Computational Thinking toward
End-to-End Quantum Applications

Xiaodi Wu
QuICS & UMD

¥ JOINT CENTER TFOR
UNIVERSITY OF % QUANTUM INFORMATION
MARYLAND AND COMPUTER SCITNCT

A QuanTum
COMPUTER

Super-conducting

IBM will soon launch a 53-qubit Google has reached quantum
supremacy — here's what it should

uantum computer 2
Frederic Lardinois @frederic)0 am EDT * September 18,2019 TECHNOLOGY | ANALYSIS 26 September 2019

\‘:l

Google Supremacy: RCS (2019) USTC: Boson Sampling (2020)

GComputational Thinking

Thinking like a computer scientist means more than being able to
program a computer. It requires thinking at multiple levels of abstraction.

- Jeannette M. Wing, “Computational Thinking”, CACM Viewpoint, March 2006

GComputational Thinking

Thinking like a computer scientist means more than being able to
program a computer. It requires thinking at multiple levels of abstraction.

- Jeannette M. Wing, “Computational Thinking”, CACM Viewpoint, March 2006

What is Computational
Thinking?

First A - Abstractions: “metal” tools

Second A - Automation: mechanizing
abstractions and their relationships

Two A’s for Computational Thinking

GComputational Thinking

Thinking like a computer scientist means more than being able to
program a computer. It requires thinking at multiple levels of abstraction.

- Jeannette M. Wing, “Computational Thinking”, CACM Viewpoint, March 2006

What is Computational
Thinking?

First A - Abstractions: “metal” tools

Second A - Automation: mechanizing
abstractions and their relationships

Computing: Automation of Abstractions

- They give us the audacity and ability to scale

Two A’s for Computational Thinking

GComputational Thinking

Thinking like a computer scientist means more than being able to
program a computer. It requires thinking at multiple levels of abstraction.

- Jeannette M. Wing, “Computational Thinking”, CACM Viewpoint, March 2006

What is Computational
Thinking?

First A - Abstractions: “metal” tools

Second A - Automation: mechanizing
abstractions and their relationships

Computing: Automation of Abstractions

- They give us the audacity and ability to scale

Computational Thinking

- choosing the right abstractions
Two A’s for Computational Thinking - choosing the right automation or “computer”

Gomputational Thinking: everywhere!

Many-body force fields

Reactivity ” @

Linear-scaling methods

Chemistry: atomistic calculation,

optimization over reaction conditions ...

Mathematics: E8 Lie group,
four-color theorem proof

- Jeannette M. Wing, “Computational Thinking”,

Biology: DNA sequencing
Protein structures, ...

Microsoft’ Digital Advertising Solutions

Google

Overstock.com .
Yow Online Oullet ™

Economics: Automated mechanism design

Astronomy: Sloan Digital Sky Server, ...

MANY MORE

- social science
- medicine
- art
- law
- entertainment
- sports

CACM Viewpoint, March 2006

Gomputational Thinking in Quantum Gomputing

How difficult is the problem and how best can
| solve it with quantum computers?

Gomputational Thinking in Quantum Gomputing

Quantum ‘

Application Algorithm & Complexity

How difficult is the problem and how best can
| solve it with quantum computers?

Gomputational Thinking in Quantum Gomputing

Quantum ‘ ‘

Application Algorithm & Complexity Variational Methods

How difficult is the problem and how best can
| solve it with quantum computers?

Gomputational Thinking in Quantum Gomputing

Quantum ‘ ‘

Application Algorithm & Complexity Variational Methods

How to effectively express quantum
applications and do trouble shooting?

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ 0

Application Algorithm & Complexity Variational Methods Programming Languages

How to effectively express quantum
applications and do trouble shooting?

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ 0

Application Algorithm & Complexity Variational Methods Programming Languages

How to effectively translate high-level
descriptions of quantum applications
to quantum machine instructions?

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ 0

Application Algorithm & Complexity Variational Methods Programming Languages

System

How to effectively translate high-level
descriptions of quantum applications
to quantum machine instructions?

Archite
cture

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ ¢

Application Algorithm & Complexity Variational Methods Programming Languages

System

How to optimize the manipulation of
quantum machines in terms of metrics
like noise, power, ...?

