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Abstract
The authenticity of public keys in an asymmetric cryptosystem can be gained in two
different ways: either it is verified explicitly after knowing the public key and its certificate,
e.g. X.509 certificates, or it is verified implicitly during the use of the keys. The latter
concept has been introduced by Girault 1991 as self-certified keys.

In this paper we extend this concept: We show how to issue self-certified keypairs
under different trust levels and show how to use them in authentication trees. Then we
demonstrate, how a user can switch his keys to enhance the security of his actual secret
key against compromising. We illustrate the relevance of all concepts by discussing several
useful applications. Among them are delegation of rights, delegated signatures, delegated
encryption and electronic voting schemes. Furthermore, we propose a new non-interactive
key exchange protocol, that provides backward and forward secrecy of session keys.
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1 INTRODUCTION

In an asymmetric cryptosystem each user possesses secret and public keys. They might
be organized in public directories, such that every user in the system has direct access
to the public keys of other users. To ensure the authenticity of published keys, and thus
to avoid masquerade attacks, the keys have to be certified. For this purpose, we can
distinguish two concepts: explicit and implicit verifiable certificates. In the first case, the
authenticity of the public key y can be verified directly after knowing a guarantee G,
also called certificate, where G is a digital signature on the user identity /D and his
public key y issued by the authority. In the second case, the authenticity is verified at
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the time, when the key is used for encryption, signature verification, key exchange or
any other cryptographic use. This concept has been introduced by Girault 1991 as self-
certified public keys [Gira91]. The first schemes already using this idea (but not the name)
appeared in 1989/90 [Giint89, GiPa90]. Here the guarantee is equal to the public key
G :=y. The user’s attributes (I D, z,y) satisfy a computational unforgeable relationship,
which is tested implicitly by the proper use of x in any cryptographic protocol.

However, a problem with this general notation is, that = and y are not necessarily
related by a desirable mathematical relationship, which is useful in many applications,
e.g. as ¥y := a” (mod p). Therefore, Girault uses the function value f(G,ID) as “real”
public key Y, which satisfies such a mathematical relationship. To avoid any notational
problems, we use the slightly modified public key Y := f(G,ID) with corresponding
secret key x. All users, that have knowledge of the public values (G, D) can compute Y
by applying the function f. If G and ID are correct, so is Y, otherwise its incorrectness
will be mentioned during its use. The generation of x,Y and G for the user with identity
1D is called key issuing protocol. 1t is executable at four trust levels:

® At level 1, the authority knows the secret key x and therefore can impersonate any
user at any time without being detected.

® At level 2, the authority doesn’t know the user’s secret key, but can still impersonate
him, by generating a false guarantee G.

® At level 3 even this fraud is no longer possible. Thus, at least the reach of level 3 is
desirable for all key issuing protocols.

® At level 4, the authority issues a self-certified public key to a user with pseudonym
PS, such that the real identity of the user is hidden to the authority. Nevertheless, all
operations using the same pseudonym are linkable for any person.

Overview of the results

We extend the basic concept of self-certified keys (SCKs) by the following properties:

1. We show, how to issue self-certified keys under trust levels one, three and four.

2. We show, how to realize authentication trees using hierarchical self-certified keys.

3. We show, how a user can switch his keypairs to guarantee his privacy even if an old
secret key is compromised.

Furthermore, we show the relevance of the above concepts in the following applications:

1. The self-certified keys issued at trust level 1 are used in proxy cryptosystems for dele-
gating decryption operations.

2. The self-certified keys issued at trust level 3 are used in prozy signature schemes for
delegating signature operations.

3. The self-certified keys issued at trust level 4 are used in an efficient electronic voting
protocol to guarantee the anonymity of the vote. They can also be used in anonymous
electronic cash systems with revocable anonymity of the coins.

4. The hierarchical self-certified keys are used for the delegation of rights.

5. The user controlled key progression is used in a non-interactive key exchange protocol
providing forward and backward security.
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We use the Schnorr signature scheme [Schn89] as underlying signature scheme, which
has been proven to be secure under the random oracle model [PoSt96]. Generally, every
variant of the Meta-signature scheme can be used instead [HoMP94].

