the following property of our par-
titioning scheme.

Lemma 1. Our metacell partitioning algorithm distributes the
N metacells of the initial data set onto p processors such that
each processor receives N/p + O(1) metacells. For any iso-
value �, each processor will hold at most N∗/p + 2

√
N/p

Fig. 3. Each pair (vmin, vmax) is illustrated as a point and assumed in this
case to correspond to a single metacell. For N = 32 and p = 3, the metacells
are partitioned into three sets separated by dashed lines. The colors black,
white, and grey are used to denote the metacells belonging to the first, second,
and third processor, respectively.

active metacells, where N∗ is the total number of active meta-
cells corresponding to the isovalue �.

Proof. The first part of the lemma is obvious since the N
metacells, after getting rearranged in the two sorting steps, are
striped across the p disks. Given an isovalue �, the correspond-
ing active metacells are those represented in the shaded region
shown in Fig. 3 of the span space. We now examine how these
metacells are distributed among the p processors. After the first
sorting step, our partitioning algorithm distributes the N meta-
cells evenly into

√
N/p sets, each of which contributes

√
pN

metacells. The second sorting step is performed within each set
separately, after which all the metacells are striped across the
p disks. Each set whose vmax values are larger than or equal
to � (the first two sets in Fig. 3) contributes an equal number
of active metacells with a difference of at most one for each
set since the metacells within each set were sorted in increas-
ing order of vmin. Since there are at most

√
N/p such sets, the

total difference of active metacells contributed by these sets is
at most

√
N/p. We may have an additional set some of whose

vmax values are larger than or equal to �, and the rest are strictly
smaller (the last set in Fig. 3). In this case, the maximum dif-
ference in the number of active metacells among all the p pro-
cessors cannot possibly exceed

√
N/p, which is the number of

metacells placed at each processor from this set. Therefore the
maximum difference in the number of active metacells among
all processors is bounded by 2

√
N/p, and the proof of the

lemma is complete. �
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A few observations about our partitioning algorithm are in
order. The first is that the above upper bound on the number
of active metacells per processor is extremely conservative. As
we will illustrate later, the bounds achieved in practice across
widely different data sets are substantially better than this up-
per bound. The second observation is that in general we ex-
pect N∗ to be of order N2/3 for interesting isovalues in which
case 2

√
N/p is asymptotically much smaller than N∗/p. Third,

our scheme is the only scheme, as far as the authors know,
for which asymptotic load balancing bounds can actually be
established.

Once the metacells are distributed among the p processors,
we create a compact interval tree that corresponds to the local
data set. The isosurface query can now be carried out simulta-
neously by all the p processors using their own local indexing
lists. As a result, roughly the same number of triangles are gen-
erated by each processor, which are then rendered locally. The
p frame buffers will then be composited using their depth infor-
mation to create the final output. Except for the very last step,
we have provably split the work asymptotically equally among
the processors, without increasing the total work relative to the
sequential algorithm and without requiring communication be-
tween the processors (such a strategy is referred to as sort last
strategy in the literature). For large scale data sets such as the
Richtmyer–Meshkov data set whose isosurfaces consist of hun-
dreds of millions of triangles, the compositing step involves
the movement of data that is orders of magnitude smaller than
the total size of the triangles, and hence can be done extremely
quickly given a high-speed interconnection network as will be
illustrated later.

5.2. Extension to time-varying data

Given the extremely compact size of our indexing structure,
our scheme can be easily extended to deal with large scale

Fig. 4. The visualization cluster architectural diagram (Courtesy from Intel).

time-varying data as follows. We have shown that the size of
our indexing structure is O(n log n) for a single time step dur-
ing which there are n distinct values of the endpoints of the
intervals corresponding to the metacells. To index time-varying
data of m time steps, we can use the same indexing scheme for
each time step separately resulting in an indexing structure of
size O(mn log n). Note that the size of the indexing structure
depends only on the number of time steps, which is typically
small, say in the order of hundreds and rarely in the thousands,
but independent of the total number of cells of the given data
set. For example, one-byte scalar data with hundreds of time
steps will require an indexing structure of size at most a few
megabytes, regardless of the size of each grid since the number
n of possible distinct values is 28 = 256. Similarly for two-byte
scalar data, the size of the indexing structure increases to hun-
dreds of Megabytes, which is still reasonable and can easily fit
in today’s processors’ main memory. In the case of Richtmyer–
Meshkov data set, we have 270 time steps with 7.5 GB per time
step, which amounts to a total of about 2.1 TB. However, the
size of our indexing structure for the whole data set is only
3.2 MB.

