
Computational Thinking toward
End-to-End Quantum Applications

Xiaodi Wu

QuICS & UMD

Ion-Trap (UMD)

Super-conducting

Experimental Comparison of Two Quantum Computing Architectures

N. M. Linke,1 D. Maslov,2, 3 M. Roetteler,4 S. Debnath,1 C.
Figgatt,1 K. A. Landsman,1 K. Wright,1 and C. Monroe1, 3, 5

1Joint Quantum Institute and Department of Physics,
University of Maryland, College Park, MD 20742

2National Science Foundation, Arlington, VA 22230
3Joint Center for Quantum Information and Computer Science,

University of Maryland, College Park, MD 20742
4Microsoft Research, Redmond, WA 98052

5IonQ, Inc., College Park, MD 20742

We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based
on di↵erent technology platforms. One is a publicly accessible superconducting transmon device [1]
with limited connectivity, and the other is a fully connected trapped-ion system [2]. Even though the
two systems have di↵erent native quantum interactions, both can be programmed in a way that is
blind to the underlying hardware, thus allowing the first comparison of identical quantum algorithms
between di↵erent physical systems. We show that quantum algorithms and circuits that employ more
connectivity clearly benefit from a better connected system of qubits. While the quantum systems
here are not yet large enough to eclipse classical computers, this experiment exposes critical factors
of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the
results suggest that co-designing particular quantum applications with the hardware itself will be
paramount in successfully using quantum computers in the future.

Inspired by the vast computing power a universal quan-
tum computer could o↵er, several candidate systems
are being explored. They have allowed experimental
demonstrations of quantum gates, operations, and algo-
rithms of ever increasing sophistication. Recently, two ar-
chitectures, superconducting transmon qubits [3–7] and
trapped ions [2, 8], have reached a new level of matu-
rity. They have become fully programmable multi-qubit
machines that provide the user with the flexibility to im-
plement arbitrary quantum circuits from a high-level in-
terface. This makes it possible for the first time to test
quantum computers irrespective of their particular phys-
ical implementation.

While the quantum computers considered here are still
small scale and their capabilities do not currently reach
beyond small demonstration algorithms, this line of in-
quiry can still provide useful insights into the perfor-
mance of existing systems and the role of architecture
in quantum computer design. These will be crucial for
the realization of more advanced future incarnations of
the present technologies.

The standard abstract model of quantum computa-
tion assumes that interactions between arbitrary pairs
of qubits are available. However, physical architectures
will in general have certain constraints on qubit connec-
tivity, such as nearest-neighbor couplings only. These re-
strictions do not in principle limit the ability to perform
arbitrary computations, since SWAP operations may be
used to e↵ect gates between arbitrary qubits using the
connections available. For a general circuit, reducing a
fully-connected system to the more sparse star-shaped or
linear nearest-neighbor connectivity requires an increase
in the number of gates of O(n), where n is the number

(a) 4

5

3

2

1

FIG. 1. Graphic representations of the two systems: (a) the
superconducting qubits connected by microwave resonators
(Credit: IBM Research), and (b) the linear chain of trapped
ions connected by laser-mediated interactions. Insets: Qubit
connectivity graphs, (a) star-shaped and (b) fully connected.

of qubits [9]. How much overhead is incurred in practice
depends on the connections used in a particular circuit
and how e�ciently they can be matched to the physical
qubit-to-qubit interaction graph.

In this article, we make use of the public access re-
cently granted by IBM to a 5-qubit superconducting de-
vice (illustrated in fig.1(a)) via their “Quantum Experi-
ence” cloud service [1]. This allows us to repeat algo-
rithms that we perform in our own ion trap experiment
on an independent quantum computer of identical size
and comparable capability but with a di↵erent physical
implementation at its core.

ar
X

iv
:1

70
2.

01
85

2v
1

 [q
ua

nt
-p

h]
 7

 F
eb

 2
01

7

IBMGoogle

(2012)

(2017)

(2019)

Google Supremacy: RCS (2019) USTC: Boson Sampling (2020)

Computational Thinking

34 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

modularizing something in anticipation of multiple
users or prefetching and caching in anticipation of
future use.

Computational thinking is thinking in terms of
prevention, protection, and recovery from worst-case
scenarios through redundancy, damage containment,
and error correction. It is calling gridlock deadlock
and contracts interfaces. It is learning to avoid race
conditions when synchronizing meetings with one
another.

Computational thinking is using heuristic reason-
ing to discover a solution. It is planning, learning,
and scheduling in the presence of uncertainty. It is
search, search, and more search, resulting in a list of

Web pages, a strategy for winning a game, or a coun-
terexample. Computational thinking is using massive
amounts of data to speed up computation. It is mak-
ing trade-offs between time and space and between
processing power and storage capacity.

Consider these everyday examples: When your
daughter goes to school in the morning, she puts in
her backpack the things she needs for the day; that’s
prefetching and caching. When your son loses his
mittens, you suggest he retrace his steps; that’s back-
tracking. At what point do you stop renting skis and
buy yourself a pair?; that’s online algorithms. Which
line do you stand in at the supermarket?; that’s per-
formance modeling for multi-server systems. Why
does your telephone still work during a power out-
age?; that’s independence of failure and redundancy
in design. How do Completely Automated Public
Turing Test(s) to Tell Computers and Humans
Apart, or CAPTCHAs, authenticate humans?; that’s
exploiting the difficulty of solving hard AI problems
to foil computing agents.

Computational thinking will have become
ingrained in everyone’s lives when words like algo-
rithm and precondition are part of everyone’s vocab-

ulary; when nondeterminism and garbage collection
take on the meanings used by computer scientists;
and when trees are drawn upside down.

We have witnessed the influence of computa-
tional thinking on other disciplines. For example,
machine learning has transformed statistics. Statisti-
cal learning is being used for problems on a scale, in
terms of both data size and dimension, unimagin-
able only a few years ago. Statistics departments in
all kinds of organizations are hiring computer scien-
tists. Schools of computer science are embracing
existing or starting up new statistics departments.

Computer scientists’ recent interest in biology is
driven by their belief that biologists can benefit

from computational thinking. Computer science’s
contribution to biology goes beyond the ability to
search through vast amounts of sequence data look-
ing for patterns. The hope is that data structures
and algorithms—our computational abstractions
and methods—can represent the structure of pro-
teins in ways that elucidate their function. Compu-
tational biology is changing the way biologists
think. Similarly, computational game theory is
changing the way economists think; nanocomput-
ing, the way chemists think; and quantum comput-
ing, the way physicists think.

This kind of thinking will be part of the skill set
of not only other scientists but of everyone else.
Ubiquitous computing is to today as computational
thinking is to tomorrow. Ubiquitous computing was
yesterday’s dream that became today’s reality; com-
putational thinking is tomorrow’s reality.

WHAT IT IS, AND ISN’T
Computer science is the study of computation—
what can be computed and how to compute it.
Computational thinking thus has the following
characteristics:

Viewpoint

Thinking like a computer scientist means more than being able to
program a computer. It requires thinking at multiple levels of abstraction.

- Jeannette M. Wing, “Computational Thinking”, CACM Viewpoint, March 2006

Computational Thinking

34 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

modularizing something in anticipation of multiple
users or prefetching and caching in anticipation of
future use.

Computational thinking is thinking in terms of
prevention, protection, and recovery from worst-case
scenarios through redundancy, damage containment,
and error correction. It is calling gridlock deadlock
and contracts interfaces. It is learning to avoid race
conditions when synchronizing meetings with one
another.

Computational thinking is using heuristic reason-
ing to discover a solution. It is planning, learning,
and scheduling in the presence of uncertainty. It is
search, search, and more search, resulting in a list of

Web pages, a strategy for winning a game, or a coun-
terexample. Computational thinking is using massive
amounts of data to speed up computation. It is mak-
ing trade-offs between time and space and between
processing power and storage capacity.

Consider these everyday examples: When your
daughter goes to school in the morning, she puts in
her backpack the things she needs for the day; that’s
prefetching and caching. When your son loses his
mittens, you suggest he retrace his steps; that’s back-
tracking. At what point do you stop renting skis and
buy yourself a pair?; that’s online algorithms. Which
line do you stand in at the supermarket?; that’s per-
formance modeling for multi-server systems. Why
does your telephone still work during a power out-
age?; that’s independence of failure and redundancy
in design. How do Completely Automated Public
Turing Test(s) to Tell Computers and Humans
Apart, or CAPTCHAs, authenticate humans?; that’s
exploiting the difficulty of solving hard AI problems
to foil computing agents.

Computational thinking will have become
ingrained in everyone’s lives when words like algo-
rithm and precondition are part of everyone’s vocab-

ulary; when nondeterminism and garbage collection
take on the meanings used by computer scientists;
and when trees are drawn upside down.

We have witnessed the influence of computa-
tional thinking on other disciplines. For example,
machine learning has transformed statistics. Statisti-
cal learning is being used for problems on a scale, in
terms of both data size and dimension, unimagin-
able only a few years ago. Statistics departments in
all kinds of organizations are hiring computer scien-
tists. Schools of computer science are embracing
existing or starting up new statistics departments.

Computer scientists’ recent interest in biology is
driven by their belief that biologists can benefit

from computational thinking. Computer science’s
contribution to biology goes beyond the ability to
search through vast amounts of sequence data look-
ing for patterns. The hope is that data structures
and algorithms—our computational abstractions
and methods—can represent the structure of pro-
teins in ways that elucidate their function. Compu-
tational biology is changing the way biologists
think. Similarly, computational game theory is
changing the way economists think; nanocomput-
ing, the way chemists think; and quantum comput-
ing, the way physicists think.

This kind of thinking will be part of the skill set
of not only other scientists but of everyone else.
Ubiquitous computing is to today as computational
thinking is to tomorrow. Ubiquitous computing was
yesterday’s dream that became today’s reality; com-
putational thinking is tomorrow’s reality.

WHAT IT IS, AND ISN’T
Computer science is the study of computation—
what can be computed and how to compute it.
Computational thinking thus has the following
characteristics:

Viewpoint

Thinking like a computer scientist means more than being able to
program a computer. It requires thinking at multiple levels of abstraction.

- Jeannette M. Wing, “Computational Thinking”, CACM Viewpoint, March 2006

Two A’s for Computational Thinking

First A - Abstractions: “metal” tools

Second A - Automation: mechanizing

 abstractions and their relationships

Computational Thinking

34 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

modularizing something in anticipation of multiple
users or prefetching and caching in anticipation of
future use.

Computational thinking is thinking in terms of
prevention, protection, and recovery from worst-case
scenarios through redundancy, damage containment,
and error correction. It is calling gridlock deadlock
and contracts interfaces. It is learning to avoid race
conditions when synchronizing meetings with one
another.

Computational thinking is using heuristic reason-
ing to discover a solution. It is planning, learning,
and scheduling in the presence of uncertainty. It is
search, search, and more search, resulting in a list of

Web pages, a strategy for winning a game, or a coun-
terexample. Computational thinking is using massive
amounts of data to speed up computation. It is mak-
ing trade-offs between time and space and between
processing power and storage capacity.

Consider these everyday examples: When your
daughter goes to school in the morning, she puts in
her backpack the things she needs for the day; that’s
prefetching and caching. When your son loses his
mittens, you suggest he retrace his steps; that’s back-
tracking. At what point do you stop renting skis and
buy yourself a pair?; that’s online algorithms. Which
line do you stand in at the supermarket?; that’s per-
formance modeling for multi-server systems. Why
does your telephone still work during a power out-
age?; that’s independence of failure and redundancy
in design. How do Completely Automated Public
Turing Test(s) to Tell Computers and Humans
Apart, or CAPTCHAs, authenticate humans?; that’s
exploiting the difficulty of solving hard AI problems
to foil computing agents.

Computational thinking will have become
ingrained in everyone’s lives when words like algo-
rithm and precondition are part of everyone’s vocab-

ulary; when nondeterminism and garbage collection
take on the meanings used by computer scientists;
and when trees are drawn upside down.

We have witnessed the influence of computa-
tional thinking on other disciplines. For example,
machine learning has transformed statistics. Statisti-
cal learning is being used for problems on a scale, in
terms of both data size and dimension, unimagin-
able only a few years ago. Statistics departments in
all kinds of organizations are hiring computer scien-
tists. Schools of computer science are embracing
existing or starting up new statistics departments.

Computer scientists’ recent interest in biology is
driven by their belief that biologists can benefit

from computational thinking. Computer science’s
contribution to biology goes beyond the ability to
search through vast amounts of sequence data look-
ing for patterns. The hope is that data structures
and algorithms—our computational abstractions
and methods—can represent the structure of pro-
teins in ways that elucidate their function. Compu-
tational biology is changing the way biologists
think. Similarly, computational game theory is
changing the way economists think; nanocomput-
ing, the way chemists think; and quantum comput-
ing, the way physicists think.

This kind of thinking will be part of the skill set
of not only other scientists but of everyone else.
Ubiquitous computing is to today as computational
thinking is to tomorrow. Ubiquitous computing was
yesterday’s dream that became today’s reality; com-
putational thinking is tomorrow’s reality.

WHAT IT IS, AND ISN’T
Computer science is the study of computation—
what can be computed and how to compute it.
Computational thinking thus has the following
characteristics:

Viewpoint

Thinking like a computer scientist means more than being able to
program a computer. It requires thinking at multiple levels of abstraction.

- Jeannette M. Wing, “Computational Thinking”, CACM Viewpoint, March 2006

Two A’s for Computational Thinking

First A - Abstractions: “metal” tools

Second A - Automation: mechanizing

 abstractions and their relationships

Computing: Automation of Abstractions
- They give us the audacity and ability to scale

Computational Thinking

34 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

modularizing something in anticipation of multiple
users or prefetching and caching in anticipation of
future use.

Computational thinking is thinking in terms of
prevention, protection, and recovery from worst-case
scenarios through redundancy, damage containment,
and error correction. It is calling gridlock deadlock
and contracts interfaces. It is learning to avoid race
conditions when synchronizing meetings with one
another.

Computational thinking is using heuristic reason-
ing to discover a solution. It is planning, learning,
and scheduling in the presence of uncertainty. It is
search, search, and more search, resulting in a list of

Web pages, a strategy for winning a game, or a coun-
terexample. Computational thinking is using massive
amounts of data to speed up computation. It is mak-
ing trade-offs between time and space and between
processing power and storage capacity.

Consider these everyday examples: When your
daughter goes to school in the morning, she puts in
her backpack the things she needs for the day; that’s
prefetching and caching. When your son loses his
mittens, you suggest he retrace his steps; that’s back-
tracking. At what point do you stop renting skis and
buy yourself a pair?; that’s online algorithms. Which
line do you stand in at the supermarket?; that’s per-
formance modeling for multi-server systems. Why
does your telephone still work during a power out-
age?; that’s independence of failure and redundancy
in design. How do Completely Automated Public
Turing Test(s) to Tell Computers and Humans
Apart, or CAPTCHAs, authenticate humans?; that’s
exploiting the difficulty of solving hard AI problems
to foil computing agents.

Computational thinking will have become
ingrained in everyone’s lives when words like algo-
rithm and precondition are part of everyone’s vocab-

ulary; when nondeterminism and garbage collection
take on the meanings used by computer scientists;
and when trees are drawn upside down.

We have witnessed the influence of computa-
tional thinking on other disciplines. For example,
machine learning has transformed statistics. Statisti-
cal learning is being used for problems on a scale, in
terms of both data size and dimension, unimagin-
able only a few years ago. Statistics departments in
all kinds of organizations are hiring computer scien-
tists. Schools of computer science are embracing
existing or starting up new statistics departments.

Computer scientists’ recent interest in biology is
driven by their belief that biologists can benefit

from computational thinking. Computer science’s
contribution to biology goes beyond the ability to
search through vast amounts of sequence data look-
ing for patterns. The hope is that data structures
and algorithms—our computational abstractions
and methods—can represent the structure of pro-
teins in ways that elucidate their function. Compu-
tational biology is changing the way biologists
think. Similarly, computational game theory is
changing the way economists think; nanocomput-
ing, the way chemists think; and quantum comput-
ing, the way physicists think.

This kind of thinking will be part of the skill set
of not only other scientists but of everyone else.
Ubiquitous computing is to today as computational
thinking is to tomorrow. Ubiquitous computing was
yesterday’s dream that became today’s reality; com-
putational thinking is tomorrow’s reality.

WHAT IT IS, AND ISN’T
Computer science is the study of computation—
what can be computed and how to compute it.
Computational thinking thus has the following
characteristics:

Viewpoint

Thinking like a computer scientist means more than being able to
program a computer. It requires thinking at multiple levels of abstraction.

- Jeannette M. Wing, “Computational Thinking”, CACM Viewpoint, March 2006

Two A’s for Computational Thinking

First A - Abstractions: “metal” tools

Second A - Automation: mechanizing

 abstractions and their relationships

Computing: Automation of Abstractions
- They give us the audacity and ability to scale

Computational Thinking
 - choosing the right abstractions

 - choosing the right automation or “computer”

Computational Thinking: everywhere!

11CT&TC Jeannette M. Wing

CT in Other Sciences, Math, and Engineering

Biology
- Shotgun algorithm expedites sequencing
of human genome
- DNA sequences are strings in a language
- Protein structures can be modeled as knots
- Protein kinetics can be modeled as computational processes
- Cells as a self-regulatory system are like electronic circuits

Brain Science
- Modeling the brain as a computer
- Vision as a feedback loop
- Analyzing fMRI data with machine learning

Biology: DNA sequencing

Protein structures, …

12CT&TC Jeannette M. Wing

CT in Other Sciences, Math, and Engineering

[York, Minnesota]

Chemistry [Madden, Fellow of Royal Society of Edinburgh]
- Atomistic calculations are used to explore

chemical phenomena
- Optimization and searching algorithms identify

best chemicals for improving reaction
conditions to improve yields

Geology
- Modeling the earth’s surface to the sun,

from the inner core to the surface
- Abstraction boundaries and hierarchies of

complexity model the earth and our atmosphere

Chemistry: atomistic calculation,

optimization over reaction conditions …

Astronomy: Sloan Digital Sky Server, …

13CT&TC Jeannette M. Wing

CT in Other Sciences, Math, and Engineering
Astronomy

- Sloan Digital Sky Server brings a telescope
to every child

- KD-trees help astronomers analyze very large
multi-dimensional datasets

Engineering (electrical, civil,mechanical, aero&astro, …)
- Calculating higher order terms implies

more precision, which implies reducing
weight, waste, costs in fabrication

- Boeing 777 tested via computer simulation alone,
not in a wind tunnel

Mathematics
- Discovering E8 Lie Group:

18 mathematicians, 4 years and 77 hours of
supercomputer time (200 billion numbers).
Profound implications for physics (string theory)

- Four-color theorem proof

Mathematics: E8 Lie group,

four-color theorem proof

14CT&TC Jeannette M. Wing

CT for Society

Economics
- Automated mechanism design underlies

electronic commerce, e.g., ad placement,
on-line auctions, kidney exchange

- MIT PhDs in CS are quants on Wall Street

Social Sciences
- Social networks explain phenomena such

as MySpace, YouTube
- Statistical machine learning is used for

recommendation and reputation services,
e.g., Netflix, affinity card

Economics: Automated mechanism design

MANY MORE :
 - social science
 - medicine
 - art
 - law
 - entertainment
 - sports
 - …

- Jeannette M. Wing, “Computational Thinking”, CACM Viewpoint, March 2006

Computational Thinking in Quantum Computing

How difficult is the problem and how best can
I solve it with quantum computers?

