
On the Theory and Practice of Invariant-based
Verification of Quantum Programs

Shih-Han Hung Yuxiang Peng Xin Wang Shaopeng Zhu Xiaodi Wu
University of Maryland, College Park, USA

Abstract
We investigate program verification, a fundamental and chal-
lenging task in quantum programming, based on quantum
Hoare logic and quantum invariants. Ying et al. (POPL’17)
have developed a framework based on semidefinite programs
(SDPs) for computing quantum invariants for partial correct-
ness, which is however expensive to use due to its exponen-
tial scaling in terms of the number of qubits. In this paper,
we develop two approaches that can effectively reuse the
information generated from quantum invariants so as to
avoid repetitive costs in solving exponentially large SDPs.
Our first contribution is the formulation of themaster Hoare
triple that encodes the complete information of quantum
programs inspired by the Choi-Jamiołkowski isomorphism.
We demonstrate how to obtain the master Hoare triple by
a single use of SDP, and once it is generated, how to obtain
any other Hoare triple from the master one by a simple logic
rule, and how master Hoare triples of sub-programs can be
reused to simplify the computation of quantum invariants
of the main program. Our second contribution is the intro-
duction of approximate quantum invariants and a framework
to reuse invariants of any given quantum program to effi-
ciently analyze its nearby (e.g., noisy, erroneous) programs
without using SDPs. Finally, we demonstrate the use of our
techniques on realistic quantum programs, such as quantum
Hamiltonian simulation and Repeat-Until-Success, with a
huge numerical advantage over the previous SDP approach.

Keywords quantumprogramming languages, quantumHoare
logic, quantum invariants, invariant generation and analysis,
program verification, semidefinite programs.

1 Introduction
Program analysis and verification is a central topic in pro-
gramming languages. It is an important and challenging task
especially for quantum programming, because standard ap-
proaches to software assurance are likely to break down in
the quantum setting. For example, unit testing is infeasible
due to both the indeterminacy of quantum algorithms and
the substantial expense involved in executing or simulating
them. The rapid development of quantum computing, in par-
ticular, the introduction of several quantum programming
languages and platforms such as Quipper [16], Scaffold [3],
QWIRE [29] Microsoft’s Q# [34], IBM’s Qiskit [4], Google’s

Draft paper, November 22, 2019,

2020.

Cirq [1], Rigetti’s Forest [2], and so on, has also imposed
practical need of verification of quantum programs.

Indeed, quantum program verification has been a central
topic ever since the seminal work on semantics and language
design [15, 26, 30, 31, 33]. There have been many attempts of
developing Hoare-like logic [18] for verification of quantum
programs [5, 8, 9, 12, 21, 41, 44]. In particular, D’Hondt and
Panangaden [11] proposed the notion of quantum weakest
precondition, and Ying [41] established quantumHoare logic
for reasoning about partial and total correctness of quantum
programs for a quantum extension of the while-language.
Based these developments, an semidefinite program (SDP)
algorithm for quantum invariant generation and termina-
tion analysis of quantum programs were developed in [44]
and [23] respectively. For detailed surveys, see [14, 32, 42, 43].
The profound influence of classical Hoare logic in the

practice of software development [17] has inspired quantum
researchers to build a rich tool-box of quantum Hoare logic,
e.g., [35, 36, 45], for various quantum applications.
A strong motivation of this paper is to contribute to the

tool-box of quantum Hoare logic. Specifically, we focus on
the SDP framework proposed by Ying et al. [44] for quantum
invariant generation and partial correctness, which has a
major drawback because of the exponential scaling of SDP
size in terms of the number of involved qubits. Although this
complexity is consistent with the one of classical simulation
of quantum systems, it becomes very costly in the practical
verification of quantum programs with SDPs.

We ask the questionwhether such expensive use of SDPs can
be mitigated in practical scenarios of verification of quantum

programs. For example, we would hope to avoid repeating
the entire SDP-based derivation of Hoare triples if we only
want to change the post-condition of any already studied
program. Or, if we have already analyzed certain quantum
programs, we would hope these analyses would simplify the
analysis if we reuse these programs as subroutines.

Another common scenario is to leverage existing program
analysis to study the behavior of its "nearby" programs. For
example, the nearby programs could be a noisy/erroneous
variant of the existing one. Or, they could come from the real-
vs-ideal framework in algorithm analysis, where the analysis
of a real program is conducted by studying a nearby easy-
to-analyze ideal program and bounding their differences.

Unfortunately, the original SDP framework by Ying et al.
[44] cannot leverage these scenarios to mitigate the cost.

1

Draft paper, November 22, 2019, S. Hung, Y. Peng, X. Wang, S. Zhu & X. Wu

One still needs to solve an exponentially large SDP for every
required Hoare triple.
Contributions. We provide an affirmative answer to our
question by developing techniques that efficiently reuse anal-
ysis generated by SDPs. We will restrict our discussion to
more relevant terminating programs. We also include prelim-
inaries on quantum information (Section 2), quantum while
programs (Section 3), and quantum invariants (Section 4).
In the first scenario, we introduce ancilla variables and

Hoare triples on the extended space of both original and an-
cilla variables. Note that these ancilla variables are for anal-
ysis purpose only and won’t appear in program execution,
which distinguishes us from some existing work on ghost

variables [13, 22]. Inspired by the Choi-Jamiołkowski isomor-
phism between quantum operations and states (e.g., [38]),
we identify the master Hoare triples, to encode the entire
information of any quantum program. We show such mas-
ter Hoare triple can be computed by SDPs in a similar way
to [44]. Once it is generated, one can derive the weakest pre-
condition for any post-condition by using a newly developed
Hoare logic rule, called the Collapse rule, on the master
Hoare triple. It can also reduce the size of SDPs for the main
program when used as subroutines. (Section 5.)

We introduce approximate quantum invariants to address
the second scenario. Note that approximation was also intro-
duced to quantum Hoare logic by Zhou et al. [45] to improve
its usability by hand. However, it comes at the cost of sacri-
ficing its expressive power (predicate being projection) and
numerical infeasibility. Our notion poses a weaker require-
ment to keep its expressive power and allows its solution
by SDPs at the same time. We also develop two approaches
that convert quantum invariants of one program to approxi-
mate quantum invariants of a nearby one for any quantum
program with (a,n)-bounded loops [19]. (Section 6.)
Finally, we demonstrate our techniques numerically on

important and realistic quantum programs, such as quantum
Hamiltonian simulation [24] and Repeat-Until-Success [7,
27, 40], in the aforementioned two scenarios. In particular,
we make a comparison between our new approaches and
the original SDP framework from [44] and observe a huge
save in the actual running time. (Section 7.)
Related work. Ancilla variables have been introduced in
the analysis of Hoare logic either classically (e.g., [13, 22]) or
quantumly (e.g., [35]). The specific uses of ancilla variables
in both cases are quite different ours. The classical exam-
ples [13, 22] actively update ancillas to simplify program
reasoning or detect common program errors. The quantum
example [35] introduced the ghost variables to express the
behavior of quantum program, especially whether its vari-
ables share classical or quantum correlations, which is very
useful information in cryptographic settings.

2 Preliminaries on quantum information
This section presents basic background on quantum informa-
tion. Here, we focus on the notations majorly discussed in
this paper, and amore self-contained introduction is included
in Appendix A. A notation table is included in Appendix C.

2.1 Quantum states
For any finite integer n, an n-dimensional Hilbert spaceH is
essentially the space Cn of complex vectors. We use Dirac’s
notation, |ψ ⟩, to denote a complex vector in Cn .
Linear operators between n-dimensional Hilbert spaces

are represented by n × n matrices. The Hermitian conjugate
of operatorA is denoted byA†. OperatorA is positive simidef-

inite if for all vectors |ψ ⟩ ∈ H , ⟨ψ |A|ψ ⟩ ≥ 0 This gives rise
to the Löwner order ⊑ among operators: A ⊑ B if B − A is
positive semidefinite.
A density operator ρ is a positive semidefinite operator

ρ =
∑

i pi |ψi ⟩⟨ψi | where
∑

i pi = 1,pi > 0. A special case
ρ = |ψ ⟩⟨ψ | is conventionally denoted as |ψ ⟩. A positive semi-
definite operator ρ on H is said to be a partial density op-
erator if tr(ρ) ≤ 1. The set of partial density operators is
denoted by D(H).

2.2 Evolution of a quantum system
The evolution of a quantum system can be characterized by
a completely-positive and trace-non-increasing linear map E

from D(H) to D(H ′) for Hilbert spaces H ,H ′.
For every superoperator E : D(H) → D(H ′), there ex-

ists a set of Kraus operators {Ek }k such that E(ρ) =
∑

k EkρE
†

k
for any input ρ ∈ D(H). The Schrödinger-Heisenberg dual
of a superoperator E =

∑
k Ek ◦E

†

k , denoted by E
∗ =

∑
k E

†

k ◦

Ek , is another superoperator such that for every state ρ ∈

D(H) and any operator A, tr(AE(ρ)) = tr(E∗(A)ρ).
A quantum measurement on a system over Hilbert space

H can be described by a set of linear operators {Mm}m where∑
m M†

mMm = IH . The outcomem when measuring ρ is ob-
served with probability pm = tr(MmρM

†
m) for each m. A

major difference between classical and quantum computa-
tion is that a quantum state collapses after measurement.
The collapsion with resultm is captured by an superoperator
Em =

1
pm

Mm ◦M†
m .

3 Quantum programs
Our work builds on top of the quantum while-language
developed by Ying [41, 42]. Here we review the syntax of
this language, and present several typical programs. A more
detailed introduction to the syntax and the semantics is pro-
vided in Appendix B.

2

Invariant-based Verification of Quantum Programs Draft paper, November 22, 2019,

3.1 Syntax
The syntax of a quantum while program, also called a pro-
gram, P is defined as follows.

P ::= skip | q := |0⟩ | q := U [q] | P1; P2 |

caseM[q] =m → Pm end |

whileM[q] = 1 do P1 done. (3.1.1)

This syntax is analogue to the classical while language, but
substituting their quantum operations for their counterparts.
The denotational semantics of a quantum while program P
is a superoperator, denoted by [[P]].

3.2 Examples
We introduce several basic programs written in quantum
while language here.

Example 3.1 (Teleportation). Quantum teleportation is a

protocol that can send one qubit from the sender to the receiver

only using classical communication and shared entanglement.

More specifically, Alice communicates a state |ψ ⟩ from register

a to Bob on register b.

qt[a] ≡ b := |0⟩; c := |0⟩; c := H [c]; c,b := CNOT[c,b];
a, c := CNOT[a, c]; a := H [a];
caseM[a, c] = 00 → skip; 01 → b = X [b];

10 → b = Z [b]; 11 → b = X [b];b := Z [b];
end. (3.2.1)

Example 3.2 (Repeat-Until-Success (RUS) circuit decompo-
sition). The RUS circuit decomposition technique proposed in

Bocharov et al. [7], Paetznick and Svore [27], Wiebe and Roet-

teler [40] is an alternative approach to implement a unitary

with lower T gate complexity by invoking ancillas. The RUS

process for implementing a unitaryU on n qubits state |ψ ⟩ can
be outlined as follows.

1. Prepare anm-qubit ancilla register |0m⟩.
2. Apply a specially designed unitaryW on |0m⟩|ψ ⟩.
3. Measure the ancilla; if the outcome is 0, then we are

done; otherwise we apply a recovery process (including

applyingW †
and a reflection R := (2M0 − I) ⊗ I about

M0) and go back to step (2) again.

The algorithm can be described with the following program:

rus[q] ≡ p := |0m⟩; p,q :=W [p,q];
whileM[p] , 0m do

p,q :=W †[p,q]; p,q := R[p,q]; p,q :=W [p,q]

done (3.2.2)

provided that for every state |ψ ⟩,

W |0m⟩p |ψ ⟩q =
√
p |Ψ⟩pq +

√
1 − p |Ψ⊥⟩pq (3.2.3)

where |Ψ⟩pq := |0m⟩pU |ψ ⟩q and |Ψ⊥⟩pq is some unwanted

state orthogonal to |Ψ⟩.

3.3 Quantum Predicates and Hoare Logic
A quantum predicate is a Hermitian operator M with 0 ⊑

M ⊑ I [11]. For any predicateM and a state ρ, tr(Mρ) is the
expectation of the truth value of predicateM in state ρ.

Quantum predicates can be used to express pre- and post-
conditions of quantum programs and hence to reason about
the semantics of quantum programs in quantum Hoare logic
Ying [41, 42]. Specifically, we define

Definition 3.1 (Partial and Total Correctness [41, 42]).
1. The Hoare triple {A}S{B} is true in the sense of total

correctness, written |=tot {A}S{B}, if for all ρ ∈ D(HS),

tr(Aρ) ≤ tr(B⟦S⟧(ρ)). (3.3.1)

2. The Hoare triple {A}S{B} is true in the sense of par-
tial correctness, written |=par {A}S{B}, if for all ρ ∈

D(HS),

tr(Aρ) ≤ tr(B⟦S⟧(ρ)) + [tr(ρ) − tr(⟦S⟧(ρ))]. (3.3.2)

This total correctness inequality (3.3.1) can be seen as
the quantum version of the following statement: if state ρ
satisfies predicate A of degree d = tr(Aρ), then after apply-
ing the program S the resulting state satisfies predicate B of
degree at least d . The partial correctness inequality (3.3.2)
also takes the possibility of divergence tr(ρ)− tr(⟦S⟧(ρ)) into
consideration. We are concerned with the partial correctness
throughout the paper and all of our example programs termi-
nates almost surely. In this case, partial correctness implies
total correctness.

Definition 3.2 (Weakest (Liberal) Preconditions [41]). For
quantum program S and predicate Q , the weakest precondi-
tion of Q with respect to S , denoted by wp.S .Q , satisfies the
following properties.

1. It is true that |=tot {wp.S .Q}S{Q}.

2. For every quantum predicateR satisfying |=tot {R}S{Q},

it holds that R ⊑ wp.S .Q .

Similarly, for quantum program S and predicateQ , the weakest

liberal precondition ofQ with respect to S , denoted bywlp.S .Q ,

satisfies the following properties.

1. It is true that |=par {wlp.S .Q}S{Q}.

2. For every quantum predicateR satisfying |=par {R}S{Q},

it holds that R ⊑ wlp.S .Q .

Proposition 3.3 (Ying [42]). For any program S and predi-

cate P , we have the following corresponding between the weak-

est (liberal) precondition and the denotational semantics [[S]]:

• (Weakest precondition)wp.S .P = [[S]]∗(P);
• (Weakest liberal precondition)wlp.S .P = [[S]]∗(P) + I −
[[S]]∗(I).

4 Invariants of quantum programs
We introduce the notion of superoperator-valued transition
system as a framework to model the control flow of quantum

3

Draft paper, November 22, 2019, S. Hung, Y. Peng, X. Wang, S. Zhu & X. Wu

programs. Building on top of that, we will introduce the
additive invariant and additively inductive assertion map
from Ying et al. [44] and show how to generate the additive
invariant using semidefinite programs (SDPs).

4.1 Superoperator-Valued transition systems (SVTS)
and Control Flow Graphs

We adopt the definition of superoperator-valued transition
systems from [44] with slight notation changes to better
serve our use.

Definition 4.1 (Ying et al. [44]). A superoperator-valued

transition system (SVTS) is a 5-tuple S = ⟨H ,L,T , lin , lout ⟩
where

1. H is the state space, i.e., a Hilbert space.

2. L is a finite set of locations.

3. lin , lout ∈ L are the initial and terminal locations.