2 THE SCHNORR SIGNATURE SCHEME

A certification authority Z chooses large primes p, ¢ with ¢|(p—1), a generator « of a multi-
plicative subgroup of Z7 with order ¢ and a collision resistant hash function /. He publishes
P, q, o and h. The signer Alice chooses a random number x4 €g Z; as her secret key and
computes her public key y4 := o™ (mod p). To sign the message m Alice chooses a ran-
dom number k €g Z; . She computes r := a* (mod p), s := x4 - h(m,r) + k (mod ¢) and
e := h(m,r). The triple (m, e, s) is the signed message. Anyone can verify it by checking
the equation e = h(m,a® - y;° (mod p)).

Equivalently, it is possible to use the triple (m,r,s) as signed message instead of
(m, e, s). Then the verification equation is check by a® = y"™") . (mod p).

3 SELF-CERTIFIED KEYS

We describe the issuing of self-certified keypairs for users with distinguished identities at
different trust levels. They are computed as a function of the users identity, the public key
of the certification authority and the signature parameter r. Therefore, they are somewhat
related to identity-based public keys, first introduced by Shamir in 1984 [Sham84], where
the identity is used directly as public key. As we avoid the direct use of the identity, the
computation of the corresponding secret key is more efficient in our setting.

3.1 Basic key issuing protocol

The certification authority Z signs Alice’s identity /D4 using the Schnorr signature
scheme. Z chooses a random number ks €gr Z;, computes the signature parame-
ters r4 1= a4 (mod p) and sy = xz-h(ID4,74) + ks (mod q). The tuple (r4,s4) =
S(xzz,1D4) is a signature on Alice’s identity ID4. Alice publishes the parameter ry4
together with her identity and keeps the parameter x4 := s4 as her secret key. Her corre-
sponding public keyis computable by everyone who knows the public parameters yz, D 4

and r4 as

Yg = yg(IDA’TA) -r4 (mod p) (1)

By this computation (1) the obtained key y4 is not authentic, as the public parameter r4
could have been modified by an attacker. Thus its authenticity has to be verified implicitly
by the proper use of the corresponding secret key x4, which is only known to Alice. The
key issuing protocol reaches trust level 1, as Z gets the knowledge of Alice’s secret key
x4 and thus might impersonate her.
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3.2 Secure key issuing protocol

The above protocol is modified to reach trust level 3 by using a weak blind Schnorr signa-
ture, introduced in [HMP95a]. The certification authority chooses k €r Z; as before and

computes 74 := a*4 (mod p). She transmits 74 to Alice, who chooses a random a €p Z;
and computes r4 := 74 - a® (mod p). Alice sends /D4 and r4 to the authority who com-
putes the signature parameter 54 := xz-h(IDa,r4)+ foA. This value 54 is transmitted to
Alice who obtains her secret key x4 := 34 +a (mod ¢). The tuple (ra,x4) 1= S(xz,[Dy)
is a signature on her identity. Her corresponding public key is computed as

ypi=a "t = yg(IDA’TA) 74 (mod p). (2)

The secret key x4 is hidden to the certification authority 7, as it is blinded by the random
value a. Thus, the protocol reaches trust level 3. As only Z is capable to issue valid self-
certified keys, the existence of two different valid keys for the same users (e.g. in the case,
when Z impersonates Alice) proves, that the authority was cheating. Thus such fraud is
detectable by the users.

3.3 Pseudonymous self-certified keys

Alice identifies herself to the certification authority Z to obtain her keypair, but remains
anonymous during the use of her self-certified keys. This is possible due to the use of a
pseudonym PS4 that Alice uses instead of her real identity /D 4. The pseudonym is not
linkable to I D4 but still all actions she performs are traceable, as long as she uses the
same pseudonym for them. To obtain the key issuing protocol, we use the blind Schnorr
signature scheme [Okam92]. The certification authority Z uses a different certified keypair
(Zz,9z) in this protocol to distinguish it from the two protocols above. This avoids fraud
of any user, who chooses another user’s identity as his pseudonym in order to obtain an
indistinguishable self-certified key which he might then use to impersonate this user.

