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Abstract

An important discovery in quantum information processing is that quantum one-way commu-
nication protocols can be exponentially more efficient than classical protocols. Those extraor-
dinary quantum advantages were demonstrated through the Hidden Matching Problem and its
variants, where the underlying basic task is to determine the parity of some k = 2 bits of an
n-bit string. We prove that for larger values of k, the quantum complexities of those prob-
lems increase exponentially from O(log n) to Ω(n1−2/k), which is almost tight and renders any
super-polynomial quantum-classical gaps impossible. Our results also rule out a “quantum
argument”, in the sense of Kerenidis and de Wolf (Journal of Computer and System Sciences,
69(3)395–420, 2004), for proving any super-polynomial lower bound on Locally Decodable
Codes for more than 2 queries. Our proofs are new applications of the matrix Hypercontractive
Inequality developed by Ben-Aroya, Regev, and de Wolf (FOCS 2008).

1 Background and summary of the main results

The lower bound problems and motivations. A central question in quantum information pro-
cessing is to identify its power and limitations in comparison with classical models. Because of the
apparent difficulty of the question, researchers have been focusing on simple yet useful models.
One-way communication is one such model: Alice and Bob wish to compute a function f (x, y), for
which the input x is known to Alice only and y known to Bob only. Alice sends a single message to
Bob, who is required to output their best guess for f (x, y). The one-way communication complexity
of f is the smallest integer k such that the function can be computed using a length k message
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for all inputs. More generally, the function f may be partially defined or a relation. Despite its
simplicity, the model has shown to be instrumental in tackling some important computational
problems, such as streaming algorithms and locally decodable codes. The simplicity of the model
is also deceiving: proving classical lower bounds may turn out to be highly nontrivial.

An important discovery by Bar-Yossef et al. [2] and Gavinsky et al. [8] is that quantum one-
way communication protocols can be exponentially more efficient than classical protocols. Those
extraordinary quantum advantages were demonstrated through a relational problem called “Hid-
den Matching Problem” (HM), and its partial function variants. The main challenges for estab-
lishing the results were to prove strong classical lower bounds.

However, techniques for proving strong quantum lower bounds are necessary to complete our
understanding on quantum complexities and the quantum-classical boundaries. There is much
work to be done in this direction. For example, the basic question that if any asymptotic quantum-
classical gap is possible remains open for total functions. Therefore, advancing quantum lower
bound techniques is of fundamental importance. To this end, our approach is to identify and
study explicit problems that are not only of interest on their own, but are also at the forefront of
challenging existing lower bound techniques. We therefore focus on the following straightforward
generalizations of the Hidden Matching Problem and its functional variants mentioned above.

Definition 1 (Generalized Hidden Matching). Let k, n ≥ 2 be integers. In the k-Generalized Hidden
Matching Problem of n subsets, denoted k-HMn, Alice is given x ∈ {0, 1}kn and Bob is given a partition
of [nk] into n subsets of size k, both uniformly distributed. Bob is required to output a k-set G in its partition
and the parity of the bits of x in G.

The α-Partial Matching Problem of [8] is similarly generalized in Definition 2. For k = 2,
the definitions coincide with the original problems, which were shown to have O(log n) quantum
complexity but Ω(

√
n) classical complexity. For a general constant k, the following quantum upper

bound is known

Proposition 1.1 (Kerenidis and de Wolf [11]). For any integer k ≥ 2, there is a quantum protocol using
O(n1−1/dk/2e log n) qubits for each of the generalized problems with parameters k and n.

However, no strong, i.e., nΩ(1), quantum lower bound is known for k ≥ 3. This set of problems
are appropriate for studying quantum lower bounds first for the challenges they pose to the ex-
isting techniques. For problems such as those whose two-way complexity is low, two-way lower
bound methods necessarily fail. Thus useful techniques need to exploit the one-way nature of the
model. Three works are representative on this regard: the quantum random access code lower
bound by Nayak [13], the trace distance method by Aaronson [1], and the direct product theorems
of Ben-Aroya, Regev, and de Wolf [3] using a matrix Hypercontractive Inequality.

Recall that a quantum random access code encodes a classical binary string in a quantum state
from which each bit can be recovered. Thus the quantum message solving the Generalized Hidden
Matching Problem appears to be a significantly weaker object. Therefore, it is not clear how the
information theoretical argument for the quantum random access code would work. The trace
distance method appears to be devised specifically for total functions, thus not directly applicable
to our problems. The matrix Hypercontractive Inequality turns out to be a powerful tool for us
yet the application of it requires additional insights.

Those lower bound problems are also interesting for their own reasons. First, as the case of
k = 2 provides the important instances for exponential quantum-classical gap, it is natural to
ask if a dramatic gap remains for general k. In particular, the super-efficient quantum protocols
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all make use of the quantum fingerprinting state, a simple yet powerful object discovered by
Buhrman et al. [4] and widely studied subsequently (see, e.g. [18, 7]). Could one use or generalize
the fingerprinting states to solve the larger k problems?

Secondly, the Generalized Hidden Matching Problem is closely related to locally decodable codes
(LDC), an important object that finds many applications in complexity theory and cryptography.
Recall that a LDC for n-bit strings is an encoding such that any bit can be recovered with high
probability from a small number of queries, even a constant fraction of the code word is cor-
rupted. A major question on LDC’s is the tradeoff between the codeword length and the number
of queries. In a seminal work, Kerenidis and de Wolf [11] proved an exponential lower bound on
codeword length for 2-query LDC’s. Their proof makes use of a quantum argument: an efficient
2-query LDC encoding can be turned into an efficient quantum random access code. This reduc-
tion is made through an efficient solution to the Hidden Matching Problem (though historically
the latter problem was inspired by the reduction in [11]). The reduction holds for general k: a
super-efficient quantum encoding for the k-Generalized Hidden Matching Problem would imply
a strong lower bound for k-query LDC. Therefore, our quantum lower bound question is to ask if
such a quantum proof for lower-bounding LDC’s works for more than 2 queries.

The main results and their implications. Our main result is that none of the generalized problems
admits a super-efficient quantum one-way protocol for k ≥ 3.