4. T is the set of transitions: each transition τ ∈ T is a

3-tuple τ = ⟨l , l ′, E⟩, also denoted by τ = l
E
−→ l ′, where

l , l ′ ∈ L, and E is a superoperator onH . It is required

that for each location l ∈ L,∑
{|E : l

E
−→ l ′ ∈ T |} � I, (4.1.1)

The symbol in (4.1.1) stands for a multi-set.

As the construction of an SVTS for a quantum program is
not the focus of this paper, we omit the formal rules and refer
the readers to [44]. For example, the SVTS of qt and rus
are given in Figure 1. The figures should be self-explantary
given their simple structure.
A path (in SVTS SP) π = l1

E1
→ l2

E2
→ ...

En−1
→ ln is a

sequence of vertices such that each pair of adjacent vertices
are connected with a transition. We always assume that for
each location l ∈ L, the transition relation is countably
branching, i.e., for each pair of locations l , l ′, the number
of paths from l to l ′ is finite or countably infinite. A set Π
of paths in SVTS is said to be prime if for each π ∈ Π, its
proper initial segments l1

E1
→ ...

Ek−1
→ lk < Π for all k < n.

For any path π in the transition graph, we write l1
π
⇒ ln and

denote by Eπ the composition of the super-operators along
the path, i.e. Eπ = En−1 ◦ ... ◦ E2 ◦ E1.

4.2 Additive Invariants, Inductive Assertion Maps
and Semi-definite Programs

Inspired by classical invariants of programs and continuous
valued logics, Ying et al. [44] introduce additive and multi-
plicative invariants for quantum programs. We will focus on
the additive invariant because it allows efficient generation
by semidefinite programs [44].

Definition 4.2 (Additive Invariants). LetSP = ⟨H ,L, lin , lout ,T⟩

be an SVTS with a precondition Θ. An additive invariant at

location l ∈ L is a quantum predicateOl overH such that for

any density operator ρ, and for any prime set Π of paths from

lin to l , we have:

tr(Θρ) ≤ 1 − tr (EΠ(ρ)) + tr (OlEΠ(ρ)) , (4.2.1)

where EΠ =
∑
{|Eπ : π ∈ Π |} .

Moreover, additive invariant at lout can be used to prove
partial correctness of the program P . Specifically,

Lemma 4.3 (Prime paths and semantics of quantum pro-
grams). For quantum program S , let S be the SVTS defined

by S with initial condition Θ. Let Π be the set of paths from lSin
to lSout . Then EΠ = [[S]].

Proof. Deferred to Appendix D.1. □

Theorem 4.4 (Ying et al. [44]). Let P be a quantum program

and SP the SVTS defined by P with initial condition Θ. If O is

an additive invariant at lout in SP , then |=par {Θ}P{O}.

Proof. Deferred to Appendix D.2. □

We provide a complete proof of Theorem 4.4 in Appen-
dix D.2. The complete proof will be helpful and make our
technique self-contained in proving an approximate version
of Theorem 4.4 in Section 6.

It is, however, nontrivial to prove that any quantum pred-
icate O is an invariant at location l by definition, as one
must verify (4.2.1) holds for every prime path from lin to l .
In classical programming, induction assertions provide an
effective alternative, whose corresponding quantum notion
was introduced by Ying et al. [44] as follows.

A cut-set of SP is a subset C ⊆ L of locations such that
every cyclic path in SP passes through some location in C .
Every location l ∈ C is called a cut-point. A basic path π
between two cut-points l and l ′ is a path that does not pass
through any cut-point other than the endpoints. We note
that for cut-set C and l ∈ L, C ∪ {l} is also a cut-set.

An additively inductive assertion map is a mapping η from
each cut-point l ∈ C to a quantum predicate η(l) inH [44]
such that

tr(η(l)ρ) ≤ 1 − tr
(
EΩl (ρ)

)
+

∑
π ∈Ωl

tr (η(lπ)Eπ (ρ)) (4.2.2)

where the set Ωl contains basic paths from l to other cut-
points. There are two nice features of the inductive assertion
map η shown in Ying et al. [44]: (1) for every cut-point l ∈ C ,
η(l) is an additive invariant at l ; (2) the definition of η allows
a semi-definite program (SDP) that generate η(l) for every
cut-point l ∈ C .
Let us setup the SDP for η as follows. Choose a cut-set

C = {l0 = lin , l1, ..., lm−1, lm = lout } and let Oi = η(li) for
i = 0, ...,m as the invariants to generate. Let E∗

i j =
∑
π {|E

∗
π :

li
π
⇒ lj |} for i, j = 0, 1, ...,m and the summation is over all

basic paths π ; in particular, if there is no basic path from li to
lj , then E∗

i j is the zero super-operator. Consider the following
generic SDP.

4

Invariant-based Verification of Quantum Programs Draft paper, November 22, 2019,

Invariant-SDP 4.1. For precondition Θ, findO0, · · · ,Om s.t.

0 ⊑
∑
j

E∗
0j (O j) − Θ, (4.2.3)

0 ⊑
∑
j,i

E∗
i j (O j) + (E

∗
ii − I)(Oi) (i = 0, 1, ...,m), (4.2.4)

0 ⊑ Oi ⊑ I (i = 0, 1, ...,m). (4.2.5)

Note that Oi = I is a trivial solution. Any non-trivial solu-
tionOi (i = 0, · · · ,m) are non-trivial invariants for the given
precondition Θ, which will then imply |=par {Θ}P{Om}.

Given a postcondition O = Om , the weakest precondition
can be found by maximizing the trace of Θ. This is because
for any precondition Θ, it holds that Θ ⊑ wp.P .O . Since tr(·)
respects Löwner ordering, we have tr(Θ) ≤ tr(wp.P .O). Sim-
ilarly, given a precondition Θ, the strongest postcondition
can be found by minimizing the trace of O .

l0

l1

l2

rst

W

M1

M0

I

W †

R

W
l0 l1

U

M01

M11

M10

M00

X

I

Z

XZ

I

Figure 1. SVTS of rus (left) and qt (right). The locations of
the cut set are labelled with double-lined circles. The basic
paths are highlighted with colors. Each colored set of paths
can be converted to a positive semidefinite constraint in
(4.2.6).

Example 4.1 (Invariants for RUS circuit). Continuing from
Example 3.2, the SVTS of an RUS program is given in Figure 1.

From the SVTS, the cut-set we choose is {l0, l1, l2}. Given a

postcondition O = O2, we set the SDP problem as follows.

maximize tr(Θ)
subject to Θ ⊑ O0

O0 ⊑ rst
∗(W †O1W)

O1 ⊑ E†0O2E0 + E
†
1O1E1 ,

O2 ⊑ O2

0 ⊑ Θ,O0,O1,O2 ⊑ I . (4.2.6)

where η(li) = Oi , rst = [[p := |0m⟩]], E0 = M0, E1 = (VM1)

andV :=WRW †
. It can be shown that |=tot {Θ}rus{O} Note

that the constraint O2 ⊑ O2 is trivial and can be removed

from the SDP problem. Furthermore, the solution must satisfy

Θ = O0.

We analyze the SDP problem analytically and numerically.

For analytical solution of (4.2.6), we show that for any state

|ψ ⟩, |=tot {Im ⊗ |ψ ⟩⟨ψ |}rus{|0,Uψ ⟩⟨0,Uψ |} in Appendix D.3.

We will discuss our numerical analysis and the performance

in Section 7.

5 Quantum Hoare logic and invariants
with ancillas

While quantum Hoare logic provides a framework to rea-
son about quantum programs and the inductive assertion
map enables numerical calculation by solving an SDP, a cen-
tral task in program analysis is to verify the semantics of a
program describes a desirable superoperator (instead of gen-
erating a particular quantum state). Thus a natural question
to ask is whether it is possible to guarantee the correctness
of semantics.
We answer the question in the affirmative by giving a

framework, in which solving a master Hoare triple in an
extended space via an SDP solver suffices to show the cor-
rectness of semantics.

In Section 5.1, we will layout the setup of extended quan-
tum Hoare triples with ancillas. In Section 5.2, we will show
how to generate extended Hoare triples and invariants using
semidefinite programs and how it leads to a numerical so-
lution to calculate the weakest (liberal) precondition of any
program. Finally, in Section 5.3, we will demonstrate how to
use extended Hoare triples of sub-programs for the invariant
generation of the main program.

5.1 Quantum Hoare logic in the extended space
We extend the set of quantum variables Var for any quantum
while program S with another isomorphic set of ancilla
variables aVar , i.e., for each variable in Var , there is an ancilla
register in aVar of the same size. All the rest of the definition
of quantum while programs remain unchanged. In other
words, program S still operates on the original Var and the
introduction of aVar is only for analysis purpose.

LetH denote the Hilbert space for Var and A the Hilbert
space for aVar and H � A. The (original) quantum predi-
cates, denoted by uppercase letters P ,Q, . . . are on H . From
now on, we also consider extended quantum predicates that
are predicates on H ⊗ A. To distinguish from original ones,
we use calligraphic uppercase letters like P,Q, . . . to denote
extended predicates.
Hence one can define the extended Hoare triple by ex-

tended predicates as |=par, tot {P}S{Q}, where we overload
the notation S for a new program that acts on H exactly
as the original program S and do nothing on A, i.e., with
denotational semantics [[S]] ⊗ IA . One can trivially extend
any original Hoare triple to an extended one by

|=par, tot {P}S{Q} ⇒|=par, tot {P ⊗ IA}S{Q ⊗ IA}, (5.1.1)

simple because tr((P ⊗ IA)ρ) = tr(P trA(ρ)) for any ρ. How-
ever, a more interesting case is to consider extended pred-
icates that are entangled between the space H and A. In

5

Draft paper, November 22, 2019, S. Hung, Y. Peng, X. Wang, S. Zhu & X. Wu

particular, we will consider the extended predicate that is
maximally entangled between H and A in the following.

5.1.1 The Choi-Jamiołkowski isomorphism
The maximally entangled state |Φ⟩ over two isomorphic
spaces (such as H and A) is |Φ⟩ := 1√

d

∑d
i=1 |i⟩H ⊗ |i⟩A ,

where d is the dimension and {|i⟩H}di=1 is any orthonormal
basis of H (and {|i⟩A}di=1 is its isometric one in A). Note
that |Φ⟩ remains the same under different choices of the
orthonormal basis.
One interesting use of the maximally entangled state is

to build an isomorphism between states and superoperators.
The precise correspondence is given by theChoi-Jamiołkowski

matrix.

Definition 5.1. Given any superoperator E : D(H) →

D(H ′), the Choi-Jamiołkowski matrix J (E) is

J (E) = dHJ(E), and J (E) = E ⊗ IA(|Φ⟩⟨Φ|), (5.1.2)

where dH is the dimenson of H and J(E) is called the nor-
malized Choi-Jamiołkowski matrix.

The map J from a quantum superoperator E to its Choi-
Jamiołkowski matrix J (E) is an isomorphism [39]. The map
J is also called the Choi-Jamiołkowski isomorphism.

5.1.2 The extended Hoare triples
Since Choi-Jamiołkowski matrix contains the full informa-
tion of any superoperator and it can be generated by ap-
plying E ⊗ IA on the maximally entangled state |Φ⟩, it is
natural to choose Φ ≡ |Φ⟩⟨Φ| as the postcondition, and we
can derive the extended Hoare triple: |=tot {wp.S .Φ}S{Φ}.
By Proposition 3.3, we immediately have

wp.S .Φ = ([[S]]∗ ⊗ IA)(Φ) = J([[S]]∗). (5.1.3)

Definition 5.2 (Master Hoare Triple). For any program S ,
we call the following extended Hoare triple (in total correctness)

the master Hoare triple:

|=tot {J([[S]]∗)}S{Φ}. (5.1.4)

Note that for terminating S , the partial correctness |=par
{J([[S]]∗)}S{Φ} will imply the master Hoare triple (5.1.4).

Example 5.1 (The master Hoare triple of qt). The denota-
tional semantics of program qt is an identity superoperator

I : ρ 7→ ρ. The dual superoperator of I is I, and thus the

master Hoare triple of qt is {Φ}qt{Φ}.

5.1.3 The collapse rule
We derive a new rule for our quantum Hoare logic (called
the Collapse rule) for total correctness to connect extended
Hoare triples with normal ones. To the end, let us first define
the collapse operator that maps a predicate on the extended
space to the original space.

Definition 5.3 (Collapse Operator). Given any predicate P

on the extended space H ⊗ A and any predicate R on the

ancilla space A, the collapse operator CR (P) is given by

CR (P) ≡ dHtrA((IH ⊗
√
RT)P(IH ⊗

√
RT)). (5.1.5)

We will later see how the operator is used to deduce a
Hoare triple in the program space.
We can also establish the following precise properties of

the collapse operator.

Lemma 5.4 (Properties of CR (·)). For any predicate R on A,

we have

1. if P ⊑ Q, then CR (P) ⊑ CR (Q), i.e., CR (·) respects

Löwner ordering;

2. CR (Φ) = R for the maximally entangled predicate Φ.
3. CR (P) = dHtrA((IH ⊗ R)P) = dHtrA(P(IH ⊗ R)).

Proof. Deferred to Appendix D.4. □

Now we are ready to describe our Collapse rule for total
correctness.

{P}S{Q}, 0 ⊑ R,CR (P),CR (Q) ⊑ I

{CR (P)}S{CR (Q)}
(Collapse)

. (5.1.6)

Theorem 5.5. The rule Collapse is sound for total correct-
ness, i.e., for every quantum predicate R, |=tot {P}S{Q} im-

plies |=tot {CR (P)}S{CR (Q)}.

Proof. First we recall the definition of |=tot {P}S{Q}, i.e., for
any state σ ∈ D(H ⊗ A), tr(Pσ) ≤ tr(Q([[S]] ⊗ IA)σ). For
every state ρ ∈ D(H), considering σ = ρ ⊗ R

tr(R) , we have

tr
(
P

(
ρ ⊗

R

tr(R)

))
≤ tr

(
Q([[S]]ρ) ⊗

R

tr(R)

)
. (5.1.7)

Multiplying both sides by dHtr(R), we have
tr(dHP(IH ⊗ R)ρ ⊗ IA)

≤ tr(dQ(IH ⊗ R)[[S]](ρ) ⊗ IA). (5.1.8)

By standard calculation, and by Lemma 5.4 (item (3)), we
have tr(CR (P)ρ) ≤ tr(CR (Q)[[S]](ρ)), for any ρ ∈ D(H).
This implies |=tot {CR (P)}S{CR (Q)} and we conclude the
proof. □

Let us see how to apply Collapse to the master extended
Hoare triple in (5.1.4). We will see that (1) it can be used
to generate any postcondition Q ; (2) if one starts with the
weakest precondition in the extended space, then Collapse
derives the weakest precondition in the original space.

Lemma 5.6. Given |=tot {J([[S]]∗)}S{Φ}, for any postcondi-

tion Q , it holds that |=tot {CQ (J([[S]]∗))}S{Q}. Moreover, the

weakest precondition of Q is given by CQ (J([[S]]∗)).

Proof. Deferred to Appendix D.5. □

Note that all of our examples and the interesting programs
in consideration terminate almost surely. Hence partial cor-
rectness and total correctness is equivalent; the termination
guarantee is implicitly used throughout the paper.