Archite
cture

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ ¢

Application Algorithm & Complexity Variational Methods Programming Languages

)) _ _ System
How to optimize the manipulation of
quantum machines in terms of metrics
like noise, power, ...?
Archite

cture

Quantum
Control

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ 0

Application Algorithm & Complexity Variational Methods Programming Languages

System

How to automate the design of quantum
devices and its verification?

Archite
cture

Quantum
Control

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ 0

Application Algorithm & Complexity Variational Methods Programming Languages

System

How to automate the design of quantum
devices and its verification?

Archite
cture

Quantum Hardware Quantum
Design Control

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ ¢

Application

Algorithm & Complexity Variational Methods Programming Languages
System
Archite
cture
Quantum Hardware Quantum

Design Control

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ ¢

Application Algorithm & Complexity Variational Methods Programming Languages

—_—

System
Quantum Network y

Archite
cture

e

Quantum Hardware Quantum
Design Control

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ ¢

Application Algorithm & Complexity Variational Methods Programming Languages

T —

Quantum Network System
Security
Cryptography Archite
cture

—_—

Post-Quantum Cryptography

> —

Quantum Hardware Quantum
Design Control

Gomputational Thinking in Quantum Gomputing

Quantum ¢ ¢ ¢

Application Algorithm & Complexity Variational Methods Programming Languages

) sy

" END-TO-END
QUANTUM
Security APPLICATIONS A

Cryptography

.

Post-Quantum Cryptography

stem

rchite
cture

e

Quantum Hardware Quantum
Design Control

Gomputational Thinking in Quantum Gomputing

Provable Quantum Speedups Quantum Generative Models Q. Program Analysis & Verification
in optimization, machine learning Q. Neuro-Symbolic Applications Differentiable QPL
Quantum ¢ ¢ ¢
Application Algorithm & Complexity Variational Methods Programming Languages

Q. Localization and Synchronization Certified

Networks l Quantum

System JSoftware

Quantum Network Tool
END-TO-END
(Practical) Verification of
Quantum Computation U AN T U M
Meta-
P
APPLICATIONS [==
A

Cryptography yicchanized and Automatic rchite tra dc-eoffs
Quantum Security Analysis Cture
between
errors
Post-Quantum Cryptograph
ryprograpiy Q. Hardware Description Language Quantum Pulse Engineering and
esources

Computer-aided Q. Design

e

Quantum Hardware Quantum
Design Control

Gomputational Thinking in Quantum Gomputing

Provable Quantum Speedups Quantum Generative Models Q. Program Analysis & Verification
in optimization, machine learning Q. Neuro-Symbolic Applications Differentiable QPL
Quantum ¢ ¢ ¢
Application Algorithm & Complexity Variational Methods Programming Languages

Q. Localization and Synchronization Certified

Networks l Quantum

System JSoftware

Quantum Network Tool
END-TO-END
(Practical) Verification of
Quantum Computation U AN T U M
Meta-
P
APPLICATIONS [==
A

Cryptography yicchanized and Automatic rchite tra dc-eoffs
Quantum Security Analysis Cture
between
errors
Post-Quantum Cryptograph
ryprograpiy Q. Hardware Description Language Quantum Pulse Engineering and
esources

Computer-aided Q. Design

e

Quantum Hardware Quantum
Design Control

Gomputational Thinking in Quantum Gomputing

Provable Quantum Speedups Quantum Generative Models Q. Program Analysis & Verification
in optimization, machine learning Q. Neuro-Symbolic Applications Differentiable QPL
Quantum ¢ ¢ ¢
Application Algorithm & Complexity Variational Methods Programming Languages
ertified

Q. Localization and Synchronization

Networks | uantum

SystemJoftware

Quantum Network E N D _TO _ E N D Tool

chain
(Practical) Verification of
Quantum Computation Q U AN T U M rozt:;-m

APPLICATIONS [

Cryptography Mechanized and Automatic rchite
Quantum Security Analysis cture tfadeoffs
etween

errors
and
resources

Post-Quantum Cryptography o _ _
Q. Hardware Description Language Quantum Pulse Engineering

Computer-aided Q. Design

Quantum Hardware Quantum
Design Control

ERROR

Nature

Quantum Error Correction
Fight
Quantum Decoherence

NISQ machines: very restricted hardware resources, where precisely controllable qubits
are expensive, error-prone, and scarce.

NISQ machines: very restricted hardware resources, where precisely controllable qubits
are expensive, error-prone, and scarce.