6. Experimental setup

Our platform consists of a 16-node visualization cluster, each
node consists of a two-way SMP Dual-CPU running at 3.0 GHz,
an 8 GB main memory, a 60 GB local disk that can achieve
70 MB/s I/O transfer rate, and one NVIDIA6800 GPU card with
bi-directional 4 GBps data transfer rate to memory via PCI-
Express (×16) Bus. The GPU communicates with CPU and
RAM via MCH (memory controller hub). These 16 nodes are
interconnected through 10 Gbps Topspin InfiniBand network.
In addition, four nodes are connected to four projectors for
a four-way tiled wall-sized display via their GPU card’s DVI
port. The architecture of a single node is illustrated in Fig. 4.
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As a visualization cluster, each node of the system can run
graphics programs and dispatch OpenGL commands to its GPU
for rendering. The system software configuration includes Red-
hat Linux Enterprise 3.0, MPI, and the chromium package to
enable the parallel rendering among multiple rendering nodes.
Basically, the chromium is able to intercept OpenGL command
calls from graphics applications and sends them to proper ren-
dering servers according to the tiled-display layout 3 [12]. For
the parallel rendering scheme, we use the sort-last method [16].
The essence of this method is to have each node render its tri-
angles locally using the on-board GPU, after which the output
is read back from the GPU’s frame buffer and sorted according
to the display server’s tile layout. Different regions of the frame
buffer including the z-buffer content are forwarded to the ap-
propriate rendering servers, each of which will be responsible
for displaying a specific region on the wall-sized display. At
each rendering server, the components of the frame buffers from
various processors are composited using their z-buffer contents
and rendered to the display device connected to server’s GPU.
In our experiments, the time of sorting and shuffling the frame
buffers among various nodes via 10 Gbps InfiniBand does not
cause a noticeable overhead compared to time it takes to extract
and render the triangles at each node as we will see later.

7. Experimental results

Since the performance of our algorithm depends critically
on how the overall computational load is allocated to the dif-
ferent processors, we start by illustrating the load balancing
achieved on a 16-processor cluster using seven different data
sets, including the five data sets listed in Table 1. While the
Richtmyer–Meshkov data use one-byte scalar fields, the MR-
Brain and CTHead data sets consist of two-byte scalar fields,
and the remaining four data sets (generated from a hurricane
simulation) use floating point scalar fields. The average number
of active metacells among all the processors as well as the max-
imum difference between the loads of any two processors are
shown in Tables 2 and 3, over a wide range of isovalues. As the
results show, the maximum difference of the number of active
metacells among all the p processors is substantially smaller
than the established upper bound of 2

√
N/p, for all cases, and

clearly illustrate the excellent load balancing achieved in prac-
tice by our scheme. Since the total work of our parallel scheme
is about the same as the sequential algorithm, we expect the
performance of our parallel algorithm to be linearly scalable as
we show next in some detail for the Richtmyer–Meshkov data
set.

7.1. Detailed performance results on the Richtmyer–Meshkov
data set

We illustrate the performance of our parallel scheme on the
Richtmyer–Meshkov data set using a wide range of isovalues.
This data set consists of 2048 × 2048 × 1920 one-byte scalar
values for each time step and spans 270 time steps. The data

3 http://chromium.sourceforge.net/.

amount to 7.5 GB for each time step for a total of 2.1 TB.
Fig. 5 illustrates the isosurface generated for the isovalue 190
at time step 250 from a down-sampled version of the data
set with 256 × 256 × 240 one-byte scalar values. During the
data preprocessing stage, we scan the data once and create
the metacells, where each metacell consists of a four-byte ID
indicating the location of the metacell, 9×9×9 one-byte scalar
values of the vertices, and the minimum values of the metacell
vertices. At this point, the original data has been converted to
256 × 256 × 240 metacells, each of size 734 bytes. Using our
scheme, we stripe the metacells among the available disks and
build each local indexing structure separately on each node.
In particular, each node of the visualization cluster will hold a
compact interval tree with pointers to the bricks stored on its
local disk. For a single time step, this preprocessing takes about
30 minutes to complete on a single node of our cluster. We have
done extensive testing of our algorithm using a wide range of
isovalues as well as single and multiple nodes. A summary of
our experimental results is given next.