6

Invariant-based Verification of Quantum Programs Draft paper, November 22, 2019,

Example 5.2 (Teleportation revisited). In Example 5.1, we

have shown the master Hoare triple of qt is {Φ}qt{Φ}. For
any postcondition |ψ ⟩⟨ψ |, we can choose R = |ψ ⟩⟨ψ | and apply
Collapse, then |=tot {|ψ ⟩⟨ψ |}QT {|ψ ⟩⟨ψ |}, where we make

use of C |ψ ⟩⟨ψ |(Φ) = |ψ ⟩⟨ψ | from Lemma 5.4 (item(2)).

Remark 5.1. Throughout the paper, we will consider master

Hoare triples (|=tot {J([[S]]∗)}S{Φ}) with the weakest precon-

dition J([[S]]∗). However, it might be expensive and unneces-

sary sometime to use the weakest precondition and it is easier to

use extended precondition P ⊑ J([[S]]∗). It is straightforward
that |=tot {P}S{Φ}. We can still derive Hoare triples with any

postcondition by applying Collapse, similarly to Lemma 5.6.

It is, however, no longer guaranteed the derived precondition is

the weakest.

Remark 5.2. From Lemma 5.6, we conclude that the master

Hoare triple is more expressive than a universally quantified

statement. This is because {J([[S]]∗)}S{Φ} implies

∀Q, {CQ (J([[S]]∗))}S{Q}. (5.1.9)

Since CQ (J([[S]]∗)) = wp.S .Q , any Hoare triple can be derived

by weakening the precondition.

5.2 Generation of extended invariants and Hoare
triples

In this section, we study how to generate master Hoare
triples, which seems hard by definition in (5.1.4) since one
needs to compute [[S]]∗. We demonstrate here that it is pos-
sible to use quantum invariants and their SDP generation
(Invariant-SDP 4.1) for terminating programs. We describe
how to use the invariant generation framework introduced
in Section 4 to compute the master Hoare triple.

To that end, first observe that master (or extended) Hoare
triples are just normal Hoare triples on the extended space
where the program trivially acts on the ancilla space. Thus,
the invariant generation and the derived partial correctness
from [44] trivially extend to our case when explicitly includ-
ing the ancilla space in the setup. For terminating programs,
the partial correctness implies total correctness.

Example 5.3 (Analysis of RUS circuit synthesis in the ex-
tended space). To generate the invariant in the extended space,

similarly to (4.2.6), we numerically solve the following SDP

maximize tr(Q)

subject to Q ⊑ O0

O0 ⊑ rst∗((W ⊗ I)†O1(W ⊗ I))

O1 ⊑ Ê0
†
O2Ê0 + Ê1

†
O1Ê1

O2 ⊑ O2

0 ⊑ Q,O0,O1,O2 ⊑ I (5.2.1)

where Oi = η(li) is the additively inductive assertion map

in the extended space H ⊗ A acting on the cut-points, Ê0 =

M0 ⊗ IA , and Ê1 = (VM1) ⊗ IA .

To yield a Hoare triple in space H with postcondition O2,

we first set O2 = ΦHA , i.e., the maximally entangled state in

space H ⊗ A. Using an SDP solver to obtain the solution Q,

we have |=tot {Q}rus{O2 = ΦHA}. Applying Collapse in
(5.1.6), we obtain the precondition Θ = CO2 (ΦHA) in spaceH .

We will compare the performance of (i) solving (4.2.6), and

(ii) solving (5.2.1) followed by applying Collapse in (5.1.6) in

Section 7.

5.3 Using extended Hoare triples for invariant
generation

Imagine that one has already analyzed the invariant gen-
eration for some program S0 and consider another quan-
tum program S that uses S0 as a subroutine, which is quite
common in (quantum) algorithm design. However, in the
framework introduced in Section 4, one must consider the
additively inductive assertion map of S0, and include the SDP
constraints associated with S0 for the invariant generation
of S . This is because the invariant generation for S0 itself
(without extending the space) may not correspond to the
input-output behavior of S0 when called as a subroutine in
S .

We now take a closer look at the precise technical difficulty
when using Invariant-SDP 4.1 for S . Let S be the SVTS of the
main program S that is inductively generated fromS0, which
is the SVTS of S0 and other parts of S . We will follow the
same setup of Invariant-SDP 4.1 with one exception: we will
choose l0

in and l0
out locations of S0 as cut-points and no other

locations in S0 will be cut-points. This is intuitive as one
wants to treat S0 as a whole and does not want to go inside
S0. Moreover, we can further require all paths from any cut-
point other than l0

in and l0
out to l0

out will visit l0
in first and

all paths from l0
in will remain in S0 until reaching l0

out . This
can be assumed without loss of generality by adding dummy
locations with I transitions in S for terminating S0. As a
result, all basic paths that go inside S0 will have l0

in and l0
out

as endpoints. LetO0
in andO

0
out denote the quantum invariant

at the l0
in and l0

out locations of S0. Thus, the entire effect of S0
in Invariant-SDP 4.1 will be represented by one semidefinite
constraint in the form of (4.2.5) as 0 ⊑ [[S0]]

∗(O0
out)−O

0
in .Any

normal Hoare triple of S0 can only establish the connection
for a specific pair ofO0

in andO
0
out , rather than for an arbitrary

pair of O0
in and O0

out as variables.
The technical difficulty, however, can be well addressed by

using the master Hoare triple of S0. Intuitively, this is because
the combination of themaster Hoare triple andCollapse can
derive any such pair as demonstrated in Lemma 5.6. Precisely,
given the master Hoare triple of S0, |=tot {J([[S0]]

∗)}S0{Φ}.
Using Lemma 5.6 and Lemma 5.4 (item(3)), any specific pair

7

Draft paper, November 22, 2019, S. Hung, Y. Peng, X. Wang, S. Zhu & X. Wu

ofO0
in andO

0
out can be connected byO0

in ⊑ C(O0
out)

(J([[S0]]
∗)),

which is a semidefinite constraint in O0
in and O0

out .
As a result, we demonstrate a general approach to leverage

the master Hoare triple (in total correctness) of any termi-
nating sub-program S0 to simplify the invariant generation
SDP of the main program S (for partial correctness).

Example 5.4 (Consecutive unitary applications implemented
with RUS). In this example, we consider two consecutive ap-

plications of unitaries implemented with RUS programs using

unitariesW1 andW2 satisfying

Wi |0m⟩|ψ ⟩ =
√
pi |0m⟩Ui |ψ ⟩ +

√
1 − pi |τi ⟩|ψ ⟩ (5.3.1)

for i ∈ {1, 2}. The quantum program S ≡ rus1; rus2 where

rusi is the RUS program associated withWi . The SVTS of S is

illustrated in Figure 2.

Without the extended space, for a given postcondition O =

O (2)
2 , the corresponding SDP is

maximize tr(Θ)

subject to Θ ⊑ O (1)
0

O (1)
0 ⊑ rst(1)∗(W (1)†O (1)

1 W (1))

O (1)
1 ⊑ E(1)0 O (1)

2 E(1)0 + E
(1)
1 O (1)

1 E(1)1

O (1)
2 ⊑ rst(2)∗(W (2)†O (2)

1 W (2))

O (2)
1 ⊑ E(2)0 O (2)

2 E(2)0 + E
(2)
1 O (2)

1 E(2)1

O (2)
2 ⊑ O (2)

2

0 ⊑ Θ,O (1)
0 ,O

(1)
1 ,O

(1)
2 ,O

(2)
1 ,O

(2)
2 ⊑ I (5.3.2)

where η(l (k)i) = O (k)
i , rst(k) = [[p := |0m⟩]], E(k)0 = M (k)

0 ,

E(k)1 = (V (k)M (k)
1) and V (k) :=W (k)R(k)(W (k))† for rusk and

k ∈ {1, 2}. The SDP in (5.3.2) can be obtained by setting

O (1)
2 = Θ(2)

and combine the two sets constraints in Exam-

ple 3.2. For each postcondition, we run an SDP solver to obtain

a precondition.

Applying our method, in Example 5.3, we have shown that

|=tot {Q
(i)}rusi {O(i)}. Having the master Hoare triples, with

the postcondition O = O (2)
, we obtain the precondition by

applying Collapse, which leads to the following SDP

maximize tr(Θ(1))

subject to Θ(2) ⊑ CO (Q
(2))

Θ(1) ⊑ CΘ(2) (Q
(1)). (5.3.3)

We will compare the performance of (i) using (5.3.2), and

(ii) solving (5.2.1) for two subprograms rus1 and rus2 first

following the application of (5.3.3) in Section 7.

l (1)0

l (1)1

l (1)2 l (2)2

l (2)1

rst
(1)

W (1)

M (1)
1

M (1)
0

I

W (1)†
1

R(1)

W (1)

rst
(2)

W (2)

M (2)
1

M (2)
0

W (2)†
2

R(2)

W (2)

I

Figure 2. The SVTS of rus1; rus2. The SVTS is generated
by connecting the graphs (see Figure 1) for each compo-
nent. The cut-points are labelled with double-lined circles.
Each colored path corresponds to a positive semidefinite
constraint; see (5.3.2).

6 Correctness and invariants with
approximations

The motivation of our discussion lies in the real world con-
straints in near-term quantum computers, where the opera-
tions are imprecise and noisy. To quantify the error due to
noisy and imprecise operations in quantum programs, we
propose the definition of ϵ-partial correctness, which can be
seen as a relaxation of Definition 3.1. Our main contribution
in this section is a bridge from the invariants of a program
to approximate invariants of its nearby variations.

In Section 6.1, we present the setup of program variations,
and the approximate correctness of the known Hoare triples
applying on the variations. In Section 6.2, we show two ap-
proaches to generate the approximate correctness of the
variations with loop boundedness. In Section 6.3, we apply
our methods to the Trotter’s algorithm for the Hamilton-
ian simulation problem to formally verify its approximate
correctness.

6.1 Transferring Hoare triples to variations
In this subsection, we depict the overall picture of our ap-
proaches: applying the Hoare triples of one program to its
nearby variations. To achieve it, we first define the mean-
ing of variations as program isomorphisms, followed by the
concepts of approximate correctness.

6.1.1 Bridging programs via isomorphism
Definition 6.1. For quantum programs P1, P2, let their SVTS’s

be S1 = ⟨H1,L1,T1, l
S1
in , l

S1
out ⟩,S2 = ⟨H2,L2,T2, l

S2
in , l

S2
out ⟩ re-

spectively. We say that S1 and S2 are isomorphic, if H1 =

H2,L1 = L2, l
S1
in = lS2

in , l
S1
out = lS2

out , and there is a bijec-

tion µ : T1 → T2, s.t. for all τ = ⟨l1, l2, Eτ ⟩ ∈ T1, µ(τ) =
⟨l1, l2, Eµ(τ)⟩ ∈ T2. We say that the program P1 and P2 are

isomorphic, if S1 and S2 are isomorphic.

8

Invariant-based Verification of Quantum Programs Draft paper, November 22, 2019,

Intuitively, S1 and S2 are isomorphic when they share
the same graphical structure, with only values (superop-
erators) of the transitions differing. We can determine the
program isomorphism in polynomial time by constructing
and traversing the SVTS’s from the initial locations.
As we will see, the isomorphic relation of programs is

useful since it allows us to reason about a quantum pro-
gram when the information about the ideal program is well-
understood or easier to analyze. To explain the idea, we
consider the following example.

Example 6.1. We consider two isomorphic quantum 3-qubit

RUS programs rus3 and rus′3. We construct EU by

WU = (H ⊗ H ⊗ Z)CCX (U ⊗ I ⊗ S)CCX (H ⊗ H ⊗ I),

EU =
∑

x ∈{0,1}2

WU (|00⟩⟨x | ⊗ I) ◦ (|x⟩⟨00| ⊗ I)W †

U . (6.1.1)

Here CCX [p,q] represents the Toffoli gate. Then rus3 is

rus3 ≡ p,q := EI [p,q];
whileM[p] , 00 do p,q := EI [p,q] done;q := Z [q].

The program rus3 realizes the same funcionality as the RUS

program introduced in Example 5.3.

We introduce its variation rus′3 by perturbating EI in the

rus3 to N = 0.9EI + 0.05EX + 0.05EZ :

rus′3 ≡ p,q := N[p,q];
whileM[p] , 00 do p,q := N[p,q] done;q := Z [q].

The difference between rus′3 and rus3 is the noise added on

the first qubit between the two Toffoli gates. Their SVTS’s are

shown in Figure 3. Apparently rus′3 and rus3 are isomorphic.

lin

l0

lout

EI , r = 1

M0, r = 1.6

EI , r = 1.6
M1, r = 1

I ⊗ Z , r = 1

I
lin

l0

lout

N , r ′ = 1

M0, r
′ = 1.755

N , r ′ = 1.755
M1, r

′ = 1

I ⊗ Z , r ′ = 1

I

Figure 3. The SVTS and repetition function for rus3 and
rus′3.

6.1.2 ϵ-partial correctness and ϵ-approximate
additive invariants

The total correctness and partial correctness allow no toler-
ance in their definitions, i.e., the invariants generated from
an ideal program no longer applies when the program is
noisy. We start to define the semantics for a Hoare triple
parameterized with error threshold ϵ .

Definition 6.2 (ϵ-partial correctness). For ϵ ∈ [0, 1], a cor-
rectness formula {P}S{Q} is true in the sense of ϵ-partial
correctness, denoted by |=par,ϵ {P}S{Q}, if for every state ρ,
it holds that

tr(Pρ) ≤ tr(Q[[S]]ρ) + (1 + ϵ)trρ − tr([[S]]ρ). (6.1.2)

Definition 6.2 can be viewed as a relaxation since the (ideal)
Hoare triple is the special case ϵ = 0. To see why Defini-
tion 6.2 gives a reasonable definition when reasoning about
approximate programs, we give some intuition here. Suppose
that we want to verify a quantum program S which on in-
put state |ψ ⟩, produces a state

√
1 − ϵ |ϕ⟩ +

√
ϵ |Ψ⊥⟩, i.e., with

probability (1 − ϵ) it produces the desirable output state |ϕ⟩
and with probability ϵ it produces some unknown and unde-
sirable state |Ψ⊥⟩ orthogonal to |ϕ⟩. In this case, for program
S which terminates almost surely, |=par,0 {|ψ ⟩⟨ψ |}S{|ϕ⟩⟨ϕ |}
is not valid with the state ρ = |ψ ⟩⟨ψ | since tr(Q[[S]]ρ) = 1−ϵ
where Q = |ϕ⟩⟨ϕ |. On the other hand, we know that |=par,ϵ
{|ψ ⟩⟨ψ |}S{|ϕ⟩⟨ϕ |} is true.
With ϵ-partial correctness, we define ϵ-approximate addi-

tive invariants. Similarly to [44], the ϵ-approximate additive
invariant can be utilized to prove the ϵ-partial correctness
of a quantum program.

Definition 6.3 (ϵ-approximate additive invariants). LetS =

⟨H ,L,T , lin , lout ⟩ be an SVTS, and Θ be the initial predicate

at lin . An ϵ-approximate additive invariant Ol at location

l ∈ L is a quantum predicate in Hilbert spaceH such that for

any state ρ ∈ D(H) and any prime set of paths Π from l0 to l ,
we have

tr(Θρ) ≤ tr(Ol [[S]]EΠ(ρ)) + (1 + ϵ)tr(ρ) − tr([[S]]ρ).

Theorem 6.4. For quantum program S , let S be the SVTS

defined by S with initial condition Θ. IfO is an ϵ-approximate

additive invariant at lSout in S, then |=par,ϵ {Θ}S{O}.

Proof. By Definition 6.3 and Definition 6.2, it suffices to show
that EΠ = [[S]]. By Lemma 4.3, we conclude the proof. □

6.2 Generation of approximate correctness
In this section, we present two efficient methods to employ
the information of a program to generate the ϵ-partial cor-
rectness for its variations.