NISQ application design: investigate the best balance of trade-offs among a large
number of (potentially heterogeneous) factors specific to the targeted application and
quantum hardware.

NISQ machines: very restricted hardware resources, where precisely controllable qubits
are expensive, error-prone, and scarce.

NISQ application design: investigate the best balance of trade-offs among a large
number of (potentially heterogeneous) factors specific to the targeted application and
quantum hardware.

Multi-Programming (MICRO 2019) :

4 qubit program 5 qubit program 4 qubit program 5 qubit program
allocation allocation allocation aIIothion

r----/-.
.I‘_—‘ <5

A

2
J

D 24(0)2-(0)-2E)r
I'4",4 2
Y e '
|2 3 "

IC)“’C)I

(a) (b)

NISQ machines: very restricted hardware resources, where precisely controllable qubits
are expensive, error-prone, and scarce.

NISQ application design: investigate the best balance of trade-offs among a large
number of (potentially heterogeneous) factors specific to the targeted application and
quantum hardware.

Multi-Programming (MICRO 2019) :

4 qubit program 5 qubit program 4 qubit program 5 qubit program

allocation allocation allocation allocation
r----/-. f
—_ — — - - = - - = =,
'l- A 2/\ 2 D E)o
I . '
,O@O ol oL gg -
'l____ l____ I-----'
(a) (b)

Competing Goals:
(1) Fully leverage qubits & Shorten the total execution
=> Multi-Programming
(2) High Reliability => Use the best qubits
=> Sequentially Allocate Programs

Solution: A run-time trade-off between these competing
goals.

NISQ machines: very restricted hardware resources, where precisely controllable qubits

are expensive, error-prone, and scarce.

NISQ application design: investigate the best balance of trade-offs among a large
number of (potentially heterogeneous) factors specific to the targeted application and

quantum hardware.

Multi-Programming (MICRO 2019) :

4 qubit program 5 qubit program 4 qubit program 5 qubit program

allocation allocation allocation allocation
l‘""/" f
— = — — ® ® o = . e e,
"_ :_ NN ENCNEI NN,
QOO e ol &l &
J H
17 e R ER ryChry OF
(a) (b)

Competing Goals:
(1) Fully leverage qubits & Shorten the total execution
=> Multi-Programming
(2) High Reliability => Use the best qubits
=> Sequentially Allocate Programs

Solution: A run-time trade-off between these competing
goals.

Cross-talk:

Cross-Talk: Red
Pairs of gates
when executed
simultaneously will
cause much larger
errors.

IBMQ Boeblingen

NISQ machines: very restricted hardware resources, where precisely controllable qubits
are expensive, error-prone, and scarce.

NISQ application design: investigate the best balance of trade-offs among a large
number of (potentially heterogeneous) factors specific to the targeted application and
quantum hardware.

Multi-Programming (MICRO 2019) : Cross-talk:
4 qubit program 5 qubit program 4 qubit program 5 qubit program e
alloc tlon/ allocation allocation allocation Cross-Talk: Red
"l_'_' '_'_ o Feb = e f - - - Pairs of gates
' D22 2 (D)2(E)s when executed
eSS ke
! cause much larger
'_ > N e e D errors.
(a) (b) IBMQ Boeblingen

Competing Goals:
(1) Fully leverage qubits & Shorten the total execution

=> Multi-Programming

(2) High Reliability => Use the best qubits Competing Goals:
=> Sequentially Allocate Programs Circuit Depth (decoherence) vs Cross-Talk

Software Solutions:
(1) Circuit Reschedule - Xtalk - (ASPLOS 2020)
(2) Frequency-Aware Compilation (MICRO 2020)

Solution: A run-time trade-off between these competing
goals.

Current implementation of NISQ application design are CASE by CASE.

?

o

A unified and automatic framework for productivity?

Current implementation of NISQ application design are CASE by CASE.

?

o

A unified and automatic framework for productivity?

Desiderata:

Succinct Expression
of different design choices

Flexible Expression
of different optimization goals

Automation of Trade-offs
of competing optimization goals

High Reusability & Productivity
of balancing different trade-offs

Current implementation of NISQ application design are CASE by CASE.

2

o

A unified and automatic framework for productivity?