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity

How difficult is the problem and how best can
I solve it with quantum computers?

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods

How difficult is the problem and how best can
I solve it with quantum computers?

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods

How to effectively express quantum
applications and do trouble shooting?

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

How to effectively express quantum
applications and do trouble shooting?

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

How to effectively translate high-level
descriptions of quantum applications
to quantum machine instructions?

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

How to effectively translate high-level
descriptions of quantum applications
to quantum machine instructions?

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

How to optimize the manipulation of
quantum machines in terms of metrics
like noise, power, …?

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

How to optimize the manipulation of
quantum machines in terms of metrics
like noise, power, …?

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

How to automate the design of quantum
devices and its verification?

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

Quantum Hardware
Design

How to automate the design of quantum
devices and its verification?

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

Quantum Hardware
Design

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

Quantum Hardware
Design

Quantum Network

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

Quantum Hardware
Design

Quantum Network

Security
Cryptography

Quantum Cryptography

Post-Quantum Cryptography

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

Quantum Hardware
Design

Quantum Network

Security
Cryptography

Quantum Cryptography

Post-Quantum Cryptography

END-TO-END
QUANTUM

APPLICATIONS

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

Quantum Hardware
Design

Quantum Network

Security
Cryptography

Quantum Cryptography

Post-Quantum Cryptography

END-TO-END
QUANTUM

APPLICATIONS

Certified
Quantum
Software

Tool
chain

(Practical) Verification of
Quantum Computation

Provable Quantum Speedups
in optimization, machine learning

Quantum Generative Models
Q. Neuro-Symbolic Applications

Q. Program Analysis & Verification
Differentiable QPL

Meta-
Program
Scheme

-
tradeoffs
between

errors
and

resources Quantum Pulse Engineering Q. Hardware Description Language
Computer-aided Q. Design

Q. Localization and Synchronization
Networks

Mechanized and Automatic
Quantum Security Analysis

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

Quantum Hardware
Design

Quantum Network

Security
Cryptography

Quantum Cryptography

Post-Quantum Cryptography

END-TO-END
QUANTUM

APPLICATIONS

Certified
Quantum
Software

Tool
chain

(Practical) Verification of
Quantum Computation

Provable Quantum Speedups
in optimization, machine learning

Quantum Generative Models
Q. Neuro-Symbolic Applications

Q. Program Analysis & Verification
Differentiable QPL

Meta-
Program
Scheme

-
tradeoffs
between

errors
and

resources Quantum Pulse Engineering Q. Hardware Description Language
Computer-aided Q. Design

Q. Localization and Synchronization
Networks

Mechanized and Automatic
Quantum Security Analysis

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

Quantum Hardware
Design

Quantum Network

Security
Cryptography

Quantum Cryptography

Post-Quantum Cryptography

END-TO-END
QUANTUM

APPLICATIONS

Certified
Quantum
Software

Tool
chain

(Practical) Verification of
Quantum Computation

Provable Quantum Speedups
in optimization, machine learning

Quantum Generative Models
Q. Neuro-Symbolic Applications

Q. Program Analysis & Verification
Differentiable QPL

Meta-
Program
Scheme

-
tradeoffs
between

errors
and

resources

Quantum Pulse Engineering Q. Hardware Description Language
Computer-aided Q. Design

Q. Localization and Synchronization
Networks

Mechanized and Automatic
Quantum Security Analysis

ERROR

ERROR

Nature

Quantum Error Correction
Fight

Quantum Decoherence

Features of NISQ Application Design
NISQ machines: very restricted hardware resources, where precisely controllable qubits
are expensive, error-prone, and scarce.

Features of NISQ Application Design
NISQ machines: very restricted hardware resources, where precisely controllable qubits
are expensive, error-prone, and scarce.

NISQ application design: investigate the best balance of trade-offs among a large
number of (potentially heterogeneous) factors specific to the targeted application and
quantum hardware.

Features of NISQ Application Design
NISQ machines: very restricted hardware resources, where precisely controllable qubits
are expensive, error-prone, and scarce.

NISQ application design: investigate the best balance of trade-offs among a large
number of (potentially heterogeneous) factors specific to the targeted application and
quantum hardware.

A Case for Multi-Programming �antum Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

3.5 Overview of the Proposed Framework
Our evaluation framework is shown in Figure 6. It accepts two
workloads W1 and W2 (equivalent to two independent jobs) and
the most recent calibration data. Depending upon the number of
qubits required for each workload, the partitioning algorithm de-
cides if they can both be executed reliably on the given quantum
computer. If there exists two regions where W1 and W2 can be
mapped and executed reliably, they are compiled together using
the qubit allocations received from the partitioning algorithm and
executed. The PST of each individual workload is calculated. The
impact on reliability of each program is computed by comparing
with the PST obtained by individually executing the same program
using the best qubit allocation (baseline).

Part i t ion ing A lgor i thm:
Locate two reliable partitions
with X and Y qubits each

Calibration DataW1 W2

Partitions
exist?

Yes Compile
W1, W2
together

Compile
W1, W2
separate

No

IBM Q16
Melbourne

Perform N trials

Compute
PST

Two partitions

W1: Workload #1
X qubits

W2: Workload #2
Y qubits

W1 PST

W2 PST

Figure 6: Overview of the proposed multi-programming
framework. The partitioning algorithm locates two reliable
regions on theNISQ computer, with X and Y qubits each. If it
can �nd two such regions, both workloads execute together.
If it is unable to locate the requested regions, it defaults to
the baseline and each benchmark is run individually

4 FAIR AND RELIABLE PARTITIONING
We advocate multi-programming NISQ computers to improve the
throughput by executing multiple programs concurrently. Since
the reliability of a NISQ application depends on the physical qubits
allocated to the program, it is important to ensure fairness while
allocating qubits to multiple programs in a shared environment.

4.1 Challenges in Fair Resource Allocation
The challenges in fair resource allocation arises from the uniqueness
of each physical qubit that is exhibited in the non-uniformity in
coherence times, gate and measurement error rates. Furthermore,
these error rates vary in time. Thus, the physical qubits allocated
to a program directly impacts its reliability [25, 40]. Compilers
account for this variation to perform qubit allocation and select
qubit movement paths to enable SWAP operations.

4.1.1 Restrictions on �bit Allocation: Multi-programming con-
strains the compiler to use a restricted set of physical qubits, limiting
its capability to optimize for greater reliability. In order to under-
stand the restrictions imposed on qubit allocation, we look at the
allocations of a 4-qubit program P1 and a 5-qubit program P2 on
a hypothetical NISQ architecture. As shown in Figure 7(a), when
mapped independently, P1 is allocated physical qubits A, B, I, and J

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

4 qubit program
allocation

5 qubit program
allocation

5 qubit program
allocation

4 qubit program
allocation

(a) (b)

Figure 7: (a) Qubit allocation of a 4-qubit program P1 and a
5-qubit program P2. (b) Qubit allocations of P1 and P2 on a
multi-programmed NISQ computer. Each node represents a
qubit and label on each edge represents the link error rate.

whereas, P2 is allocated physical qubits A, B, C, I, and J. Figure 7(b)
shows a qubit allocation for both programs together. The average
link error rate of the regions allocated to P2 for independent exe-
cution and in the shared environment are 2.2 and 2.6 respectively.
The allocation in the shared environment is 18% weaker.

A B C

D E

B

A C

D E

Example Program
1. cnot q0, q4
2. cnot q1, q4
3. cnot q2, q4
4. cnot q3, q4

q0 q4 q1

q2 q3

q0 q1

q2 q3

q4

Number of SWAPs : 1 Number of SWAPs : 0
(b) (c)(a)

Figure 8: (a) An example NISQ program (b) this topology re-
quires 1 SWAP to perform Instruction 4 (c) this topology does
not require any extra SWAP to execute the program

4.1.2 Restrictions on �bit Movement: Application reliability not
only depends on qubit allocation, but also depends on program
characteristics and network topology of the allocated region. A
well-connected region can minimize the total cost of SWAPs in-
serted to bring two non-adjacent qubits physically next to each
other so that a CNOT gate can be executed. For instance, Figure 8
shows a program that executes 4 CNOT instructions and two possi-
ble network topologies. In the partition shown in Figure 8(b), the
compiler needs to insert a SWAP operation in order to perform the
4th CNOT instruction. However, a better connected region as shown
in Figure 8(c) requires lesser number of SWAPs (in this case 0). When
a quantum computer is partitioned for multi-programming, applica-
tion reliability can vary based upon the number of SWAPs inserted.
This depends on the network topology of the assigned partition.

4.2 Qubit Allocation for Multi-programs
We study the average 2-qubit gate error rate on each physical link
and measurement error rates for each qubit of IBM Q16 as shown
in Figure 9.2 We make two key observations:
• Not all good links are spatially co-located. A region with good
links has weak links as well. For example, qubits Q2 and Q12 have
two links each with error rates of 4%, but the link that connects
them physically has an error rate of 17%.

2Error rates in this Figure are based on calibration data collected on 03.14.2018

Multi-Programming (MICRO 2019) :

Features of NISQ Application Design
NISQ machines: very restricted hardware resources, where precisely controllable qubits
are expensive, error-prone, and scarce.

NISQ application design: investigate the best balance of trade-offs among a large
number of (potentially heterogeneous) factors specific to the targeted application and
quantum hardware.

A Case for Multi-Programming �antum Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

3.5 Overview of the Proposed Framework
Our evaluation framework is shown in Figure 6. It accepts two
workloads W1 and W2 (equivalent to two independent jobs) and
the most recent calibration data. Depending upon the number of
qubits required for each workload, the partitioning algorithm de-
cides if they can both be executed reliably on the given quantum
computer. If there exists two regions where W1 and W2 can be
mapped and executed reliably, they are compiled together using
the qubit allocations received from the partitioning algorithm and
executed. The PST of each individual workload is calculated. The
impact on reliability of each program is computed by comparing
with the PST obtained by individually executing the same program
using the best qubit allocation (baseline).

Part i t ion ing A lgor i thm:
Locate two reliable partitions
with X and Y qubits each

Calibration DataW1 W2

Partitions
exist?

Yes Compile
W1, W2
together

Compile
W1, W2
separate

No

IBM Q16
Melbourne

Perform N trials

Compute
PST

Two partitions

W1: Workload #1
X qubits

W2: Workload #2
Y qubits

W1 PST

W2 PST

Figure 6: Overview of the proposed multi-programming
framework. The partitioning algorithm locates two reliable
regions on theNISQ computer, with X and Y qubits each. If it
can �nd two such regions, both workloads execute together.
If it is unable to locate the requested regions, it defaults to
the baseline and each benchmark is run individually

4 FAIR AND RELIABLE PARTITIONING
We advocate multi-programming NISQ computers to improve the
throughput by executing multiple programs concurrently. Since
the reliability of a NISQ application depends on the physical qubits
allocated to the program, it is important to ensure fairness while
allocating qubits to multiple programs in a shared environment.

4.1 Challenges in Fair Resource Allocation
The challenges in fair resource allocation arises from the uniqueness
of each physical qubit that is exhibited in the non-uniformity in
coherence times, gate and measurement error rates. Furthermore,
these error rates vary in time. Thus, the physical qubits allocated
to a program directly impacts its reliability [25, 40]. Compilers
account for this variation to perform qubit allocation and select
qubit movement paths to enable SWAP operations.

4.1.1 Restrictions on �bit Allocation: Multi-programming con-
strains the compiler to use a restricted set of physical qubits, limiting
its capability to optimize for greater reliability. In order to under-
stand the restrictions imposed on qubit allocation, we look at the
allocations of a 4-qubit program P1 and a 5-qubit program P2 on
a hypothetical NISQ architecture. As shown in Figure 7(a), when
mapped independently, P1 is allocated physical qubits A, B, I, and J

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

4 qubit program
allocation

5 qubit program
allocation

5 qubit program
allocation

4 qubit program
allocation

(a) (b)

Figure 7: (a) Qubit allocation of a 4-qubit program P1 and a
5-qubit program P2. (b) Qubit allocations of P1 and P2 on a
multi-programmed NISQ computer. Each node represents a
qubit and label on each edge represents the link error rate.

whereas, P2 is allocated physical qubits A, B, C, I, and J. Figure 7(b)
shows a qubit allocation for both programs together. The average
link error rate of the regions allocated to P2 for independent exe-
cution and in the shared environment are 2.2 and 2.6 respectively.
The allocation in the shared environment is 18% weaker.

A B C

D E

B

A C

D E

Example Program
1. cnot q0, q4
2. cnot q1, q4
3. cnot q2, q4
4. cnot q3, q4

q0 q4 q1

q2 q3

q0 q1

q2 q3

q4

Number of SWAPs : 1 Number of SWAPs : 0
(b) (c)(a)

Figure 8: (a) An example NISQ program (b) this topology re-
quires 1 SWAP to perform Instruction 4 (c) this topology does
not require any extra SWAP to execute the program

4.1.2 Restrictions on �bit Movement: Application reliability not
only depends on qubit allocation, but also depends on program
characteristics and network topology of the allocated region. A
well-connected region can minimize the total cost of SWAPs in-
serted to bring two non-adjacent qubits physically next to each
other so that a CNOT gate can be executed. For instance, Figure 8
shows a program that executes 4 CNOT instructions and two possi-
ble network topologies. In the partition shown in Figure 8(b), the
compiler needs to insert a SWAP operation in order to perform the
4th CNOT instruction. However, a better connected region as shown
in Figure 8(c) requires lesser number of SWAPs (in this case 0). When
a quantum computer is partitioned for multi-programming, applica-
tion reliability can vary based upon the number of SWAPs inserted.
This depends on the network topology of the assigned partition.

4.2 Qubit Allocation for Multi-programs
We study the average 2-qubit gate error rate on each physical link
and measurement error rates for each qubit of IBM Q16 as shown
in Figure 9.2 We make two key observations:
• Not all good links are spatially co-located. A region with good
links has weak links as well. For example, qubits Q2 and Q12 have
two links each with error rates of 4%, but the link that connects
them physically has an error rate of 17%.

2Error rates in this Figure are based on calibration data collected on 03.14.2018

Multi-Programming (MICRO 2019) :

Competing Goals:
 (1) Fully leverage qubits & Shorten the total execution

 => Multi-Programming

 (2) High Reliability => Use the best qubits

 => Sequentially Allocate Programs

Solution: A run-time trade-off between these competing

 goals.

Features of NISQ Application Design
NISQ machines: very restricted hardware resources, where precisely controllable qubits
are expensive, error-prone, and scarce.

NISQ application design: investigate the best balance of trade-offs among a large
number of (potentially heterogeneous) factors specific to the targeted application and
quantum hardware.

A Case for Multi-Programming �antum Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

3.5 Overview of the Proposed Framework
Our evaluation framework is shown in Figure 6. It accepts two
workloads W1 and W2 (equivalent to two independent jobs) and
the most recent calibration data. Depending upon the number of
qubits required for each workload, the partitioning algorithm de-
cides if they can both be executed reliably on the given quantum
computer. If there exists two regions where W1 and W2 can be
mapped and executed reliably, they are compiled together using
the qubit allocations received from the partitioning algorithm and
executed. The PST of each individual workload is calculated. The
impact on reliability of each program is computed by comparing
with the PST obtained by individually executing the same program
using the best qubit allocation (baseline).

Part i t ion ing A lgor i thm:
Locate two reliable partitions
with X and Y qubits each

Calibration DataW1 W2

Partitions
exist?

Yes Compile
W1, W2
together

Compile
W1, W2
separate

No

IBM Q16
Melbourne

Perform N trials

Compute
PST

Two partitions

W1: Workload #1
X qubits

W2: Workload #2
Y qubits

W1 PST

W2 PST

Figure 6: Overview of the proposed multi-programming
framework. The partitioning algorithm locates two reliable
regions on theNISQ computer, with X and Y qubits each. If it
can �nd two such regions, both workloads execute together.
If it is unable to locate the requested regions, it defaults to
the baseline and each benchmark is run individually

4 FAIR AND RELIABLE PARTITIONING
We advocate multi-programming NISQ computers to improve the
throughput by executing multiple programs concurrently. Since
the reliability of a NISQ application depends on the physical qubits
allocated to the program, it is important to ensure fairness while
allocating qubits to multiple programs in a shared environment.

4.1 Challenges in Fair Resource Allocation
The challenges in fair resource allocation arises from the uniqueness
of each physical qubit that is exhibited in the non-uniformity in
coherence times, gate and measurement error rates. Furthermore,
these error rates vary in time. Thus, the physical qubits allocated
to a program directly impacts its reliability [25, 40]. Compilers
account for this variation to perform qubit allocation and select
qubit movement paths to enable SWAP operations.

4.1.1 Restrictions on �bit Allocation: Multi-programming con-
strains the compiler to use a restricted set of physical qubits, limiting
its capability to optimize for greater reliability. In order to under-
stand the restrictions imposed on qubit allocation, we look at the
allocations of a 4-qubit program P1 and a 5-qubit program P2 on
a hypothetical NISQ architecture. As shown in Figure 7(a), when
mapped independently, P1 is allocated physical qubits A, B, I, and J

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

4 qubit program
allocation

5 qubit program
allocation

5 qubit program
allocation

4 qubit program
allocation

(a) (b)

Figure 7: (a) Qubit allocation of a 4-qubit program P1 and a
5-qubit program P2. (b) Qubit allocations of P1 and P2 on a
multi-programmed NISQ computer. Each node represents a
qubit and label on each edge represents the link error rate.

whereas, P2 is allocated physical qubits A, B, C, I, and J. Figure 7(b)
shows a qubit allocation for both programs together. The average
link error rate of the regions allocated to P2 for independent exe-
cution and in the shared environment are 2.2 and 2.6 respectively.
The allocation in the shared environment is 18% weaker.