1. Inductive offset tracking requires the inductive asser-
tion map and the description of their transitions.

2. Superoperator distance bounds does not require the
information of the inductive assertion map; instead, it
requires only the invariant at the desirable locations.

In most cases, the second method generates looser bounds
than the first method.

In the following analysis, our programs of interest will be
those which terminates. For each while loop in the program,
we invoke the definition of boundedness [19] and require
every loop in the program to be bounded.

Definition 6.5 ([19]). A loop whileM[q] = 1 do P1 done
is said to be (a,n)-bounded for a ∈ [0, 1) and n ∈ Z+ if

(E∗)n(M†
1M1) ⊑ aM†

1M1, where E(ρ) = [[P1]](M1ρM
†
1) and

E∗
is the dual superoperator of E.

9

Draft paper, November 22, 2019, S. Hung, Y. Peng, X. Wang, S. Zhu & X. Wu

6.2.1 Inductive offset tracking
Following the inductive assertion map introduced in [44]
and their SDP constraints, we consider the error of each term
induced on each SDP constraint. In this section, without loss
of generality, we select the cut-set of the inductive assertion
map to be all locations in the SVTS. This simplifies our state-
ments, while the same idea of proofs can be applied on any
selected cut-set.
It is helpful to define some notations before we state our

results. We use the prime sign to indicate all the concepts
in the variation program corresponding to the ones in the
original program. For two isomorphic programs P , P ′, let
S = ⟨H ,L,T , lSin , l

S
out ⟩ and S′ = ⟨H ,L,T ′, lSin , l

S
out ⟩ be

their SVTS’s, and µ : T → T ′ be the isomorphism. Because
the graphical structures of S and S′ are identical, by µ we
can relate the superoperators composed by transitions, paths,
and prime path sets in S to those in S′. Because the graph-
ical structures of S and S′ are identical, we can map the
superoperators Formally, we denote the value of a transition
µ(τ) ∈ T ′ by E ′

τ = Eµ(τ). For a path π in S, a prime set Π
of paths in S, let E ′

π be the superoperator in S′ along the
shared path π , and E ′

Π =
∑
π ∈Π{|E

′
π |}.

For a program P with every while loop (a,n)-bounded,
and its SVTS S = ⟨H ,L,T , lin , lout ⟩, we introduce its rep-
etition function r : T → R≥0. The repetition function r
depicts the worst-case expected number of repetitions of a
transition in the execution of P .

Definition 6.6. For program P with every while loop (a,n)-
bounded, and its SVTS S, its repetition function r is defined
inductively with the generation of S.

• P ≡ skip, q̄ := U [q̄],q := |0⟩: r ≡ 1.
• P ≡ P1; P2: let T

P1 ,T P2
be the set of transitions of the

SVTSs of P1, P2 respectively. Suppose that r1 : T P1 →

R≥0, r2 : T P2 → R≥0 are the repetition functions for

P1, P2. Set

r (τ) =

{
r1(τ), τ ∈ T P1

r2(τ), τ ∈ T P2 .
(6.2.1)

For the transition τ = ⟨lP1
out , l

P2
in , I ⟩, set r (τ) = 1.

• P ≡ case (M[q] =m → Pm) end: let T Pm
be the set of

transitions of the SVTS for Pm respectively. Suppose that

rm : T Pm → R≥0 are the transition-bounding functions

for Pm . Set

r (τ) =

{
rm(τ), ∃m,τ ∈ T Pm ,

1, else.
(6.2.2)

• P ≡ whileM[q̄] = 1 do Q done: We assume this loop

is (a,n)-bounded. Let τ0 be the transition with value

M0 starting from lin , and τ1 be the one with value M1.

Denote the transition set of the SVTS Q by TQ
. With

rQ : TQ → R≥0 the repetition function of Q , we set

r (τ) =

n

1−a rQ (τ), τ ∈ TQ ,

1, τ = τ0,
n

1−a , τ = τ1.

(6.2.3)

We can verify that the repetition functions arewell-defined
with the renamings in the construction of SVTS.

Definition 6.7. For a program P , its additive assertion map η,
its isomorphic program P ′

, we define the offset δτ of transition

τ in T as :

δτ = max
{
0, λmax

(
(E∗

τ − E ′∗
τ)(I − η(lτ))

)}
, (6.2.4)

where lτ is the end-point of τ , and λmax(M) is the largest eigen-

value ofM .

Then for any τ ∈ T , it holds that E ′∗
τ (I − η(lτ)) − δl I ⊑

E∗
τ (I − η(lτ)).
In order to obtain accurate error bounds, we observe that

a transition does not always influence the behavior of all the
locations. A location l is only effected by those transitions
that may lead a path to it, formally Tl = {τ ∈ T : τ =
⟨l ′, l ′′, E⟩,∃π ,π = l ′ E

−→ l ′′ → · · · → l}.

Lemma 6.8. For isomorphic programs P , P ′
, let r ′ be the rep-

etition function of P ′
and η be the inductive assertion map of

P . For any location l and any prime set Π of paths from lin to

l , it holds that∑
π ∈Π

E ′∗
π (I − η(lπ)) ⊑ I − η(lin) +

∑
τ ∈Tl

r ′(τ)δτ I . (6.2.5)

Proof. Deferred to Appendix D.8. □

Theorem 6.9. For isomorphic programs P , P ′
, let r ′ be the

repetition function of P ′
and η be the inductive assertion map

of P . For any location l ∈ L, η(l) is an ϵ-approximate invariant

of P ′
, where ϵ =

∑
τ ∈Tl r

′(τ)δτ .

Proof. For any ρ and prime path set Π, we apply Lemma 6.8:∑
π ∈Π

tr((I − η(lπ))E ′
π (ρ)) =

∑
π ∈Π

tr(E ′∗
π (I − η(lπ))ρ)

≤ (1 +
∑
τ ∈Tl

r ′(τ)δτ)tr(ρ) − tr(η(l∈)ρ). (6.2.6)

Hence it is
∑
τ ∈Tl r

′(τ)δτ -approximation. □

Example 6.2. We illustrate the usage of Theorem 6.9 by vari-

ation rus′3 of the program rus3 as introduced in Example 6.1.

By solving SDP with Θ = |000⟩⟨000|, the rus3 program has

a additive assertion map η(lin) = Θ = |000⟩⟨000|, η(l0) =
O0 = |ϕ⟩⟨ϕ | ⊗ |0⟩⟨0| and η(lout) = O = |000⟩⟨000|, where
|ϕ⟩ = ((3 + i)|00⟩ + (1 − i)|01⟩ + (1 − i)|10⟩ − (1 − i)|11⟩)/4.
Denote the transition from la to lb by τa,b . We construct

the SDP with relaxation for rus′3, and calculate the offset

δτin,0 = max{0, λmax((EI − N)∗(I − η(l0)))} = 0.0140,δτ0,0 =

0.0140,δτ0,out = 0. We can verify that the loop in rus′3 is

10

Invariant-based Verification of Quantum Programs Draft paper, November 22, 2019,

(0.4302, 1)-bounded. Thus, the repetition function is: r ′(τin,0) =
1, r ′(τ0,0) = 1.7550, and r ′(τ0,out) = 1.

We can obtain an error bound ϵ(lout) = 0.0386 by The-

orem 6.9, thus construct the ϵ-partial correctess |=par,0.0386
{Θ}rus′3{O} according to Theorem 6.4.

6.2.2 Superoperator distance bounds
While themethod in Section 6.2.1 provides an accurate bound,
it is somewhat impractical to acquire the boundedness of the
variation and the inductive assertion map of the ideal pro-
gram, since as mentioned before, In this section, we provide
a different approach, which only requires the boundedness
of the ideal program.
We introduce the distance measurements of superoper-

ators and quantum states, to depict the error bound. The
definitions follow [39].

Definition 6.10. For vector space X,Y and linear operator

A : X → Y, the 1-norm ∥A∥1 = tr
√
A†A, which is also inter-

preted as the summation of absolute values of A’s eigenvalues.

Definition 6.11. For Hilbert space H and A � H , The di-

amond norm for superoperators E1, E2 : D(H) → D(H) is

defined as

∥E1 − E2∥⋄ = max
ρ ∈H⊗A

1
2
∥E1 ⊗ IA(ρ) − E2 ⊗ IA(ρ)∥1 .

The diamond norm of two superoperators is equivalent
to that of the superoperators restricted on the subspace cap-
turing the differences. Specifically, in a quantum program,
the diamond norm of the superoperators derived from two
commands is captured by the subspace of the registers men-
tioned in the commands. For example, the diamond norm of
superoperators E1 and E2 acting on register q is ∥E1 − E2∥⋄
defined on the Hilbert space of q. Thus it is not necessary to
compute the diamond norm of the entire Hilbert space. The
diamond norm is computable by an SDP solver [37].

Lemma 6.12. Let P be an ideal program in which every loop

is (a,n)-bounded, P ′
be a variation isomorphic to P , and S be

the SVTS of P . Let r be the repetition function of P and l ∈ L.

Then, for any prime set Π of paths from lin to l , it holds that

∥EΠ − E ′
Π ∥⋄ ≤

∑
τ ∈Tl

r (τ)
Eτ − E ′

τ

⋄
. (6.2.7)

Proof. Deferred to Appendix D.6. □

Theorem 6.13. Let P be an ideal program in which every

loop is (a,n)-bounded, P ′
be a variation isomorphic to P , and

S be the SVTS of P . Let r be the repetition function of P and

l ∈ L. If O is an additive invariant for P at l , then it is also

an ϵ-approximate additive invariant for P ′
at l , where ϵ =∑

τ ∈Tl r (τ)
Eτ − E ′

τ

⋄
.

Proof. Deferred to Appendix D.7. □

Example 6.3. We illustrate this approach via rus3 and rus′3
programs. We utilize the notations in Example 6.2.

From above we know |=par {Θ}rus3{O}. We can verify the

while loop in rus3 is (0.375, 1)-bounded, thus the transition-
bounding function is r (τin,0) = 1, r (τ0,0) = 1.6 and r (τ0,out) =

1. Meanwhile, ∥EI − N∥⋄ ≤ ∥I − N1∥⋄ = 0.1, where N1 =

(0.9I + 0.05X + 0.05Z), and X andZ are the channels ap-

plying X and Z operators. This diamond norm gives a bound

to the difference of transition τ0,0 as well.

Applying Theorem 6.13, we know the invariant O for rus
at location lout is an 0.260-approximate additive invariant

for rus′. This constructs the ϵ-partial correctess |=par,0.260
{Θ}rus′3{O}.

6.3 Case study: Hamiltonian simulation with
Trotter’s formula

In this section, we demonstrate how to verify the correctness
of the quantum algorithms involving approximations. As a
case study, we verify the error bound on the Trotter’s formula
for the Hamiltonian simulation problem, in which we are
given a Hamiltonian H =

∑
j Hj , aiming to simulate e−iHt .

Using Trotter’s formula, we divide the time t into n steps, in
each of which e−i

t
n Hj is applied for j = 1 . . . L sequentially.

First we introduce a sub-program J and its ideal version
K used in the main programs

J ≡ q :=

(
1∏

j=L

e−
it
n Hj

)
[q], K ≡ q := (e−

it
n H)[q].

To clarify, J andK are abbreviations of the detailed clauses
in the presentation, and do not work like procedures. Then
the program TF (TrotterFormula) realizing the Trotter’s for-
mula for a quantum state stored in q, and the corresponding
ideal isomorphic program HS are

TF ≡ д := |0⟩; whileM<n[д] = 1 do J ;д := Inc[д] done,
HS ≡ д := |0⟩; whileM<n[д] = 1 do K ;д := Inc[д] done,

where M<n =
∑n−1

j=0 |j⟩⟨j |, д ∈ Hn+1, and Inc = |0⟩⟨n | +∑n−1
j=0 |j + 1⟩⟨j |.
Since the counter on д increments in each step, the while

loop is (0,n)-bounded. The SVTS of TF and transition-bounding
function of HS are given in Fig. 4. First we consider the
program without auxiliary space. Because e−

ikt
n He−

it
n H =

e−
i (k+1)t

n H for all k , and the behavior of operations on д are
equivalent to resetting д to |n⟩, for any |ψ ⟩, we have

|=par {I ⊗ |ψ ⟩⟨ψ |}HS{|n⟩⟨n | ⊗ (e−itH |ψ ⟩⟨ψ |eitH)}. (6.3.1)

By [10, Appendix F.3] and [6, Proposition 7], we have

∥[[J]] − [[K]]∥⋄ ≤ 2
(
LΛt

n

)2
e
LΛt
n ,

11

Draft paper, November 22, 2019, S. Hung, Y. Peng, X. Wang, S. Zhu & X. Wu

RUS x 1 RUS x 2 RUS x 7 RUS x 10

Master Normal Collapse Normal Collapse Normal Collapse Normal Collapse

rus2 1.91 603.83 2.30 687.16 1.77 1,073.65 5.17 1,279.16 7.35
rus3 21.2 649.34 2.14 871.35 4.17 1,687.38 14.47 2,135.04 20.67

Table 1. Benchmarks of computing 1,000 random Hoare triples of repeating an RUS program n times in sequence for
n = 1, 2, 7, 10 using the normal method and the master+collapse method. The unit of the CPU times is second (s).The matser
Hoare triples of rus2 and rus3 are reused for the calculation in the collapse part.

lin

l0 lout

д := |0⟩, r = 1

M0, r = nJ , r = n

M1, r = 1

д := Inc[д], r = 1

I

lin

l0 lout

д := |0⟩, r = 1

M0, r = nK , r = n

M1, r = 1

д := Inc[д], r = 1

I

Figure 4. SVTSs for TF and HS, and the transition-bounding
function f for HS.

Method TF HSnoisy

CPU time Error bound CPU time Error bound

Accurate calculation 5951 0 31428 0
Method via Theorem 6.9 0.4800 0.0862 2.910 0.2448
Method via Theorem 6.13 711.8 0.0881 2092 0.7201

Table 2. We benchmark three approaches to establish the
approximate correctness of the variations of HS. The unit
for the CPU time is millisecond (ms). The inductive offset
tracking method utilizes Theorem 6.9, and the superoperator
distance bound method utilizes Theorem 6.13. The analytical
bound in Section 6.3 gives 1.2149-partial correctness for TF
using HS’s Hoare triple.

where Λ = maxj
Hj

∞
. Thus, for any |ψ ⟩, it holds that

|=par,ϵ {I ⊗ |ψ ⟩⟨ψ |}TF {|n⟩⟨n | ⊗ (e−itH |ψ ⟩⟨ψ |eitH)}, where
ϵ = 2L2Λ2t 2

n e
LΛt
n .

7 Evaluations
In this section, we present the results of our numerical ex-
periments.

7.1 Invariant generation by solving SDPs
Our first experiment is to compare the performance of com-
puting the Hoare triples in space H and applying rule Col-
lapse to themaster Hoare triple in the extended spaceH⊗A.
In particular, we measure the running time of invariant gen-
eration for RUS programs in Example 3.2, using the following
methods.

1. Normal: solving the SDP in (4.2.6) with 1,000 random
postconditions.

2. Master+collapse: solving the SDP in (5.2.1) with post-
condition ΦHA for the master Hoare triple, followed

by the application of rule Collapse in (5.1.6) with the
same 1,000 postconditions.