7 chooses a random number k €x Z* and computes 74 1= a4 (mod p). She trans-

q

mits 74 to Alice, who chooses random a,b €r Z; , computes rq 1= 74 - a* - y (mod p),
€a:=h(PSa,ra) and €4 := e4 + b (mod ¢). Alice sends €4 to the authority, who then
computes the signature 54 := Tz - €4 + k4. The value 54 is transmitted to Alice, who

computes her secret key x4 := 54 +a (mod ¢). Her corresponding public key is computed

_h(PS .
as Yy = a4 = yZ( ara) ra (mod p). The scheme is correct, as
5 7y Eath . . _h(PS .
a4 = gfate = fzlathate — ySZA"'b cTarat = yZ( ara), ra (mod p). (3)

3.4 Fair pseudonymous self-certified keys

An extension of the pseudonymous key issuing protocol is the assistance of a trustee (a
group of trustees) into the protocol, who get(s) knowledge of the relation between 1D 4
and PSy4. This can be done by registering PS4 at the trustee and obtaining a certificate.
This certificate has to be presented together with PS4. Thus the trustee is able to reveal
this relation in the case of a justified suspect against the owner of PS4 to allow law
enforcement.
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4 HIERARCHICAL SELF-CERTIFIED KEYS

In the X.509 directory the certification authorities and the users are arranged in an au-
thentication tree [CCIT88]. This tree can be described as a tuple 7' =< V. F >. The
vertices V' are related to the entities and the edges E to the issue of certificates. Each
entity (except the root) has one father but might have several children. The computation
of a public key is done recursively along several vertices in the tree.

The authentic public key of the root entity Zy of the tree is known by all users in the
system. In the following we describe how entity Z; issues the public key for entity Z;1,
using the basic key issuing protocol for clearness. In practice, it should be replaced by the
secure key issuing protocol or even the pseudonymous key issuing protocol.

L. Initialization: Entity Zy chooses prime numbers p, g with ¢|(p — 1), a generator o and
his secret key xg € Z,. Then he computes his public key yo := o™ (mod p).

2. Key issuing protocol: Entity Z;, i > 1, possesses the triple (I D;,r;,s;) issued by entity
Zi_1, where r; and ID; are public and z; := s; is his secret key. To issue the triple
(ID;41,7i41,8i+1) for Z;11 he calculates a Schnorr signature on the identity 1D; 1. 741
is transmitted publicly to Z;;; while s;;; must be transmitted confidentially.

3. Hierarchical computation of public keys: The public key of entity Z; is computable by
any user who knows all public parameters (1 D;,r;), for 7 € [1 : ¢ — 1], and the basic
key yo. He computes

g =a = ylh({Dz,n) r = (yzh(éDt 1,ri-1) T¢_1)h(ID““)'Ti
= (o (g0 )P ) P D) (1)
(IDj,r ? h(IDy,r
e T e ™ (tmod p).
7=1

The computation needs ¢ + 1 exponentiations, which can be realized using a multi-
exponentiation in less than 4/3 the effort of a single exponentiation using a large database
of pre-computed products [YelLL94]. If the user already knows an authentic public key
y;j,J > 1, from a previous computation, he can stop the recurrence at level j, which
simplifies the computation of (4).

Security considerations

We have to distinguish between insider and outsider attacks. The insider knows (several)
secret keys and wants to modify the public data in a way, that he gets knowledge of more
secret keys. This kind of attack is always possible, if the secure key issuing protocol from
section 3.2 isn’t used.

The outsider doesn’t have knowledge of any secret key of the certification authorities
and wants to modify the public (non-authentic) data in a way, that he is able to compute
the secret key of entity Z; Therefore, he can choose the values k;, r;, for 1 < < 7 himself
and try to solve the equation (4). He can either first choose ; and then compute k;,r; or
vice versa. In both cases he will end up with the equation

T, = T - ﬁ h(r;, ID;) + i: (kj . ﬁ h(rk,]Dk)) (mod ¢), (5)

i=1 i=1 k=j+1

which he can’t solve without the knowledge of the fixed secret key zg.
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5 USER CONTROLLED KEY PROGRESSION

Besides the hierarchical progression of keys, a user might want to change his keys from
time to time. This allows him to renew his keypairs frequently and reduces the risk that he
uses compromised keypairs. He might switch his key whenever he has any suspicion. Thus
an attacker who knows one secret key should not be able to reveal other keys from that
one. We present a basic solution to fit these requirements. More sophisticated approaches
with detailed security analysis can be found in [Pete96].