Theorem 1.2 (Main Theorem). (Informally) For all constant k ≥ 2, the k-Generalized Hidden Matching
Problem and its function variants for n subsets require Ω(n1−2/k) quantum one-way communication.

Comparing with the upper bound in Proposition 1.1, those bounds are up to a logarithmic fac-
tor (for even k) or close to (for odd k) optimal. Our results indicate that the exponential separation
achieved by the Hidden Matching problem is unique for k = 2. One can also extend the classical
lower and upper bounds for k = 2 in [8, 2] to a lower and upper bound of Θ(n1−1/k) for the gen-
eralized problems. Thus for general k ≥ 2, the quantum advantage is at most an O(n1/k) factor.
This, in particular, rules out the possibility of a “quantum proof”, in the sense of Kerenidis and
de Wolf [11], for a super-polynomial lower bound on LDC’s of more than 2 queries. We also note
that in [6] Efremenko already provided 3-query locally decodable code of subexponential length
using in part key ideas of Yekhanin [17], which renders exponential lower bounds impossible.

We do not know if for odd k, our lower bound can be improved to Ω(n1−1/dk/2e) or the upper
bound can be lowered by removing the ceiling function. (Note that the upper bound is achieved
by having Alice send O(n1−1/dk/2e) copies of the fingerprint state [4]). We are able to prove that
the class of protocols that we call quantum fingerprint protocols, where Alice sends multiple copies
of the fingerprint state, Ω(n1−1/dk/2e) copies of the fingerprint state are necessary.

Theorem 1.3. A quantum fingerprint protocol for any of the generalized problems with parameters k and
n requires Ω(n1−1/dk/2e) copies of the fingerprint state.

We note that there are several variants of quantum fingerprint state. Our result applies to
a general notion as defined in Definition 3. Thus it shows an additional limitation of the often
powerful fingerprint state in addition to that pointed out in [7].

Proof techniques and comparison with previous works. We now describe our proof techniques
and compare our proofs to those for the classical lower bound proofs [8, 2] and the quantum lower
bound in [3].

Our proofs make use of the Fourier analysis of matrix-valued functions and the proof for the
main theorem relies on the matrix-valued Hypercontractive Inequality of Ben-Aroya, Regev, and
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de Wolf [3]. The standard line of attack using the Fourier technique is to reduce the problem to
properties of the Fourier coefficients. The crux of applying the technique often lies in setting up a
massive cancelation of the Fourier coefficients, and in exploiting the pattern of the surviving ones.
Those are precisely the two places where we have new insights comparing with previous works,
which we elaborate below.

Two works provide the main sources of inspirations for our proofs: the classical lower bound
proofs [8, 2] and the quantum lower bound in [3]. Both works use Fourier analysis, the first uses
the Kahn-Kalai-Linial Hypercontractive Inequality, while the latter developed its matrix-valued
analogue.

It is not clear how to make the classical arguments work for the quantum cases for the fol-
lowing two reasons. The first is, the classical proofs are based on arguments conditioned on the
classical messages. There is no clear quantum analogy for such conditioning. Consequently, while
the Fourier analysis is applied in the classical cases to the pre-images of a message, we apply it to
the encoding function. Secondly, the classical proof (for the partial function variants) makes use
of Parseval’s Identity. The Identity extends to the quantum (matrix) case, but is useless as it is an
identity of the Frobenius norm, while for our purpose the trace norm is needed. The difference
between our proofs and the classical proofs becomes apparent when one restricts the quantum
arguments to classical, i.e., commuting encoding states. The resulting lower bounds are of the
magnitude of the quantum bounds, weaker than the (almost) tight classical lower bounds.

The connections of our proofs with that of Ben-Aroya et al. [3] are more intimate. For the
relation problem (i.e., k-HMn), our proof shows that the quantum encoding in a constant-bias
k-HMn protocol is by itself an average-Ω(1/n)-bias k-XOR-quantum random access code (k-XOR-
QRAC) as defined in [3]. Our reduction is accomplished in two steps. First, we show that an
arbitrary protocol can be converted to one that outputs the subset identity first, and then outputs
the XOR of bits inside that subset. This is due to a general conversion of POVMs that output (a, b)
into two-stage POVMs that outputs a in the first stage and b in the second one, which might be of
independent interest. The reduction then follows from a data-processing inequality when applied
to an “artificially” defined physical realizable super-operator.1

Our proof of the quantum lower bound for the function problem is, to the authors’ knowledge,
is the first example that makes full use of the matrix Hyper-contractive Inequality. The previous
application of this inequality to lower-bound k-XOR-QRAC is a direct consequence of the matrix
Hyper-contractive inequality when restricted to the Fourier coefficients in low levels, while it is
crucial in our application to apply this inequality to Fourier coefficients in all levels. Moreover,
as mentioned earlier, there are two difficulties (i.e., no quantum analogy of the pre-image of a
message and no counter-part of Parseval’s Identity of the trace norm) in extending the classical
argument for proving quantum lower bounds for the function problem, which we overcame by
some novel technical manipulations. We feel that these technical contributions might be useful in
other contexts when dealing with quantum messages.

When restricted to quantum fingerprint protocols, a better lower bound (when k is odd) can
be obtained through the use of two crucial properties of the fingerprint state (of a more general
version in Definition 3): the projection to each index i has equal length and the ”bit states” are
linear function of xi’s. Those properties enable the application of the generalized birthday paradox
to show that most of the weight of the Fourier coefficients concentrates on low levels.

Organizations. We survey the necessary technical backgrounds and define formally the general-

1After the first appearance of our paper, we learned that the same result could be obtained by a few different but
similar in spirit arguments [16].
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ized partial function variant in Section 2. The quantum lower bounds for the relational problem
and the function problem are proved in Section 3 and Section 4, respectively. The proof for The-
orem 1.3 is sketched in Section 5. We include the classical and quantum upper bound results in
Appendix A.1, as well as the classical lower bounds in Appendix A.2, as they are simple exten-
sions of known results.