Our test cases are listed in Appendix E. We implement our
methods using CVX, a MATLAB-based modeling system
for convex optimization on iMac with Intel(R) Core(TM) i5-
7500 Processor@3.4GHz and 16GB RAM. To demonstrate the
reuse of master Hoare triples, we repeat the same program
for n = 1, 2, 7, 10 times.
As shown in Table 1, we show that our master+collapse

method significantly improves the running time over the
normal method when calculating a large amount of triples
of the same program. For example, our method achieves 51
times speedup for computing 1,000 random Hoare triples of
10 rus3, and 143 times speedup for rus2.

Our improvement is due to a preprocessing phase which
contains all the information to derive any Hoare triple. Upon
obtaining the master Hoare triple, a weakest precondition
can be derived by applying a collapse operator C, which
can be computed by applying partial trace1 and matrix mul-
tiplication. This collapse step is less time consuming than
recomputing the SDP directly. On the contrary, using the
normal method, preprocessing seems impossible, and thus
we must construct an SDP for each postcondition.

For computing repeating programs, we expect that the
speedup can be significantly better since we only need to
compute C sequentially, though in practice the speedup may
depend on the implementation of the SDP solver. On the
other hand, using the normal method, since the invariants
for a subprogram cannot be precomputed in general, one
must construct a large SDP problem which contains all the
constraints from every subprogram.

7.2 Approximate invariant generation
We present the significant efficiency advantages of our meth-
ods compared to accurate invariants calculation by experi-
menting their efficiencies and bounded errors on the Hamil-
tonian simulation problem. We set up the Hamiltonian simu-
lation problem with 3 qubits and 5 steps. Two programs are
evaluated: 1) the TF program introduced in Section 6.3. 2)
HSnoisy, where we add three random noise channels N . We
benchmark our two methods in Section 6.2, and compare
them with the accurate results.
1We use the MATLAB program for computing partial trace at http://www.
dr-qubit.org/matlab/TrX.m.

12

http://www.dr-qubit.org/matlab/TrX.m
http://www.dr-qubit.org/matlab/TrX.m

Invariant-based Verification of Quantum Programs Draft paper, November 22, 2019,

The experiment details can be found in Appendix E.3, and
the benchmark results are in Table 2. The error bounds from
superoperator distance bound method are larger than the
bounds obtained from inductive offset tracking method in
our experiments. For TF program, they provide similar error
bounds. For HSnoisy program, the superoperator distance
bound methods gives much larger bounds, due to the fact
that the noise channel affects largely on the diamond norm.

Acknowledgments
SH, SZ, and XW were supported in part by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scien-
tific Computing Research, Quantum Testbed Pathfinder Pro-
gram under Award Number DE-SC0019040. YP and XWwere
also supported in part by DoD AFOSR MURI No. FA9550-16-
1-0082.

References
[1] 2018. Google AI Quantum team. https://github.com/quantumlib/Cirq.
[2] 2018. Rigetti Forest team. .https://www.rigetti.com/forest.
[3] Ali Javadi Abhari, Arvin Faruque, Mohammad Javad Dousti, Lukas

Svec, Oana Catu, Amlan Chakrabati, Chen-Fu Chiang, Seth Vander-
wilt, John Black, Fred Chong, Margaret Martonosi, Martin Suchara,
Ken Brown, Massoud Pedram, and Todd Brun. 2012. Scaffold: Quan-
tum Programming Language. Technical Report TR-934-12. Princeton
University.

[4] Gadi Aleksandrowicz, Thomas Alexander, P Barkoutsos, L Bello, Y
Ben-Haim, D Bucher, FJ Cabrera-Hernández, J Carballo-Franquis, A
Chen, CF Chen, et al. 2019. Qiskit: An open-source framework for
quantum computing. Accessed on: Mar 16 (2019).

[5] Alexandru Baltag and Sonja Smets. 2011. Quantum Logic as a Dynamic
Logic. Synthese 179, 2 (2011).

[6] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. 2015. Hamil-
tonian Simulation with Nearly Optimal Dependence on All Parameters.
In Proceedings of the 2015 IEEE 56th Annual Symposium on Founda-

tions of Computer Science (FOCS) (FOCS ’15). IEEE Computer Society,
Washington, DC, USA, 792–809. https://doi.org/10.1109/FOCS.2015.54

[7] Alex Bocharov, Martin Roetteler, and Krysta M Svore. 2015. Efficient
synthesis of universal repeat-until-success quantum circuits. Physical
review letters 114, 8 (2015), 080502.

[8] Olivier Brunet and Philippe Jorrand. 2004. Dynamic Quantum Logic
for Quantum Programs. International Journal of Quantum Information

2, 1 (2004).
[9] Rohit Chadha, Paulo Mateus, and Amílcar Sernadas. 2006. Reasoning

About Imperative Quantum Programs. Electronic Notes in Theoretical

Computer Science 158 (2006).
[10] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross,

and Yuan Su. 2018. Toward the first quantum simulation with
quantum speedup. Proceedings of the National Academy of Sciences

115, 38 (2018), 9456–9461. https://doi.org/10.1073/pnas.1801723115
arXiv:https://www.pnas.org/content/115/38/9456.full.pdf

[11] Ellie D’Hondt and Prakash Panangaden. 2006. Quantum Weakest
Preconditions. Mathematical Structures in Computer Science 16, 3
(2006).

[12] Yuan Feng, Runyao Duan, Zhengfeng Ji, and Mingsheng Ying. 2007.
Proof Rules for the Correctness of Quantum Programs. Theoretical
Computer Science 386, 1-2 (2007).

[13] Cormac Flanagan, Cormac Flanagan, K. Rustan M. Leino, Mark Lil-
libridge, Greg Nelson, James B. Saxe, and Raymie Stata. 2002. Ex-
tended Static Checking for Java. In Proceedings of the ACM SIG-

PLAN 2002 Conference on Programming Language Design and Imple-

mentation (PLDI ’02). ACM, New York, NY, USA, 234–245. https:
//doi.org/10.1145/512529.512558

[14] Simon J. Gay. 2006. Quantum Programming Languages: Survey and
Bibliography. Mathematical Structures in Computer Science 16, 4 (2006).

[15] Jonathan Grattage. 2005. A Functional Quantum Programming Lan-
guage. In LICS.

[16] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter
Selinger, and Benoît Valiron. 2013. Quipper: A Scalable Quantum
Programming Language. In PLDI.

[17] C.A.R. Hoare. 2009. Viewpoint: Retrospective: An Axiomatic Basis
for Computer Programming. Commun. ACM 52, 10 (Oct. 2009), 30–32.
https://doi.org/10.1145/1562764.1562779

[18] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming.
Commun. ACM 12, 10 (Oct. 1969), 576–580. https://doi.org/10.1145/
363235.363259

[19] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying,
Michael Hicks, and Xiaodi Wu. 2019. Quantitative Robustness Analy-
sis of Quantum Programs. Proc. ACM Program. Lang. 3, POPL, Article
31 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290344

[20] Nathaniel Johnston. 2016. QETLAB: A MATLAB toolbox for quantum
entanglement, version 0.9. http://qetlab.com. https://doi.org/10.5281/
zenodo.44637

[21] Yoshihiko Kakutani. 2009. A Logic for Formal Verification of Quantum
Programs. In ASIAN.

[22] Thomas Kleymann. 1999. Hoare Logic and Auxiliary Variables. Form.

Asp. Comput. 11, 5 (Dec. 1999), 541–566. https://doi.org/10.1007/
s001650050057

[23] Yangjia Li and Mingsheng Ying. 2017. Algorithmic Analysis of Termi-
nation Problems for Quantum Programs. Proc. ACM Program. Lang. 2,
POPL, Article 35 (Dec. 2017), 29 pages. https://doi.org/10.1145/3158123

[24] Seth Lloyd. 1996. Universal Quantum Simulators. Science 273,
5278 (1996), 1073–1078. https://doi.org/10.1126/science.273.5278.1073
arXiv:https://science.sciencemag.org/content/273/5278/1073.full.pdf

[25] Carlos Navarrete-Benlloch. 2015. An introduction to the formalism of
quantum information. arXiv preprint arXiv:1504.05270 (2015).

[26] Bernhard Ömer. 2003. Structured Quantum Programming. Ph.D. Dis-
sertation. Vienna University of Technology.

[27] Adam Paetznick and Krysta M Svore. 2013. Repeat-Until-Success: Non-
deterministic decomposition of single-qubit unitaries. arXiv preprint
arXiv:1311.1074 (2013).

[28] Adam Paetznick and Krysta M Svore. 2014. Repeat-until-success:
non-deterministic decomposition of single-qubit unitaries. Quantum
Information & Computation 14, 15-16 (2014), 1277–1301.

[29] Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A
Core Language for Quantum Circuits. In POPL.

[30] Amr Sabry. 2003. Modeling Quantum Computing in Haskell. In The

Haskell Workshop.
[31] Jeff W. Sanders and Paolo Zuliani. 2000. Quantum Programming. In

MPC.
[32] Peter Selinger. 2004. A Brief Survey of Quantum Programming Lan-

guages. In FLOPS.
[33] Peter Selinger. 2004. Towards a Quantum Programming Language.

Mathematical Structures in Computer Science 14, 4 (2004).
[34] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher

Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, An-
dres Paz, and Martin Roetteler. 2018. Q#: Enabling Scalable Quantum
Computing and Development with a High-level DSL. In RWDSL.

[35] Dominique Unruh. 2019. Quantum Hoare Logic with Ghost Variables.
arXiv preprint arXiv:1902.00325 (2019).

13

https://github.com/quantumlib/Cirq
. https://www.rigetti.com/forest
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.1073/pnas.1801723115
http://arxiv.org/abs/https://www.pnas.org/content/115/38/9456.full.pdf
https://doi.org/10.1145/512529.512558
https://doi.org/10.1145/512529.512558
https://doi.org/10.1145/1562764.1562779
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/3290344
http://qetlab.com
https://doi.org/10.5281/zenodo.44637
https://doi.org/10.5281/zenodo.44637
https://doi.org/10.1007/s001650050057
https://doi.org/10.1007/s001650050057
https://doi.org/10.1145/3158123
https://doi.org/10.1126/science.273.5278.1073
http://arxiv.org/abs/https://science.sciencemag.org/content/273/5278/1073.full.pdf

Draft paper, November 22, 2019, S. Hung, Y. Peng, X. Wang, S. Zhu & X. Wu

[36] Dominique Unruh. 2019. Quantum Relational Hoare Logic. Proc.

ACM Program. Lang. 3, POPL, Article 33 (Jan. 2019), 31 pages. https:
//doi.org/10.1145/3290346

[37] John Watrous. 2009. Semidefinite programs for completely bounded
norms. arXiv preprint arXiv:0901.4709 (2009).

[38] John Watrous. 2018. The Theory of Quantum Information. Cambridge
University Press.

[39] John Watrous. 2018. The Theory of Quantum Information. Cambridge
University Press. https://doi.org/10.1017/9781316848142

[40] Nathan Wiebe and Martin Roetteler. 2014. Quantum arithmetic and
numerical analysis using Repeat-Until-Success circuits. arXiv preprint
arXiv:1406.2040 (2014).

[41] Mingsheng Ying. 2011. Floyd–Hoare Logic for Quantum Programs.
ACMTransactions on Programming Languages and Systems 33, 6 (2011).

[42] Mingsheng Ying. 2016. Foundations of Quantum Programming. Morgan
Kaufmann.

[43] Mingsheng Ying. 2019. Toward automatic verification of quantum
programs. Formal Aspects of Computing 31, 1 (01 Feb 2019), 3–25.
https://doi.org/10.1007/s00165-018-0465-3

[44] Mingsheng Ying, Shenggang Ying, and Xiaodi Wu. 2017. Invariants of
Quantum Programs: Characterisations and Generation. In POPL.

[45] Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019. An Applied Quan-
tum Hoare Logic. In Proceedings of the 40th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI 2019).
ACM, NewYork, NY, USA, 1149–1162. https://doi.org/10.1145/3314221.
3314584

14

https://doi.org/10.1145/3290346
https://doi.org/10.1145/3290346
https://doi.org/10.1017/9781316848142
https://doi.org/10.1007/s00165-018-0465-3
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584

Invariant-based Verification of Quantum Programs Draft paper, November 22, 2019,

A Quantum information theory
This section is mostly taken from [19] with minor changes.

A.1 Basic definitions and notations
For any finite integer n, an n-dimensional Hilbert spaceH is
essentially the space Cn of complex vectors. We use Dirac’s
notation, |ψ ⟩, to denote a complex vector in Cn . The inner
product of two vectors |ψ ⟩ and |ϕ⟩ is denoted by ⟨ψ |ϕ⟩, which
is the product of the Hermitian conjugate of |ψ ⟩, denoted by
⟨ψ |, and vector |ϕ⟩. The norm of a vector |ψ ⟩ is denoted by
∥|ψ ⟩∥ =

√
⟨ψ |ψ ⟩.

We define (linear) operators as linear mappings between
Hilbert spaces. Operators between n-dimensional Hilbert
spaces are represented by n × n matrices. For example, the
identity operator IH can be identified by the identity matrix
on H . The Hermitian conjugate of operator A is denoted
by A†. Operator A is Hermitian if A = A†. The trace of an
operatorA is the sum of the entries on the main diagonal, i.e.,
tr(A) =

∑
i Aii . We write ⟨ψ |A|ψ ⟩ to mean the inner product

between |ψ ⟩ and A|ψ ⟩. A Hermitian operator A is positive
semidefinite (resp., positive definite) if for all vectors |ψ ⟩ ∈ H ,
⟨ψ |A|ψ ⟩ ≥ 0 (resp., > 0).

A.2 Quantum States
The state space of a quantum system is a Hilbert space. The
state space of a qubit, or quantum bit, is a 2-dimensional
Hilbert space. One important orthonormal basis of a qubit
system is the computational basis with |0⟩ = (1, 0)† and |1⟩ =
(0, 1)†, which encode the classical bits 0 and 1 respectively.
Another important basis, called the ± basis, consists of |+⟩ =

1√
2
(|0⟩ + |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩). The state space of

multiple qubits is the tensor product of single qubit state
spaces. For example, classical 00 can be encoded by |0⟩ ⊗ |0⟩
(written |0⟩|0⟩ or even |00⟩ for short) in the Hilbert space
C2⊗C2. The Hilbert space for anm-qubit system is (C2)⊗m �
C2m .
A pure quantum state is represented by a unit vector,

i.e.,|ψ ⟩ with ∥|ψ ⟩∥ = 1. A mixed state can be represented
by a classical distribution over an ensemble of pure states
{(pi , |ψi ⟩)}i , i.e., the system is in state |ψi ⟩ with probabilitypi .
One can also use density operators to represent both pure and
mixed quantum states. A density operator ρ representing
the ensemble {(pi , |ψi ⟩)}i is a positive semidefinite operator
ρ =

∑
i pi |ψi ⟩⟨ψi |, where |ψi ⟩⟨ψi | is the outer-product of |ψi ⟩;

in particular, a pure state |ψ ⟩ can be identified with the den-
sity operator ρ = |ψ ⟩⟨ψ |. Note that tr(ρ) = 1 holds for all
density operators. A positive semidefinite operator ρ on H

is said to be a partial density operator if tr(ρ) ≤ 1. The set
of partial density operators is denoted by D(H).

A.3 Quantum Operations
Operations on quantum systems can be characterized by
unitary operators. An operatorU is unitary if its Hermitian

conjugate is its own inverse, i.e.,U †U = UU † = I . For a pure
state |ψ ⟩, a unitary operator describes an evolution from |ψ ⟩
to U |ψ ⟩. For a density operator ρ, the corresponding evolu-
tion is ρ 7→ U ρU †. Common single-qubit unitary operators
include

H =
1
√

2

[
1 1
1 −1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
.