1. Initialization:
The certification authority Zy chooses large primes p, ¢ with ¢|(p — 1) and a generator
a of a multiplicative subgroup of order g. Then it generates his keypair (zz,yz). User
Alice obtains her basic keypair (z4,0,y4,0) by one of the above key issuing protocols.
2. Key progression:
Alice can switch her keys either after a fixed, pre-determined time period of length [ or
after an arbitrary chosen time interval. In the first setting we assume, that she uses the
keypair (24,4, ya.) in the interval I, := [t - : (¢t + 1) - {]. In the second setting it is even
possible that she switches the key after each communication to gain mazimal security.
Alice chooses n random pairs ka; €r Z; 74, := a*4s (mod p),i € [1 : n]. The switch-
ing is done analogue to the computation of the hierarchical self-certified public keys.
The secret keys x4;,17 € [1 : n] are computed by using the basic secret key x4 9. The
basic key itself is not used for any communication and is thus not vulnerable to any
attack (except tampering from its device). The progression is defined by

Tap =40 h(IDa,ras) + kay (mod g). (6)

3. Computation of the public key:
The public key y4 4 is computed using Alice identity 7D 4, her basic public key y4¢ and
the (non-authentic) parameter r4; by

R(IDa,ra;
Ya = yA(,O 4740 Ly (mod p) (7)

Security considerations

Suppose, that the secret key x4 is never compromised. An attacker can’t benefit from
the knowledge of arbitrary many secret keys x4,,1 <1 < j, to compute any other secret
key x4 ;, as there exists no relation among these keys except their orign from the same
basic key x4 0. The computation of x4 from the knowledge of any x4, is impossible, as
equation (6) contains two unknowns x4 and k4 ;. Thus x40 is undetermined by x4 ;.

If the secret key z 49 would be compromised by tampering, the authenticity of the self-
certified keys is no longer given as an attacker knowing x4 o could publish a tuple (k¢,r¢)
and compute his own secret key using equation (6).
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6 COMPARISON WITH CERTIFICATE BASED KEYS

We compare the benefits of self-certified keys with those of certificate based keys.

1.

Determine a public key without an authentic public directory:

This property is satisfied only partially. Assuming, that the user identities are known
to all participants, the (non-authentic) guarantees r have still to be distributed among
the users, such that everyone is able to compute the public keys of other users. For
this purpose an infrastructure, like a public directory, is needed. The advantage is,
that no authentic information is distributed via this infrastructure which simplifies its
implementation.

Non-repudiation of public keys:

One disadvantage of self-certified keys is their repudiability. For example, if the verifi-
cation of a digital signature fails using a self-certified public key it is uncertain, whether
the signature or the public key is incorrect. Contrary, in the case of a positiv verifica-
tion the correctness of both, the signature and the key is assured, which might be used
as evidence of the key’s authenticity in future verifications.

Efficient verification of a single certificate:

The explicit verification of a self-certified public key is not possible, as explained. Its
implicit verification needs one exponentiation, which might be combined with other
computations in the environment where the key is used, e.g. for signature verification.
Thus often the exponentiation doesn’t need to be counted separately, if it melts together
with other exponentiations or can be done with little extra computation.

Efficiency in verification of hierarchical certificates vs. batch signatures:

One advantage of hierarchical self-certified keys is that their computation is almost
as efficient as the computation of a single self-certified key. If we use certificate based
keys, all certificates have to be verified recursively throughout the hierarchy, which
can’t be accumulated e.g. by using a batch verification mechanism [NMVR94], as batch
verification only applies for many signatures generated under the same public key. This
is not the case in a certification tree, where each certificate is generated using the public
key of the father entity.

. Importance of key propagation:

If the basic secret key of a user is assumed not to be compromised, one might ask, if it
is useless to employ key propagation, as the user might always use the uncompromised
key for his computations 7 Indeed, there is a difference, as a secret key that is used
in a cryptographic protocol might be objective to adaptively chosen message attacks
(e.g. in a signature or encryption scheme). This is impossible for a protected key that is
never directly used in any protocol but serves only for generation of other secret keys.
Security of self-certified keys:

The security of the self-certified public keys against existential forgery can be reduced
to the security of the underlying signature scheme. For the Schnorr signature scheme
it was shown, that in the random oracle model, existential forgery under an adaptively
chosen message attack is equivalent to the discrete logarithm problem [PoSt96].