Desiderata: ppg;';m <.~39‘D Qj‘iﬁi“w_
Succinct Expression Erobion Mapp‘"
of different design choices _< Qcc> @ @
Program Attribute Constraints
Flexible Expression
. . . Cost Expression | Expression _)< SMT

of different optimization goals Generator | Optimizer Instance

Automation of Trade-offs m/
of competing optimization goals =
Inverse Problem Mapper

High Reusability & Productivity =

Cattontotbpotten
of balancing different trade-offs Selueian goshs Preiat_J

Desiderata:

Succinct Expression
of different design choices

MQCC With ChOice Val"iables - Crosit-.'D (/ Delayed
<Mitigation \U

plertal;‘n ncomputation

5 & IS i

Flexible Expression
. .. . Problem Mapper
of dnfferent o_ptlmlzatlon goaills > <y S
Flexible Attributes Expression _<ch¢> Object @
Program Attribute Sl constraints

Automation of Trade-offs : . :
. . _ _ ost Expression Exprgss:lon ;(SMT

of competing optimization goals Senerator: | Cptimizer stance

Satisfiability Modulo Theories (SMT) Solver

e
Fixed-choice

MQCC Program _/
v

High Reusability & Productivity g
of balancing different trade-offs Inverse Problem Mapper
=

A Meta-Programming Framework =
@on to the Prohlen)

\\Register and variable declarations
qreg qll0];

creg r[l];

fcho cl1 = {0, 1};

fcho ¢c2 = [0, 17;

\\lcho ¢ = 1 - cl % c2;

\\Module define
module Belll (gl, g2) {

10 h(gl)

11 cnot (gl, g2); Multl- Crosstalk Dela/ed
U tati

12} program Mltlgatlon \nwmpu ation

O o0 9 AN N B W =

14 module Bell2 (gl, gZ2) {

15 case (r[0]) { Problem Mapper
16 1: x(gql);

17 0: pass _E?D ‘£5

18 lr}1; . MQCC Object , Goal and
19 (ql); Program Attribute / Constraints

20 cnot (gl, g2) ; I :F

21 }

22

3 \\Main part of the program Cost Expression | Expression __)< SMT
% choice (cl) | Generator Optimizer Instance
25 O: Belll(gll], gl2]1);

26 1: Belll (g[7], gl81);

- Fixed-choice

» eIk o

30 measure (g[0],r[0]); e

31 cholce (c2){

32 0: Bell2(qgll]l, gl21); Inverse Problem Mapper

33 default: Bell2(gl[7], gl81); I gy

4}

. ~N
A Sample Code of MQCC which shares many features with OpenQASM Q"'"t'o" to the p“’h'em/'

I \\Register and variable declarations

» greg q[10]; Define CHOICE variables

Limited Choice (Icho) c=1-c1*c2 € Z

3 g | _ _
4:-f-c?1£ -c-l-i {0, 1}; : Free Choice (fcho) c1, c2 € Z, in certain ranges
st fcho c¢c2 = [0, 17; i

1

1

3 \\Module define

9 module Belll (gl, g2) {
10 h(gl);

11 cnot (gl, g2);

12 }

14 module Bell2(gl, g2) {

15 case (r[0]){

16 1: x(gql);
17 0: pass
18 }s

19 h(gl);

20 cnot (gl, g2) ;

21}

23 \\Main part of the program
24 choice (cl) {

25 O: Belll(gll], gl2]1);

26 1: Belll(gl7], qgl8]);

27}

28

20 h(ql0]);

30 measure (q[0],r[0]);

31 choice (c2) {

32 0: Bell2(gll], gql2]);

33 default: Bell2 (gql7], gl8]);

4}

A Sample Code of MQCC which shares many features with OpenQASM

I \\Register and variable declarations
2 greg q[10];

3 Fc-r-eg -r-[-]_l ;- -------------
snfcho cl1 = {0, 1};

s fcho ¢c2 = [0, 11;

3 \\Module define

9 module Belll (gl, g2) {
10 h(gl);

11 cnot (gl, g2);

12 }

14 module Bell2 (gl, gZ2) {

15 case (r[0]){

16 1: x(gl);
17 0: pass
18 }i

19 h(gl);

20 cnot (gl, g2) ;

231\\Main part of the program
24y choice (cl) {

251 0: Belll(gl[l], g ;
%" 1: Belll(ql7], ql81);

v h(gl0]);