(A.3.1)

The Hadamard operator H transforms between the com-
putational and the ± basis. For example, H |0⟩ = |+⟩ and
H |1⟩ = |−⟩. The Pauli X operator is a bit flip, i.e., X |0⟩ = |1⟩
and X |1⟩ = |0⟩. The Pauli Z operator is a phase flip, i.e.,
Z |0⟩ = |0⟩ and Z |1⟩ = −|1⟩.

More generally, the evolution of a quantum system can be
characterized by an admissible superoperator E, which is a
completely-positive and trace-non-increasing linear map from
D(H) to D(H ′) for Hilbert spaces H ,H ′. A superopera-
tor is positive if it maps from D(H) to D(H ′) for Hilbert
spaces H ,H ′. A superoperator E is k-positive if for any
k-dimensional Hilbert space A, the superoperator E ⊗ IA
is a positive map on D(H ⊗ A). A superoperator is said
to be completely positive if it is k-positive for any positive
integer k . A superoperator E is trace-non-increasing if for
any initial state ρ ∈ D(H), the final state E(ρ) ∈ D(H ′)

after applying E satisfies tr(E(ρ)) ≤ tr(ρ).
For every superoperator E : D(H) → D(H ′), there ex-

ists a set of Kraus operators {Ek }k such that E(ρ) =
∑

k EkρE
†

k
for any input ρ ∈ D(H). Note that the set of Kraus op-
erators is finite if the Hilbert space is finite-dimensional.
The Kraus form of E is written as E =

∑
k Ek ◦ E†k . A uni-

tary evolution can be represented by the superoperator E =
U ◦ U †. An identity operation refers to the superoperator
IH = IH ◦ IH . The Schrödinger-Heisenberg dual of a su-
peroperator E =

∑
k Ek ◦ E†k , denoted by E∗, is another

superoperator such that for every state ρ ∈ D(H) and any
operator A, tr(AE(ρ)) = tr(E∗(A)ρ). The Kraus form of E∗ is∑

k E
†

k ◦ Ek .

A.4 Quantum Measurements
The way to extract information about a quantum system is
called a quantummeasurement. A quantum measurement on
a system over Hilbert spaceH can be described by a set of lin-
ear operators {Mm}m with

∑
m M†

mMm = IH . If we perform a
measurement {Mm} on a state ρ, the outcomem is observed
with probability pm = tr(MmρM

†
m) for eachm. A major dif-

ference between classical and quantum computation is that a
quantum measurement changes the state. In particular, after
a measurement yielding outcomem, the state collapses to
MmρM

†
m/pm . For example, a measurement in the computa-

tional basis is described byM = {M0 = |0⟩⟨0|,M1 = |1⟩⟨1|}.
If we perform the computational basis measurementM on
state ρ = |+⟩⟨+|, then with probability 1

2 the outcome is 0
15

Draft paper, November 22, 2019, S. Hung, Y. Peng, X. Wang, S. Zhu & X. Wu

and ρ becomes |0⟩⟨0|. With probability 1
2 the outcome is 1

and ρ becomes |1⟩⟨1|.

B The syntax and the semantics of
quantum programs

This section is mostly taken from [19] with minor changes.

B.1 Syntax
Let Var be the set of quantum variables. The symbol q rep-
resents a metavariable ranging over quantum variables and
a quantum register q is a finite set of distinct variables. For
each q ∈ Var , denote its state space byHq . The quantum reg-
ister q is associated with the Hilbert spaceHq =

⊗
q∈q Hq .

If type(q) = Bool then Hq is the Hilbert space with basis
{|0⟩, |1⟩}. If type(q) = Int thenHq has the basis {|n⟩ : n ∈ Z}.
The syntax of a quantum while program P is defined as fol-
lows.

P ::= skip | q := |0⟩ | q := U [q] | P1; P2 |

caseM[q] =m → Pm end |

whileM[q] = 1 do P1 done. (B.1.1)

The language constructs above are similar to their classical
counterparts. (1) skip does nothing. (2) q := |0⟩ sets quantum
variable q to the basis state |0⟩. (3) q := U [q] applies the uni-
taryU to the qubits in q. (4) Sequencing has the same behav-
ior as its classical counterpart. (5) caseM[q] =m → Pm end
performs the measurement M = {Mm} on the qubits in
q, and executes program Pm if the outcome of the mea-
surement is m. The bar over m → Pm indicates that there
may be one or more repetitions of this expression. 2 (6)
while M[q] = 1 do P1 done performs the measurement
M = {M0,M1} on the qubits in q, and executes P1 if measure-
ment produces the outcome corresponding toM1 or termi-
nates if measurement produces the outcome corresponding
toM0.

We highlight two differences between quantum and classi-
cal while languages: (1) Qubits may only be initialized to the
basis state |0⟩. There is no quantum analogue for initializa-
tion to any expression (i.e. x := e) because of the no-cloning
theorem of quantum states. Any state |ψ ⟩ ∈ Hq , however,
can be constructed by applying some unitary U to |0⟩. (2)
Evaluating the guard of a case statement or loop, which per-
forms a measurement, potentially disturbs the state of the
system.

B.2 Operational Semantics
The operational semantics of the quantum while-language
are presented in Figure 5a. ⟨P , ρ⟩ → ⟨P ′, ρ ′⟩, where ⟨P , ρ⟩
and ⟨P ′, ρ ′⟩ are quantum configurations. In configurations,
P (or P ′) could be a quantum program or the empty program

2Our syntax for conditional/case statements differs from Ying [42] to make
it clear that there are multiple programs Pm .

E, and ρ and ρ ′ are partial density operators representing
the current state. Intuitively, in one step, we can evaluate
program P on input state ρ to program P ′ (or E) and output
state ρ ′. In order to present the rules in a non-probabilistic
manner, the probabilities associated with each transition are
encoded in the output partial density operator.3

In the Initialization rule, the superoperators Ebool
q→0(ρ) and

E int
q→0(ρ), which initialize the variable q in ρ to |0⟩⟨0|, are

defined by Ebool
q→0(ρ) = |0⟩q ⟨0|ρ |0⟩q ⟨0| + |0⟩q ⟨1|ρ |1⟩q ⟨0| and

E int
q→0(ρ) =

∑∞
n=−∞ |0⟩q ⟨n |ρ |n⟩q ⟨0|. Here, |ψ ⟩q ⟨ϕ | denotes

the outer product of states |ψ ⟩ and |ϕ⟩ associated with vari-
able q; that is, |ψ ⟩ and |ϕ⟩ are in Hq and |ψ ⟩q ⟨ϕ | is a matrix
overHq . It is a convention in the quantum information liter-
ature that when operations or measurements only apply to
part of the quantum system (e.g., a subset of quantum vari-
ables of the program), one should assume that an identity
operation is applied to the rest of quantum variables. 4 The
identity operation is usually omitted for simplicity.

We do not explain the rules in detail, but hope their mean-
ing is self-evident given the description of the language in
Section B.1.

B.2.1 Denotational Semantics
The denotational semantics of a quantum while program
is given in Figure 5b (with more details in Ying [41, 42]).
It defines [[P]] as a superoperator on ρ ∈ HVar [42]. The
semantics of each term is given compositionally. We write
while(k) for the kth syntactic approximation (i.e., unrolling)
of while and

⊔
for the least upper bound operator in the

complete partial order generated by Löwner comparison.
We connect the denotational semantics to the operational
semantics through the following proposition.

Proposition B.1 ([42]). For any program P

[[P]]ρ ≡
∑

{|ρ ′ : ⟨P , ρ⟩ →∗ ⟨E, ρ ′⟩|}, (B.2.1)

where →∗
is the reflexive, transitive closure of → and {| · |}

denotes a multi-set.

In short, the meaning of running program P on input state
ρ is the sum of all possible output states, weighted by their
probabilities.

C Summary of notations
We summarize the notations used in this paper in Table 3.

3If we had instead considered a probabilistic transition system, then the
transition rule for case statements could have been written as ⟨caseM [q] =

m → Pm end, ρ ⟩
pm
−−−→ ⟨Pm, ρm ⟩ where pm = tr(MmρM†

m) and ρm =
MmρM†

m/pm .
4For example, applying |ψ ⟩q ⟨ϕ | to ρ means applying |ψ ⟩q ⟨ϕ | ⊗ IHq̄ to
ρ , where q̄ denotes the set of all variables except q.

16

Invariant-based Verification of Quantum Programs Draft paper, November 22, 2019,

(Skip) ⟨skip, ρ⟩ → ⟨E, ρ⟩

(Initialization) ⟨q := |0⟩, ρ⟩ → ⟨E, ρ
q
0 ⟩

where ρq0 =

{
Ebool
q→0(ρ) if type(q) = Bool

E int
q→0(ρ) if type(q) = Int

(Unitary) ⟨q := U [q], ρ⟩ → ⟨E, U ρU †⟩

(Sequence E) ⟨E; P2, ρ⟩ → ⟨P2, ρ⟩

(Sequence)
⟨P1, ρ⟩ → ⟨P ′

1, ρ
′⟩

⟨P1; P2, ρ⟩ → ⟨P ′
1; P2, ρ

′⟩

(Casem) ⟨caseM[q] =m → Pm end, ρ⟩ → ⟨Pm , MmρM
†
m⟩

for each outcomem of measurementM = {Mm}

(While 0) ⟨whileM[q] = 1 do P1 done, ρ⟩ → ⟨E, M0ρM
†
0 ⟩

(While 1) ⟨whileM[q] = 1 do P1 done, ρ⟩ → ⟨P1;whileM[q] = 1 do P1 done, M1ρM
†
1 ⟩

(a)

[[skip]]ρ = ρ

[[q := |0⟩]]ρ =

{
Ebool
q→0(ρ) if type(q) = Bool

E int
q→0(ρ) if type(q) = Int

[[q := U [q]]]ρ = U ρU †

[[P1; P2]]ρ = [[P2]]([[P1]]ρ)

[[caseM[q] =m → Pm end]]ρ =
∑
m[[Pm]](MmρM

†
m)

[[whileM[q] = 1 do P1 done]]ρ =
⊔∞

k=0[[while(k)]]ρ

(b)

Figure 5. quantum while programs: (a) operational semantics (b) denotational semantics.

Hilbert Spaces: H , A L(H) (Linear operators on H)
States: (pure states) |ψ ⟩, |ϕ⟩ (metavariables); |0⟩, |1⟩, |+⟩, |−⟩ (notable states)

(density operators) ρ,σ (metavariables); |ψ ⟩⟨ψ | (as outer product)
Operations: (unitaries) U ,V (metavariables); H ,X ,Y ,Z (notable operations)

(superoperators) E (general); Φ (quantum channels)
Measurements: M {Mm}m (general); {M0 = |0⟩⟨0|,M1 = |1⟩⟨1|} (example)
Quantum Predicates (in space H) P ,Q

(in space H ⊗ A) P,Q
Hoare triples (total correctness) |=tot {P}S{Q}, |=tot {P}S{Q}

(partial correctness) |=par {P}S{Q}, |=par {P}S{Q}

Table 3. A brief summary of notation used in this paper

D Proofs of technical lemmas
D.1 Proof of Lemma 4.3
Proof of Lemma 4.3. We prove the claim by induction on the
structure of S .

1. For S ≡ skip,q := U [q],q := |0⟩: the claim is straight-

forward since Π =
{
lSin

[[S]]
−−−→ lSout

}
.

2. For S ≡ S1; S2: let Πi be the set of prime paths of SVTS
defined by Si for i ∈ {1, 2}. Since the only incoming

17

Draft paper, November 22, 2019, S. Hung, Y. Peng, X. Wang, S. Zhu & X. Wu

location to lS2
in is lS1

out , the set of prime paths Π defined
by S is

Π = {lS1
in

π1
=⇒ lS1

out
I
−→ lS2

in
π2
=⇒ lS2

out :
π1 ∈ Π1,π2 ∈ Π2}. (D.1.1)

Thus by the inductive hypothesis,

EΠi (ρ) =
∑
πi ∈Πi

Eπi (ρ) = [[Si]](ρ) (D.1.2)

for every state ρ, we know that

EΠ(ρ) =
∑
π1,π2

Eπ2 (ρ)(Eπ1 (ρ))

= [[S2]]

(∑
π1

Eπ1 (ρ)

)
= [[S2]]([[S1]](ρ)) = [[S]](ρ). (D.1.3)

3. For S ≡ case M[q] = m → Sm end: let Πm be the set
of prime paths from lSmin = lm to lSmout . The set of prime
paths for S is then

Π = {lSin
Mm
−−−→ lm

πm
==⇒ lSout :

∀m, πm ∈ Πm}. (D.1.4)

Then by the inductive hypothesis, since

EΠm (ρ) =
∑

πm ∈Πm

Eπm (ρ) = [[Sm]](ρ), (D.1.5)

we know that

EΠ(ρ) =
∑
m

∑
πm ∈Πm

MmEπ (ρ)M
†
m

=
∑
m

Mm[[Sm]](ρ)M
†
m = [[S]](ρ). (D.1.6)

4. For S ≡ whileM[q] = 1 do S1 done: Let Π1 be the set
of prime paths from lS1

in to lS1
out . The set of prime paths

for S truncated to k passes to lS1
in is then

Π(k) =
{
lSin

M1
−−→ lS1

in
π (1)

==⇒ lS1
out

I
−→ lSin

M1
−−→ . . .→

lSin
M1
−−→ lS1

in
π (n)

===⇒ lS1
out

I
−→ lSin

M0
−−→ lSout :

0 ≤ n ≤ k, π (1), . . . ,π (k) ∈ Π1

}
. (D.1.7)

By (D.1.7), the set can also be recursively written as

Π(k+1) = {lSin
M1
−−→ lS1

in
π
=⇒ lS1

out
I
−→ lSin

γ
=⇒ lSout :

π ∈ Π1,γ ∈ Π(k)}. (D.1.8)

By the inductive hypothesis,
∑
π ∈Π1 Eπ (ρ) = [[S1]](ρ).

The set Π =
⊔∞

k=0 Π
(k). We show that EΠ(k) (ρ) =∑k

i=0 M0E
i (ρ)M†

0 for eachk ∈ N and E(ρ) = [[S1]](M1ρM
†
1).