To summarize: Self-certified keys offer no structural advantage over certificate based keys,
they offer a concept of equal possibilities for which many useful applications are known.
These applications are also realizeable using certificate based keys but not in an equally
efficient and elegant manner.
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7 APPLICATIONS

During the last years many applications of self-certified keys have been investigated,
several of them in the context of delegation. There have been proposals for delegation of
rights [DiHP96], delegation to sign messages [MaUQ96], delegation to decrypt messages
[MaOk97], delegation to give a vote, delegation to spend money and several others. They
are briefly reviewed and improvements are discussed.

7.1 Proxy signatures

A proxy signature allows a designated (group of) person(s), called proxy signer(s) to sign
on behalf of the original signer. It should satisfy several requirements, for which we refer

to [MaOk96]. Among them are

Strong unforgeability: The proxy signer can create valid proxy signatures for the orig-
inal signer. Any other third party, including the original signer, is unable to forge a
proxy signature.

Strong identifiability: Anyone can identify the proxy signer from a proxy signature.

Strong undeniability: The proxy signer can’t repudiate the creation of a valid signature
against anyone later.

An efficient scheme, using a variant of the basic key issuing protocol in section 3.1 to
generate the proxy signer’s keypair, has been proposed in [MaU096, MaOk96]. It suffers
from the fact, that the original signer gets knowledge of the secret key of the proxy signer
and thus doesn’t satisfy the strong unforgeability, strong distinguishability and strong
undeniability properties.

This drawback was repaired in [MaOk96] by adding a second signature using the proxy
signers own secret key, which is not very elegant. A better solution would be, to substitute
the key issuing protocol by the secure key issuing protocol described above. Then the
original signer doesn’t get knowledge of the proxy keys and is no longer able to sign on
behalf of the proxy signer. To illustrate the solution, we take the certification authority in
section 3.2 as original signer and Alice as proxy signer. We choose a conventional signature
scheme (S§,V) for signing. Then, the protocol looks as follows:

1. Proxy generation: The proxy keypair (z4,y4) is generated by Z using the protocol in
section 3.2. Each user knowing yz, I D4 and r4 is able to compute her public key as

yg = yg(IDA’TA) -r4 (mod p). (8)

2. Signing by the proxzy signer: Alice generates a signature o := S(x4,m) on message m
using her proxy secret key x4. The tuple (m,o, D4, r4,yz) is the signed message.

3. Verification of a proxy signature: A verifier checks the validity of the signed message
by checking

V(yg(IDAJ’A) ‘T4 (mOd p)7 m, 0‘) ; true. (9)
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Possible modifications:

® [f the original signer wants to delegate a group G of proxy signers Uy,...,U; € G
to sign on his behalf, he can include their identities in the hash function h, e.g.
h(IDy,...,IDs,rg). The value rg has to be computed, such that all ¢ proxy signers
participate in the computation by using a threshold signature scheme.

® [f the original signer doesn’t want to include the identity of the proxy signer into the
computation, the secure key issuing protocol might be executed by using h(r4) instead
of h(ID4,r4) to hide the identity to the verifiers.

7.2 Proxy cryptosystems

Proxy cryptosystems allow a receiver of an encrypted message (the original decryptor) to
transform its ciphertext into one for a designated prozy decryptor. Once the ciphertext
transformation has been executed, the proxy decryptor can compute the plaintext in place
of the receiver. A proxy cryptosystem should satisfy two conditions [MaOk97]:

Transformation: Given a ciphertext ¢y for an original decryptor U, only he or the
creator of ¢y are able to transform it into a ciphertext cp for the proxy decryptor P.

Authorization: Given a ciphertext c¢p of an encrypted message m, m can be computed
from a proxy p or from information computed from p in polynomial time. Without the
knowledge of p, m can’t be extracted from cp.

An efficient solution for a proxy cryptosystem has been proposed in [MaOk97] using the
Agnew, Mullin, Vanstone signature scheme to issue the proxy [AgMV90] and the El1Gamal
cryptosystem [ElGa85]. We modify this scheme by using the Schnorr signature scheme for
key issuing. In our notion, Z acts as original decryptor and Alice as prozy decryptor. The
protocol is the following:

L. Proxzy generation: The proxy keypair (x4,y4) is generated by Z as in the last section.
It can be computed by all users knowing yz, I D4 and r4 as in equation (8).