2 Preliminaries

Quantum States. The state space A of m-qubit is the complex Euclidean space C2m
. An m-qubit

quantum state is represented by a density operator ρ, i.e., a positive semidefinite matrices with
trace 1, overA. The set of all quantum states inA is denoted by D (A). The Hilbert-Schmidt inner
product on the operator space L (A) is defined by 〈X, Y〉 = tr(X∗Y) for all X, Y ∈ L (A), where ∗
is the adjoint operator.

Let Σ be a finite nonempty set of measurement outcomes. A positive-operator valued measure
(POVM) on the state space A with outcomes in Σ is a collection of positive semidefinite opera-
tors {Pa : a ∈ Σ} such that ∑a∈Σ Pa = 1A. If instead of equality, ∑a∈Σ Pa ≤ 1A, the collection is a
sub-normalized POVM. When this POVM is applied to a quantum state ρ, the probability of each
outcome a ∈ Σ is 〈ρ, Pa〉. When outcome a is observed, the quantum state ρ becomes the state√

Paρ
√

Pa/ 〈ρ, Pa〉.
Norms. For any X ∈ L (A) with singular values σ1, · · · , σd, where d = dim(A), we define its
(normalized Schatten) p-norm as ‖X‖p = ( 1

d ∑d
i=1 σ

p
i )

1/p. The trace norm, ‖X‖tr, is ‖X‖tr = ∑d
i=1 σi.

Clearly, ‖X‖tr = d‖X‖1. The following well-known fact relates the trace distance with the optimal
probability of distinguishing quantum states.

Fact 2.1 ([9]). Let ρ0, ρ1 be two quantum states which appear with probability p and 1− p respectively, the
optimal success probability of predicting which state it is by a POVM is

1
2
+

1
2
‖pρ0 − (1− p)ρ1‖tr.

Matrix Hypercontractive Inequality. Consider a matrix-valued function on {0, 1}n, f : {0, 1}n →
L (A). For example, f may encode an n-bit string x by a quantum state inA. The Fourier transform
f̂ is defined similarly as for scaler functions. Denote by [n] the set of all indices 1, · · · , n. We
identify a subset S of [n] with the n-bit binary string consisting of 1’s at the indices in S. For every
subset S ⊆ [n] and x ∈ {0, 1}n, let χS(x) = (−1)x·S be the (sign-represented) parity of the bits of x
indexed by S. The Fourier transform of a matrix-valued function f : {0, 1}n → L (A) is the function
f̂ : {0, 1}n → L (A) defined by

f̂ (S) =
1
2n ∑

x∈{0,1}n

f (x)χS(x). (1)

The values f̂ (S) are called the Fourier coefficients of f and now are matrices2 overA. An important
property of the Fourier transform is that we can express f in terms of its Fourier coefficients as

f (x) = ∑
S⊆[n]

f̂ (S)χS(x). (2)

2An equivalent definition is by applying the standard Fourier transform to each (i, j)-entry separately: f̂ (S)i,j =

f̂ (·)i,j(S).
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The main tool we are going to use is an extension of the hypercontractive inequality to matrix-
valued functions [3] as follows.

Theorem 2.2 ([3]). For every f : {0, 1}n → L (A) and 1 ≤ p ≤ 2,(
∑

S⊆[n]
(p− 1)|S|

∥∥∥ f̂ (S)
∥∥∥2

p

)1/2

≤
(

1
2n ∑

x∈{0,1}n

‖ f (x)‖p
p

)1/p

.

In particular, we consider the special case where the matrix-valued function f maps every x ∈
{0, 1}n to a m-qubit density operator (i.e., an encoding of n-bit string to a m-qubit quantum state).

Corollary 2.3 ([3]). Let f : {0, 1}n → D
(
C2m)

be any mapping from n-bit strings to m-qubit density
matrices. Then for any 0 ≤ δ ≤ 1, we have

∑
S⊆[n]

δ|S|
∥∥ f̂ (S)

∥∥2
tr ≤ 22δm.

A direct consequence is the following upper bound on the average trace norm of the Fourier
coefficients f̂ (S) for S of constant size k. We note the original statement in [3] is slightly more
general on the choice of k. Denote by S ∼ (n

k) that the random variable S is a uniformly distributed
size-k subset of S.

Corollary 2.4 ([3]). There exist constants η, C > 0 such that for any k and sufficiently large n, any
encoding of n-bit strings to m-qubit density operators f : {0, 1}n → D

(
C2m)

has the property that,

ES∼(n
k)

[
‖ f̂ (S)‖tr

]
≤ C

(ηm
n

)k/2
.

Note that Corollary 2.4 fails to give the correct bound for large non-constant k. We shall make
use of Corollary 2.3 to handle the case of large k directly.

Generalized Hidden Matching problems. The Hidden Matching Problem was inspired by the
quantum argument for locally decodable codes [11] and was proposed in [2] as the first relation
problem to establish an exponential separation between quantum and bounded-error randomized
one-way communication complexity. The exponential separation was later proved to be true even
for a function version of the problem [8]. We give the definition of our generalized relation problem
in Definition 1, and define the generalized partial function variant as follows. 3

Let k, n be positive integers such that k ≥ 2, and 0 ≤ α ≤ 0.5. Alice’s input is a kn-bit string
x ∈ {0, 1}kn. Part of Bob’s input is an α-partition M that consists of αn disjoint subsets of indices
from [kn] each of size k, such as G1 =

{
i1
1, · · · , i1

k

}
,· · · , Gαn =

{
iαn
1 , · · · iαn

k

}
. Let α-Mk,n be the set

of all possible α-partitions over [kn] (denote byMk,n if α = 1) . We may also regard an α-partition
on [kn] as an (αn× kn) matrix M over GF(2), where the r-th row corresponds to the subset Gr and
the entry (r, c) is 1 iff c ∈ Gr and is 0 otherwise. In this way, the product Mx is an αn-bit string
z = z1, · · · , zr, · · · , zαn where zr = xir

1
⊕ · · · ⊕ xir

k
.

Definition 2 (Generalized Partial Matching). The (k, α)-Partial Matching Problem, denoted (k, α)-PMn,
is a partial Boolean function problem, where Alice is given x ∈ {0, 1}kn and Bob is given M ∈ α-Mk,n and
w ∈ {0, 1}αn. The promise is that there is a bit b ∈ {0, 1} such that Mx ⊕ bαn = w. Bob is required to
output this b.