The base case k = 0 is straightforward since Π(0) =

{lSin
M0
−−→ lSout }. Suppose that the statement holds for

k = n. Then by (D.1.8),

EΠ(n+1) (ρ) =
∑
π ∈Π1

∑
γ ∈Π(k)

Eγ (Eπ (M1ρM
†
1))

=
∑

γ ∈Π(k)

Eγ ([[S1]](M1ρM
†
1))

=
∑

γ ∈Π(k)

Eγ (E(ρ))

= EΠ(k) (E(ρ))

=

k+1∑
i=0

M0E
i (ρ)M†

0 . (D.1.9)

Taking k → ∞, we conclude the proof.
□

D.2 Proof of Theorem 4.4
Proof of Theorem 4.4. By definition, the set of prime paths
from lSin to lSout is

Π =
{
π : lSin

π
=⇒ lSout : lSout is visited only once

}
. (D.2.1)

By the definitions of additive invariant and partial correct-
ness, it suffices to show that EΠ = [[S]]. By Lemma 4.3, we
conclude the proof. □

D.3 Solving the SDP in Example 3.2
In this section, we derive an analytic solution to the SDP
problem in (4.2.6). In Figure 1, we take l0, l1, l2 to be our
cut-points. The SDP problem corresponding to RUS can be
formulated using Invariant-SDP 4.1. The positive semidefi-
nite constraints are

O0 ⊑ rst∗(W †O1W) (D.3.1)

and

O1 ⊑ M†
0O2M0 +M

†
1V

†O1VM1, (D.3.2)

where V :=WRW † = V † and rst = [[p := |0m⟩]].
We show that (O1,O2) = (|Ψ⟩⟨Ψ| + |Ψ⊥⟩⟨Ψ⊥ |, |Ψ⟩⟨Ψ|) is a

solution to (D.3.2) and the equality holds. In the 2-dimensional
subspace span{|Ψ⟩, |Ψ⊥⟩}, the unitaryV is a reflection about
the state

|ϒ⟩ =
√
p |Ψ⟩ +

√
1 − p |Ψ†⟩. (D.3.3)

Therefore V †(|Ψ⟩⟨Ψ| + |Ψ⊥⟩⟨Ψ⊥ |)V = |Ψ⟩⟨Ψ| + |Ψ⊥⟩⟨Ψ⊥ |.
Then the equality holds since

|Ψ⟩⟨Ψ| +M†
1V

†(|Ψ⟩⟨Ψ| + |Ψ⊥⟩⟨Ψ⊥ |)VM1

= |Ψ⟩⟨Ψ| +M†
1 (|Ψ⟩⟨Ψ| + |Ψ⊥⟩⟨Ψ⊥ |)M1

= |Ψ⟩⟨Ψ| + |Ψ⊥⟩⟨Ψ⊥ |. (D.3.4)

Next we show that

(O0,O1) = (Im ⊗ |ψ ⟩⟨ψ |, |Ψ⟩⟨Ψ| + |Ψ⊥⟩⟨Ψ⊥ |) (D.3.5)
18

Invariant-based Verification of Quantum Programs Draft paper, November 22, 2019,

is a solution to (D.3.1). First we observe that

W †(|Ψ⟩⟨Ψ| + |Ψ⊥⟩⟨Ψ⊥ |)W

=W †(|ϒ⟩⟨ϒ| + |ϒ⊥⟩⟨ϒ⊥ |)W

= (|0,ψ ⟩⟨0,ψ | +W † |ϒ⊥⟩⟨ϒ⊥ |W), (D.3.6)

where |ϒ⊥⟩ := −
√

1 − p |Ψ⟩ +
√
p |Ψ⊥⟩, because

span{|Ψ⟩, |Ψ⊥⟩} = span{|ϒ⟩, |ϒ⊥⟩}. (D.3.7)

Then we have

rst∗(|0m ,ψ ⟩⟨0m ,ψ | +W † |ϒ⊥⟩⟨ϒ⊥ |W)

= Im ⊗ (⟨0m | ⊗ I)(|0m ,ψ ⟩⟨0m ,ψ |

+W † |ϒ⊥⟩⟨ϒ⊥ |W)(|0m⟩ ⊗ I)

= Im ⊗ |ψ ⟩⟨ψ |. (D.3.8)

since by the proof of [27, Corollary 3.2],

(⟨0m | ⊗ I)(W † |ϒ⊥⟩⟨ϒ⊥ |W)(|0m⟩ ⊗ I) = 0. (D.3.9)

Finally the solution implies that

{Im ⊗ |ψ ⟩⟨ψ |}RUS{|0m ,Uψ ⟩⟨0m ,Uψ |}, (D.3.10)

the intuition to which is provided as follows: to yield a quan-
tum state |0m ,Uψ ⟩ that satisfies the postcondition |0m ,Uψ ⟩⟨0m ,Uψ |,
the input state must be any quantum state of the form ρp ⊗

|ψ ⟩⟨ψ |q , since the reset command resets ρ to the zero state,
and the semantics of the while loop, along with the initial
application ofW , is a unitaryU when the state on p is a zero
state.

D.4 Proof of Lemma 5.4
First we recall some facts which will be used in the proof of
Lemma 5.4.

Fact D.1 ([39]). The maximally entangled state |Φ⟩ and the
Choi-Jamiołkowski isomorphism satisfies the following prop-

erties:

(1) (M ⊗ I)|Φ⟩ =
(
I ⊗ MT

)
|Φ⟩, (D.4.1)

(I ⊗ M)|Φ⟩ =
(
MT ⊗ I

)
|Φ⟩,∀M ; (D.4.2)

(2) E(ρ) = trH
(
J (E)(IH′ ⊗ ρT)

)
,∀ρ ∈ D(H); (D.4.3)

(3) J (E∗) = (J (E))T , for any channel E . (D.4.4)

Now we prove the lemma.
Proof of Lemma 5.4.

1. By definition CR (·) is a completely positive map due
to, e.g., [39, Theorem 2.22]. Thus,

CR (P − Q) ⊑ 0 ⇒ CR (P) ⊑ CR (Q).

2. By definition, we have

CR (Φ) = dHtrA((IH ⊗
√
RT)|Φ⟩⟨Φ|(IH ⊗

√
RT))

= dHtrA((
√
R ⊗ IA)|Φ⟩⟨Φ|(

√
R ⊗ IA))

= R, (D.4.5)

where the second equality holds by (D.4.2).
3. This follows from the cyclic property of the partial

trace when the operator (in our case, IH ⊗
√
R) acts as

the identity on the non-traced subspaces (see, e.g., [25,
Section 6.4.1]).

□

D.5 Proof of Lemma 5.6
Proof of Lemma 5.6. By (5.1.4), we know that

wp.S .Φ = J([[S]]∗) = [[S]]∗(Φ). (D.5.1)

Applying the map CQ (·), we have

CQ (J([[S]]∗))

= CQ (([[S]]
∗ ⊗ IA)Φ)

= dHtrA((IH ⊗
√
QT)(([[S]]∗ ⊗ IA)Φ)(IH ⊗

√
QT))

= dH[[S]]∗trA((IH ⊗
√
QT)Φ(IH ⊗

√
QT)) (D.5.2)

= [[S]]∗(CQ (Φ)) = [[S]]∗(Q). (D.5.3)

Since the equality holds, CQ (J([[S]]∗)) is the weakest precon-
dition. It remains to show that the equality in (D.5.2) holds.
Let [[S]] =

∑
k Ek ◦ E

†

k be the Kraus form. We have

trA((IH ⊗
√
QT)(([[S]]∗ ⊗ IA)Φ)(IH ⊗

√
QT))

=
∑
k

trA((Ek ⊗
√
QT)Φ(E†k ⊗

√
QT))

=
∑
i

∑
k

(
E†k ⊗ (⟨i |

√
QT)

)
Φ

(
E⊗
k (

√
QT |i⟩)

)
=

∑
k

E†k

[∑
i

(
IH ⊗ (⟨i |

√
QT)

)
Φ

(
IH ⊗ (

√
QT |i⟩)

)]
Ek

=
∑
k

E†k

[
trA((IH ⊗

√
QT)Φ(IH ⊗

√
QT))

]
Ek

= [[S]]∗
(
trA((IH ⊗

√
QT)Φ(IH ⊗

√
QT))

)
. (D.5.4)

□

D.6 Proof of Lemma 6.12
Proof of Lemma 6.12. Beforewe start our proof, we introduce
several handy inequalities.

19

Draft paper, November 22, 2019, S. Hung, Y. Peng, X. Wang, S. Zhu & X. Wu

• For any density operator ρ, superoperators E, E ′, E1, E
′
1..., Ek , E

′
k

such that
∑k

j=1 Ej ⊑ I and
∑k

j=1 E
′
j ⊑ I , there is∑

j

Ej (E(ρ)) − E ′
j (E

′(ρ))

1

= 2
∑
j

tr(Q j (Ej (E(ρ)) − E ′
j (E(ρ))

+ E ′
j (E(ρ)) − E ′

j (E(ρ))))

≤ 2
∑
j

tr(E∗
j (Q j)(E(ρ) − E ′(ρ))

+ 2
∑
j

tr(Q j (Ej − E ′
j)(E(ρ)))

≤ ∥E(ρ) − E ′(ρ)∥1

+ 2
∑
j

tr(E(ρ))tr
(
Q j (Ej − E ′

j)

(
E(ρ)

tr(E(ρ))

))
≤ ∥E(ρ) − E ′(ρ)∥1

+ tr(E(ρ))
∑
j

(Ej − E ′
j)

(
E(ρ)

tr(E(ρ))

)
1

≤ 2 ∥E − E ′∥⋄

+ 2tr(E(ρ))
∑
j

Ej − E ′
j

⋄
, (D.6.1)

where in the intermediate steps, 0 ⊑ Q j ⊑ I is the
predicate to reach 2tr(Q j (Ej (E(ρ)) − E ′

j (E
′(ρ)))) =Ej (E(ρ)) − E ′

j (E
′(ρ))

1
.

• For any prime path set Π, we haveEΠ − E ′
Π

⋄

= max
ρ ∈H⊗A

EΠ ⊗ IA(ρ) − E ′
Π ⊗ IA(ρ)

1

≤ max
ρ ∈H⊗A

∑
π ∈Π

Eπ ⊗ IA(ρ) − E ′
π ⊗ IA(ρ)

1

≤
∑
π ∈Π

Eπ − E ′
π

⋄

(D.6.2)

Nowwe find the upper bound of
EΠ − E ′

Π

⋄
for any prime

path set Π from lin to l . We track the generation of S from P .
In the generation of S , nodes are only added and renamed,
so we can always find l in the generation procedure. We
inductively prove the following three facts simultaneously:

• For any prime path set Π with paths starting from lin ,
there is:∑
π ∈Π

Eπ − E ′
π

⋄
≤

∑
τ ∈T

r (τ)
Eτ − E ′

τ

⋄
. (D.6.3)

• For any Π with paths from lin to l , there is:∑
π ∈Π

Eπ − E ′
π

⋄
≤

∑
τ ∈Tl

r (τ)
Eτ − E ′

τ

⋄
. (D.6.4)

• Tlout = T .

Note that if l is not in current SVTS, the second inequality
is meaningless, and we ignore it. Here we start induction.

• P ≡ skip, q̄ := U [q̄],q := |0⟩: The transition ends at
lout , and inequalities holds naturally.

• P ≡ P1; P2: Let S1, S2 be the SVTSs for P1, P2, and r1, r2
be the repetition functions for P1, P2. Because in S2,
lP2
in can reach lout , every transition in T can reach lout .
To prove the inequality (D.6.3) in this case, consider a
prime path set Π starting from lin . For any π ∈ Π, if it
contains lP1

out , we can divide it into two parts separated
by lP1

out . DenoteU (π) the part of π from lin to lP1
out . If π

does not contain lP1
out , we setU (π) = π . We can pick out

U (Π) = {U (π) : π ∈ Π}, and the succeeding path set
V (Π,πu) = {πv : πu +πv ∈ Π},where path addition is
the concatenation. We can see if Π is prime, V (Π,πu)
is prime. Thus we have EΠ =

∑
πu ∈U (Π){|EV (Π,πu) ◦

Eπu |}, and so is E ′
Π . Thus, for any ρ ∈ H⊗A, applying

inequality (D.6.1) and induction hypothesis, we have∑
π ∈Π

Eπ (ρ) − E ′
π (ρ)

1 (D.6.5)

≤
∑

πu ∈U (Π)

2
Eπu − E ′

πu

⋄

+
∑

πu ∈U (Π)

2tr[Eπu (ρ)]
∑

πv ∈V (Π,πu)

Eπv − E ′
πv

⋄

(D.6.6)

≤2 ©«
∑

πu ∈U (Π)

tr[Eπu (ρ)]
ª®¬

∑
τ ∈TP2

r (τ)
Eτ − E ′

τ

⋄

+ 2
∑

πu ∈U (Π)

Eπu − E ′
πu

⋄

(D.6.7)

≤2
∑
τ ∈T

r (τ)
Eτ − E ′

τ

⋄
. (D.6.8)

Taking all ρ ∈ H ⊗ A, inequality (D.6.3) holds. For
the inequality (D.6.4), we find where l is. If l is in
S1, every path in Π cannot go beyond lP1

out , because
there is no way back. Thus we only need to employ
inductive hypothesis. If l is in S2,V (Π,πu) is a path set
with paths from lP2

in to l , thus the inductive hypothesis
for the inequality (D.6.4) applies. Applying the similar
arguments as above, with Tl = T

P2
l ∪ T P1 , we finish

the proof. If l is not in S1 nor S2, the inequality is
meaningless.

• P ≡ case (M[q] = m → Pm) end: In this case, any
path π in a prime path set Π from lin to lout starts with
a choice of branches. DenoteOut the set of transitions
outgoint from lin ,Πτ = {π : π = lin

τ
−→ · · · }, andV (π)

the path without the first transition. Any transition τ ∈

Out can reach the entry of corresponding subprogram,
so it can reach lout . For each branch, the proof of the
sequential case applys here. Thus for any ρ ∈ H ⊗ A,

20

Invariant-based Verification of Quantum Programs Draft paper, November 22, 2019,

applying the inequality D.6.1,∑
π ∈Π

Eπ (ρ) − E ′
π (ρ)

1

=
∑

τ ∈Out

∑
π ∈Πτ

Eπ (ρ) − E ′
π (ρ)

1

≤
∑

τ ∈Out

∑
π ∈Πτ

EV (π)(Eτ (ρ)) − E ′
V (π)(E

′
τ (ρ))

1

≤ 2
∑
τ ∈T

r (τ)
Eτ − E ′

τ

⋄
. (D.6.9)

As for the second inequality, we find the branch in
which l locates, then the corresponding first transi-
tion τ in any path to l is the only new transition in
Tl . By similar argument as above, we can show the
correctness.

• P ≡ whileM[q̄] = 1 do Q done. Let τ0 be the transi-
tion with measurement result 0 starting from lin , and
τ1 be the one with measurement result 1. If l , lout ,
because it forms a loop, every transition except the
transition τ0 with M0 is in Tl . If l = lout , Tl = T .
We assume the loop is (a,n)-bounded. For any path π
in any prime path set Π, we let C(π ,k) be the prefix
of π that reaches lQin for exactly k times, h(π) be the
number of lQin in path π , and h(Π) = maxπ ∈Π h(π). Set
r (τ) = n

1−a f
Q (τ). First we show that, for any k ≥ 0, we

have for any prime Π with paths starts from lin such
thath(Π) ≤ k , and for any density operator ρ ∈ H⊗A,
the following inequality holds∑

π ∈Π

Eπ (ρ) − E ′
π (ρ)

1

≤2
Eτ0 − E ′

τ0

⋄
+ 2k

Eτ1 − E ′
τ1

⋄

+ 2
∑

τ ∈T\{τ0,τ1 }

k f Q (τ)
Eτ − E ′

τ

⋄
. (D.6.10)

We employ induction here. The base case is k = 0,
so the only possible path is π0 = (τ0), and the basic
inequality holds. Then we assume that the inequality
holds for k−1. ConsiderU (Π) = {C(π , 1) : π ∈ Π}. We
can apply arguments similar to the sequential case to
show the correctness, by bounding the terms inU (Π)
using the inequality (D.6.3)for Q , and bounding the
rest terms using the inductive hypothesis. Now we
show the correctness of the inequality (D.6.3) for the
while case. We employ induction on ⌊

h(Π)−1
n ⌋ to prove

that for any density operator ρ, there is∑
τ ∈T

Eπ (ρ) − E ′
π (ρ)

1 ≤ 2

∑
τ ∈T

r (τ)
Eτ − E ′

τ

⋄
. (D.6.11)

For the base case, where h(Π) < n, it is indeed the
above inequality (D.6.10). We assume that the inequal-
ity holds for k−1. The definition of (a,n)-boundedness

shows that if Ebound (ρ) = [[Q]](M1ρM
†
1), for any den-

sity operator ρ ∈ H ⊗ A, there is

tr(M1E
n
bound (ρ)M

†
1) ≤ atr(M1ρM

†
1) ≤ a. (D.6.12)

SetU (Π) = {C(π ,n) : π ∈ Π}, so there is∑
πu ∈U (Π)

tr[Eπu (ρ)] (D.6.13)

=tr[EU (Π)(ρ)] (D.6.14)

≤tr[M1E
n
bound (ρ)M

†
1] ≤ a. (D.6.15)

Thus for any ρ ∈ H ⊗ A:

∑
π ∈Π

Eπ (ρ) − E ′
π (ρ)

1 (D.6.16)

≤
∑

πu ∈U (Π)

2
Eπu − E ′

πu

⋄

+ 2
∑

πu ∈U (Π)

tr[Eπu (ρ)]
∑

πv ∈V (Π,πu)

EV (Π,πu) − E ′
V (Π,πu)

⋄

(D.6.17)

≤2
∑

πu ∈U (Π)

Eπu − E ′
πu

⋄

+ 2 ©«
∑

πu ∈U (Π)

tr[Eπu (ρ)]
ª®¬
∑
τ ∈T

r (τ)
Eτ − E ′

τ

⋄
) (D.6.18)

≤2n
Eτ1 − E ′

τ1

⋄
+

∑
τ ∈TQ

2nf Q (τ)
Eτ − E ′

τ

⋄

+ 2a
∑
τ ∈T

r (τ)
Eτ − E ′

τ

⋄

(D.6.19)

≤2
∑
τ ∈T

r (τ)
Eτ − E ′

τ

⋄
. (D.6.20)

Maximizing it over ρ ∈ H ⊗ A gives the result for
while case.