7.1.1. Single time step case
We consider time step 250 of the Richtmyer–Meshkov data

set and vary the isovalues from the value 10 up to the values
210, in steps of 20. For each of these isovalues, we ran the algo-
rithm on one, two, four, eight, and sixteen nodes. We evaluate
the performance of our isosurface extraction algorithm accord-
ing to the following three metrics: (i) the I/O time it takes to
retrieve the active metacells from the disk, referred to as Ac-
tive MetaCell (AMC) retrieval time; (ii) the amount of CPU
time required to go through the active metacells and generate
the appropriate triangles, referred to as triangulation time; and
(iii) finally the rendering time, which reflects the time it takes
to render the triangles on the local GPU, after which the differ-
ent frame buffers are composited to generate the final display.
The time it takes to do the compositing of the very last step is
included in the total time. The actual times obtained are sum-
marized in Tables A1–A4 in Appendix A.

After preprocessing the data set for time step 250, we obtain
5, 592, 802 metacells that occupy a space of size 3.828 GB,
which is nearly 50% smaller than the original 7.5 GB size since
we eliminate the metacells for which all the vertices have the
same scalar field value.

We first consider the performance of our algorithm on a
single processor. From Table 4, we can see that the number of
generated triangles varies from 100 million to 650 million over
the range of isovalues from 10 to 210. Our indexing structure is
of size 6 KB, which is quite small compared to the size of the
data. As shown in Table 4, we are able to achieve the I/O rate of
about 70 MB/s in retrieving the active metacells, with a linear
relationship between the total time and the number of triangles
generated. It is also shown that the triangle generation stage is
the bottleneck for the whole isosurface extraction as we need to
go through each of the active unit cells within an active metacell
to generate the triangles as necessary. Once the triangles are
generated, they are rendered on the GPU very quickly. As a
result we were able to extract and render isosurfaces at the rate
of almost 4 million triangles per second.
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Table 2
Measured load imbalance in number of active metacells among sixteen nodes with varying isovalues for one-byte and two-byte data sets

LLNL data set MRBrain data set CTHead data set

One-byte scalar Two-byte scalar Two-byte scalar
N = 5, 629, 653; p = 16; N = 6, 134, 838; p = 16; N = 5, 799, 589; p = 16;
2(N/p)1/2 = 1186 2(N/p)1/2 = 1238 2(N/p)1/2 = 1204

Isovalue Ave. N�/p Max diff. Isovalue Ave. N�/p Max diff. Isovalue Ave. N�/p Max diff.

10 90,986 33 1253 24,657 108 0 12,196 36
30 129,505 28 1480 28,797 72 272 30,149 24
50 165,931 26 1707 36,185 61 544 18,255 42
70 177,806 18 1934 41,931 52 816 14,696 27
90 150,728 18 2161 29,164 38 1088 45,802 9

110 110,231 14 2388 17,132 44 1360 17,683 34
130 81,769 11 2615 7284 36 1632 15,536 27
150 64,839 5 2842 5425 42 1904 14,161 61
170 54,411 6 3069 3903 38 2176 12,258 22
190 47,232 7 3296 2052 18 2448 6055 44
210 41,658 12 3523 522 32 2720 1215 36

N denotes the number of intervals and p is the number of processors. Ave. N�/p represents average number of active metacells per processor.

Table 3
Measured load imbalance in number of active metacells among sixteen nodes with varying isovalues for four-byte floating-point data sets corresponding to a
hurricane simulation

Four-byte floating-point data sets: N = 24, 651, 099; p = 16; 2(N/p)1/2 = 2482

Pressure data set Velocity data set Vapor data set Temp. data set

Isovalue Ave. N�/p Max diff. Isovalue Ave. N�/p Max diff. Isovalue Ave. N�/p Max diff. Isovalue Ave. N�/p Max diff.

−3272.59 83 9 −60.44 65 9 1.81 23,794 32 −68.85 31,832 51
−2763.30 214 16 −49.66 410 20 3.61 23,036 27 −59.81 17,375 17
−2254.02 410 30 −38.88 1315 38 5.41 22,190 31 −50.77 16,753 51
−1744.74 633 32 −28.10 2602 53 7.22 20,038 25 −41.73 16,508 54
−1235.46 1020 12 −17.32 6135 75 9.02 16,362 50 −32.69 16,726 39
−726.18 1678 34 −6.55 46,495 55 10.83 15,186 14 −23.65 16,810 55
−216.90 3095 39 4.23 49,948 70 12.63 14,103 71 −14.61 16,914 49

292.38 22,879 32 15.01 15,791 41 14.44 11,712 54 −5.56 17,100 50
801.66 19,730 65 25.79 5308 27 16.24 8861 27 3.48 21,832 75

1310.94 15,003 49 36.57 1087 39 18.05 5647 39 12.52 23,130 51
1820.22 9334 45 47.35 198 35 19.85 1224 29 21.56 17,562 68

N denotes the number of intervals and p is the number of processors. Ave. N�/p represents average number of active metacells per processor.