3For readers who are familiar with the history of the partial function variants, we only include the generalization
of the ”α-Partial Matching” problem, whereas similar result can be obtained for the other variant, called the ”Noisy
Perfect Matching” problem.
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3 Lower bound for Generalized HM

We prove the quantum lower bound for the Generalized Hidden Matching Problem (Definition 1).

Theorem 3.1. Any quantum protocol P (with m-qubit encoding) for k-HMn problem has the successful
probability no more than 1

2 + O(n( ηm
nk )

k/2) for some constant η > 0. In particular, in order to achieve a
constant bias, any quantum protocol P needs to send an Ω(n1−2/k)-qubit message.

Fix a quantum protocol P for k-HMn. Recall that in this problem, Alice is given x ∈ {0, 1}kn

and Bob is given M ∈ Mk,n, both uniformly distributed. Let the matrix-valued function ρ :
{0, 1}kn → D

(
C2m)

be Alice’s m-qubit encoding of her input x. The protocol succeeds if Bob
outputs a subset G ∈ M and the parity of the bits of x in that subset. The successful probability
minus a half is the bias of the protocol. We can assume without loss of generality that Bob never
outputs a subset not in M, since doing so would not increase the bias.

We start with an important observation that one can assume without loss of generality that
Bob performs a two-stage POVM as follows to accomplish the above task and leave the proof in
Appendix A.3.

Lemma 3.2. Any protocol for k-HMn can be converted to one such that

(a) Bob first performs a measurement to output a subset, then a second measurement to output the input-
parity for that subset, and,

(b) for any input (x, M), the output distribution is unchanged.

Based on this lemma, we assume from now on that Bob’s measurement is performed in the
two stages described. Let

{
ΠG

M
}

be Bob’s first-stage POVM on input M with outcome G. Note we
use G to index all subsets of [kn] of size k. But it is clear that ΠG

M = 0 if G /∈ M.
Our next step is to upper-bound the bias εbias in a two-stage protocol, in terms of the Fourier

coefficients ρ̂(G) for k-sets G. Define ρx
def
= ρ(x), px

def
= 1/2kn, and pM

def
= 1/|Mk,n|. From our

notation, it is easy to see that the chance protocol P outputs subset G on input x, M is given by

Pr[x, M, G] = px pM

〈
ρx, ΠG

M

〉
.

Lemma 3.3. The bias εbias of any protocol P satisfies

εbias ≤
1
2 ∑

M,G
pM
∥∥√ΠG

Mρ̂(G)
√

ΠG
M

∥∥
tr

. (3)

Proof. Conditioning on Bob’s outputting subset G on input M , which occurs with chance Pr[G|M],
each Alice’s message ρx collapses to an unnormalized state√

ΠG
Mρx

√
ΠG

M.

Let G+ (resp. G−) be the subset of {0, 1}kn where the parity on subset G is 0 (resp. 1). Bob wishes
to distinguish between the post-measurement states of ∑x∈G+ pxρx and ∑x∈G− pxρx. By Fact 2.1,
the largest bias Bob can achieve conditioned on M and G is

1
2Pr[G|M]

∥∥∥∥∥
√

ΠG
M ∑

x∈G+

pxρx

√
ΠG

M −
√

ΠG
M ∑

x∈G−
pxρx

√
ΠG

M

∥∥∥∥∥
tr

. (4)
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Since by definition ∑x∈G+ pxρx −∑x∈G− pxρx = ρ̂(G), Eq. (4) then becomes

1
2Pr[G|M]

∥∥∥∥√ΠG
Mρ̂(G)

√
ΠG

M

∥∥∥∥
tr

.

Thus for the overall bias,

εbias ≤ ∑
M,G

pMPr[G|M]
1

2Pr[G|M]

∥∥∥∥√ΠG
Mρ̂(G)

√
ΠG

M

∥∥∥∥
tr
=

1
2 ∑

M,G
pM‖

√
ΠG

Mρ̂(G)
√

ΠG
M‖tr.

Now we make another important observation in our proof. In order to upper bound the sum
over M of trace norms in (5) for a fixed G, we shall treat {ΠG

M}M as a sub-normalized POVM,

although it is not performed in the protocol. Denote by pk
def
= n/(kn

k ).

Lemma 3.4. For any G, the set { pM
pk

ΠG
M}M is a sub-normalized POVM.

Proof. Because ΠG
M = 0 if G /∈ M, then we have

∑
M

pMΠG
M = ∑

M:G∈M
pMΠG

M ≤
(

∑
M:G∈M

pM

)
1 = PrM[G ∈ M]1.

Since PrM[G ∈ M] = pk, we have ∑M
pM
pk

ΠG
M ≤ 1.

This observation allows us to upper-bound the sum of trace norms of transformed ρ̂(G) to the
sum of trace norms of ρ̂(G) itself, through the following data-processing inequality4.

Fact 3.5 ([12]). For any Hermitian operator R and any sub-normalized POVM {Pa}a, ∑a‖
√

PaR
√

Pa‖tr ≤
‖R‖tr.

Therefore by Lemma 3.4 and Fact 3.5, we have

εbias ≤
1
2

pk ∑
G
‖ ρ̂(G)‖tr =

1
2

nEG∼(kn
k )
[‖ ρ̂(G)‖tr] ≤ O(n(

ηm
nk

)k/2), (5)

where the last inequality comes from Corollary 2.4. This directly implies our main theorem.
We note that when k = 2 our argument yields only a constant lower bound. However, a

Ω(log(n)) lower bound of quantum protocols can be obtained by simulating the quantum proto-
col with classical messages in the most trivial way and making use of the classical lower bound
Ω(
√

n).

4Note the inequality essentially follows from the fact that the trace distance is non-increasing under admissible
quantum operations and any Hermitian operator is just a re-scaled difference between two weighted density operators.
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4 The function problem

In this section we prove the quantum lower bound for the partial function problem defined in
Section 2. First, we note that a lower bound of quantum protocols with shared randomness can
be obtained from a lower bound for quantum protocols under some ’hard’ input distribution (i.e.,
distributional complexity). The distribution we choose is uniform on Alice’s input x ∈ {0, 1}kn ,
Bob’s input M ∈ α-Mk,n and the function value b, which fixes Bob’s second input w = Mx⊕ bαn.