Thus we have the final result. □

D.7 Proof of Theorem 6.13
Proof of Theorem 6.13. Since the operations are linear, we
may consider an arbitrary normalized state ρ. We claim that
for any density operator ρ ∈ D(H) with unit trace, and
prime path set Π with paths from lin to l , we claim that

tr[Θρ] ≤ 1 − tr[E ′
Π(ρ)] + tr[OE ′

Π(ρ)] + ∥EΠ − E ′
Π ∥⋄.
(D.7.1)

21

Draft paper, November 22, 2019, S. Hung, Y. Peng, X. Wang, S. Zhu & X. Wu

To prove this claim, we start from the definition of invariant
without approximation, which gives:

tr[Θρ] ≤1 − tr[EΠ(ρ)] + tr[OEΠ(ρ)] (D.7.2)
=1 + tr[(O − I)E ′

Π(ρ)] + tr[(O − I)(EΠ(ρ) − E ′
Π(ρ))]
(D.7.3)

≤1 − tr[E ′
Π(ρ)] + tr[OE ′

Π(ρ)] +
1
2
EΠ(ρ) − E ′

Π(ρ)

1
(D.7.4)

≤1 − tr[E ′
Π(ρ)] + tr[OE ′

Π(ρ)] + ∥EΠ − E ′
Π ∥⋄.

(D.7.5)

This gives the proof of the claim. Then directly applying
Lemma 6.12 shows the correctness of the theorem. □

D.8 Proof of Lemma 6.8
Proof of Lemma 6.8. We claim that for any finite prime path
set Π starting at lin , there is

∑
π ∈Π

E ′∗
π (I − η(lπ)) ⊑ I − η(lin) +

∑
π ∈P (Π)

E ′∗
π \{τπ }

(δτπ I).

(D.8.1)

Here for path π , P(π) is the set of π ’s non-empty prefixes,
and P(Π) = ∪π ∈ΠP(π). τπ is the ending transition in the path
π , and π\{τπ } the path π without the last transition.
Following [44], we define the length of the path as h(π),

and h(Π) = maxπ ∈Π h(π).We prove this result by induction
on h(Π). For the base case, h(Π) = 0, hence Π = ϕ. By
0 ⊑ η(lin) ⊑ I , the ineqaulity holds. Now consider the case
that h(Π) = k + 1. Then Π can be decomposed as Π = ∆ ∪(
∪σ :h(σ)=kΠσ

)
, where h(∆) = k , σ is a valid path, and Πσ ⊂

Π contains all the paths whose prefix is σ . For any σ , we
have

I − η(lσ) ⊒
∑
τ ∈Ωlσ

E∗
τ (I − η(lτ)) (D.8.2)

⊒
∑
π ∈Πσ

E∗
τπ (I − η(lπ)) (D.8.3)

⊒
∑
π ∈Πσ

(
E ′∗
τπ (I − η(lπ)) − δτπ I

)
. (D.8.4)

E ′∗
σ (I − η(lσ)) ⊒

∑
π ∈Πσ

(
E ′∗
π (I − η(lπ)) − E ′∗

σ (δτπ I)
)
. (D.8.5)

Notice that ∆ has no intersection with Σ = {σ : h(σ) =
k,Πσ ,} becauseΠ is prime, and P(Π) = P(∆∪Σ)∪(∪σ ∈ΣΠσ) .

By inductive hypothesis, we know

I − η(lin) ⊒
∑
π ∈∆

E ′∗
π (I − η(lπ)) +

∑
σ ∈Σ

E ′∗
σ (I − η(lσ))

−
∑

π ∈P (∆∪Σ)

E ′∗
π \{τπ }

(δτπ I) (D.8.6)

⊒
∑
π ∈Π

E ′∗
π (I − η(lπ)) −

∑
σ ∈Σ

∑
π ∈Πσ

E ′∗
σ (δτπ I)

−
∑

π ∈P (∆∪Σ)

E ′∗
π \{τπ }

(δτπ I) (D.8.7)

⊒
∑
π ∈Π

E ′∗
π (I − η(lπ)) −

∑
π ∈P (Π)

E ′∗
π \{τ }(δτπ I).

(D.8.8)

Then we show for any l , any finite prime path set Π from
lin to l , there is

∑
π ∈P (Π)

E ′∗
π \{τπ }

(δτπ I) ⊑
∑
τ ∈Tl

r ′(τ)δτ I . (D.8.9)

Following the definition of repetition function, we prove
it by inductino on the generation of SVTS. In the proof of
Lemma 6.12, we have showed Tlout = T within the genera-
tion of SVTS. Notice that if we retrieve the final observable
of the inductive assertion map for the intermediate locations
in the generation, it still keeps the property of inductive
assertion map in the intermediate state, so we can apply it
with our generation.

• P ≡ skip, q̄ := U [q̄],q := |0⟩: There is one transition,
so the inequality holds naturally.

• P ≡ P1; P2: Let S1,S2 be the SVTSs for P1, P2, and
r1, r2 be the repetition functions for P1, P2. If l ∈ L1,
then inductive hypothesis concludes it. To prove the
inequality when l ∈ L2, consider a prime path set Π.
For any π ∈ Π, there is only one occurence of lP1

out . We
divide the path set with lP1

out . Let Π = ∆ ∪ (∪σ ∈ΣΠσ),
where Σ is the prefixes ofΠ ending at lP1

out , andΠσ ⊆ Π
is set of paths whose prefixes include σ , and deleting
σ at the beginning. Then for any σ , by the inductive
hypothesis in S2, there is

∑
π ∈P (Πσ)

E ′∗
σ E

′∗
π \{τπ }

(δτπ I) (D.8.10)

⊒
∑

π ∈P (Πσ)

(
E ′∗
σ E

′∗
π \τπ (δτπ I) − r ′(τπ)δτπ E

′∗
σ (I)

)
(D.8.11)

22

Invariant-based Verification of Quantum Programs Draft paper, November 22, 2019,

With the inductive hypothesis in S1, we get∑
π ∈P (Π)

E ′∗
π \{τπ }

(δτπ I) (D.8.12)

⊑
∑

π ∈P (∆∪Σ)

E ′∗
π \{τπ }

(δτπ I) +
∑
σ ∈Σ

∑
π ∈P (Πσ)

E ′∗
σ E

′∗
π \{τπ }

(δτπ I)

(D.8.13)

⊑
∑
τ ∈TP1

r ′1(τ)δτ I +
∑
σ ∈Σ

E ′∗
σ (

∑
τ ∈TP2

l

r ′2(τ)δτ I) (D.8.14)

⊑
∑
τ ∈Tl

r ′(τ)δτ I . (D.8.15)

• P ≡ case (M[q] = m → Pm) end: In this case, any
path π in a prime path set Π from lin to lout starts with
a choice of branches. If l = lin , then the inequality
holds trivially. If l < {lin , lout }, then with it is the same
case as sequential case. Thus the only non-trivial case
is l = lout . Denote the set of transitions outgoint from
lin as Out , the subset of Π with path starting with τ
as Πτ . We delete the first occurence of τ in Πτ for
convecience. Hence∑

π ∈P (Π)

E ′∗
π \{τπ }

(δτπ I) (D.8.16)

⊑
∑

τ ∈Out

E ′∗
τ

©«
∑

π ∈P (Πτ)

E ′∗
π \{τπ }

(δτπ I)
ª®¬ (D.8.17)

⊑
∑
τ ∈T

r ′(τ)δτ I . (D.8.18)

• P ≡ whileM[q̄] = 1 do Q done. Similar to the corre-
sponding case in Lemma 6.12, we let τ0 be the tran-
sition with measurement result 0 starting from lin ,
and τ1 be the one with measurement result 1. We
let C(π ,k) be the prefix of π that reaches lQin for ex-
actly k times, h(π) be the number of lQin in path π , and
h(Π) = maxπ ∈Π h(π).
First we show that, for any k ≥ 0, we have for any
prime Π with paths starts from lin such that h(Π) ≤ k ,
there is∑

π ∈P (Π)

E ′∗
π \{τπ }

(δτπ I) ⊑ δτ0 + kδτ1 +
∑
τ ∈TQ

krQ (τ)δτ I

(D.8.19)

This inequality is the same as the sequential case ap-
plying for k times. Then we move on to the main in-
equality. We employ induction on ⌊

h(Π)−1
n ⌋ to prove

that for any prime path set Π, there is∑
π ∈P (Π)

E ′∗
π \{τπ }

(δτπ I) ⊑ δτ0 +
n

1 − a
δτ1 +

∑
τ ∈TQ

n

1 − a
rQ (τ)δτ I .

(D.8.20)

For the base case, where h(Π) < n, it is the previous
inequality. We assume that the inequality holds for

k − 1. The definition of (a,n)-boundedness shows that
if Ebound (ρ) = [[Q]](M1ρM

†
1) there is

(E∗
bound)

nE∗
M1

(I) ⊑ aE∗
M1

(I). (D.8.21)

Set U (Π) = {C(π ,n) : π ∈ Π}, we can divide Π into
two parts: ∆ to be those π wth h(π) < n, and the
rest with their prefixes inU (Π). This is similar to the
sequential case.∑

π ∈P (Π)

E ′∗
π \{τπ }

(δτπ I) (D.8.22)

⊑
∑
π ∈∆

E ′∗
π \τπ (δτπ I) +

∑
σ ∈U (Π)

E ′∗
σ

(∑
π ∈Πσ

E ′∗
π \τπ (δτπ I)

)
(D.8.23)

⊑δτ0 + nδτ1 +
∑
τ ∈TQ

nrQ (τ)δτ I + a
∑
π ∈Πσ

E ′∗
M1

E ′∗
π \τπ (δτπ I)

(D.8.24)

⊑δτ0 +
n

1 − a
δτ1 +

∑
τ ∈TQ

n

1 − a
rQ (τ)δτ I (D.8.25)

=
∑
τ ∈T

r ′(τ)δτ I . (D.8.26)

This concludes the proof. □

E Test cases of RUS programs
In our experiment in Section 7, we implement the unitary
W , defined in (3.2.2), with the following quantum circuits.
The test cases are randomly taken from the combination of
the database of [28]. For each circuit, the zero state |0⟩ spec-
ifies the qubits to reset in the beginning and the reflection
operator in the loop body. The measurement specifies the
condition of termination of the while loop.

E.1 The testcase rus2

|0⟩ H T • H • T H

E.2 The testcase rus3

|0⟩ H • • H

|0⟩ H • • H

S

E.3 Experiment details for HS
We set up the Hamiltonian simulation with step N = 5, time
t = 0.5, a typical HamiltonianH = X⊗Z⊗I+I⊗X⊗Z+Z⊗I⊗
X in Ising model and the starting state |ψ ⟩ = |000⟩. One kind
of variations is the Trotter’s formula programTF as described
in Section 6.3. Notice that the order of sub-Hamiltonian
evolutionsmatter in TF, while by symmetrywe only consider
one order for our H : X ⊗ Z ⊗ I → I ⊗ X ⊗ Z → Z ⊗ I ⊗ X .

23

Draft paper, November 22, 2019, S. Hung, Y. Peng, X. Wang, S. Zhu & X. Wu

Another variation HSnoisy considers noisy channel in the
HS program, by adding noise N3 to the working qubits at
the end of K . Here we select random p1,p2,p3 uniformly in
[0, 0.1], and construct N3 = ⊗3

i=1(0.9I + piX + (1 − pi)Z)

as a noise, where X,Z are as described in Example 6.3. We
repeat this selection for 50 times, and present the average
statistics. Three approaches are applied and benchmarked: 1)
directly calculating the accurate invariant of the programs; 2)
ultilizing Theorem 6.9; 3) ultilizing Theorem 6.13 and direct
calculation of diamond norm. The diamond is calculated
using QETLAB [20].

24

	Abstract
	1 Introduction
	2 Preliminaries on quantum information
	2.1 Quantum states
	2.2 Evolution of a quantum system

	3 Quantum programs
	3.1 Syntax
	3.2 Examples
	3.3 Quantum Predicates and Hoare Logic

	4 Invariants of quantum programs
	4.1 Superoperator-Valued transition systems (SVTS) and Control Flow Graphs
	4.2 Additive Invariants, Inductive Assertion Maps and Semi-definite Programs

	5 Quantum Hoare logic and invariants with ancillas
	5.1 Quantum Hoare logic in the extended space
	5.2 Generation of extended invariants and Hoare triples
	5.3 Using extended Hoare triples for invariant generation

	6 Correctness and invariants with approximations
	6.1 Transferring Hoare triples to variations
	6.2 Generation of approximate correctness
	6.3 Case study: Hamiltonian simulation with Trotter's formula

	7 Evaluations
	7.1 Invariant generation by solving SDPs
	7.2 Approximate invariant generation

	Acknowledgments
	References
	A Quantum information theory
	A.1 Basic definitions and notations
	A.2 Quantum States
	A.3 Quantum Operations
	A.4 Quantum Measurements

	B The syntax and the semantics of quantum programs
	B.1 Syntax
	B.2 Operational Semantics

	C Summary of notations
	D Proofs of technical lemmas
	D.1 Proof of [lem:prime-paths]Lemma 4.3
	D.2 Proof of [thm:add-inv-correct]Theorem 4.4
	D.3 Solving the SDP in [ex:RUS]Example 3.2
	D.4 Proof of [lem:collapseproperty]Lemma 5.4
	D.5 Proof of [lem:anypost]Lemma 5.6
	D.6 Proof of [lem:pathsetbound]Lemma 6.12
	D.7 Proof of [thm:approx-add-inv-eps]Theorem 6.13
	D.8 Proof of [lem:strict-constraints]Lemma 6.8

	E Test cases of RUS programs
	E.1 The testcase rus2
	E.2 The testcase rus3
	E.3 Experiment details for HS