Tables A1–A4 (in Appendix A) show the execution times
of the major steps of our algorithm on two, four, eight, and
sixteen processors over a wide range of isovalues. A careful
examination of the experimental results in these tables clearly
illustrate the scalability and the efficiency of our scheme. Note
also that the compositing step (whose time is equal to the total
time minus the sum of the times of the other steps) is extremely
fast and takes at most a few hundreds of milliseconds even on
sixteen processors.

The overall time spent on the extraction and rendering of
isosurfaces for various isovalues is illustrated in Fig. 6. The
corresponding speedups are highlighted in Fig. 7. As expected,
our scheme achieves very good scalability relative to our ex-

tremely efficient serial algorithm, independent of the particular
isovalue.

7.2. Time-varying case

We now consider the more general case of time-varying data
sets that are to be explored by extracting and rendering iso-
surfaces corresponding to a time step and an isovalue. We can
index the 270 time steps of the Richtmyer–Meshkov data set
using our indexing scheme. The size of the resulting indexing
structure is 3.2 MB, which easily fits into the main memory
of a node. The layout of the data of each time step will be
distributed across the processors as before. Extracting an iso-
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Fig. 5. Isosurface corresponding to the isovalue 190 at time step 250 from a down-sampled version of size 256×256×240 of the Richtmyer–Meshkov data set.

Table 4
Performance summary of our algorithm

Isovalue Number of triangles Number of AMC AMC retrieval (s) Triangulation (s) Rendering (s) Total time (s) Overall rate (s)

10 228,770,844 1,455,782 15.49 36.2 19.00 70.74 3.23
30 376,578,332 2,072,085 21.52 57.9 21.50 100.98 3.73
50 569,387,336 2,654,902 25.74 85.41 32.65 143.85 3.96
70 651,834,482 2,844,889 25.89 96.31 37.39 159.65 4.08
90 511,136,810 2,411,647 21.96 76.09 29.26 127.35 4.01

110 329,408,766 1,763,701 17.13 50.45 19.09 86.72 3.8
130 229,201,420 1,308,299 13.30 35.25 13.28 61.89 3.7
150 177,035,314 1,037,426 10.71 27.18 10.29 48.23 3.67
170 146,369,438 870,573 9.12 22.38 8.51 40.05 3.66
190 125,365,482 755,710 7.99 19.09 7.27 34.41 3.64
210 108,977,638 666,527 7.07 16.5 6.32 29.94 3.64

AMC refers to the active metacells. The last column shows that the performance is linear in the number of triangles and hence the algorithm is output sensitive.

surface of a time step amounts to determining the appropriate
indexing structure for that time step, which can easily be per-
formed since the whole indexing structure is in main memory.
Table 5 shows the results for time steps 180 ∼ 195 for the iso-
value of 70. Each row of the table lists the number of active
metacells, the number of triangles generated, the execution time
on a four-node configuration, and the overall rate of triangles
rendered (millions per second).

8. Conclusion

In this paper, we have presented a new indexing structure and
a new partitioning algorithm for out-of-core isosurface extrac-
tion and rendering of large scale data. The indexing scheme is
based on a compact version of the interval tree that makes use
of the span space concept whose size is O(n log n) compared
to �(N) for the standard interval tree, where N is the number of
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Table 5
Overall performance of four processors on isovalue 70 over 16 time steps

Time step Number of active metacells Number of triangles Overall time (s) Overall rate (×106/s)

180 2,249,247 499,936,480 35.971 13.898
181 2,259,741 502,356,768 32.934 15.253
182 2,269,996 504,717,568 32.717 15.427
183 2,280,249 507,140,192 33.349 15.207
184 2,290,438 509,504,102 33.145 15.372
185 2,300,808 511,877,068 33.628 15.222
186 2,310,642 514,222,240 34.121 15.071
187 2,320,869 516,675,168 34.524 14.966
188 2,330,322 519,026,094 33.732 15.387
189 2,340,363 521,496,928 34.300 15.204
190 2,295,699 516,444,992 31.405 16.445
191 2,360,385 526,339,520 35.163 14.969
192 2,370,458 528,728,448 34.523 15.315
193 2,380,148 531,149,920 35.256 15.066
194 2,389,433 533,600,192 35.172 15.171
195 2,399,116 536,050,312 35.891 14.936

Fig. 6. Overall time of up to 16 processors over a range of isovalues.