3itchoice (c2) { 1
2, 0: Bell2(qglll, gql21); '
330 default: Bell2(ql[7], ql8]);:

A Sample Code of MQCC which shares many features with OpenQASM

Define CHOICE variables

Free Choice (fcho) c1, c2 € Z, in certain ranges

Limited Choice (Icho) c=1-c1*c2 € Z

Stitch Many Programs w/ choice variables

choice (c.v) {i : P;}

I \\Register and variable declarations , :
» greg q[10]; Define CHOICE variables

3 FC-]:\-e g -r-[-]_ l ;- -------------
snfcho cl = {0, 1};
s fcho ¢c2 = [0, 11;

Free Choice (fcho) c1, c2 € Z, in certain ranges

Limited Choice (Icho) c=1-c1*c2 € Z

7
3 \\Module define

9 module Belll (gl, g2) {
10 h(gl);

1 cnot (gl, g2);

12 }

Stitch Many Programs w/ choice variables

choice (c.v) {i : P;}

14 module Bell2(gl, g2) { neN 1€¢Z reR wvar € Vars

15 case (r[0]){ qreg € Quantum reg. creg € Classical reg.
16 1: x(gl);

. 0: pass reg == qreg | creg

18 Y P € Program ::= B S

" hiql); D € Declaration ::= RegDecl | VarDecl

20 cnot (gl, g2) ;

21} RegDecl ::= qreg qreg; | creg creg;
N mmmmems e e e e e e e e e == VarDecl ::= Free | Limit

231\\Main part of the program

— .
24! choice (cl) { Free ::=fcho var = { i }; | fcho var = [iy,is];

251 0: Belll(gll]l, gl2]); Limat ::= Icho var = E;

26:} 1: Belll(qgl7], ql8]); EeVarExp:=i|var | E+E|E—-F

270 };

Y e e e e e e e . | ExE | E/E | (E)

v h(q[0]); S e Stmt :=¢€| O | case | choice | S; 5

0 measure (qlO],c(0]); . O € Operation ::= (7, 7eq)

sitchoice (c2) { I o G

2! 0: Bell2(qll], ql2]); . case ::= case(creg){i: S;}

330 default: Bell2(ql[7], ql81);, choice ::= choice(var){i : S;}

344 }; ! C— m—
.......................... 1

A Sample Code of MQCC which shares many features with OpenQASM

Expressing the Gonstraints on Gosts/Attributes

Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.

Expressing the Gonstraints on Gosts/Attributes

Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.

Precisely, any attribute A is defined by a tuple (7, empty, op, case, value) s..:

e T'1is a data type of the states. A state of type I’ consists
of information needed in the computation of the cost.

e empty : T is the initial state at the beginning of the
program.

: =g :

e Op : T X string X R X @ — T receives a state, an
operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

e case : T X ? — T' receives an old state, a list of states
corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

e value : T'— R computes the cost of this attribute from
the information stored in a state.

Expressing the Gonstraints on Gosts/Attributes

Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.

Precisely, any attribute A is defined by a tuple (7, empty, op, case, value) s..:

choice vars
e T'1is a data type of the states. A state of type I’ consists

of information needed in the computation of the cost. program S’ attribute semantics [lS]] . (Vars — Z) xT — T

e empty : T is the initial state at the beginning of the
program.

: =g :

e Op : T X string X R X @ — T receives a state, an
operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

e case : T X ? — T' receives an old state, a list of states
corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

e value : T'— R computes the cost of this attribute from
the information stored in a state.

transformeron T

Expressing the Gonstraints on Gosts/Attributes

Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.

Precisely, any attribute A is defined by a tuple (7, empty, op, case, value) s..:

T" is a data type of the states. A state of type T’ consists
of information needed in the computation of the cost.
empty : T is the initial state at the beginning of the
program.

: =g :
op : T x string x R X @ — T receives a state, an
operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.
case : T X ? — T' receives an old state, a list of states
corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.
value : T'— R computes the cost of this attribute from
the information stored in a state.

program S’ attribute semantics [[S]]

S = oplID(exps, regs)

[5] (0,s) = op(s, opID, exps, regs)

[S1;52] (0, 8) = [S2] (0 [S1] (o, 8))

S = case(creg){i : 5;}
[5] (0, 5) = case(s, [[Si] (0, 9)]:)

S = choice(var){i: S;} k = olvar]

151 (o, 5) = [Sk] (o 5)

choice vars

(Vars - Z)xT — T

transformeron T

how transformers
evolve over programs

Expressing the Gonstraints on Gosts/Attributes

Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.