Our proof generalizes several technical lemmas in their classical lower bound proof for k = 2.
However, as summarized in the introduction there is also a significant difference between the two
arguments. In particular, our Fourier analysis is performed directly on the encoding messages
rather than the pre-images of a fixed encoding message, as a consequence of the fact that there
is no clear quantum analogue of conditioning on a message. Moreover, we only make use of the
matrix-version hypercontractive inequality but never use the Parseval Identity that is crucial in the
classical argument. Comparing to [3], our use of the matrix-valued hypercontractive inequality is
more involved and requires more careful analysis and additional inequality tricks.

Theorem 4.1. For any integer k with k ≥ 2 and 0 ≤ α ≤ 0.5, the quantum bounded-error one-way
communication complexity of (k, α)-PMn is Ω(log2(1/α)n1−2/k).

Fix an arbitrary quantum protocol P with Alice’s encoding function ρ : {0, 1}kn → D
(
C2m)

.
Similar to the proof for the relation problem, we will derive the lower bound through an upper
bound on the bias εbias. Our proof strategy is also similar in that we first upper-bound the bias
by the trace norms ‖ρ̂(G)‖tr, then make use of matrix hyper-contractive inequality to derive the
desired bound. However, the technical execution will be different.

Let px
def
= 1/2nk, pb

def
= 1/2, pα

M
def
= 1/|α-Mk,n| and δa,b

def
= 1 iff a = b, the hard distribution is

given by
Pr[x, b, M, w] = px pα

M pbδMx⊕bαn,w. (6)

To upper-bound the bias by the trace norms ‖ρ̂(G)‖tr, we define tw(Mx) def
= (δMx,w − δMx⊕1αn,w)/2

and u(M, w, S) def
= ∑x∈{0,1}kn px pα

Mtw(Mx)(−1)x·S.

Lemma 4.2. The bias εbias satisfies

εbias ≤
1
2 ∑

S,M,w
|u(M, w, S)|‖ ρ̂(S)‖tr. (7)

Proof. Conditioning on Bob’s input M, w, in his eyes, Alice’s message ρx appears with chance
Pr[x|M, w]. The best strategy for Bob to determine b conditioning on his input (M, w) is no more
than the chance to distinguish between two subsets of ρx selected according to b. Namely, no
more than the chance to distinguish between the following ρM,w

0 and ρM,w
1 each appearing with

the chance Pr[b = 0|M, w] and Pr[b = 1|M, w], respectively,

ρM,w
0 =

∑x Pr[x, 0, M, w]ρx

Pr[0, M, w]
and ρM,w

1 =
∑x Pr[x, 1, M, w]ρx

Pr[1, M, w]
.

Then by Fact 2.1, we have Pr[P succeeds|M, w] at most

1
2
+

1
2
‖Pr[0|M, w]ρM,w

0 − Pr[1|M, w]ρM,w
1 ‖tr.

9



By averaging over different inputs M, w, we have the overall successful chance Pr[P succeeds] at
most

1
2
+

1
2 ∑

M,w
Pr[M, w]‖Pr[0|M, w]ρM,w

0 − Pr[1|M, w]ρM,w
1 ‖tr.

Thus
εbias ≤

1
2 ∑

M,w
‖∑

x
Pr[x, 0, M, w]ρx −∑

x
Pr[x, 1, M, w]ρx‖tr. (8)

Plugging in the definitions of the two probabilities in Eq. (6), we have

εbias ≤
1
2 ∑

M,w
pM‖∑

x
pxtw(Mx)ρx‖tr, (9)

which by the definition of tw(Mx) and Eq. (1) gives

εbias ≤
1
2 ∑

M,w
‖ ∑

S⊆[kn]
u(M, w, S)ρ̂(S)‖tr.

Thus (7) holds.

Now we analyze |u(M, w, S)| for different M, w, S. For any fixed partition M = {G1, G2, · · · , Gn},
let v(M) be the set of unions of an arbitrary number (including zero) of elements in M. We shall
use a n-bit string T|M ∈ {0, 1}n to denote which subsets are included in T. With the above notation
and similar to [8], the quantity |u(M, w, S)| is given by the following lemma.

Lemma 4.3. If S ∈ v(M) with an odd hamming weight l = h(S|M), |u(M, w, S)| = pα
M/2αn; otherwise

|u(M, w, S)| = 0.

Proof. First notice that if S /∈ v(M) then for any z ∈ {0, 1}n, the expectation of (−1)x·S over
x ∈ {0, 1}kn conditioned on Mx = z is 0, i.e., Ex[(−1)x·S | Mx = z] = 0. Also note that tw(Mx)
only depends on z = Mx. Thus we have,

u(M, w, S) = pM ∑
x∈{0,1}kn

pxtw(Mx)(−1)x·S = pM ∑
z∈{0,1}n

Pr[z]tw(z)EMx=z[(−1)x·S] = 0,

where Pr[z] = 1/2n. Otherwise if S ∈ v(M), it is easy to see Ex[(−1)x·S | Mx = z] = (−1)z·S|M .
Thus,

|u(M, w, S)| = pα
M| ∑

z∈{0,1}αn

1
2αn tw(z)(−1)z·S|M |

=

{
pα

M/2αn, h(S|M) is odd;
0, h(S|M) is even.

Hence the lemma follows.

We further simplify the upper bound on εbias in the following lemma.

Lemma 4.4. The bias εbias satisfies

2εbias ≤ ∑
l∈[αn] odd

αl ∑
h(S)=kl

(
n
l

)(
kn
kl

)−1

‖ ρ̂(S)‖tr. (10)

10



Proof. By Lemma 4.3 and Eq. (7),

εbias ≤
1
2 ∑

h(S)=kl
l≤αn odd

∑
M∈α-Mk,n

S∈v(M)

pα
M ∑

w∈{0,1}αn

1
2αn ‖ ρ̂(S)‖tr.