A B C

D E

B

A C

D E

Example Program
1. cnot q0, q4
2. cnot q1, q4
3. cnot q2, q4
4. cnot q3, q4

q0 q4 q1

q2 q3

q0 q1

q2 q3

q4

Number of SWAPs : 1 Number of SWAPs : 0
(b) (c)(a)

Figure 8: (a) An example NISQ program (b) this topology re-
quires 1 SWAP to perform Instruction 4 (c) this topology does
not require any extra SWAP to execute the program

4.1.2 Restrictions on �bit Movement: Application reliability not
only depends on qubit allocation, but also depends on program
characteristics and network topology of the allocated region. A
well-connected region can minimize the total cost of SWAPs in-
serted to bring two non-adjacent qubits physically next to each
other so that a CNOT gate can be executed. For instance, Figure 8
shows a program that executes 4 CNOT instructions and two possi-
ble network topologies. In the partition shown in Figure 8(b), the
compiler needs to insert a SWAP operation in order to perform the
4th CNOT instruction. However, a better connected region as shown
in Figure 8(c) requires lesser number of SWAPs (in this case 0). When
a quantum computer is partitioned for multi-programming, applica-
tion reliability can vary based upon the number of SWAPs inserted.
This depends on the network topology of the assigned partition.

4.2 Qubit Allocation for Multi-programs
We study the average 2-qubit gate error rate on each physical link
and measurement error rates for each qubit of IBM Q16 as shown
in Figure 9.2 We make two key observations:
• Not all good links are spatially co-located. A region with good
links has weak links as well. For example, qubits Q2 and Q12 have
two links each with error rates of 4%, but the link that connects
them physically has an error rate of 17%.

2Error rates in this Figure are based on calibration data collected on 03.14.2018

Multi-Programming (MICRO 2019) :

Competing Goals:
 (1) Fully leverage qubits & Shorten the total execution

 => Multi-Programming

 (2) High Reliability => Use the best qubits

 => Sequentially Allocate Programs

Solution: A run-time trade-off between these competing

 goals.

For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].

bv
3-p

ere
3

bv
3-t

off
3

bv
3-f

red
3

bv
4-b

v3

bv
4-t

off
3

bv
4-b

v3
-to

ff3

bv
3-b

v3
-bv

4

bv
3-b

v3
-fr

ed
3

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

isolated
MQCC

Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

Cross-talk:

Cross-Talk: Red
Pairs of gates
when executed
simultaneously will
cause much larger
errors.

IBMQ Boeblingen

Features of NISQ Application Design
NISQ machines: very restricted hardware resources, where precisely controllable qubits
are expensive, error-prone, and scarce.

NISQ application design: investigate the best balance of trade-offs among a large
number of (potentially heterogeneous) factors specific to the targeted application and
quantum hardware.

A Case for Multi-Programming �antum Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

3.5 Overview of the Proposed Framework
Our evaluation framework is shown in Figure 6. It accepts two
workloads W1 and W2 (equivalent to two independent jobs) and
the most recent calibration data. Depending upon the number of
qubits required for each workload, the partitioning algorithm de-
cides if they can both be executed reliably on the given quantum
computer. If there exists two regions where W1 and W2 can be
mapped and executed reliably, they are compiled together using
the qubit allocations received from the partitioning algorithm and
executed. The PST of each individual workload is calculated. The
impact on reliability of each program is computed by comparing
with the PST obtained by individually executing the same program
using the best qubit allocation (baseline).

Part i t ion ing A lgor i thm:
Locate two reliable partitions
with X and Y qubits each

Calibration DataW1 W2

Partitions
exist?

Yes Compile
W1, W2
together

Compile
W1, W2
separate

No

IBM Q16
Melbourne

Perform N trials

Compute
PST

Two partitions

W1: Workload #1
X qubits

W2: Workload #2
Y qubits

W1 PST

W2 PST

Figure 6: Overview of the proposed multi-programming
framework. The partitioning algorithm locates two reliable
regions on theNISQ computer, with X and Y qubits each. If it
can �nd two such regions, both workloads execute together.
If it is unable to locate the requested regions, it defaults to
the baseline and each benchmark is run individually

4 FAIR AND RELIABLE PARTITIONING
We advocate multi-programming NISQ computers to improve the
throughput by executing multiple programs concurrently. Since
the reliability of a NISQ application depends on the physical qubits
allocated to the program, it is important to ensure fairness while
allocating qubits to multiple programs in a shared environment.

4.1 Challenges in Fair Resource Allocation
The challenges in fair resource allocation arises from the uniqueness
of each physical qubit that is exhibited in the non-uniformity in
coherence times, gate and measurement error rates. Furthermore,
these error rates vary in time. Thus, the physical qubits allocated
to a program directly impacts its reliability [25, 40]. Compilers
account for this variation to perform qubit allocation and select
qubit movement paths to enable SWAP operations.

4.1.1 Restrictions on �bit Allocation: Multi-programming con-
strains the compiler to use a restricted set of physical qubits, limiting
its capability to optimize for greater reliability. In order to under-
stand the restrictions imposed on qubit allocation, we look at the
allocations of a 4-qubit program P1 and a 5-qubit program P2 on
a hypothetical NISQ architecture. As shown in Figure 7(a), when
mapped independently, P1 is allocated physical qubits A, B, I, and J

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

4 qubit program
allocation

5 qubit program
allocation

5 qubit program
allocation

4 qubit program
allocation

(a) (b)

Figure 7: (a) Qubit allocation of a 4-qubit program P1 and a
5-qubit program P2. (b) Qubit allocations of P1 and P2 on a
multi-programmed NISQ computer. Each node represents a
qubit and label on each edge represents the link error rate.

whereas, P2 is allocated physical qubits A, B, C, I, and J. Figure 7(b)
shows a qubit allocation for both programs together. The average
link error rate of the regions allocated to P2 for independent exe-
cution and in the shared environment are 2.2 and 2.6 respectively.
The allocation in the shared environment is 18% weaker.

A B C

D E

B

A C

D E

Example Program
1. cnot q0, q4
2. cnot q1, q4
3. cnot q2, q4
4. cnot q3, q4

q0 q4 q1

q2 q3

q0 q1

q2 q3

q4

Number of SWAPs : 1 Number of SWAPs : 0
(b) (c)(a)

Figure 8: (a) An example NISQ program (b) this topology re-
quires 1 SWAP to perform Instruction 4 (c) this topology does
not require any extra SWAP to execute the program

4.1.2 Restrictions on �bit Movement: Application reliability not
only depends on qubit allocation, but also depends on program
characteristics and network topology of the allocated region. A
well-connected region can minimize the total cost of SWAPs in-
serted to bring two non-adjacent qubits physically next to each
other so that a CNOT gate can be executed. For instance, Figure 8
shows a program that executes 4 CNOT instructions and two possi-
ble network topologies. In the partition shown in Figure 8(b), the
compiler needs to insert a SWAP operation in order to perform the
4th CNOT instruction. However, a better connected region as shown
in Figure 8(c) requires lesser number of SWAPs (in this case 0). When
a quantum computer is partitioned for multi-programming, applica-
tion reliability can vary based upon the number of SWAPs inserted.
This depends on the network topology of the assigned partition.

4.2 Qubit Allocation for Multi-programs
We study the average 2-qubit gate error rate on each physical link
and measurement error rates for each qubit of IBM Q16 as shown
in Figure 9.2 We make two key observations:
• Not all good links are spatially co-located. A region with good
links has weak links as well. For example, qubits Q2 and Q12 have
two links each with error rates of 4%, but the link that connects
them physically has an error rate of 17%.

2Error rates in this Figure are based on calibration data collected on 03.14.2018

Multi-Programming (MICRO 2019) :

Competing Goals:
 (1) Fully leverage qubits & Shorten the total execution

 => Multi-Programming

 (2) High Reliability => Use the best qubits

 => Sequentially Allocate Programs

Solution: A run-time trade-off between these competing

 goals.

For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].

bv
3-p

ere
3

bv
3-t

off
3

bv
3-f

red
3

bv
4-b

v3

bv
4-t

off
3

bv
4-b

v3
-to

ff3

bv
3-b

v3
-bv

4

bv
3-b

v3
-fr

ed
3

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

isolated
MQCC

Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

Cross-talk:

Cross-Talk: Red
Pairs of gates
when executed
simultaneously will
cause much larger
errors.

IBMQ Boeblingen

Competing Goals:
 Circuit Depth (decoherence) vs Cross-Talk

Software Solutions:
 (1) Circuit Reschedule - Xtalk - (ASPLOS 2020)

 (2) Frequency-Aware Compilation (MICRO 2020)

Automating NISQ Application Design
Current implementation of NISQ application design are CASE by CASE.

A unified and automatic framework for productivity?

Automating NISQ Application Design
Current implementation of NISQ application design are CASE by CASE.

A unified and automatic framework for productivity?

Desiderata:

Succinct Expression
 of different design choices

Flexible Expression
 of different optimization goals

Automation of Trade-offs
 of competing optimization goals

High Reusability & Productivity
 of balancing different trade-offs

Automating NISQ Application Design
Current implementation of NISQ application design are CASE by CASE.

A unified and automatic framework for productivity?

Desiderata:

Succinct Expression
 of different design choices

Flexible Expression
 of different optimization goals

Automation of Trade-offs
 of competing optimization goals

High Reusability & Productivity
 of balancing different trade-offs

Meta Quantum Circuits with Constraints (MQCC)
Desiderata:

Succinct Expression
 of different design choices
 MQCC with choice variables

Flexible Expression
 of different optimization goals

 Flexible Attributes Expression

Automation of Trade-offs
 of competing optimization goals

 Satisfiability Modulo Theories (SMT) Solver

High Reusability & Productivity
 of balancing different trade-offs

 A Meta-Programming Framework

Meta Quantum Circuits with Constraints (MQCC)
1 \\Register and variable declarations

2 qreg q[10];

3 creg r[1];

4 fcho c1 = {0, 1};
5 fcho c2 = [0, 1];

6 \\lcho c = 1 - c1 * c2;

7

8 \\Module define

9 module Bell1(q1,q2){

10 h(q1);

11 cnot(q1, q2);

12 }

13

14 module Bell2(q1, q2){

15 case (r[0]){

16 1: x(q1);

17 0: pass

18 };

19 h(q1);

20 cnot(q1,q2);

21 }

22

23 \\Main part of the program

24 choice (c1){

25 0: Bell1(q[1], q[2]);

26 1: Bell1(q[7], q[8]);

27 };

28

29 h(q[0]);

30 measure(q[0],r[0]);

31 choice (c2){

32 0: Bell2(q[1], q[2]);

33 default: Bell2(q[7], q[8]);

34 };

Listing 1: A Simple MQCC Code for Multi Programming

et al. [8] as a way to improve the utilization of quantum
computers. Since quantum resources are scarce, their idea
is to run multiple applications (multi-program) at once on a
single quantum computer, rather than run them one at a time
(single-program). The problem is that multi-programming a
NISQ computer can have an adverse impact on the reliability
of individual applications. This is because physical qubits in
an NISQ computer exhibit variance in error rates and single-
program compilers tend to allocate qubits with high reliability
to applications. Therefore, a multi-program scheme on NISQ
computers may allocate weaker qubits to an application and
bring degradation in reliability. Poulami et al. [8] solve this
problem by monitoring the reliability at runtime. Their frame-
work reverts to running applications sequentially if the noise
of multi-programming is larger than a predefined threshold.

We can use MQCC to implement their approach. Listing 1
shows the complete code in MQCC for multi-programming
two quantum applications, Bell1 and Bell2. Bell1 prepares
the Bell state 1p

2
(|00i+ |11i). Bell2 prepares 1p

2
(|00i+ |11i)

or 1p
2
(|00i � |11i) based on the value of a classical register

r[0]. Both applications need two qubits. Suppose a NISQ com-
puter provides two areas for the applications, i.e. {q[1],q[2]}
area and {q[7],q[8]} area, and {q[1],q[2]} area has a lower
error rate than {q[7],q[8]}. Our MQCC program consists of
three parts: registers and variables declaration (Line 1-6),

module definition (Line 8-21) and main part of the program
(Line 23-34).

Lines 1-2 define quantum and classical registers used in the
program as usual, using the qreg and creg syntax.

Lines 3-6 declare the program’s MQCC choice variables.
We use keyword fcho to define two free choice variables c1, c2
that choose value in {0,1}. A choice variable’s value can be
an integer in a given range, which can be expressed either
as an enumeration {a1, a2, ..., an} or as an interval [a1, a2]
with a1 < a2. In this program, these two choice variables are
used to decide where to run the two applications Bell1 and
Bell2. Apart from free choice variables, sometimes we need
to define a choice variable whose value depends on the value
of other choice variables. We call this variable limited choice
variable, and it can be defined by keyword lcho. The comment
in Line 5 shows an example. The value of a limited variable
c depends on the expression 1 � c1 ⇤ c2. When we just say
“choice variable” we mean free choice variable; we will say
“limited” explicitly.

In Line 8-21, after the definition for required registers and
variables, we define the two circuit components Bell1 and
Bell2 as modules. A module in MQCC represents a subroutine
and can be instantiated within larger modules or in the main
program. These modules can be viewed as macros. Module
Bell1 prepares the Bell state through a simple Bell circuit.
Module Bell2 first flips qubit q1 based on the value of the
classical register r[0] with a case statement. The behavior
of the case statement is similar to the statement in classical
language: choose a branch based on the value of a classical
register. (In OpenQASM, this sort of thing is implemented
with if.) Then Bell2 applies the same Bell state-preparing
circuit as Bell1.

Line 23-34 is the main part of the program. Two choice
statements decide where to run Bell1 and Bell2 based on the
value of choice variables c1, c2 2 {0, 1}. The choice statement
on lines 23-27 says that Bell1 should run on {q[1],q[2]} if
c1 = 0 or on {q[7],q[8]} if c1 = 1. The choice statement
on lines 31-34 does similarly for Bell2. The default branch
in line 33 refers to the values which are in the range of the
choice variable but do not appear in the previous branches of
the choice statement. It is easy to see that when c1 = c2, Bell1
and Bell2 are executed in serial since they are instantiated to
the same area. Otherwise they are instantiated on distinct areas
and execute in parallel.

C. Use MQCC to Solve Problems

The MQCC program is just one part of the framework; the
other part is the definition of object attributes as the basis for
an optimization goal whose solution determines the values of
choice variables. Figure 1 illustrates the general process of
using MQCC.

1) Problem Mapper: For each problem, we first divide it
into three parts: the corresponding MQCC program of the
problem; the object attributes of the problem; the optimization
goal. The first part is an MQCC program that describes the

A Sample Code of MQCC which shares many features with OpenQASM

Meta Quantum Circuits with Constraints (MQCC)
1 \\Register and variable declarations

2 qreg q[10];

3 creg r[1];

4 fcho c1 = {0, 1};
5 fcho c2 = [0, 1];

6 \\lcho c = 1 - c1 * c2;

7

8 \\Module define

9 module Bell1(q1,q2){

10 h(q1);

11 cnot(q1, q2);

12 }

13

14 module Bell2(q1, q2){

15 case (r[0]){

16 1: x(q1);

17 0: pass

18 };

19 h(q1);

20 cnot(q1,q2);

21 }

22

23 \\Main part of the program

24 choice (c1){

25 0: Bell1(q[1], q[2]);

26 1: Bell1(q[7], q[8]);

27 };

28

29 h(q[0]);

30 measure(q[0],r[0]);

31 choice (c2){

32 0: Bell2(q[1], q[2]);

33 default: Bell2(q[7], q[8]);

34 };

Listing 1: A Simple MQCC Code for Multi Programming

et al. [8] as a way to improve the utilization of quantum
computers. Since quantum resources are scarce, their idea
is to run multiple applications (multi-program) at once on a
single quantum computer, rather than run them one at a time
(single-program). The problem is that multi-programming a
NISQ computer can have an adverse impact on the reliability
of individual applications. This is because physical qubits in
an NISQ computer exhibit variance in error rates and single-
program compilers tend to allocate qubits with high reliability
to applications. Therefore, a multi-program scheme on NISQ
computers may allocate weaker qubits to an application and
bring degradation in reliability. Poulami et al. [8] solve this
problem by monitoring the reliability at runtime. Their frame-
work reverts to running applications sequentially if the noise
of multi-programming is larger than a predefined threshold.

We can use MQCC to implement their approach. Listing 1
shows the complete code in MQCC for multi-programming
two quantum applications, Bell1 and Bell2. Bell1 prepares
the Bell state 1p

2
(|00i+ |11i). Bell2 prepares 1p

2
(|00i+ |11i)

or 1p
2
(|00i � |11i) based on the value of a classical register

r[0]. Both applications need two qubits. Suppose a NISQ com-
puter provides two areas for the applications, i.e. {q[1],q[2]}
area and {q[7],q[8]} area, and {q[1],q[2]} area has a lower
error rate than {q[7],q[8]}. Our MQCC program consists of
three parts: registers and variables declaration (Line 1-6),

module definition (Line 8-21) and main part of the program
(Line 23-34).

Lines 1-2 define quantum and classical registers used in the
program as usual, using the qreg and creg syntax.

Lines 3-6 declare the program’s MQCC choice variables.
We use keyword fcho to define two free choice variables c1, c2
that choose value in {0,1}. A choice variable’s value can be
an integer in a given range, which can be expressed either
as an enumeration {a1, a2, ..., an} or as an interval [a1, a2]
with a1 < a2. In this program, these two choice variables are
used to decide where to run the two applications Bell1 and
Bell2. Apart from free choice variables, sometimes we need
to define a choice variable whose value depends on the value
of other choice variables. We call this variable limited choice
variable, and it can be defined by keyword lcho. The comment
in Line 5 shows an example. The value of a limited variable
c depends on the expression 1 � c1 ⇤ c2. When we just say
“choice variable” we mean free choice variable; we will say
“limited” explicitly.

In Line 8-21, after the definition for required registers and
variables, we define the two circuit components Bell1 and
Bell2 as modules. A module in MQCC represents a subroutine
and can be instantiated within larger modules or in the main
program. These modules can be viewed as macros. Module
Bell1 prepares the Bell state through a simple Bell circuit.
Module Bell2 first flips qubit q1 based on the value of the
classical register r[0] with a case statement. The behavior
of the case statement is similar to the statement in classical
language: choose a branch based on the value of a classical
register. (In OpenQASM, this sort of thing is implemented
with if.) Then Bell2 applies the same Bell state-preparing
circuit as Bell1.