2. Encryption by the sender: A document m is encrypted by choosing a random value
k. €r Z; , computing ¢; := a~*e (mod p), ¢; := yir -m (mod p) and ¢s := r% (mod p).
The value ¢3 is an additional value that allows the proxy decryptor Alice to decrypt
the message instead of Z. The ciphertext (¢, 2, ¢3) is send to the receiver Z.

3. Decryption by the proxy decryptor: If Z doesn’t want to decrypt (¢, cz) himself, he
forwards the triple (¢q, ¢z, ¢3) to Alice. Alice decrypts the message by computing

)h(IDA,T’A E

B(IDara)+k -1
( Lz A TA)‘I' A rﬁc)h(IDA,T’A) - Cy
1

b —keh(IDa,r A)\R k k (10)
(yZ c AvA) (IDA,T’A) _yE c_ch_mEm(mod p)

Instead of allowing exactly one proxy decryptor to decrypt a message m, it is also possible
that the proxy key x4 is shared among many proxy decryptors. In this case the issuing of
the proxy might be modified, such that Alice’s identity /D4 is no longer included in the
computation of y4. Furthermore, it is possible to use the secure key issuing protocol from
section 3.2 to avoid that Z gets knowledge of Alice’s secret key. This might be of interest,
if Alice uses the same keypair for several purposes.
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7.3 Delegation of rights

Delegation of rights is the process whereby a principal in a distributed environment autho-
rizes another principal to act on his behalf. The delegating principal issues the delegated
principal a delegation token (see [DiHP96] for details). This token consists of the iden-
tity of the delegating principal, privilege attributes and restrictions of the delegation. If
the delegated principal is not able to execute the task given by the delegator, he might
re-delegate it to another principal by issuing a new delegation token. Then there must
exist relation between these two token, to avoid misuse by replaying old token or substi-
tuting them with tokens obtained from other delegations. This problem has been solved
very efficiently by applying the concept of hierarchical self-certified keys. Fach delegated
principal obtains a delegation keypair (comparable to a self-certified keypair) from the
precedent delegator, which he uses himself in the case of re-delegation to issue a keypair
for his successor. By this method all delegation keys are related and can’t be replaced
by others on the delegation path. This solves an important problem in the context of
delegation in a very efficient manner [DiHP96].

7.4 Electronic voting

Electronic voting schemes can be used to realize elections via the internet. The first
electronic voting scheme has been proposed by Chaum [Chau81] using a MIX-net channel
for anonymous communications and pseudonyms for user anonymity. Using this approach
in combination with pseudonymous self-certified keys allows to obtain an efficient secure
voting scheme. Such a scheme should satisfy the following properties [FuOQ092]:

Completeness: All valid votes are counted correctly.
Soundness: The dishonest voters can’t disrupt the voting.
Privacy: All votes must be secret.

Unreusability: No voter can vote twice.

Eligibiliy: No one, who isn’t allowed to vote can vote.
Fairness: Nothing must affect the vote.

Verifiability: No one can falsify the result of the voting.

The model of an electronic voting scheme consists of voters, administrators and a public
board. The voters and administrators communicate through an anonymous channel. An
efficient solution, satisfying the above properties has been proposed in [HMP95b]. How-
ever, this solution employs the need of a blind multisignature scheme. This is avoided in
the following by changing the order of the anonymous and the non-anonymous phases
in the protocol. We also use an encryption scheme with verifiable multi-decryption as
described in [HMP95b].

To describe the scheme we use the following notation: integer ¢; is related to one can-
didate, e.g. his number on a public list, (§,V) is a conventional signature scheme, (€, D)
is a probabilistic cryptosystem, where D is the decryption function with verifiable multi-
decryption. The protocol is the following:

1. Voting slip issuing phase: Each legal voter V; registers at the administrators by proving
his identity and obtains a pseudonymous self-certified keypair (z;, y;) using a variant of
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the pseudonymous key issuing protocol in section 3.3, where the blind Schnorr signature
scheme is replaced by a blind multisignature scheme [HMP95b].