Fig. 7. Corresponding speedups of up to 16 processors over a range of
isovalues.

all possible pairs of scalar field values appearing in metacells
and n is the number of their distinct endpoints. The data are
arranged in a compact layout on the disk, which enables very

efficient I/O performance. We have shown that our new algo-
rithm can easily be adapted to a multiprocessor environment,
provably delivering efficient and scalable performance. The al-
gorithm was tested extensively on a wide variety of data sets,
and was shown in detail to achieve scalable performance on the
Richtmyer–Meshkov data set over different processor configu-
rations and different isovalues. However, there is an issue that
needs further exploration, namely the compositing performed
at the last step. As the number of processors increases, this
step will require more communication time, which was in the
order of hundreds of milliseconds in our experiments on the
16-node visualization cluster. However, for much larger clus-
ters, we need to organize the compositing step more efficiently
so that it does not become a bottleneck. We are currently in
the process of developing and testing such a strategy in which
images are merged in a multi-way hierarchical process. The
details will be reported in a forthcoming paper.
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Appendix A. Performance for a varying number of
processors

Execution time with two, four, eight and sixteen processors
over varying isovalues are summarized in Tables A1–A4.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

602 Q. Wang et al. / J. Parallel Distrib. Comput. 67 (2007) 592 –603

Table A1
Execution time with two processors over varying isovalues

Isovalue AMC retrieval (s) Triangulation (s) Rendering (s) Total time (s) Overall rate (×106/s) Speedup

10 7.774 18.391 9.625 36.005 6.32 1.96
30 11.015 29.338 10.948 53.31 7.046 1.89
50 12.871 43.044 16.549 74.827 7.589 1.92
70 12.971 48.655 17.532 80.537 8.064 1.98
90 11.03 38.386 14.842 64.42 7.891 1.98

110 8.615 25.165 9.596 43.568 7.521 1.99
130 6.732 17.672 6.711 31.412 7.297 1.97
150 5.497 13.607 5.181 24.639 7.185 1.96
170 4.631 11.185 4.28 20.33 7.2 1.97
190 4.012 9.548 3.674 17.479 7.172 1.97
210 3.585 8.267 3.195 15.162 7.188 1.97

Table A2
Execution time with four processors over varying isovalues

Isovalue AMC retrieval (s) Triangulation (s) Rendering (s) Total time (s) Overall rate (×106/s) Speedup

10 4.583 9.299 4.867 19.979 11.45 3.54
30 6.009 14.705 5.455 27.604 13.642 3.66
50 6.601 21.58 8.251 37.81 15.059 3.8
70 6.243 24.186 9.475 40.172 16.226 3.97
90 5.228 19.109 7.436 32.331 15.81 3.94

110 4.38 12.645 4.783 22.23 14.818 3.9
130 3.606 8.827 3.323 16.213 14.137 3.82
150 2.956 6.8 2.571 12.73 13.907 3.79
170 2.482 5.596 2.135 10.549 13.875 3.8
190 2.136 4.779 1.825 9.11 13.761 3.78
210 1.799 4.119 1.587 7.806 13.961 3.84

Table A3
Execution time with eight processors over varying isovalues

Isovalue AMC retrieval (s) Triangulation (s) Rendering (s) Total time (s) Overall rate (×106/s) Speedup

10 2.332 4.72 2.511 9.972 23.055 7.09
30 3.004 7.458 2.778 13.989 27.012 7.22
50 2.984 10.875 4.192 18.558 30.761 7.75
70 3.005 12.263 4.792 20.387 32.049 7.83
90 2.733 9.724 3.761 16.648 30.784 7.65

110 2.269 6.382 2.422 11.867 27.86 7.31
130 1.903 4.456 1.691 8.771 26.256 7.06
150 1.561 3.433 1.315 6.947 25.629 6.94
170 1.293 2.827 1.09 5.797 25.416 6.91
190 1.08 2.408 0.934 4.928 25.63 6.98
210 0.923 2.088 0.81 4.22 26.041 7.09

Table A4
Execution time with sixteen processors over varying isovalues

Isovalue AMC retrieval (s) Triangulation (s) Rendering (s) Total time (s) Overall rate (×106/s) Speedup

10 1.396 2.372 1.251 5.994 38.167 11.8
30 1.461 3.759 1.372 7.584 49.654 13.31
50 1.776 5.493 2.044 9.911 57.45 14.51
70 1.803 6.16 2.32 10.936 59.604 14.6
90 1.538 4.85 1.813 8.769 58.289 14.52

110 1.222 3.186 1.182 6.019 54.728 14.41
130 0.934 2.229 0.828 4.379 52.341 14.13
150 0.749 1.719 0.642 3.472 50.989 13.89
170 0.645 1.418 0.528 2.868 51.035 13.96
190 0.572 1.206 0.449 2.463 50.9 13.97
210 0.515 1.046 0.388 2.09 52.142 14.33
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