Line 23-34 is the main part of the program. Two choice
statements decide where to run Bell1 and Bell2 based on the
value of choice variables c1, c2 2 {0, 1}. The choice statement
on lines 23-27 says that Bell1 should run on {q[1],q[2]} if
c1 = 0 or on {q[7],q[8]} if c1 = 1. The choice statement
on lines 31-34 does similarly for Bell2. The default branch
in line 33 refers to the values which are in the range of the
choice variable but do not appear in the previous branches of
the choice statement. It is easy to see that when c1 = c2, Bell1
and Bell2 are executed in serial since they are instantiated to
the same area. Otherwise they are instantiated on distinct areas
and execute in parallel.

C. Use MQCC to Solve Problems

The MQCC program is just one part of the framework; the
other part is the definition of object attributes as the basis for
an optimization goal whose solution determines the values of
choice variables. Figure 1 illustrates the general process of
using MQCC.

1) Problem Mapper: For each problem, we first divide it
into three parts: the corresponding MQCC program of the
problem; the object attributes of the problem; the optimization
goal. The first part is an MQCC program that describes the

A Sample Code of MQCC which shares many features with OpenQASM

Define CHOICE variables

Free Choice (fcho) c1, c2 , in certain ranges∈ ℤ

Limited Choice (lcho) c=1-c1*c2 ∈ ℤ

Meta Quantum Circuits with Constraints (MQCC)
1 \\Register and variable declarations

2 qreg q[10];

3 creg r[1];

4 fcho c1 = {0, 1};
5 fcho c2 = [0, 1];

6 \\lcho c = 1 - c1 * c2;

7

8 \\Module define

9 module Bell1(q1,q2){

10 h(q1);

11 cnot(q1, q2);

12 }

13

14 module Bell2(q1, q2){

15 case (r[0]){

16 1: x(q1);

17 0: pass

18 };

19 h(q1);

20 cnot(q1,q2);

21 }

22

23 \\Main part of the program

24 choice (c1){

25 0: Bell1(q[1], q[2]);

26 1: Bell1(q[7], q[8]);

27 };

28

29 h(q[0]);

30 measure(q[0],r[0]);

31 choice (c2){

32 0: Bell2(q[1], q[2]);

33 default: Bell2(q[7], q[8]);

34 };

Listing 1: A Simple MQCC Code for Multi Programming

et al. [8] as a way to improve the utilization of quantum
computers. Since quantum resources are scarce, their idea
is to run multiple applications (multi-program) at once on a
single quantum computer, rather than run them one at a time
(single-program). The problem is that multi-programming a
NISQ computer can have an adverse impact on the reliability
of individual applications. This is because physical qubits in
an NISQ computer exhibit variance in error rates and single-
program compilers tend to allocate qubits with high reliability
to applications. Therefore, a multi-program scheme on NISQ
computers may allocate weaker qubits to an application and
bring degradation in reliability. Poulami et al. [8] solve this
problem by monitoring the reliability at runtime. Their frame-
work reverts to running applications sequentially if the noise
of multi-programming is larger than a predefined threshold.

We can use MQCC to implement their approach. Listing 1
shows the complete code in MQCC for multi-programming
two quantum applications, Bell1 and Bell2. Bell1 prepares
the Bell state 1p

2
(|00i+ |11i). Bell2 prepares 1p

2
(|00i+ |11i)

or 1p
2
(|00i � |11i) based on the value of a classical register

r[0]. Both applications need two qubits. Suppose a NISQ com-
puter provides two areas for the applications, i.e. {q[1],q[2]}
area and {q[7],q[8]} area, and {q[1],q[2]} area has a lower
error rate than {q[7],q[8]}. Our MQCC program consists of
three parts: registers and variables declaration (Line 1-6),

module definition (Line 8-21) and main part of the program
(Line 23-34).

Lines 1-2 define quantum and classical registers used in the
program as usual, using the qreg and creg syntax.

Lines 3-6 declare the program’s MQCC choice variables.
We use keyword fcho to define two free choice variables c1, c2
that choose value in {0,1}. A choice variable’s value can be
an integer in a given range, which can be expressed either
as an enumeration {a1, a2, ..., an} or as an interval [a1, a2]
with a1 < a2. In this program, these two choice variables are
used to decide where to run the two applications Bell1 and
Bell2. Apart from free choice variables, sometimes we need
to define a choice variable whose value depends on the value
of other choice variables. We call this variable limited choice
variable, and it can be defined by keyword lcho. The comment
in Line 5 shows an example. The value of a limited variable
c depends on the expression 1 � c1 ⇤ c2. When we just say
“choice variable” we mean free choice variable; we will say
“limited” explicitly.

In Line 8-21, after the definition for required registers and
variables, we define the two circuit components Bell1 and
Bell2 as modules. A module in MQCC represents a subroutine
and can be instantiated within larger modules or in the main
program. These modules can be viewed as macros. Module
Bell1 prepares the Bell state through a simple Bell circuit.
Module Bell2 first flips qubit q1 based on the value of the
classical register r[0] with a case statement. The behavior
of the case statement is similar to the statement in classical
language: choose a branch based on the value of a classical
register. (In OpenQASM, this sort of thing is implemented
with if.) Then Bell2 applies the same Bell state-preparing
circuit as Bell1.

Line 23-34 is the main part of the program. Two choice
statements decide where to run Bell1 and Bell2 based on the
value of choice variables c1, c2 2 {0, 1}. The choice statement
on lines 23-27 says that Bell1 should run on {q[1],q[2]} if
c1 = 0 or on {q[7],q[8]} if c1 = 1. The choice statement
on lines 31-34 does similarly for Bell2. The default branch
in line 33 refers to the values which are in the range of the
choice variable but do not appear in the previous branches of
the choice statement. It is easy to see that when c1 = c2, Bell1
and Bell2 are executed in serial since they are instantiated to
the same area. Otherwise they are instantiated on distinct areas
and execute in parallel.

C. Use MQCC to Solve Problems

The MQCC program is just one part of the framework; the
other part is the definition of object attributes as the basis for
an optimization goal whose solution determines the values of
choice variables. Figure 1 illustrates the general process of
using MQCC.

1) Problem Mapper: For each problem, we first divide it
into three parts: the corresponding MQCC program of the
problem; the object attributes of the problem; the optimization
goal. The first part is an MQCC program that describes the

A Sample Code of MQCC which shares many features with OpenQASM

Define CHOICE variables

Free Choice (fcho) c1, c2 , in certain ranges∈ ℤ

Limited Choice (lcho) c=1-c1*c2 ∈ ℤ

Stitch Many Programs w/ choice variables

choice (c.v) {i : Pi}

Meta Quantum Circuits with Constraints (MQCC)
1 \\Register and variable declarations

2 qreg q[10];

3 creg r[1];

4 fcho c1 = {0, 1};
5 fcho c2 = [0, 1];

6 \\lcho c = 1 - c1 * c2;

7

8 \\Module define

9 module Bell1(q1,q2){

10 h(q1);

11 cnot(q1, q2);

12 }

13

14 module Bell2(q1, q2){

15 case (r[0]){

16 1: x(q1);

17 0: pass

18 };

19 h(q1);

20 cnot(q1,q2);

21 }

22

23 \\Main part of the program

24 choice (c1){

25 0: Bell1(q[1], q[2]);

26 1: Bell1(q[7], q[8]);

27 };

28

29 h(q[0]);

30 measure(q[0],r[0]);

31 choice (c2){

32 0: Bell2(q[1], q[2]);

33 default: Bell2(q[7], q[8]);

34 };

Listing 1: A Simple MQCC Code for Multi Programming

et al. [8] as a way to improve the utilization of quantum
computers. Since quantum resources are scarce, their idea
is to run multiple applications (multi-program) at once on a
single quantum computer, rather than run them one at a time
(single-program). The problem is that multi-programming a
NISQ computer can have an adverse impact on the reliability
of individual applications. This is because physical qubits in
an NISQ computer exhibit variance in error rates and single-
program compilers tend to allocate qubits with high reliability
to applications. Therefore, a multi-program scheme on NISQ
computers may allocate weaker qubits to an application and
bring degradation in reliability. Poulami et al. [8] solve this
problem by monitoring the reliability at runtime. Their frame-
work reverts to running applications sequentially if the noise
of multi-programming is larger than a predefined threshold.

We can use MQCC to implement their approach. Listing 1
shows the complete code in MQCC for multi-programming
two quantum applications, Bell1 and Bell2. Bell1 prepares
the Bell state 1p

2
(|00i+ |11i). Bell2 prepares 1p

2
(|00i+ |11i)

or 1p
2
(|00i � |11i) based on the value of a classical register

r[0]. Both applications need two qubits. Suppose a NISQ com-
puter provides two areas for the applications, i.e. {q[1],q[2]}
area and {q[7],q[8]} area, and {q[1],q[2]} area has a lower
error rate than {q[7],q[8]}. Our MQCC program consists of
three parts: registers and variables declaration (Line 1-6),

module definition (Line 8-21) and main part of the program
(Line 23-34).

Lines 1-2 define quantum and classical registers used in the
program as usual, using the qreg and creg syntax.

Lines 3-6 declare the program’s MQCC choice variables.
We use keyword fcho to define two free choice variables c1, c2
that choose value in {0,1}. A choice variable’s value can be
an integer in a given range, which can be expressed either
as an enumeration {a1, a2, ..., an} or as an interval [a1, a2]
with a1 < a2. In this program, these two choice variables are
used to decide where to run the two applications Bell1 and
Bell2. Apart from free choice variables, sometimes we need
to define a choice variable whose value depends on the value
of other choice variables. We call this variable limited choice
variable, and it can be defined by keyword lcho. The comment
in Line 5 shows an example. The value of a limited variable
c depends on the expression 1 � c1 ⇤ c2. When we just say
“choice variable” we mean free choice variable; we will say
“limited” explicitly.

In Line 8-21, after the definition for required registers and
variables, we define the two circuit components Bell1 and
Bell2 as modules. A module in MQCC represents a subroutine
and can be instantiated within larger modules or in the main
program. These modules can be viewed as macros. Module
Bell1 prepares the Bell state through a simple Bell circuit.
Module Bell2 first flips qubit q1 based on the value of the
classical register r[0] with a case statement. The behavior
of the case statement is similar to the statement in classical
language: choose a branch based on the value of a classical
register. (In OpenQASM, this sort of thing is implemented
with if.) Then Bell2 applies the same Bell state-preparing
circuit as Bell1.

Line 23-34 is the main part of the program. Two choice
statements decide where to run Bell1 and Bell2 based on the
value of choice variables c1, c2 2 {0, 1}. The choice statement
on lines 23-27 says that Bell1 should run on {q[1],q[2]} if
c1 = 0 or on {q[7],q[8]} if c1 = 1. The choice statement
on lines 31-34 does similarly for Bell2. The default branch
in line 33 refers to the values which are in the range of the
choice variable but do not appear in the previous branches of
the choice statement. It is easy to see that when c1 = c2, Bell1
and Bell2 are executed in serial since they are instantiated to
the same area. Otherwise they are instantiated on distinct areas
and execute in parallel.

C. Use MQCC to Solve Problems

The MQCC program is just one part of the framework; the
other part is the definition of object attributes as the basis for
an optimization goal whose solution determines the values of
choice variables. Figure 1 illustrates the general process of
using MQCC.

1) Problem Mapper: For each problem, we first divide it
into three parts: the corresponding MQCC program of the
problem; the object attributes of the problem; the optimization
goal. The first part is an MQCC program that describes the

A Sample Code of MQCC which shares many features with OpenQASM

Define CHOICE variables

Free Choice (fcho) c1, c2 , in certain ranges∈ ℤ

Limited Choice (lcho) c=1-c1*c2 ∈ ℤ

Stitch Many Programs w/ choice variables

choice (c.v) {i : Pi}

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

Expressing the Constraints on Costs/Attributes
Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.

Expressing the Constraints on Costs/Attributes
Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.

Precisely, any attribute A is defined by a tuple (T, empty, op, case, value) s.t.:

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

Expressing the Constraints on Costs/Attributes
Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.

Precisely, any attribute A is defined by a tuple (T, empty, op, case, value) s.t.:

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

 program S’ attribute semantics :[[S]]

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

choice vars

transformer on T

Expressing the Constraints on Costs/Attributes
Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.

Precisely, any attribute A is defined by a tuple (T, empty, op, case, value) s.t.:

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

 program S’ attribute semantics :[[S]]

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

choice vars

transformer on T

how transformers
evolve over programs

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

, ,

Expressing the Constraints on Costs/Attributes
Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.

Precisely, any attribute A is defined by a tuple (T, empty, op, case, value) s.t.:

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

 program S’ attribute semantics :[[S]]

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

choice vars

transformer on T

how transformers
evolve over programs

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

, ,

Express the constraints on
the final T as SMT instances

(details omitted)

Expressing the Constraints on Costs/Attributes
Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.

Precisely, any attribute A is defined by a tuple (T, empty, op, case, value) s.t.:

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

 program S’ attribute semantics :[[S]]

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

choice vars

transformer on T

Examples:

S = opID(exps, regs)
cost+A(S) = value(op(empty, opID, exps, regs)

cost+A(S1;S2) = cost+A(S1) + cost+A(S2)

S = case(creg){i : Si} Si is choice-free
cost+A(S) = value(case(empty, [[[Si]] (empty)]i))

S = choice(var){i : Si}
cost+A(S) =

P
i2i �

i
varcost

+
A(Sk)

Fig. 5: The cost expression of choice-in-case-free S for
additive attributes. Here i is the set of enumerated values that
variable var can take.

Here � is a variant of the Kronecker delta function: �Vars,� =Q
var2Vars �

�[var]
var , and �ivar is a unit expression that contains

variable var, which equals to 1 if var’s value is i, and
0 otherwise. One can evaluate a cost expression given the
values of variables. For multiple attributes, users can define
a weighted sum over costA as the final cost.

D. Additive Attributes

In general, the generated cost expression has a size ex-
ponential in the number of choice variables. We can use
additive attributes to reduce this size, and optimize SMT
solving performance. We limit the syntax that is available
for the additive attributes, by restricting the presence of
choice inside branches of case. Then an attribute A =
(T,empty,op,case,value) is additive if it satisfies the
following two conditions:

1) for any s : T , opID and valid exps and regs, we have

value(op(s, opID, exps, regs))
= value(s) + value(op(empty, opID, exps, regs));

2) for any s : T and choice-free statements Si, we have

value(case(s, [[[Si]] (s)]i)

= value(s) + value(case(empty, [[[Si]] (empty)]i).

We can directly derive the cost expression of an additive
attribute A from the rules in Figure 5. Let V be the maximal
number of possibilities of a variables’ values. Notice that
costA(S) has O(V d) terms where d is the number of choice
variables, and cost+A(S) has at most O(|S| · V) terms where
|S| is the number of constructs of S. The cost+A(S) greatly
reduces the number of terms of cost expressions, potentially
shrinking the scale of the SMT instance.

The following theorem shows the correctness of cost+A. Its
proof is based on induction on S and provided in Appendix A.

Theorem IV.1. For a statement S such that there is no choice
nested in case, we have cost+A(S) = costA(S).

E. Examples of Attributes

In Section III we define two attributes, Noise and Depth, to
solve the multi-programming problem. We show how to define
these two attributes as examples. Each attribute is defined as
a class containing a data structure T and the four methods.

1) Noise Attribute: The definition is:

Attribute Noise:

T: noise : R
empty():= init s : T, s.noise = 0

return s

value(s : T):= return s.noise

op (s : T, OpID : str, exps :
�!R, regs :

��!
Reg):=

s.noise += calNoise(OpId, exps, regs)

return s

case (s : T, group : Vector of T):=

s.noise = max {n.noise| n 2group}
return s

The data structure used in Noise is a variable noise of type
R. It refers to the noise of the program to which the attribute
bound.

• For an empty program, its noise error should be 0. So
the empty method assign noise with 0.

• The value method trivially return the value of noise as
the cost of the program.

• In the op method, when appending a new operation to the
program, the program’s total noise should be increased
by that operation’s noise. The appending operation’s
noise is calculated by the function calNoise and added
to the variable noise. The function calNoise can be
implemented variously based on the target machine.

• In the case method, the parameter group refers to the list
of attribute instance of each case branching sub-program.
Since we do not know which branch will be chosen in
run-time, we conservatively use the maximum noise in
all branches as a case statement’s noise. In the definition
of Noise and other attributes in the following part of the
paper, max function returns 0 when the input set is empty.

Noise is an additive object so MQCC can generate an opti-
mized cost expression for it.

2) Depth Attribute: The definition is shown below.

Attribute Depth:

T: dep : Map of Reg ! N
empty():= init s : T, s.dep = ;

return s

value(s : T):= return (max s.dep.values)

op (s : T, OpID : str, exps :
�!R, regs :

��!
Reg):=

share = s.dep.keys \ regs

next = max {s.dep[i]| i 2share} + 1

for i 2regs: s.dep.update(i, next)

return s

case (s : T, group : Vector of T):=

all =

S
n2group n.dep.keys

s.dep = {(k, max {n.dep[k] | n2group}) | k2all}
return s

We suppose the program is executed in maximum parallel.
The data structure used in Depth is a map dep from a
register to its depth in the program. The Map structure is
represented as a set {(Key, V alue)} in the following paper.

S = opID(exps, regs)
cost+A(S) = value(op(empty, opID, exps, regs)

cost+A(S1;S2) = cost+A(S1) + cost+A(S2)

S = case(creg){i : Si} Si is choice-free
cost+A(S) = value(case(empty, [[[Si]] (empty)]i))

S = choice(var){i : Si}
cost+A(S) =

P
i2i �

i
varcost

+
A(Sk)

Fig. 5: The cost expression of choice-in-case-free S for
additive attributes. Here i is the set of enumerated values that
variable var can take.

Here � is a variant of the Kronecker delta function: �Vars,� =Q
var2Vars �

�[var]
var , and �ivar is a unit expression that contains

variable var, which equals to 1 if var’s value is i, and
0 otherwise. One can evaluate a cost expression given the
values of variables. For multiple attributes, users can define
a weighted sum over costA as the final cost.