2. Voting phase: Voter V; uses his secret key x; to sign the vote t;, e.g. 0; := S(x;,;). The
vote is encrypted as £(¢;) and send together with the encrypted signature £(o;, y;) via
an anonymous channel to the administrators.™

3. Decryption phase: After collecting all encrypted votes, the administrators decrypt to-
gether the votes t; and the signatures o;, y; and publish them on the public board. As
they use an encryption scheme with verifiable decryption, no administrator can cheat
and invalid votes are correctly identified.

4. Claiming phase: Each voter checks that all signatures o;,y; on the public board are
valid. If a voter V} recognizes, that his tuple (¢;,0;,y;) wasn’t published on the board,
he re-sends it anonymously to a third person, who checks (1) that o; is a valid signature
on t; and (2) that y; doesn’t already appear on the board. The validity of y; is checked
implicitly by verifying o;. If both conditions are satisfied the board will be corrected.

5. Counting phase: The administrators, as well as each individual user, can now compute
and publish the result of the election. Only the votes ¢; with valid signatures o;,y; are
counted for this occasion.

The scheme satisfies the above properties. Unfortunately, it doesn’t prevent the blackmail-
ing or “buying of votes”. A coercer who taps the communication of a voter can force him
to give a predetermined vote ;. He is able to verify that the “correct” vote is encrypted
by checking £(t;), after forcing the voter to use predetermined random numbers for the
probabilistic encryption. A solution to overcome this problem, is to use a tamper-resistant
hardware to generate £(t;), which can’t be manipulated.

7.5 Fair electronic cash

Anonymous electronic cash systems should satisfy the following properties:

Unforgeability: Only authorized entities like banks are able to issue valid digital coins.
Untraceability: The relationship between a digital coin and a user is untraceable.
Unlinkability: Different coins spent by the same user are unlinkable.

Framing: No user or shop can be falsely incriminated.

These properties are achieved by the simple on-line payment system [Chau82, Chau87]
outlined in figure la. The user obtains a blind signature op := S(zp,C,) on his coin
Cy for which he knows the pre-image C,. He spends this coin by generating a signature
oc := 8(Cy,m) on a random message m of the shop, using C, as secret key.

In this payment system, the generation of the signatures o and o¢ can be chained
by generating C,. as pseudonymous self-certified key which is used to generate the proxy
signature o¢ (see sections 3.3 and 7.1). This gains the shop and the bank respectively
over 40% of their computational cost for verifying both signatures, as they need one
multi-exponentiation instead of two single exponentiations [YeLL94].

Nevertheless, the system is not secure against theft, e.g. by hacking, or extortion of the
user’s secret key C,. or more serious the bank’s secret key xg. In order to prevent these
attacks the system should satisfy the following additional properties [FuOk96, JaYu96]:

*By using an encryption scheme with multi-decryption it is assured that only all administrators together
can decrypt the votes [HMP95b].
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User-tracing: The bank and a trustee cooperate to match a spent coin to the user.

Coin-tracing: The bank and a trustee cooperate to compute information that allows
the matching of a coin when it is spent or deposited.

Extortion-tracing: The bank and a trustee cooperate in order to compute information
that allows the matching of a coin when it is spent or deposited.

registration of ID___[ P3Nk user registration of ID__ [ bank
blind signature & IDu D C.o blind si o IDU
9 B C,6 PS PS .G ind signature 0_ ca

B XY Y

[

(trustee)

a: anonymous cash system b: pseudonymous cash system

signature
0_onPS

Figure 1 Principles of anonymous and pseudonymous cash systems

These additional properties can be achieved by registering a pseudonymous keypair
(PS;, PS,) at a trustee, who generates or := S(zp, P.S,), which is used in the payment
protocol as outlined in figure 1b [FuOk96, PeP0o97]. The user spends a coin C' by generating
a signature o¢ := S(PS;,C,m) on a random message m given by the shop. Hence, the
trustee can revoke the anonymity of C' by linking PS, to a user’s identity. It can be
shown, that such a system together with several black- and whitelists prevents all kinds
of extortion attacks [PePo97].