This allows us to remove w from the summation, arriving at

εbias ≤
1
2 ∑

l∈[αn] odd
∑

S⊆[kn]
h(S)=kl

∑
M∈α-Mk,n

S∈v(M)

pα
M‖ ρ̂(S)‖tr. (11)

The value ∑M s.t. S∈v(M) pα
M is exactly PrM[S ∈ v(M)], for a random M ∈ α-Mk,n. Through a

counting problem, we show in Appendix A.4 that

PrM∈α-Mk,n [S ∈ v(M)] =

(
αn
l

)
·
(

kn
kl

)−1

. (12)

Hence,

εbias ≤
1
2 ∑

l∈[αn] odd

(
αn
l

)[
∑

h(S)=kl

(
kn
kl

)−1

‖ ρ̂(S)‖tr

]
.

Noting that (αn
l ) ≤ αl(n

l ) for 0 ≤ α ≤ 1 we have,

2εbias ≤ ∑
l∈[αn] odd

αl ∑
h(S)=kl

(
n
l

)(
kn
kl

)−1

‖ ρ̂(S)‖tr.

We are ready to apply the matrix hypercontractive inequality to prove Theorem 4.1.

PROOF OF THEOREM 4.1. Let γl = (n
l )

2
(kn

kl )
−1

and δl = γ1/kl
l . It follows from Lemma 4.4 that

2εbias ≤ ∑
l∈[αn] odd

αl
(

n
l

)−1
[

∑
|S|=kl

(
n
l

)2(kn
kl

)−1

‖ ρ̂(S)‖tr

]

= ∑
l∈[αn] odd

αl
(

n
l

)−1
[

∑
|S|=kl

δkl
l ‖ ρ̂(S)‖tr

]
. (13)

By Cauchy-Schwarz,

∑
|S|=kl

δkl
l ‖ ρ̂(S)‖tr≤

√
∑
|S|=kl

δkl
l

√
∑
|S|=kl

δkl
l ‖ ρ̂(S)‖2

tr. (14)

It is clear that
√

∑|S|=kl δkl
l =

√
γl(

kn
kl ) = (n

l ). By expanding the definition of δl , we have

δl ≤ (l/n)1−2/k ≤ 1, (15)

11



which we justify in Appendix A.5. Apply the matrix-valued hypercontractive inequality (Corol-
lary 2.3), we have

∑
|S|=kl

δkl
l ‖ ρ̂(S)‖2

tr ≤ ∑
S⊆[kn]

δ
|S|
l ‖ ρ̂(S)‖2

tr ≤ 22δlm.

Therefore,

2εbias = ∑
l∈[αn] odd

αl
(

n
l

)−1(n
l

)
2δlm ≤ α2δ1m + ∑

3≤l≤n odd
αl/2αl/22δlm

≤ α2δ1m + ∑
3≤l≤n odd

αl/2 max
3≤l≤n odd

αl/22δlm ≤ α2δ1m +
α1.5

1− α
max

3≤l≤n odd
αl/22δlm,

where δl = ((n
l )

2
(kn

kl )
−1
)1/kl ≤ (l/n)1−2/k. For sufficiently small distributional error (such that

2εbias ≥ 0.95) and for 0 ≤ α ≤ 0.5, we have either α1.5

1−α αl/22δlm ≥ α1.5 for some l ≥ 3 or α2δ1m ≥
0.95 − α1.5 ≥ α0.9 when 0 ≤ α ≤ 0.5. In the first case, we have 2δlm ≥ (1 − α)α−l/2 and thus
m = Ω(log2(1/α)n1−2/kl2/k) for l ≥ 3. In the second case 2δ1m ≥ α−0.1 = 20.1 log2(1/α) and thus
m = Ω(log2(1/α)n1−2/k), and we conclude the proof for Theorem 4.1.

Remarks. We note that the rewriting of the right hand side in Eq. (10) as that in Eq. (13) allows the
application of the matrix-valued hypercontractive inequality to obtain the desired bound. Differ-
ent from the relation problem, we cannot directly use Corollary 2.4 to upper bound the summation
of trace norms in Eq. (13), because kl can be arbitrarily close to kn. A more precise bound from
Corollary 2.3 then becomes necessary. We remark this is, to the authors’ knowledge, the first ex-
ample that makes use of the full power of the matrix-valued hypercontractive inequality.

For constant α, the above theorem gives the desired lower bound Ω(n1−2/k). However, for
very small α such as α = Θ(1/n), the problem reduces to the XOR quantum random access code
defined in [3] and has a tight bound Θ(n). Our lower bound is weaker in that case and only
proves Ω(n1−2/k log2(n)). This is because our analysis for small α is loose and a more sophisticated
analysis might provide a better lower bound.
Classical lower bounds. Extending the classical lower bound to the case of subset-size k is
straightforward but tedious. We will just point out the change needed when adapting the lower
bound proof for (k, α)-PMn in the journal version of [8]. For a general k, the probability in [8,
Lemma 3.3] becomes (αn

l )/(
kn
kl ).

5 Then by choosing the classical message size c = O(n1−1/k/α1/k),
the rest argument implies a lower bound Ω(n1−1/k/α1/k) of the message size.

5 Fingerprint protocols

In this section, we sketch a proof for Theorem 1.3. There are several variants of fingerprint states.
Some variant may make the Theorem trivial, e.g., for odd k, for each x ∈ {0, 1}kn, the fingerprint
state 1√

kn ∑i∈[kn](−1)xi |i〉 is the same as that for x̄ (up to a global phase), thus is not useful at all.
Our result applies to a more general definition of fingerprint state described below.

Definition 3 (Generalized quantum fingerprint state). Given x ∈ {0, 1}m for some positive integer
m, we call a quantum state |φx〉 a generalized fingerprint state if for some Hilbert space H of a finite

5Note we use different notations from [8]. More precisely, our ”kl”is ”k” in [8]. Our ”n” and ”α” are the same as [8]
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dimension and some quantum states |αb,i〉 ∈ H, b ∈ {0, 1}, i ∈ [m],

|φx〉 =
1√
m ∑

i∈[m]

|i〉 ⊗ |αxi ,i〉.