D. Additive Attributes

In general, the generated cost expression has a size ex-
ponential in the number of choice variables. We can use
additive attributes to reduce this size, and optimize SMT
solving performance. We limit the syntax that is available
for the additive attributes, by restricting the presence of
choice inside branches of case. Then an attribute A =
(T,empty,op,case,value) is additive if it satisfies the
following two conditions:

1) for any s : T , opID and valid exps and regs, we have

value(op(s, opID, exps, regs))
= value(s) + value(op(empty, opID, exps, regs));

2) for any s : T and choice-free statements Si, we have

value(case(s, [[[Si]] (s)]i)

= value(s) + value(case(empty, [[[Si]] (empty)]i).

We can directly derive the cost expression of an additive
attribute A from the rules in Figure 5. Let V be the maximal
number of possibilities of a variables’ values. Notice that
costA(S) has O(V d) terms where d is the number of choice
variables, and cost+A(S) has at most O(|S| · V) terms where
|S| is the number of constructs of S. The cost+A(S) greatly
reduces the number of terms of cost expressions, potentially
shrinking the scale of the SMT instance.

The following theorem shows the correctness of cost+A. Its
proof is based on induction on S and provided in Appendix A.

Theorem IV.1. For a statement S such that there is no choice
nested in case, we have cost+A(S) = costA(S).

E. Examples of Attributes

In Section III we define two attributes, Noise and Depth, to
solve the multi-programming problem. We show how to define
these two attributes as examples. Each attribute is defined as
a class containing a data structure T and the four methods.

1) Noise Attribute: The definition is:

Attribute Noise:

T: noise : R
empty():= init s : T, s.noise = 0

return s

value(s : T):= return s.noise

op (s : T, OpID : str, exps :
�!R, regs :

��!
Reg):=

s.noise += calNoise(OpId, exps, regs)

return s

case (s : T, group : Vector of T):=

s.noise = max {n.noise| n 2group}
return s

The data structure used in Noise is a variable noise of type
R. It refers to the noise of the program to which the attribute
bound.

• For an empty program, its noise error should be 0. So
the empty method assign noise with 0.

• The value method trivially return the value of noise as
the cost of the program.

• In the op method, when appending a new operation to the
program, the program’s total noise should be increased
by that operation’s noise. The appending operation’s
noise is calculated by the function calNoise and added
to the variable noise. The function calNoise can be
implemented variously based on the target machine.

• In the case method, the parameter group refers to the list
of attribute instance of each case branching sub-program.
Since we do not know which branch will be chosen in
run-time, we conservatively use the maximum noise in
all branches as a case statement’s noise. In the definition
of Noise and other attributes in the following part of the
paper, max function returns 0 when the input set is empty.

Noise is an additive object so MQCC can generate an opti-
mized cost expression for it.

2) Depth Attribute: The definition is shown below.

Attribute Depth:

T: dep : Map of Reg ! N
empty():= init s : T, s.dep = ;

return s

value(s : T):= return (max s.dep.values)

op (s : T, OpID : str, exps :
�!R, regs :

��!
Reg):=

share = s.dep.keys \ regs

next = max {s.dep[i]| i 2share} + 1

for i 2regs: s.dep.update(i, next)

return s

case (s : T, group : Vector of T):=

all =

S
n2group n.dep.keys

s.dep = {(k, max {n.dep[k] | n2group}) | k2all}
return s

We suppose the program is executed in maximum parallel.
The data structure used in Depth is a map dep from a
register to its depth in the program. The Map structure is
represented as a set {(Key, V alue)} in the following paper.

how transformers
evolve over programs

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).

, ,

Express the constraints on
the final T as SMT instances

(details omitted)

Case Study
A Case for Multi-Programming �antum Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

3.5 Overview of the Proposed Framework
Our evaluation framework is shown in Figure 6. It accepts two
workloads W1 and W2 (equivalent to two independent jobs) and
the most recent calibration data. Depending upon the number of
qubits required for each workload, the partitioning algorithm de-
cides if they can both be executed reliably on the given quantum
computer. If there exists two regions where W1 and W2 can be
mapped and executed reliably, they are compiled together using
the qubit allocations received from the partitioning algorithm and
executed. The PST of each individual workload is calculated. The
impact on reliability of each program is computed by comparing
with the PST obtained by individually executing the same program
using the best qubit allocation (baseline).

Part i t ion ing A lgor i thm:
Locate two reliable partitions
with X and Y qubits each

Calibration DataW1 W2

Partitions
exist?

Yes Compile
W1, W2
together

Compile
W1, W2
separate

No

IBM Q16
Melbourne

Perform N trials

Compute
PST

Two partitions

W1: Workload #1
X qubits

W2: Workload #2
Y qubits

W1 PST

W2 PST

Figure 6: Overview of the proposed multi-programming
framework. The partitioning algorithm locates two reliable
regions on theNISQ computer, with X and Y qubits each. If it
can �nd two such regions, both workloads execute together.
If it is unable to locate the requested regions, it defaults to
the baseline and each benchmark is run individually

4 FAIR AND RELIABLE PARTITIONING
We advocate multi-programming NISQ computers to improve the
throughput by executing multiple programs concurrently. Since
the reliability of a NISQ application depends on the physical qubits
allocated to the program, it is important to ensure fairness while
allocating qubits to multiple programs in a shared environment.

4.1 Challenges in Fair Resource Allocation
The challenges in fair resource allocation arises from the uniqueness
of each physical qubit that is exhibited in the non-uniformity in
coherence times, gate and measurement error rates. Furthermore,
these error rates vary in time. Thus, the physical qubits allocated
to a program directly impacts its reliability [25, 40]. Compilers
account for this variation to perform qubit allocation and select
qubit movement paths to enable SWAP operations.

4.1.1 Restrictions on �bit Allocation: Multi-programming con-
strains the compiler to use a restricted set of physical qubits, limiting
its capability to optimize for greater reliability. In order to under-
stand the restrictions imposed on qubit allocation, we look at the
allocations of a 4-qubit program P1 and a 5-qubit program P2 on
a hypothetical NISQ architecture. As shown in Figure 7(a), when
mapped independently, P1 is allocated physical qubits A, B, I, and J

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

4 qubit program
allocation

5 qubit program
allocation

5 qubit program
allocation

4 qubit program
allocation

(a) (b)

Figure 7: (a) Qubit allocation of a 4-qubit program P1 and a
5-qubit program P2. (b) Qubit allocations of P1 and P2 on a
multi-programmed NISQ computer. Each node represents a
qubit and label on each edge represents the link error rate.

whereas, P2 is allocated physical qubits A, B, C, I, and J. Figure 7(b)
shows a qubit allocation for both programs together. The average
link error rate of the regions allocated to P2 for independent exe-
cution and in the shared environment are 2.2 and 2.6 respectively.
The allocation in the shared environment is 18% weaker.

A B C

D E

B

A C

D E

Example Program
1. cnot q0, q4
2. cnot q1, q4
3. cnot q2, q4
4. cnot q3, q4

q0 q4 q1

q2 q3

q0 q1

q2 q3

q4

Number of SWAPs : 1 Number of SWAPs : 0
(b) (c)(a)

Figure 8: (a) An example NISQ program (b) this topology re-
quires 1 SWAP to perform Instruction 4 (c) this topology does
not require any extra SWAP to execute the program

4.1.2 Restrictions on �bit Movement: Application reliability not
only depends on qubit allocation, but also depends on program
characteristics and network topology of the allocated region. A
well-connected region can minimize the total cost of SWAPs in-
serted to bring two non-adjacent qubits physically next to each
other so that a CNOT gate can be executed. For instance, Figure 8
shows a program that executes 4 CNOT instructions and two possi-
ble network topologies. In the partition shown in Figure 8(b), the
compiler needs to insert a SWAP operation in order to perform the
4th CNOT instruction. However, a better connected region as shown
in Figure 8(c) requires lesser number of SWAPs (in this case 0). When
a quantum computer is partitioned for multi-programming, applica-
tion reliability can vary based upon the number of SWAPs inserted.
This depends on the network topology of the assigned partition.

4.2 Qubit Allocation for Multi-programs
We study the average 2-qubit gate error rate on each physical link
and measurement error rates for each qubit of IBM Q16 as shown
in Figure 9.2 We make two key observations:
• Not all good links are spatially co-located. A region with good
links has weak links as well. For example, qubits Q2 and Q12 have
two links each with error rates of 4%, but the link that connects
them physically has an error rate of 17%.

2Error rates in this Figure are based on calibration data collected on 03.14.2018

Multi-Programming (MICRO 2019) : For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].

bv
3-p

ere
3

bv
3-t

off
3

bv
3-f

red
3

bv
4-b

v3

bv
4-t

off
3

bv
4-b

v3
-to

ff3

bv
3-b

v3
-bv

4

bv
3-b

v3
-fr

ed
3

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

isolated
MQCC

Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

Multi-Tasks over Simple Quantum Algorithms

Competing Goals:
 Depth vs High-quality Qubits

For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].

bv
3-p

ere
3

bv
3-t

off
3

bv
3-f

red
3

bv
4-b

v3

bv
4-t

off
3

bv
4-b

v3
-to

ff3

bv
3-b

v3
-bv

4

bv
3-b

v3
-fr

ed
3

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

isolated
MQCC

Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].

bv
3-p

ere
3

bv
3-t

off
3

bv
3-f

red
3

bv
4-b

v3

bv
4-t

off
3

bv
4-b

v3
-to

ff3

bv
3-b

v3
-bv

4

bv
3-b

v3
-fr

ed
3

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

isolated
MQCC

Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

 Sequential: always high-quality qubits

Multi-Programming with MQCC

All experiments performed on IBMQ machines

Case Study
A Case for Multi-Programming �antum Computers MICRO-52, October 12–16, 2019, Columbus, OH, USA

3.5 Overview of the Proposed Framework
Our evaluation framework is shown in Figure 6. It accepts two
workloads W1 and W2 (equivalent to two independent jobs) and
the most recent calibration data. Depending upon the number of
qubits required for each workload, the partitioning algorithm de-
cides if they can both be executed reliably on the given quantum
computer. If there exists two regions where W1 and W2 can be
mapped and executed reliably, they are compiled together using
the qubit allocations received from the partitioning algorithm and
executed. The PST of each individual workload is calculated. The
impact on reliability of each program is computed by comparing
with the PST obtained by individually executing the same program
using the best qubit allocation (baseline).

Part i t ion ing A lgor i thm:
Locate two reliable partitions
with X and Y qubits each

Calibration DataW1 W2

Partitions
exist?

Yes Compile
W1, W2
together

Compile
W1, W2
separate

No

IBM Q16
Melbourne

Perform N trials

Compute
PST

Two partitions

W1: Workload #1
X qubits

W2: Workload #2
Y qubits

W1 PST

W2 PST

Figure 6: Overview of the proposed multi-programming
framework. The partitioning algorithm locates two reliable
regions on theNISQ computer, with X and Y qubits each. If it
can �nd two such regions, both workloads execute together.
If it is unable to locate the requested regions, it defaults to
the baseline and each benchmark is run individually

4 FAIR AND RELIABLE PARTITIONING
We advocate multi-programming NISQ computers to improve the
throughput by executing multiple programs concurrently. Since
the reliability of a NISQ application depends on the physical qubits
allocated to the program, it is important to ensure fairness while
allocating qubits to multiple programs in a shared environment.

4.1 Challenges in Fair Resource Allocation
The challenges in fair resource allocation arises from the uniqueness
of each physical qubit that is exhibited in the non-uniformity in
coherence times, gate and measurement error rates. Furthermore,
these error rates vary in time. Thus, the physical qubits allocated
to a program directly impacts its reliability [25, 40]. Compilers
account for this variation to perform qubit allocation and select
qubit movement paths to enable SWAP operations.

4.1.1 Restrictions on �bit Allocation: Multi-programming con-
strains the compiler to use a restricted set of physical qubits, limiting
its capability to optimize for greater reliability. In order to under-
stand the restrictions imposed on qubit allocation, we look at the
allocations of a 4-qubit program P1 and a 5-qubit program P2 on
a hypothetical NISQ architecture. As shown in Figure 7(a), when
mapped independently, P1 is allocated physical qubits A, B, I, and J

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

4 qubit program
allocation

5 qubit program
allocation

5 qubit program
allocation

4 qubit program
allocation

(a) (b)

Figure 7: (a) Qubit allocation of a 4-qubit program P1 and a
5-qubit program P2. (b) Qubit allocations of P1 and P2 on a
multi-programmed NISQ computer. Each node represents a
qubit and label on each edge represents the link error rate.

whereas, P2 is allocated physical qubits A, B, C, I, and J. Figure 7(b)
shows a qubit allocation for both programs together. The average
link error rate of the regions allocated to P2 for independent exe-
cution and in the shared environment are 2.2 and 2.6 respectively.
The allocation in the shared environment is 18% weaker.

A B C

D E

B

A C

D E

Example Program
1. cnot q0, q4
2. cnot q1, q4
3. cnot q2, q4
4. cnot q3, q4

q0 q4 q1

q2 q3

q0 q1

q2 q3

q4

Number of SWAPs : 1 Number of SWAPs : 0
(b) (c)(a)

Figure 8: (a) An example NISQ program (b) this topology re-
quires 1 SWAP to perform Instruction 4 (c) this topology does
not require any extra SWAP to execute the program

4.1.2 Restrictions on �bit Movement: Application reliability not
only depends on qubit allocation, but also depends on program
characteristics and network topology of the allocated region. A
well-connected region can minimize the total cost of SWAPs in-
serted to bring two non-adjacent qubits physically next to each
other so that a CNOT gate can be executed. For instance, Figure 8
shows a program that executes 4 CNOT instructions and two possi-
ble network topologies. In the partition shown in Figure 8(b), the
compiler needs to insert a SWAP operation in order to perform the
4th CNOT instruction. However, a better connected region as shown
in Figure 8(c) requires lesser number of SWAPs (in this case 0). When
a quantum computer is partitioned for multi-programming, applica-
tion reliability can vary based upon the number of SWAPs inserted.
This depends on the network topology of the assigned partition.

4.2 Qubit Allocation for Multi-programs
We study the average 2-qubit gate error rate on each physical link
and measurement error rates for each qubit of IBM Q16 as shown
in Figure 9.2 We make two key observations:
• Not all good links are spatially co-located. A region with good
links has weak links as well. For example, qubits Q2 and Q12 have
two links each with error rates of 4%, but the link that connects
them physically has an error rate of 17%.

2Error rates in this Figure are based on calibration data collected on 03.14.2018

Multi-Programming (MICRO 2019) : For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].

bv
3-p

ere
3

bv
3-t

off
3

bv
3-f

red
3

bv
4-b

v3

bv
4-t

off
3

bv
4-b

v3
-to

ff3

bv
3-b

v3
-bv

4

bv
3-b

v3
-fr

ed
3

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

isolated
MQCC

Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].

bv
3-p

ere
3

bv
3-t

off
3

bv
3-f

red
3

bv
4-b

v3

bv
4-t

off
3

bv
4-b

v3
-to

ff3

bv
3-b

v3
-bv

4

bv
3-b

v3
-fr

ed
3

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

isolated
MQCC

Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

Cross-talk: (Xtalk - ASPLOS 2020)an SMT instance that encodes the crosstalk along with other
constraints based on features of each gate.

1) Solution of MQCC: We encode possible gate schedules
via choice variables in a MQCC meta-program. We make
use of the OpenQASM barrier operation described in
Section II-B, which is also used in Murali et al. [21]. For
example, consider the following module for each CNOT gate:

1 module cnotb(c,q1,q2){

2 choice (c){

3 0: cnot(q1,q2);

4 1: barrier(q1,q2);

5 cnot(q1,q2);

6 } }

When c = 0, it is applied normally (maximum parallel);
otherwise, it is executed sequentially only after previous gates
on q1,q2 are finished (i.e., barrier(q1,q2)).

Our goal is to minimize both decoherence error and
crosstalk. We define attributes Crosstalk and Decoherence
which take into account the expected appearance of the
barrier operations in the meta-program. The definition of the
Crosstalk attribute is the following.

Attribute Crosstalk

T: dep : Map of Reg ! N
rep : Map of N ! Set of (str ⇥ ��!

Reg)
empty ():= init s:T, s.dep = ;, s.rep = ;

return s

value (s : T):= return calCross(rep)

op (s : T, opID : str, exps :
�!R, regs :

��!
Reg):=

if opId == "barrier" :

cur = max s.dep.values

for i2regs: s.dep.update(i, cur)

else:

share = s.dep.keys \ regs

next = max {s.dep[i] | i 2 share} + 1

s.rep[next].insert((OpID, regs))

for i2regs: s.dep.update(i, next)

return s

case (s : T, group : Vector of T):=

all =

S
n.dep.keys, n2group

s.dep = {(k, max {n.dep[k]|n2group})| k2all}
s.rep = {(k,

S
n2group n.rep[k]) |9u 2 group, k2 u}

return s

With rep, we know which gates are executed simultaneously
(in the same layer) and use function calCross to calculate the
program’s crosstalk according to the hardware information.
The op method, when meeting a barrier operation, updates
the depth of registers specified by barrier in dep to the
current depth of the program. Thus, future operations applied
on these registers will run in layers following the barrier

statement. For other operations, op updates dep in the same
way as in Depth and inserts this operation into rep.

The probability of decoherence error can be calculated as
1� e�↵d where ↵ is some constant and d is the circuit depth.
So the design of Decoherence is almost the same as Crosstalk
except that Decoherence returns 1� e�↵d where d=dep.keys
in the value method.

2) Evaluation: We follows Murali et al.’s evaluation
methodology [21]. In particular, we use the same meet-in-the-
middle SWAP sequences as benchmarks. In superconducting

0-8 8-15 7-16 9-16 10-19 14-15 2-12

0.4

0.6

0.8

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

Seq Par Xtalk MQCC

Fig. 8: The measured PST for SWAP circuits on IBMQ
Boeblingen using the four schedulers. Higher PST is better.
a-b refers a SWAP circuit connecting qubit a and b.

QC systems, CNOTs are permitted only between adjacent
qubits. To apply a CNOT between two far-away qubits,
compilers usually insert a sequence of SWAP operations that
move two qubits into adjacent locations through exchanges.
For example, in IBMQ Boeblingen, CNOT 15 8 can be im-
plemented as SWAP 15 16; SWAP 16 11; SWAP 8 7; SWAP 7

12; CNOT 11 12 where the two qubits meet in the middle as
in Figure 7.