In this system the generation of the signatures oy and o¢ can be chained by issuing

PS, as self-certified key by the trusteel and using it to generate the proxy signature o¢
hereafter (see section 7.1). As in the basic scheme, this gains the shop and the bank about
40% of their computational costs for verifying both signatures [YeL.LL94]. Additionally, if
the coin C is issued as pseudonymous self-certified keypair (C,, Cy) as above, the verifica-
tion of all three signatures o, o7, 0¢ can be done by a single multi-exponentiation by the
shop and the bank, which gains each of them about 60% of their computations compared
with three single exponentiations.

7.6 Awuthentic key exchange

The exchange of authentic session keys is one of the main directives in public key cryp-
tography. It is quite easy for two users to compute a common Diffie-Hellman session
key [DiHe76] from the knowledge of each others self-certified public key. If they use the
same public keys during each session, they will obviously obtain the same session key each
time. Thus this simple key exchange protocol offers no amortized security [YaSh89], which
means that an attacker who knows an old session key can profit from this knowledge to
obtain the actual session key of the users. On the other hand the method offers also no
forward secrecy [DiIOW92], that means if the attacker knows an old secret key of one user,
he is able to compute the actual session key.

Tthe signature parameter rp of o is published, PS, := sy is transferred confidentially to the user.
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User Alice User Bob
TAt = TA0" h([DA, TA,t) + kA,t TRt = TB,o" h([DB7 TB,t) + kB,t
. . h(IDBJ’B,t) . . . h(IDA,T’Ayt) .
YBt "= Ypo -rg, (mod p) YA = Yag *T4; (mod p)
Ky = y]gf‘f (mod p) Kp::= yfﬁt (mod p)
I(t = h(I(Aﬂj) I(t = h(I(B,t)

Table 1 Non interactive session key

Here, we present a new scheme that offers both types of security but allows the compu-
tation of a session key in a non-interactive manner. We achieve this result by using the
user-controlled key progression, introduced in chapter 5. Using this approach, the security
of the key exchange is enhanced, as every session key is only used once. The correspond-
ing user keys are also used only at this time and are switched afterwards. We present the
protocol in table 1, where ¢ is the session number between the users (or if preferred, the
number of a time interval of fixed length). Alice and Bob obtain the session key

K, = h(y;f‘t’t (mod p)) = (a4 Bt (mod p)) = h(yzﬁ’t (mod p)) = h(Kg+), (11)

where h is a suitable collision-resistant hash function. Key confirmation is done implicitly
during the use of the session key e.g. in an encryption scheme.

Security considerations

The session key K offers amortized security with respect to previous session keys K;, 1 < t.
An attacker, who knows them cannot compute K; efficiently. First, he has to invert the
one-way hash function A to obtain the values K4 ; for all known session keys K;. Suppose,
that he gets the knowledge of this pre-images for several of them by asking an oracle to
invert the function for him. Second, he must be able to compute the key:

- xr . . .
[‘A,t L= nylt,t = %4t 7Bt = o(Ta0h(IDara)tka)(@poh(IDp,rpt)+kB,)

= a(IA,O'l'B,O)'h(IDAJ’A,t)h(IDBJ’B,t) . afA,O'h(IDAJ‘A,t)kB,t . Oél'B,O'h(IDBJ’B)kA,t . ofaikB

[/(ZféDA77’A,t)h(IDB77’B,t) . yf‘l(’éDAvrA,t)kB,t _r%fDBJB,t)IB,o . r];f;t (mod p)‘

To be successfully, he needs the knowledge of the pre-image of the virtual “session key”
K 40, which is never been used during any communication, and the corresponding public
keys ya,0 and yp o were never revealed. Third, the attacker needs to know the secret values
kp+and xpo (or kas and x40). These values are only known to Alice and Bob, who use
them as secret parameters for key progression. Even under the assumption that the attac-
ker got knowledge of some previous secret key 4 ;, ¢ ;, as assumed in the forward secrecy
model, he is still unable to compute K4 ,, as he doesn’t know K4 and k4, or kg ;.

8§ CONCLUSION

We have presented several extensions of self-certified keys, which make them more compet-
itive compared with certificate-based keys. Then we outlined various applications, such as
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proxy signatures, proxy cryptosystems, delegation of rights, electronic voting, cash sys-
tems and efficient key exchange protocols. Due to space limitations, these applications
were only discussed briefly. For a detailed description, including their underlying trust
and security models, the reader is referred to the cited articles.
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