The properties of generalized quantum fingerprint states key to our proof are that the projec-
tion to each index i has equal length and that the ”bit states” |αxi ,i〉 are linear function of xi.

We now prove by contradiction Theorem 1.3 where ”quantum fingerprint state” is demon-
strated in Definition 3.

PROOF OF THEOREM 1.3. Let k̄ def
= dk/2e. Suppose that r copies of the fingerprint state are

sent, for an r = o(n1−1/k̄). Let |Ψx〉
def
= |ψx〉⊗r and ρ

def
= ρx = |Ψx〉〈Ψx| be Alice’s messages. For

a fixed partition M = {G1, · · · , Gn}, a random index i induces a random variable that indicates
which subset out of n subsets it is from. Then in a sequence of r random numbers uniformly and
independently drawn from [n], the probability of having a subset number occurring for k̄ times
is o(1). Therefore, removing those base vectors |i1, i2, ..., ir〉 where k̄ indices from a same subset
occur, we obtain a (un-normalized) vector |Ψ′x,M〉, which is o(1)-close to |Ψx〉. Let

ρ′
def
= ρ′x,M

def
= |Ψ′x,M〉〈Ψ′x,M|.

We replace every Alice’s message ρx in the case where Bob receives M by ρ′x,M. Note that this is
not a possible operation by Alice but rather an intermediate step for the analysis. Since ‖ρx −
ρ′x,M‖tr = o(1) for all x, M, the new overall bias ε′bias only differs o(1) from εbias because the
replacement only incurs a o(1) change in terms of `1 norm on the output distribution.

A second important property of ρ′x,M is that its Fourier coefficients ρ̂′M(S) = 0 for all S ∈ v(M)
(or any S that has k indexes from a same subset in M). We prove this in Lemma 5.1 below.

However, for k-HMn, Lemma 3.3 with ρx replaced by ρ′x,M says

ε′bias ≤
1
2 ∑

M,G
pM‖

√
ΠG

Mρ̂′M(G)
√

ΠG
M‖tr = 0,

thus εbias = o(1), a contradiction. Similar arguments can be applied to Eq. (7), and therefore we
can show ε′bias = 0 for both k-NPMn and (k, α)-PMn problems, getting the same contradiction that
εbias = o(1).

Lemma 5.1. For any S ∈ v(M) (defined in Section 4) with S 6= ∅, we have the Fourier coefficient of ρ′x,M

denoted by ρ̂′M(S) is zero.

Proof. Because the ”bit states” |αxi ,i〉 are linear function of xi, the Fourier coefficient ρ̂′M(S) can be
formulated as a linear combination of the Fourier coefficient of the function

PT(x) def
= ∏

i∈T
xi

for some T ⊆ [kn] that is the union of any two r random indices {i1, i2, · · · , ir} and {j1, j2, · · · , jr}.
Since there is no k̄-collision in any r random indices appearing in ρ′x,M, the maximum number of
elements in T that are in the same subset is at most 2(k̄− 1) < k. By definition for any S ∈ v(M)

with S 6= ∅, we have S * T. A directly calculation shows P̂T(S) = 0 if S * T, thus the lemma
follows.
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A.1 Quantum and classical upper bounds

Since the upper bounds of the function problems follow from the upper bound of the relation
problem, we will focus on describing the upper bounds of the relation problem and sketch how
they extend to the function case. Note that the quantum upper bounds we describe are implicitly
in [11, Section 6] and the classical upper bounds are extensions of the k = 2 case.
Quantum Upper Bounds. We sketch an O(n1−1/dk/2e log(n)) quantum protocol for the relation
problem. For any Alice’s input x ∈ {0, 1}kn, let |ψx〉 be a uniform superposition of her bits x =
x1 · · · xkn (i.e., a fingerprint state of x [4]):

|ψx〉 =
1√
kn

kn

∑
i=1

(−1)xi |i〉 .

Let us consider the case where k is even. Then Bob’s input M partitions [kn] into n subsets each
consisting of k/2 pairs. Let {(it, jt)}kn/2

t=1 denote the set of these pairs. Thus by measuring |ψx〉 in
the basis { 1√

2
(|it〉 ± | jt〉) : t = 1 · · · kn/2}, we can determine the parity of a uniformly picked pair.

In order to determine the parity of some subset, we need to know the parities of the k/2 pairs in
some subset. By the birthday paradox, we need O(n1−2/k) copies of |ψx〉 to have a k/2-collision
with high probability. Furthermore, the k/2 pairs are distinct with constant probability. Thus, with
constant bias, Bob can determine the parity of a uniformly selected subset with O(n1−2/k log(n))
size messages. In the case when k is odd, it is trivial to reduce to the k + 1 case by filling dummy
0s in the input. Thus, we have an O(n1−1/dk/2e log(n)) quantum upper bound.

In the case of (k, α)-PMn, Bob might get the parity of some subset that does not lie in the desired
α-fraction. This can be resolved by repeating the protocol O(1/α) times. Also by repeating the
protocol O(log(1/ε)) times we can boost the correctness to 1− ε for any constant ε > 0. Thus we
obtain a upper bound of O(n1−1/dk/2e log(n)/α).
Classical Upper Bounds. We first sketch an O(n1−1/k) classical upper bound for the relation
problem. Let Alice uniformly select a subset of d ≈ n1−1/k bits of x ∈ {0, 1}kn to send to Bob. By
the birthday paradox, with high probability Bob will have k bits information that lie in the same
subset (i.e., a k-collision instead of a 2-collision). Thus he can output the parity of that subset. By
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Newman’s Theorem [14], Alice only needs to send O(n1−/k + log(n)) = O(n1−1/k) size classical
messages to accomplish the task.

To extend the result to the function problem we observe that the subset, the parity of which Bob
knows with high probability, is uniformly random. In the case of (k, α)-PMn problem, however,
the subset uniformly picked might not lie in the desired α-fraction of subsets. A more careful
analysis shows by selecting a subset of O(n1−1/k/α1/k) bits randomly, with high probability Bob
can recover the parity of some subset in the desired fraction.

We note all the classical upper bounds are also tight for the generalized Hidden Matching
problems.