The machine IBMQ Poughkeepsie and IBMQ Johannesburg
used in the evaluation by Murali et al. [21] are currently un-
available so we use similar SWAP sequences based on IBMQ
Boeblingen. We run 8192 trials for each SWAP sequence
and consider those with desired outputs to be successful. We
compare the PST of four scheduling strategies: running all
instructions serially (Seq); running all instructions maximally
in parallel (Par) which is the default strategy used by Qiskit;
the strategy produced by Murali et al. (Xtalk); and the
strategy produced by MQCC. Figure 8 shows the result.
Circuits generated by MQCC always have higher PST than
Seq and Par. They have performance similar to Xtalk.

3) Advantage of MQCC: MQCC is flexible enough to
encode Murali et al.’s crosstalk mitigation strategy, and that
flexibility extends to incorporating other methods for crosstalk
mitigation as well: e.g., transforming circuits into cross-talk
resistant forms. We demonstrate this in Figure 9.

Figure 9(a) shows two equivalent circuits. In the presence
of another CNOT gate, as shown in Figure 9(b), the first
structure may introduce much higher crosstalk than the second
one since the crosstalk between two CNOT gates is much
greater than the crosstalk between a CNOT and a single qubit
gate. One can encode choices between these equivalent forms
by MQCC choice variables, which will then automatically
determine which one to use toward meeting its goal. We will
explain the details of this idea and evaluate it in Section V-D.

C. Cost-Effective Circuit Uncomputation

When compiling large hierarchy quantum programs into
low-level circuits, compilers need to deal with the target

Benchmark over
SWAP circuits

connecting a-b on
IBM Boeblingen

Competing Goals:
 Circuit Depth (decoherence)

vs Cross-Talk

Multi-Tasks over Simple Quantum Algorithms

Competing Goals:
 Depth vs High-quality Qubits

For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].

bv
3-p

ere
3

bv
3-t

off
3

bv
3-f

red
3

bv
4-b

v3

bv
4-t

off
3

bv
4-b

v3
-to

ff3

bv
3-b

v3
-bv

4

bv
3-b

v3
-fr

ed
3

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

isolated
MQCC

Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].

bv
3-p

ere
3

bv
3-t

off
3

bv
3-f

red
3

bv
4-b

v3

bv
4-t

off
3

bv
4-b

v3
-to

ff3

bv
3-b

v3
-bv

4

bv
3-b

v3
-fr

ed
3

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

isolated
MQCC

Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

 Sequential: always high-quality qubits

Multi-Programming with MQCC

All experiments performed on IBMQ machines

Case Study: Multi-Programming + Cross-Talk
Benchmark Discription Qubits Number of Gates

bv3 Bernstein-Vazirani 3 8
bv4 Bernstein-Vazirani 4 11
h3 Hamiltonian Simulation 3 11
h4 Hamiltonian Simulation 4 15

TABLE III: Benchmarks for multi-programming

h3
-h4

bv
3-b

v4

bv
3-h

3

bv
4-h

4

bv
4-h

4-b
v3

bv
4-h

4-h
3

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

seq multi-p multi-c

(a) Probability of Successful Trial. Here higher PST is
better.

h3
-h4

bv
3-b

v4

bv
3-h

3

bv
4-h

4

bv
4-h

4-b
v3

bv
4-h

4-h
3

5

10

15

20

C
irc

ui
tD

ep
th

seq multi-p multi-c

(b) Circuit Depth. Here lower circuit depth is better.

Fig. 12: Evaluation of Multi-Programming with Crosstalk
Mitigation. A-B (or A-B-C) is defined similarly as in Figure 6.

depth among three scheduling strategies: running benchmarks
in serial (seq), multi-programmed by MQCC without consid-
ering crosstalk (multi-p), and when considering crosstalk
(multi-c). As shown in Fig. 12, workloads scheduled by
multi-p and multi-c have lower circuit depth than seq.
However, the PST of multi-p is lower than both seq and
multi-c because of high crosstalk,3 where the difference is
more significant when multi-programming more applications.
In contrast, multi-c could always maintain a comparable
PST to seq while reducing the circuit depth significantly.

VI. RELATED WORK

Fast but error-prone chips in classical computation inspired
the development of frameworks to trade correctness for per-

3There is one exception with the case of bv3-bv4 and it might be caused
by the fluctuation of the quantum machine.

formance. Carbin et al. [6] proposed Rely to handle reliability
specifications and analysis. Users of Rely can specify the
quantitative reliability of each component, and the compiler
automatically reasons whether the program is reliable enough.
Misailovic et al. [18] made one step further with Chisel,
automatically optimizing the tradeoff between reliability and
accuracy via integer linear programs. MQCC is inspired by
Chisel, in light of its ability to select instructions based on
resource consumption. Errors in quantum computing emerge
naturally since quantum operations are inherently noisy. Hung
et al. [16] proposed a logic of quantum robustness to analyze
the noise accumulation in quantum programs.

The optimized quantities in these works—reliability, noise,
resource, etc.—are additive attributes, in our terminology. For
our applications, we also crucially rely on the flexibility of
general attributes provided by MQCC.

SMT solvers are widely used in programming language
and architecture designs, e.g., as the basis for automation in
program verification [12], [26], and specification-based pro-
gram synthesis [15], [25], [27]. The solver-aided host language
Rosette [30], [31] has been designed to ease the construction of
solver-aided domain specific languages. Powerful SMT solvers
have also been employed to design NISQ applications. In
addition to the crosstalk example [21], one can also model
the qubit mapping and gate scheduling problems as SMT
instances [19], [20]. MQCC provides a flexible framework that
leverages SMT solvers to automate NISQ designs.

VII. CONCLUSIONS

We present MQCC, a meta-programming framework, to as-
sist NISQ application designers to identify the best balance of
trade-offs among heterogeneous factors specific to the targeted
application and quantum hardware in an automatic way. We
also demonstrate MQCC’s expressiveness through an extensive
case study, where we showcase MQCC programs implement-
ing ideas from previous examples of NISQ application design,
such as multi-programming, crosstalk mitigation, and cost-
effective uncomputation, as well as their combination, which
produce comparable results and exhibit certain advantages.

MQCC constitutes the first step toward a fully automatic
design framework for NISQ applications. Ideally, it would be
desirable to have a front end, which might be application-
specific, that takes the developers’ code and trade-off spec-
ification as inputs and generates the corresponding MQCC
programs automatically. It would also be highly desirable to
incorporate more expression optimization and improve the
overall efficiency of MQCC framework, so that MQCC can
handle more complex attributes in an affordable way.

REFERENCES

[1] “Ibm q device information,” https://quantum-computing.ibm.com/docs/
manage/backends/.

[2] “Ply (python lex-yacc),” https://www.dabeaz.com/ply/.
[3] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM

Journal on computing, vol. 26, no. 5, pp. 1411–1473, 1997.
[4] L. Bishop, S. Bravyi, A. Cross, J. Gambetta, and J. Smolin, “Quantum

volume,” Technical Report, 2017.

an SMT instance that encodes the crosstalk along with other
constraints based on features of each gate.

1) Solution of MQCC: We encode possible gate schedules
via choice variables in a MQCC meta-program. We make
use of the OpenQASM barrier operation described in
Section II-B, which is also used in Murali et al. [21]. For
example, consider the following module for each CNOT gate:

1 module cnotb(c,q1,q2){

2 choice (c){

3 0: cnot(q1,q2);

4 1: barrier(q1,q2);

5 cnot(q1,q2);

6 } }

When c = 0, it is applied normally (maximum parallel);
otherwise, it is executed sequentially only after previous gates
on q1,q2 are finished (i.e., barrier(q1,q2)).

Our goal is to minimize both decoherence error and
crosstalk. We define attributes Crosstalk and Decoherence
which take into account the expected appearance of the
barrier operations in the meta-program. The definition of the
Crosstalk attribute is the following.

Attribute Crosstalk

T: dep : Map of Reg ! N
rep : Map of N ! Set of (str ⇥ ��!

Reg)
empty ():= init s:T, s.dep = ;, s.rep = ;

return s

value (s : T):= return calCross(rep)

op (s : T, opID : str, exps :
�!R, regs :

��!
Reg):=

if opId == "barrier" :

cur = max s.dep.values

for i2regs: s.dep.update(i, cur)

else:

share = s.dep.keys \ regs

next = max {s.dep[i] | i 2 share} + 1

s.rep[next].insert((OpID, regs))

for i2regs: s.dep.update(i, next)

return s

case (s : T, group : Vector of T):=

all =

S
n.dep.keys, n2group

s.dep = {(k, max {n.dep[k]|n2group})| k2all}
s.rep = {(k,

S
n2group n.rep[k]) |9u 2 group, k2 u}

return s

With rep, we know which gates are executed simultaneously
(in the same layer) and use function calCross to calculate the
program’s crosstalk according to the hardware information.
The op method, when meeting a barrier operation, updates
the depth of registers specified by barrier in dep to the
current depth of the program. Thus, future operations applied
on these registers will run in layers following the barrier

statement. For other operations, op updates dep in the same
way as in Depth and inserts this operation into rep.

The probability of decoherence error can be calculated as
1� e�↵d where ↵ is some constant and d is the circuit depth.
So the design of Decoherence is almost the same as Crosstalk
except that Decoherence returns 1� e�↵d where d=dep.keys
in the value method.

2) Evaluation: We follows Murali et al.’s evaluation
methodology [21]. In particular, we use the same meet-in-the-
middle SWAP sequences as benchmarks. In superconducting

0-8 8-15 7-16 9-16 10-19 14-15 2-12

0.4

0.6

0.8

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

Seq Par Xtalk MQCC

Fig. 8: The measured PST for SWAP circuits on IBMQ
Boeblingen using the four schedulers. Higher PST is better.
a-b refers a SWAP circuit connecting qubit a and b.

QC systems, CNOTs are permitted only between adjacent
qubits. To apply a CNOT between two far-away qubits,
compilers usually insert a sequence of SWAP operations that
move two qubits into adjacent locations through exchanges.
For example, in IBMQ Boeblingen, CNOT 15 8 can be im-
plemented as SWAP 15 16; SWAP 16 11; SWAP 8 7; SWAP 7

12; CNOT 11 12 where the two qubits meet in the middle as
in Figure 7.

The machine IBMQ Poughkeepsie and IBMQ Johannesburg
used in the evaluation by Murali et al. [21] are currently un-
available so we use similar SWAP sequences based on IBMQ
Boeblingen. We run 8192 trials for each SWAP sequence
and consider those with desired outputs to be successful. We
compare the PST of four scheduling strategies: running all
instructions serially (Seq); running all instructions maximally
in parallel (Par) which is the default strategy used by Qiskit;
the strategy produced by Murali et al. (Xtalk); and the
strategy produced by MQCC. Figure 8 shows the result.
Circuits generated by MQCC always have higher PST than
Seq and Par. They have performance similar to Xtalk.

3) Advantage of MQCC: MQCC is flexible enough to
encode Murali et al.’s crosstalk mitigation strategy, and that
flexibility extends to incorporating other methods for crosstalk
mitigation as well: e.g., transforming circuits into cross-talk
resistant forms. We demonstrate this in Figure 9.

Figure 9(a) shows two equivalent circuits. In the presence
of another CNOT gate, as shown in Figure 9(b), the first
structure may introduce much higher crosstalk than the second
one since the crosstalk between two CNOT gates is much
greater than the crosstalk between a CNOT and a single qubit
gate. One can encode choices between these equivalent forms
by MQCC choice variables, which will then automatically
determine which one to use toward meeting its goal. We will
explain the details of this idea and evaluate it in Section V-D.

C. Cost-Effective Circuit Uncomputation

When compiling large hierarchy quantum programs into
low-level circuits, compilers need to deal with the target

Benchmark Discription Qubits Number of Gates
bv3 Bernstein-Vazirani 3 8
bv4 Bernstein-Vazirani 4 11
h3 Hamiltonian Simulation 3 11
h4 Hamiltonian Simulation 4 15

TABLE III: Benchmarks for multi-programming

h3
-h4

bv
3-b

v4

bv
3-h

3

bv
4-h

4

bv
4-h

4-b
v3

bv
4-h

4-h
3

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

seq multi-p multi-c

(a) Probability of Successful Trial. Here higher PST is
better.

h3
-h4

bv
3-b

v4

bv
3-h

3

bv
4-h

4

bv
4-h

4-b
v3

bv
4-h

4-h
3

5

10

15

20

C
irc

ui
tD

ep
th

seq multi-p multi-c

(b) Circuit Depth. Here lower circuit depth is better.

Fig. 12: Evaluation of Multi-Programming with Crosstalk
Mitigation. A-B (or A-B-C) is defined similarly as in Figure 6.

depth among three scheduling strategies: running benchmarks
in serial (seq), multi-programmed by MQCC without consid-
ering crosstalk (multi-p), and when considering crosstalk
(multi-c). As shown in Fig. 12, workloads scheduled by
multi-p and multi-c have lower circuit depth than seq.
However, the PST of multi-p is lower than both seq and
multi-c because of high crosstalk,3 where the difference is
more significant when multi-programming more applications.
In contrast, multi-c could always maintain a comparable
PST to seq while reducing the circuit depth significantly.

VI. RELATED WORK

Fast but error-prone chips in classical computation inspired
the development of frameworks to trade correctness for per-

3There is one exception with the case of bv3-bv4 and it might be caused
by the fluctuation of the quantum machine.

formance. Carbin et al. [6] proposed Rely to handle reliability
specifications and analysis. Users of Rely can specify the
quantitative reliability of each component, and the compiler
automatically reasons whether the program is reliable enough.
Misailovic et al. [18] made one step further with Chisel,
automatically optimizing the tradeoff between reliability and
accuracy via integer linear programs. MQCC is inspired by
Chisel, in light of its ability to select instructions based on
resource consumption. Errors in quantum computing emerge
naturally since quantum operations are inherently noisy. Hung
et al. [16] proposed a logic of quantum robustness to analyze
the noise accumulation in quantum programs.

The optimized quantities in these works—reliability, noise,
resource, etc.—are additive attributes, in our terminology. For
our applications, we also crucially rely on the flexibility of
general attributes provided by MQCC.

SMT solvers are widely used in programming language
and architecture designs, e.g., as the basis for automation in
program verification [12], [26], and specification-based pro-
gram synthesis [15], [25], [27]. The solver-aided host language
Rosette [30], [31] has been designed to ease the construction of
solver-aided domain specific languages. Powerful SMT solvers
have also been employed to design NISQ applications. In
addition to the crosstalk example [21], one can also model
the qubit mapping and gate scheduling problems as SMT
instances [19], [20]. MQCC provides a flexible framework that
leverages SMT solvers to automate NISQ designs.

VII. CONCLUSIONS

We present MQCC, a meta-programming framework, to as-
sist NISQ application designers to identify the best balance of
trade-offs among heterogeneous factors specific to the targeted
application and quantum hardware in an automatic way. We
also demonstrate MQCC’s expressiveness through an extensive
case study, where we showcase MQCC programs implement-
ing ideas from previous examples of NISQ application design,
such as multi-programming, crosstalk mitigation, and cost-
effective uncomputation, as well as their combination, which
produce comparable results and exhibit certain advantages.

MQCC constitutes the first step toward a fully automatic
design framework for NISQ applications. Ideally, it would be
desirable to have a front end, which might be application-
specific, that takes the developers’ code and trade-off spec-
ification as inputs and generates the corresponding MQCC
programs automatically. It would also be highly desirable to
incorporate more expression optimization and improve the
overall efficiency of MQCC framework, so that MQCC can
handle more complex attributes in an affordable way.

REFERENCES

[1] “Ibm q device information,” https://quantum-computing.ibm.com/docs/
manage/backends/.

[2] “Ply (python lex-yacc),” https://www.dabeaz.com/ply/.
[3] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM

Journal on computing, vol. 26, no. 5, pp. 1411–1473, 1997.
[4] L. Bishop, S. Bravyi, A. Cross, J. Gambetta, and J. Smolin, “Quantum

volume,” Technical Report, 2017.

Benchmark Discription Qubits Number of Gates
bv3 Bernstein-Vazirani 3 8
bv4 Bernstein-Vazirani 4 11
h3 Hamiltonian Simulation 3 11
h4 Hamiltonian Simulation 4 15

TABLE III: Benchmarks for multi-programming

h3
-h4

bv
3-b

v4

bv
3-h

3

bv
4-h

4

bv
4-h

4-b
v3

bv
4-h

4-h
3

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

seq multi-p multi-c

(a) Probability of Successful Trial. Here higher PST is
better.

h3
-h4

bv
3-b

v4

bv
3-h

3

bv
4-h

4

bv
4-h

4-b
v3

bv
4-h

4-h
3

5

10

15

20

C
irc

ui
tD

ep
th

seq multi-p multi-c

(b) Circuit Depth. Here lower circuit depth is better.

Fig. 12: Evaluation of Multi-Programming with Crosstalk
Mitigation. A-B (or A-B-C) is defined similarly as in Figure 6.

depth among three scheduling strategies: running benchmarks
in serial (seq), multi-programmed by MQCC without consid-
ering crosstalk (multi-p), and when considering crosstalk
(multi-c). As shown in Fig. 12, workloads scheduled by
multi-p and multi-c have lower circuit depth than seq.
However, the PST of multi-p is lower than both seq and
multi-c because of high crosstalk,3 where the difference is
more significant when multi-programming more applications.
In contrast, multi-c could always maintain a comparable
PST to seq while reducing the circuit depth significantly.

VI. RELATED WORK

Fast but error-prone chips in classical computation inspired
the development of frameworks to trade correctness for per-

3There is one exception with the case of bv3-bv4 and it might be caused
by the fluctuation of the quantum machine.

formance. Carbin et al. [6] proposed Rely to handle reliability
specifications and analysis. Users of Rely can specify the
quantitative reliability of each component, and the compiler
automatically reasons whether the program is reliable enough.
Misailovic et al. [18] made one step further with Chisel,
automatically optimizing the tradeoff between reliability and
accuracy via integer linear programs. MQCC is inspired by
Chisel, in light of its ability to select instructions based on
resource consumption. Errors in quantum computing emerge
naturally since quantum operations are inherently noisy. Hung
et al. [16] proposed a logic of quantum robustness to analyze
the noise accumulation in quantum programs.

The optimized quantities in these works—reliability, noise,
resource, etc.—are additive attributes, in our terminology. For
our applications, we also crucially rely on the flexibility of
general attributes provided by MQCC.

SMT solvers are widely used in programming language
and architecture designs, e.g., as the basis for automation in
program verification [12], [26], and specification-based pro-
gram synthesis [15], [25], [27]. The solver-aided host language
Rosette [30], [31] has been designed to ease the construction of
solver-aided domain specific languages. Powerful SMT solvers
have also been employed to design NISQ applications. In
addition to the crosstalk example [21], one can also model
the qubit mapping and gate scheduling problems as SMT
instances [19], [20]. MQCC provides a flexible framework that
leverages SMT solvers to automate NISQ designs.

VII. CONCLUSIONS

We present MQCC, a meta-programming framework, to as-
sist NISQ application designers to identify the best balance of
trade-offs among heterogeneous factors specific to the targeted
application and quantum hardware in an automatic way. We
also demonstrate MQCC’s expressiveness through an extensive
case study, where we showcase MQCC programs implement-
ing ideas from previous examples of NISQ application design,
such as multi-programming, crosstalk mitigation, and cost-
effective uncomputation, as well as their combination, which
produce comparable results and exhibit certain advantages.

MQCC constitutes the first step toward a fully automatic
design framework for NISQ applications. Ideally, it would be
desirable to have a front end, which might be application-
specific, that takes the developers’ code and trade-off spec-
ification as inputs and generates the corresponding MQCC
programs automatically. It would also be highly desirable to
incorporate more expression optimization and improve the
overall efficiency of MQCC framework, so that MQCC can
handle more complex attributes in an affordable way.

REFERENCES

[1] “Ibm q device information,” https://quantum-computing.ibm.com/docs/
manage/backends/.

[2] “Ply (python lex-yacc),” https://www.dabeaz.com/ply/.
[3] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM

Journal on computing, vol. 26, no. 5, pp. 1411–1473, 1997.
[4] L. Bishop, S. Bravyi, A. Cross, J. Gambetta, and J. Smolin, “Quantum

volume,” Technical Report, 2017.

Benchmark Discription Qubits Number of Gates
bv3 Bernstein-Vazirani 3 8
bv4 Bernstein-Vazirani 4 11
h3 Hamiltonian Simulation 3 11
h4 Hamiltonian Simulation 4 15

TABLE III: Benchmarks for multi-programming

h3
-h4

bv
3-b

v4

bv
3-h

3

bv
4-h

4

bv
4-h

4-b
v3

bv
4-h

4-h
3

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

seq multi-p multi-c

(a) Probability of Successful Trial. Here higher PST is
better.

h3
-h4

bv
3-b

v4

bv
3-h

3

bv
4-h

4

bv
4-h

4-b
v3

bv
4-h

4-h
3

5

10

15

20

C
irc

ui
tD

ep
th

seq multi-p multi-c

(b) Circuit Depth. Here lower circuit depth is better.

Fig. 12: Evaluation of Multi-Programming with Crosstalk
Mitigation. A-B (or A-B-C) is defined similarly as in Figure 6.

depth among three scheduling strategies: running benchmarks
in serial (seq), multi-programmed by MQCC without consid-
ering crosstalk (multi-p), and when considering crosstalk
(multi-c). As shown in Fig. 12, workloads scheduled by
multi-p and multi-c have lower circuit depth than seq.
However, the PST of multi-p is lower than both seq and
multi-c because of high crosstalk,3 where the difference is
more significant when multi-programming more applications.
In contrast, multi-c could always maintain a comparable
PST to seq while reducing the circuit depth significantly.

VI. RELATED WORK

Fast but error-prone chips in classical computation inspired
the development of frameworks to trade correctness for per-

3There is one exception with the case of bv3-bv4 and it might be caused
by the fluctuation of the quantum machine.

formance. Carbin et al. [6] proposed Rely to handle reliability
specifications and analysis. Users of Rely can specify the
quantitative reliability of each component, and the compiler
automatically reasons whether the program is reliable enough.
Misailovic et al. [18] made one step further with Chisel,
automatically optimizing the tradeoff between reliability and
accuracy via integer linear programs. MQCC is inspired by
Chisel, in light of its ability to select instructions based on
resource consumption. Errors in quantum computing emerge
naturally since quantum operations are inherently noisy. Hung
et al. [16] proposed a logic of quantum robustness to analyze
the noise accumulation in quantum programs.

The optimized quantities in these works—reliability, noise,
resource, etc.—are additive attributes, in our terminology. For
our applications, we also crucially rely on the flexibility of
general attributes provided by MQCC.

SMT solvers are widely used in programming language
and architecture designs, e.g., as the basis for automation in
program verification [12], [26], and specification-based pro-
gram synthesis [15], [25], [27]. The solver-aided host language
Rosette [30], [31] has been designed to ease the construction of
solver-aided domain specific languages. Powerful SMT solvers
have also been employed to design NISQ applications. In
addition to the crosstalk example [21], one can also model
the qubit mapping and gate scheduling problems as SMT
instances [19], [20]. MQCC provides a flexible framework that
leverages SMT solvers to automate NISQ designs.

VII. CONCLUSIONS

We present MQCC, a meta-programming framework, to as-
sist NISQ application designers to identify the best balance of
trade-offs among heterogeneous factors specific to the targeted
application and quantum hardware in an automatic way. We
also demonstrate MQCC’s expressiveness through an extensive
case study, where we showcase MQCC programs implement-
ing ideas from previous examples of NISQ application design,
such as multi-programming, crosstalk mitigation, and cost-
effective uncomputation, as well as their combination, which
produce comparable results and exhibit certain advantages.

MQCC constitutes the first step toward a fully automatic
design framework for NISQ applications. Ideally, it would be
desirable to have a front end, which might be application-
specific, that takes the developers’ code and trade-off spec-
ification as inputs and generates the corresponding MQCC
programs automatically. It would also be highly desirable to
incorporate more expression optimization and improve the
overall efficiency of MQCC framework, so that MQCC can
handle more complex attributes in an affordable way.

REFERENCES

[1] “Ibm q device information,” https://quantum-computing.ibm.com/docs/
manage/backends/.

[2] “Ply (python lex-yacc),” https://www.dabeaz.com/ply/.
[3] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM

Journal on computing, vol. 26, no. 5, pp. 1411–1473, 1997.
[4] L. Bishop, S. Bravyi, A. Cross, J. Gambetta, and J. Smolin, “Quantum

volume,” Technical Report, 2017.

Optimizing Goal:
 Noise + Decoherence + Crosstalk

 Sequential: always high-quality qubits.

 but larger depth (decoherence)

Multi-programs without considering crosstalk

 short depth, but large crosstalk errors

EASY implementation in MQCC

Multi-programs with crosstalk

 short depth and large successful probability

All experiments performed on IBMQ machines

ERROR

Nature

Quantum Error Correction
Fight

Quantum Decoherence

ERROR

Nature

Quantum Error Correction
Fight

Quantum Decoherence

Human

28CT&TC Jeannette M. Wing

Correctness: Avoiding Bugs to Save Money and
Lives

Ariane 5 failure

Now Intel uses formal verification.

Intel Pentium FPU error

Now Microsoft uses formal verification.

Ariane 5

Human Errors in Quantum Software Engineering
Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

Human Errors in Quantum Software Engineering
Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

confirming the circuit by observation…. not scalable…

Human Errors in Quantum Software Engineering
Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

confirming the circuit by observation…. not scalable…

QISKIT Compiler ERRORs

Much HARDER to detect!

Serious Consequences!

Human Errors in Quantum Software Engineering
Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

confirming the circuit by observation…. not scalable…

QISKIT Compiler ERRORs

Much HARDER to detect!

Serious Consequences!

Similar Concerns

 in classical !

More SERIOUS

 in quantum !

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

GCC : many bugs in software testing
CompCert: a certified “GCC”, bug-free

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

GCC : many bugs in software testing
CompCert: a certified “GCC”, bug-free

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

GCC : many bugs in software testing
CompCert: a certified “GCC”, bug-free

Fully Formal Verification

Code

Spec

Proof
Assistant

Grad

interactively show
code satisfies
specification

Fully Formal Verification

Code

Spec

Proof
Assistant

Grad

ML x86

compile down to
machine code

Fully Formal Verification

Code

Spec

Proof
Assistant

Extremely strong
guarantees about

actual system!Grad

ML x86

Fully Formal Verification
Coq Theorem Prover

Software Writing

Theorem Writing

Proofs Writing

(1) Ensure correctness of code by construction.
(2) Scalability for quantum based on symbolic proofs.

source
circuit

target
circuit

VOQC
optimizers,

circuit
mapper ex

tra
ct

io
ntranslation

source
SQIR
circuit

target
SQIR
circuit

source
program

VOQC
optimizers,

circuit
mapper

OCaml

VOQC
Coq

✅✅

arch
spec

OpenQASM

(Verified Optimizer for Quantum Circuits)

Verified Optimization in a Quantum Intermediate Representation

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks
University of Maryland, College Park

We present a simple quantum language we call SQIRE
(pronounced “squire”) that can be used as an
intermediate representation (IR) in a certified compiler for
quantum programs. SQIRE is implemented in Coq [2], on
top of libraries developed for the QWIRE circuit language
[8]. This allows us to formally verify properties of SQIRE
programs and program transformations. We demonstrate
the power of SQIRE as a compiler intermediate
representation by verifying a number of useful program
transformations. For example, we verify soundness of an
optimization that removes unnecessary X gates from a
unitary program. We also consider a transformation that
turns general SQIRE programs into SQIRE programs that
can run on a linear nearest neighbor architecture.

The full paper is available at [5].

The corresponding code is available at [3].

Abstract

[1] The CompCert Verified Compiler. Available at http://compcert.inria.fr/.
[2] The Coq Proof Assistant. Available at https://coq.inria.fr/.
[3] SQIRE Development. Available at https://github.com/inQWIRE/SQIRE/.
[4] Qiskit. Available at https://qiskit.org/.
[5] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael
Hicks. Verified Optimization in a Quantum Intermediate Representation.
arXiv:1904.06319.
[6] Ali Javadi Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov,
Frederic T. Chong, and Margaret Martonosi. ScaffCC: Scalable Compilation
and Analysis of Quantum Programs. Parallel Computing 45. 2015.
[7] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri
Maslov. Automated Optimization of Large quantum Circuits with
Continuous Parameters. npj Quantum Information 4(1). 2018.
[8] Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE Practice:
Formal Verification of Quantum Circuits in Coq. QPL 2017.

References

Our work is a first step towards a verified compiler for
quantum programs. In the long term, we envision a fully-
verified compilation stack from high-level quantum
languages to hardware instructions, as shown below.

The transformation from the high-level language to the
general purpose IR must preserve the semantics of the
source program, so that properties proved of the source
program are also true in the IR representation.
Optimizations and machine-specific transformations
applied to the general purpose IR to produce machine-
specific IR must similarly preserve the semantics of the
program, and also ensure that the produced IR satisfies
the relevant hardware constraints. Finally, the compiler
should not introduce errors when translating from the
low-level IR to machine instructions.

We are currently working on:
• Additional verified optimizations and mapping

algorithms, taking inspiration from existing compilers
for quantum programs like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce qubit and
gate count to make programs more feasible to run on
near-term machines, circuit mapping aims to address the
connectivity constraints of near-term machines. Circuit
mapping algorithms take as input an arbitrary program
and output a program that respects the connectivity
constraints of some underlying architecture

We have verified a naïve mapping algorithm for a toy
architecture. We assume a linear nearest neighbor (LNN)
architecture where each qubit can only interact with its
immediate neighbor. We map a program to this
architecture by adding SWAP operations before and after
every CNOT so that the target and control are adjacent
when the CNOT is performed, and are returned to their
original positions before the next operation.

We have proven that this transformation is sound, and
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of
a piece of software is known as formal verification. Formal
verification has been used in classical computing for
many years to prove correctness and security properties of
critical code. However, formal verification is particularly
useful in the field of quantum computing, where
standard software assurance techniques such as unit
testing and runtime debugging are infeasible.

Examples of formal verification that have been applied to
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that
a quantum program satisfies some specification. For
example, consider a program describing the quantum
teleportation protocol. The goal may be to prove that,
given a Bell pair and a qubit in any state, the program will
correctly “teleport” the input qubit to one of the elements
of the Bell pair.

Another useful application of formal verification, which
has received relatively little attention from the quantum
formal verification community, is proving the correctness
of program transformations. Verifying program
transformations allows the construction of certified
compilers, which are compilers that guarantee that the
executable code they output behaves as specified by the
input source program. Certified compilers are guaranteed
not to introduce bugs in a program during compilation
because they are correct by construction. The most
famous example of a certified compiler (for classical
computing) is CompCert [1], an optimizing compiler for C
proved correct using the Coq proof assistant.

Formal Verification

SQIRE supports five quantum programming constructs:
skip, sequencing, unitary application, measurement of a
single qubit, and resetting a single qubit to a fixed basis
state.

For simplicity, we support a fixed set of gates. This set can
be extended in our implementation, or new gates can be
defined in terms of built-in gates. For example, we define
the SWAP operation as follows.

We can then state and prove properties about the
semantics of the defined operations. For example, we can
prove that the SWAP program swaps its arguments, as
intended.

Example. Superdense coding is a protocol that allows a
sender to transmit two classical bits, b1 and b2, to a
receiver using a single quantum bit. The SQIRE program
corresponding to the unitary part of the superdense
coding protocol is shown below.

Although SQIRE was designed to be used as an
intermediate representation, we can also prove properties
about SQIRE programs directly, since these programs and
their semantics are embedded in Coq. For example, we
can prove that the result of evaluating the program
(superdense b1 b2) on an input state consisting of two
qubits initialized to zero is the state ∣b1, b2⟩. In our
development, we write this as follows.

In our full paper, we show examples of verifying properties
of n-qubit GHZ state preparation, quantum teleportation,
and the n-qubit Deutsch-Jozsa algorithm.

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able
to perform small computations before decoherence takes
effect, compilers for quantum programs must apply
sophisticated optimizations to reduce resource usage.
These optimizations can be complicated to implement
and are vulnerable to programmer error. It is thus
important to verify that the implementations of program
optimizations are correct.

In general, we will be interested in proving that a
transformation is semantics-preserving, meaning that the
transformation does not change the behavior of the
program. When a transformation is semantics-preserving,
we say that it is sound.

For example, consider the optimization, which removes
skip operations from a program.

To prove that this transformation is semantics-preserving,
we prove the following lemma.

In our full paper, we verify soundness of a more realistic
optimization from [7], which removes unnecessary X
gates from a unitary program.

Verified Optimization

High-level Language
E.g. QWIRE, Quipper, Q#

General Purpose IR
E.g. SQIRE, Open QASM, Quil

Machine-specific IR

Hardware Instructions

Hardware Description
E.g. Gate set, connectivity

constraints

POPL
2021

Distinguished
Paper

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq.

source
circuit

target
circuit

VOQC
optimizers,

circuit
mapper ex

tra
ct

io
ntranslation

source
SQIR
circuit

target
SQIR
circuit

source
program

VOQC
optimizers,

circuit
mapper

OCaml

VOQC
Coq

✅✅

arch
spec

OpenQASM

(Verified Optimizer for Quantum Circuits)

Verified Optimization in a Quantum Intermediate Representation

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks
University of Maryland, College Park

We present a simple quantum language we call SQIRE
(pronounced “squire”) that can be used as an
intermediate representation (IR) in a certified compiler for
quantum programs. SQIRE is implemented in Coq [2], on
top of libraries developed for the QWIRE circuit language
[8]. This allows us to formally verify properties of SQIRE
programs and program transformations. We demonstrate
the power of SQIRE as a compiler intermediate
representation by verifying a number of useful program
transformations. For example, we verify soundness of an
optimization that removes unnecessary X gates from a
unitary program. We also consider a transformation that
turns general SQIRE programs into SQIRE programs that
can run on a linear nearest neighbor architecture.

The full paper is available at [5].

The corresponding code is available at [3].

Abstract

[1] The CompCert Verified Compiler. Available at http://compcert.inria.fr/.
[2] The Coq Proof Assistant. Available at https://coq.inria.fr/.
[3] SQIRE Development. Available at https://github.com/inQWIRE/SQIRE/.
[4] Qiskit. Available at https://qiskit.org/.
[5] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael
Hicks. Verified Optimization in a Quantum Intermediate Representation.
arXiv:1904.06319.
[6] Ali Javadi Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov,
Frederic T. Chong, and Margaret Martonosi. ScaffCC: Scalable Compilation
and Analysis of Quantum Programs. Parallel Computing 45. 2015.
[7] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri
Maslov. Automated Optimization of Large quantum Circuits with
Continuous Parameters. npj Quantum Information 4(1). 2018.
[8] Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE Practice:
Formal Verification of Quantum Circuits in Coq. QPL 2017.

References

Our work is a first step towards a verified compiler for
quantum programs. In the long term, we envision a fully-
verified compilation stack from high-level quantum
languages to hardware instructions, as shown below.

The transformation from the high-level language to the
general purpose IR must preserve the semantics of the
source program, so that properties proved of the source
program are also true in the IR representation.
Optimizations and machine-specific transformations
applied to the general purpose IR to produce machine-
specific IR must similarly preserve the semantics of the
program, and also ensure that the produced IR satisfies
the relevant hardware constraints. Finally, the compiler
should not introduce errors when translating from the
low-level IR to machine instructions.

We are currently working on:
• Additional verified optimizations and mapping

algorithms, taking inspiration from existing compilers
for quantum programs like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce qubit and
gate count to make programs more feasible to run on
near-term machines, circuit mapping aims to address the
connectivity constraints of near-term machines. Circuit
mapping algorithms take as input an arbitrary program
and output a program that respects the connectivity
constraints of some underlying architecture

We have verified a naïve mapping algorithm for a toy
architecture. We assume a linear nearest neighbor (LNN)
architecture where each qubit can only interact with its
immediate neighbor. We map a program to this
architecture by adding SWAP operations before and after
every CNOT so that the target and control are adjacent
when the CNOT is performed, and are returned to their
original positions before the next operation.

We have proven that this transformation is sound, and
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of
a piece of software is known as formal verification. Formal
verification has been used in classical computing for
many years to prove correctness and security properties of
critical code. However, formal verification is particularly
useful in the field of quantum computing, where
standard software assurance techniques such as unit
testing and runtime debugging are infeasible.

Examples of formal verification that have been applied to
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that
a quantum program satisfies some specification. For
example, consider a program describing the quantum
teleportation protocol. The goal may be to prove that,
given a Bell pair and a qubit in any state, the program will
correctly “teleport” the input qubit to one of the elements
of the Bell pair.