A.2 Classical lower bound for k-HMn

We prove here an asymptotically tight classical lower bound for k-HMn.

Theorem A.2. Any deterministic classical protocol C with m-bit messages for k-HMn problem has the best
successful probability no more than 1

2 + O(( mk

nk−1 )
1/2). To achieve constant bias, we have m = Ω(n1−1/k).

Proof. The proof is a simple extension of that for 2-HMn in [5]. Fix a classical deterministic protocol
C. For any Alice’s message c ∈ {0, 1}m, let Xc ⊆ {0, 1}kn be the set of corresponding inputs. Define
pc = |Xc|/2kn and note that {pc} is a probability distribution over the 2m messages c. Conditioned
on receiving message c, Bob shall choose a subset G of size k from his input M ∈ Mk,n according
to some distribution denoted by

qc(G) = PrM∈Mk,n [Bob outputs G | Bob received c].

Clearly for any fixed G we have qc(G) ≤ PrM∈Mk,n [G ∈ M] = 1/(kn−1
k−1 ). Upon receiving c and

outputting subset G, Bob’s best strategy is then to output the parity of G that occurs most often
among the x ∈ Xc. Define βc

G = Ex∈Xc [(−1)x·G]. Hence Bob’s optimal success probability when
guessing (−1)x·G is 1/2 + |βc

G|/2. This implies, for fixed c, Bob’s successful chance is

Pr x∈Xc
M∈Mk,n

[Bob outputs the parity of some G] =
1
2
+ εc

bias ≤ EG∼qc

[
1
2
+
|βc

G|
2

]
,

where the expectation is taken over the distribution qc(G). As explained in [15, Section 4.2], it
follows from the KKL inequality [10] that

∑
G⊆[kn]
|G|=k

(βc
G)

2 ≤ O
(

log
1
pc

)k

. (16)

Thus we can upper bound εc
bias as follows:

2εc
bias ≤ EG∼qc [|βc

G|] = ∑
G

qc(G)|βc
G|

(∗)
≤
√

∑
G

qc(G)2 ·
√

∑
G
(βc

G)
2
(∗∗)
≤
(

kn− 1
k− 1

)−1/2

·O
(

log
1

pm

)k/2

,

where (∗) is from Cauchy-Schwarz and (∗∗) follows from ∑G qc(G)2 ≤ maxG qc(G) ·∑G qc(G) ≤
maxG qc(G) ≤ 1/(kn−1

k−1 ) and Eq. (16). Then the overall bias εbias is given by

εbias = ∑
c

pcεc
bias ≤

(
kn− 1
k− 1

)−1/2

∑
c

pcO(log(1/pc))
k/2 ≤ O

(
(

mk

(k− 1)nk−1 )
1/2
)

,
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where the last inequality follows from (kn−1
k−1 ) ≥ ((k − 1)n)k−1 and ∑c pc logk/2(1/pc) ≤ mk/2 for

k ≥ 2.6

A.3 Proof of Lemma 3.2

Proof. We prove a slightly more general result. Fix an arbitrary POVM Π = {Πa,b} indexed by
a ∈ A, b ∈ B. We shall construct (sub-normalized) POVMs

P = {Pa}a∈A, and, Qa = {Qa,b}b∈B , for a ∈ A,

such that for all state ρ that Π acts on, applying P, followed by Qa, where a is the outcome of P,
gives the same output distribution.

For an operator R, denote by R+ the Moore-Penrose pseudo-inverse of R. We set

Pa = ∑
b∈B

Πa,b, and, Qa,b =
√

P+
a Πa,b

√
P+

a .

By direct computation, one can verify that P is a POVM, while for each a, Qa is a sub-normalized
POVM. For an arbitrary quantum state ρ, the probability of observing (a, b) in the two-stage mea-
surement is

〈ρ, Pa〉
〈√

Paρ
√

Pa

〈ρ, Pa〉
, Qa,b

〉
=

〈√
Paρ
√

Pa,
√

P+
a Πa,b

√
P+

a

〉
,

which is 〈ρ, Πa,b〉 since
√

Pa
√

P+
a is the projection on to the support of Pa, and Πa,b’s support lies

in that subspace.

We notice that the post-measurement states after the two-stage measurement are in general dif-
ferent from those after the original measurement, but this difference bears no consequence for our
proof.

A.4 Equation (12)

By a simple counting argument,

|Mk,n| = (kn)! · ((k!)nn!)−1

Thus for S ⊆ [kn] with |S| = kl,

PrM∈Mk,n [S ∈ v(M)] = |Mk,l | · |Mk,n−l |/|Mk,n| =
(

n
l

)(
kn
kl

)−1

.

Note that by definition,

|α-Mk,n| =
(

kn
αkn

)
|Mk,αn|.

Thus for S ⊆ [kn] with |S| = kl, setting β = αn−l
n−l ,

PrM∈α-Mk,n [S ∈ v(M)] = |Mk,l | · |β-Mk,n−l |/|α-Mk,n| =
(

αn
l

)(
kn
kl

)−1

.

6The proof of this inequality is subtle but straightforward by noticing the function is concave in certain interval.
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A.5 Inequality (15)

Recall that γl = (n
l )

2
(kn

kl )
−1

. We will make use of the inequality that

a + s
b + s

≤ a
b

, for all a, b, s > 0 with a ≥ b.

For all integers i, j with 0 ≤ i ≤ l − 1,

n− i
l − i

=
k(n− i)
k(l − i)

≤ kn− ik− 1
kl − ik− 1

.

Thus (
n− i
l − i

)2

≤ kn− ik
kl − ik

kn− ik− 1
kl − ik− 1

.

For each integer j, 2 ≤ j ≤ k− 1,
kn− ik− j
kl − ik− j

≥ n
l

.

Therefore, for each i, ( n−i
l−i

)2

Πk−1
j=0

kn−ik−j
kl−ik−j

≤
(

l
n

)k−2

.

Since γl is simply the product of the left hand side for i = 0, .., l − 1, we have

γl ≤
(

l
n

)kl−2l

.

Thus

δl = γ1/kl
l ≤

(
l
n

)1−2/k

.

18
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