Another useful application of formal verification, which
has received relatively little attention from the quantum
formal verification community, is proving the correctness
of program transformations. Verifying program
transformations allows the construction of certified
compilers, which are compilers that guarantee that the
executable code they output behaves as specified by the
input source program. Certified compilers are guaranteed
not to introduce bugs in a program during compilation
because they are correct by construction. The most
famous example of a certified compiler (for classical
computing) is CompCert [1], an optimizing compiler for C
proved correct using the Coq proof assistant.

Formal Verification

SQIRE supports five quantum programming constructs:
skip, sequencing, unitary application, measurement of a
single qubit, and resetting a single qubit to a fixed basis
state.

For simplicity, we support a fixed set of gates. This set can
be extended in our implementation, or new gates can be
defined in terms of built-in gates. For example, we define
the SWAP operation as follows.

We can then state and prove properties about the
semantics of the defined operations. For example, we can
prove that the SWAP program swaps its arguments, as
intended.

Example. Superdense coding is a protocol that allows a
sender to transmit two classical bits, b1 and b2, to a
receiver using a single quantum bit. The SQIRE program
corresponding to the unitary part of the superdense
coding protocol is shown below.

Although SQIRE was designed to be used as an
intermediate representation, we can also prove properties
about SQIRE programs directly, since these programs and
their semantics are embedded in Coq. For example, we
can prove that the result of evaluating the program
(superdense b1 b2) on an input state consisting of two
qubits initialized to zero is the state ∣b1, b2⟩. In our
development, we write this as follows.

In our full paper, we show examples of verifying properties
of n-qubit GHZ state preparation, quantum teleportation,
and the n-qubit Deutsch-Jozsa algorithm.

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able
to perform small computations before decoherence takes
effect, compilers for quantum programs must apply
sophisticated optimizations to reduce resource usage.
These optimizations can be complicated to implement
and are vulnerable to programmer error. It is thus
important to verify that the implementations of program
optimizations are correct.

In general, we will be interested in proving that a
transformation is semantics-preserving, meaning that the
transformation does not change the behavior of the
program. When a transformation is semantics-preserving,
we say that it is sound.

For example, consider the optimization, which removes
skip operations from a program.

To prove that this transformation is semantics-preserving,
we prove the following lemma.

In our full paper, we verify soundness of a more realistic
optimization from [7], which removes unnecessary X
gates from a unitary program.

Verified Optimization

High-level Language
E.g. QWIRE, Quipper, Q#

General Purpose IR
E.g. SQIRE, Open QASM, Quil

Machine-specific IR

Hardware Instructions

Hardware Description
E.g. Gate set, connectivity

constraints

POPL
2021

Distinguished
Paper

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq.

0

5

10

15

20

25

30
%

 re
du

ct
io

n
Reduction in Rotation Gate Count

VOQC
Qiskit

source
circuit

target
circuit

VOQC
optimizers,

circuit
mapper ex

tra
ct

io
ntranslation

source
SQIR
circuit

target
SQIR
circuit

source
program

VOQC
optimizers,

circuit
mapper

OCaml

VOQC
Coq

✅✅

arch
spec

OpenQASM

(Verified Optimizer for Quantum Circuits)

Verified Optimization in a Quantum Intermediate Representation

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks
University of Maryland, College Park

We present a simple quantum language we call SQIRE
(pronounced “squire”) that can be used as an
intermediate representation (IR) in a certified compiler for
quantum programs. SQIRE is implemented in Coq [2], on
top of libraries developed for the QWIRE circuit language
[8]. This allows us to formally verify properties of SQIRE
programs and program transformations. We demonstrate
the power of SQIRE as a compiler intermediate
representation by verifying a number of useful program
transformations. For example, we verify soundness of an
optimization that removes unnecessary X gates from a
unitary program. We also consider a transformation that
turns general SQIRE programs into SQIRE programs that
can run on a linear nearest neighbor architecture.

The full paper is available at [5].

The corresponding code is available at [3].

Abstract

[1] The CompCert Verified Compiler. Available at http://compcert.inria.fr/.
[2] The Coq Proof Assistant. Available at https://coq.inria.fr/.
[3] SQIRE Development. Available at https://github.com/inQWIRE/SQIRE/.
[4] Qiskit. Available at https://qiskit.org/.
[5] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael
Hicks. Verified Optimization in a Quantum Intermediate Representation.
arXiv:1904.06319.
[6] Ali Javadi Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov,
Frederic T. Chong, and Margaret Martonosi. ScaffCC: Scalable Compilation
and Analysis of Quantum Programs. Parallel Computing 45. 2015.
[7] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri
Maslov. Automated Optimization of Large quantum Circuits with
Continuous Parameters. npj Quantum Information 4(1). 2018.
[8] Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE Practice:
Formal Verification of Quantum Circuits in Coq. QPL 2017.

References

Our work is a first step towards a verified compiler for
quantum programs. In the long term, we envision a fully-
verified compilation stack from high-level quantum
languages to hardware instructions, as shown below.

The transformation from the high-level language to the
general purpose IR must preserve the semantics of the
source program, so that properties proved of the source
program are also true in the IR representation.
Optimizations and machine-specific transformations
applied to the general purpose IR to produce machine-
specific IR must similarly preserve the semantics of the
program, and also ensure that the produced IR satisfies
the relevant hardware constraints. Finally, the compiler
should not introduce errors when translating from the
low-level IR to machine instructions.

We are currently working on:
• Additional verified optimizations and mapping

algorithms, taking inspiration from existing compilers
for quantum programs like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce qubit and
gate count to make programs more feasible to run on
near-term machines, circuit mapping aims to address the
connectivity constraints of near-term machines. Circuit
mapping algorithms take as input an arbitrary program
and output a program that respects the connectivity
constraints of some underlying architecture

We have verified a naïve mapping algorithm for a toy
architecture. We assume a linear nearest neighbor (LNN)
architecture where each qubit can only interact with its
immediate neighbor. We map a program to this
architecture by adding SWAP operations before and after
every CNOT so that the target and control are adjacent
when the CNOT is performed, and are returned to their
original positions before the next operation.

We have proven that this transformation is sound, and
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of
a piece of software is known as formal verification. Formal
verification has been used in classical computing for
many years to prove correctness and security properties of
critical code. However, formal verification is particularly
useful in the field of quantum computing, where
standard software assurance techniques such as unit
testing and runtime debugging are infeasible.

Examples of formal verification that have been applied to
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that
a quantum program satisfies some specification. For
example, consider a program describing the quantum
teleportation protocol. The goal may be to prove that,
given a Bell pair and a qubit in any state, the program will
correctly “teleport” the input qubit to one of the elements
of the Bell pair.

Another useful application of formal verification, which
has received relatively little attention from the quantum
formal verification community, is proving the correctness
of program transformations. Verifying program
transformations allows the construction of certified
compilers, which are compilers that guarantee that the
executable code they output behaves as specified by the
input source program. Certified compilers are guaranteed
not to introduce bugs in a program during compilation
because they are correct by construction. The most
famous example of a certified compiler (for classical
computing) is CompCert [1], an optimizing compiler for C
proved correct using the Coq proof assistant.

Formal Verification

SQIRE supports five quantum programming constructs:
skip, sequencing, unitary application, measurement of a
single qubit, and resetting a single qubit to a fixed basis
state.

For simplicity, we support a fixed set of gates. This set can
be extended in our implementation, or new gates can be
defined in terms of built-in gates. For example, we define
the SWAP operation as follows.

We can then state and prove properties about the
semantics of the defined operations. For example, we can
prove that the SWAP program swaps its arguments, as
intended.

Example. Superdense coding is a protocol that allows a
sender to transmit two classical bits, b1 and b2, to a
receiver using a single quantum bit. The SQIRE program
corresponding to the unitary part of the superdense
coding protocol is shown below.

Although SQIRE was designed to be used as an
intermediate representation, we can also prove properties
about SQIRE programs directly, since these programs and
their semantics are embedded in Coq. For example, we
can prove that the result of evaluating the program
(superdense b1 b2) on an input state consisting of two
qubits initialized to zero is the state ∣b1, b2⟩. In our
development, we write this as follows.

In our full paper, we show examples of verifying properties
of n-qubit GHZ state preparation, quantum teleportation,
and the n-qubit Deutsch-Jozsa algorithm.

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able
to perform small computations before decoherence takes
effect, compilers for quantum programs must apply
sophisticated optimizations to reduce resource usage.
These optimizations can be complicated to implement
and are vulnerable to programmer error. It is thus
important to verify that the implementations of program
optimizations are correct.

In general, we will be interested in proving that a
transformation is semantics-preserving, meaning that the
transformation does not change the behavior of the
program. When a transformation is semantics-preserving,
we say that it is sound.

For example, consider the optimization, which removes
skip operations from a program.

To prove that this transformation is semantics-preserving,
we prove the following lemma.

In our full paper, we verify soundness of a more realistic
optimization from [7], which removes unnecessary X
gates from a unitary program.

Verified Optimization

High-level Language
E.g. QWIRE, Quipper, Q#

General Purpose IR
E.g. SQIRE, Open QASM, Quil

Machine-specific IR

Hardware Instructions

Hardware Description
E.g. Gate set, connectivity

constraints

POPL
2021

Distinguished
Paper

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq.

0

5

10

15

20

25

30
%

 re
du

ct
io

n
Reduction in Rotation Gate Count

VOQC
Qiskit

Our infrastructure powerful enough:
 an end-to-end implementation of Shor’s algorithm & its correctness proof.

Example: simple local gate rewrites

Implementation (~200 lines) Spec + Proofs (~700 lines)

Computational Thinking in Quantum Computing

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

Quantum Hardware
Design

Quantum Network

Security
Cryptography

Quantum Cryptography

Post-Quantum Cryptography

END-TO-END
QUANTUM

APPLICATIONS

Certified
Quantum
Software

Tool
chain

(Practical) Verification of
Quantum Computation

Provable Quantum Speedups
in optimization, machine learning

Quantum Generative Models
Q. Neuro-Symbolic Applications

Q. Program Analysis & Verification
Differentiable QPL

Meta-
Program
Scheme

-
tradeoffs
between

errors
and

resources Quantum Pulse Engineering Q. Hardware Description Language
Computer-aided Q. Design

Q. Localization and Synchronization
Networks

Mechanized and Automatic
Quantum Security Analysis

Quantum Supremacy
Preskill (2012): (1) What quantum tasks are feasible? in the near term?

 (2) What quantum tasks are hard to simulate classically?

Quantum Supremacy

Google Supremacy: RCS (2019) USTC: Boson Sampling (2020)

Preskill (2012): (1) What quantum tasks are feasible? in the near term?

 (2) What quantum tasks are hard to simulate classically?

Many proposals: Boson Sampling, Random Circuit Sampling (RCS),

 Instantaneous Quantum Computation, ….

Quantum Supremacy

Google Supremacy: RCS (2019) USTC: Boson Sampling (2020)

Preskill (2012): (1) What quantum tasks are feasible? in the near term?

 (2) What quantum tasks are hard to simulate classically?

Many proposals: Boson Sampling, Random Circuit Sampling (RCS),

 Instantaneous Quantum Computation, ….

Hardness of classical simulation of the output distribution of

quantum supremacy tasks under complexity-theoretical assumptions

Theoretical
Justification

References: Aaronson & Arkihipov 11, Bremner & Jozsa & Shepherd 11, Aaronson & Chen 17, Boixo et al 18,
 Bouland & Fefferman & Nirkhe & Vazirani 19, and so on

Verifiable Quantum Supremacy
GAP in the implementation: want verifiability in the real experiment!

Verifier

Classical

Quantum

……

Verifiable Quantum Supremacy
GAP in the implementation: want verifiability in the real experiment!

Verifier

Classical

Quantum

……

 Infeasible Solutions:
 - Factoring (in NP)

 - Mahadev’s delegation

Verifiable Quantum Supremacy
GAP in the implementation: want verifiability in the real experiment!

Verifier

Classical

Quantum

……

 Infeasible Solutions:
 - Factoring (in NP)

 - Mahadev’s delegation

Hardness of Simulation
 Hardness of Spoofing≠
needs additional assumption against
spoofing (Aaronson & Gunn 20)

Verifiable Quantum Supremacy
GAP in the implementation: want verifiability in the real experiment!

Verifier

Classical

Quantum

……

 Infeasible Solutions:
 - Factoring (in NP)

 - Mahadev’s delegation

Hardness of Simulation
 Hardness of Spoofing≠
needs additional assumption against
spoofing (Aaronson & Gunn 20)

Expensive Verification Procedure

use supercomputers to calculate
the outcome distribution of a given
circuit for the verification

Google Supremacy: RCS USTC: Boson Sampling

simulate Boson Sampling
of small instances and
then extrapolate

Verifiable Quantum Supremacy: Break the Symmetry
Why it is HARD?

“If n is small enough for verification, it is also small enough for spoofing.”
 - Scott Aaronson

Verifiable Quantum Supremacy: Break the Symmetry
Why it is HARD?

“If n is small enough for verification, it is also small enough for spoofing.”
 - Scott Aaronson

Break the symmetry

…

C’= Ob (C)

Verify with C

size-growing circuit obfuscation

C’= Ob (C) : C C’, but C’ operates on

 larger machines, #qbts, #gates

≡

Verify with C: do whatever original verification

 at the cost of the original C

Verifiable Quantum Supremacy: Break the Symmetry
Why it is HARD?

“If n is small enough for verification, it is also small enough for spoofing.”
 - Scott Aaronson

Break the symmetry

…

C’= Ob (C)

Verify with C

size-growing circuit obfuscation

C’= Ob (C) : C C’, but C’ operates on

 larger machines, #qbts, #gates

≡

Verify with C: do whatever original verification

 at the cost of the original C

Completeness: quantum machines can run C’=ob(C) and return the

 answer which will pass the original test

Verifiable Quantum Supremacy: Break the Symmetry
Why it is HARD?

“If n is small enough for verification, it is also small enough for spoofing.”
 - Scott Aaronson

Break the symmetry

…

C’= Ob (C)

Verify with C

size-growing circuit obfuscation

C’= Ob (C) : C C’, but C’ operates on

 larger machines, #qbts, #gates

≡

Verify with C: do whatever original verification

 at the cost of the original C

Completeness: quantum machines can run C’=ob(C) and return the

 answer which will pass the original test
Soundness: intuitively, hard to find C from C’, backed by the hardness of

 Quantum MECP. Need additional assumptions like others.

Construction of the Obfuscator
Why? * Need a feasible construction to run!

 * Complexity arguments usually asymptotic! Care about empirical performance

 for a certain parameter range!

Construction of the Obfuscator
Why? * Need a feasible construction to run!

 * Complexity arguments usually asymptotic! Care about empirical performance

 for a certain parameter range!

Need to Identify A Problem Where
Reducing Circuit-Size is HARD!

Circuit Optimization as we just see

Construction of the Obfuscator
Why? * Need a feasible construction to run!

 * Complexity arguments usually asymptotic! Care about empirical performance

 for a certain parameter range!

Need to Identify A Problem Where
Reducing Circuit-Size is HARD!

Circuit Optimization as we just see

Reverse the construction of Circuit Optimizers
- Reverse the local rewrites used for reducing the circuit size.

- Apply these local rewrites in a random order. Identify the order for reducing the

size is hard. Identify this random order is harder.

- Also include teleportation + random cancelling pairs to grow the circuit size.

Construction of the Obfuscator
Why? * Need a feasible construction to run!

 * Complexity arguments usually asymptotic! Care about empirical performance

 for a certain parameter range!

Need to Identify A Problem Where
Reducing Circuit-Size is HARD!

Circuit Optimization as we just see

Reverse the construction of Circuit Optimizers
- Reverse the local rewrites used for reducing the circuit size.

- Apply these local rewrites in a random order. Identify the order for reducing the

size is hard. Identify this random order is harder.

- Also include teleportation + random cancelling pairs to grow the circuit size.

Implementation in Coq with the SQIR infrastructure!
Additional Benefits: the correctness of the obfuscation is guaranteed by construction!

Evaluation and Conclusion
12

gf2-16-mult x-6-y-8-layers-7 x-10-y-10-layers-7 IQP-30 IQP-35

0

0.5

1

1.5

·104

T
ot
al

nu
m
b
er

of
ga

te
s

original obfuscated after VOQC after Qiskit after staq

FIG. 1. Illustration of gate counts for 5 selected benchmark circuits, before obfuscation, after obfuscation, and after
optimization using VOQC, Qiskit and staq respectively

Reducing the Obfuscation w/
- VOQC

- Qiskit

- STAQ

- …

Obfuscated circuits maintain

 - all qubits will be entangled during

 execution

 - average depth = # gates/ # qbits at

 least the one of the original

to avoid simple attacks.

Evaluation and Conclusion
12

gf2-16-mult x-6-y-8-layers-7 x-10-y-10-layers-7 IQP-30 IQP-35

0

0.5

1

1.5

·104

T
ot
al

nu
m
b
er

of
ga

te
s

original obfuscated after VOQC after Qiskit after staq

FIG. 1. Illustration of gate counts for 5 selected benchmark circuits, before obfuscation, after obfuscation, and after
optimization using VOQC, Qiskit and staq respectively

Reducing the Obfuscation w/
- VOQC

- Qiskit

- STAQ

- …

Obfuscated circuits maintain

 - all qubits will be entangled during

 execution

 - average depth = # gates/ # qbits at

 least the one of the original

to avoid simple attacks.

Highly Extensible Framework
- Demonstrate a framework with theoretical evidence and empirical study.

- This framework is feasible for NISQ machines and passes sanity check for its

empirical performance.

- The construction of the obfuscation is highly extensible. One can easily adjust

the framework for different supremacy tasks and experimental platforms.

Quantum
Application Algorithm & Complexity Variational Methods Programming Languages

System

Archite
cture

Quantum
Control

Quantum Hardware
Design

Quantum Network

Security
Cryptography

Quantum Cryptography

Post-Quantum Cryptography

END-TO-END
QUANTUM

APPLICATIONS

Certified
Quantum
Software

Tool
chain

(Practical) Verification of
Quantum Computation

Provable Quantum Speedups
in optimization, machine learning

Quantum Generative Models
Q. Neuro-Symbolic Applications

Q. Program Analysis & Verification
Differentiable QPL

Meta-
Program
Scheme

-
tradeoffs
between

errors
and

resources Quantum Pulse Engineering Q. Hardware Description Language
Computer-aided Q. Design

Q. Localization and Synchronization
Networks

Mechanized and Automatic
Quantum Security Analysis

Thank You!
VOQC:
 - github/InQWIRE/SQIR

Q. Obfuscator:
 - github/shouvanikc/
 Quantum-Obfuscator

MQCC:
 - github/sqrta/MQCC