Precisely, any attribute A is defined by a tuple (7, empty, op, case, value) s..:

T" is a data type of the states. A state of type T’ consists
of information needed in the computation of the cost.
empty : T is the initial state at the beginning of the
program.

: =g :
op : T x string x R X @ — T receives a state, an
operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.
case : T X ? — T' receives an old state, a list of states
corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.
value : T'— R computes the cost of this attribute from
the information stored in a state.

choice vars

program S’ attribute semantics [[S]] (Vars - Z)xT — T

transformeron T
S = oplD(exps, regs)

[5] (0,s) = op(s, opID, exps, regs)
how transformers
evolve over programs
S = case(creg){i : 5;}

[S] (0, 5) = case(s;[[Si] (o,5)]:) ‘

. — Express the constraints on
S = choice(var){i: S;} k= 0[var] yhe final T as SMT instances

[S1;52] (0, 8) = [S2] (0 [S1] (o, 8))

[5] (o, 5) = [Sk] (o, 5) (details omitted)

Expressing the Gonstraints on Gosts/Attributes

Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.

Precisely, any attribute A is defined by a tuple (7, empty, op, case, value) s..:

e T'1is a data type of the states. A state of type I’ consists
of information needed in the computation of the cost.

e empty : T is the initial state at the beginning of the
program.

: =g :

e Op : T X string X R X @ — T receives a state, an
operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

e case : T X ? — T receives an old state, a list of states
corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

e value : T"'— R computes the cost of this attribute from
the information stored in a state.

Examples:
Attribute Noise:
T: noise : R
empty () := init s : T, s.noise = 0

return s

T) := return s.noisi>
op (s : T, OpID : str, exps : R, regs

value (s

EEZ):=

choice vars

program S’ attribute semantics [[S]] (Vars - Z)xT — T

transformeron T
S = oplD(exps, regs)

[5] (0,s) = op(s, opID, exps, regs)

how transformers
evolve over programs

g

Express the constraints on
the final T as SMT instances
(details omitted)

[S1;52] (0, 8) = [S2] (0 [S1] (o, 8))

S = case(creg){i : 5;}
[5] (0,5) = case(s; [[Si] (o,)]:)

S = choice(var){i: S;} k = o|var]
|51 (e, 5) = [Sk] (0 5)

Attribute Depth:

T: dep : Map of Reg — N
empty () := init s : T, s.dep = 0
return s
value(s : T):= return (max s.dep.values)
—

op (s : T, OpID : str, exps : R, regs : Reg):=
share = s.dep.keys M regs
next = max {s.depli]| ¢ Eshare} + 1
for 72 €Eregs: s.dep.update (i, next)

s.nolse += calNoise (Opld, exps, regs) return s
return s case (s : T, group : Vector of T):=
case (s : T, group : Vector of T):= all = Unegroup n.dep.keys
s.noise = max {n.noise| m €group} s.dep = {(k, max {n.depl[k] | nEgroup}) | k€all}

return s

return s

case St“ [Iv All experiments performed on IBMQ machines

Multi-Programming (MICRO 2019) :

0.8 | |l Disolated N

o MQccC .
0.6 | - -

SRR NRED

4 qubit program 5 qubit program 4 qubit program 5 qubit program
allocation allocation allocation aIIoc['xtion

N

Probability of Successful Trial
-
W
\
|
|
\

Competing Goals: [Disolated "b "b ”‘b "‘b | | ‘b‘ |
: : : @ XN LDL L > D
Depth vs High-quality Qubits Sequential: always high-quality qubits aﬂé 0),\0& a)&@ QD‘:O b(\o& %/\o& 4,,))0 %&f&
0 @@l
o MQcc Y9 TS S

S v &
Multi-Programming with MQCC _ _ _
Multi-Tasks over Simple Quantum Algorithms

case St“ [Iv All experiments performed on IBMQ machines

Multi-Programming (MICRO 2019) :

0.8 | |l Disolated N

4 qubit program 5 qubit program 4 qubit program 5 qubit program =i
allocation allocation allocation allocation 0.6 | i MQCC - |
r - —. - -—/-. f *
' 2 — B ol
A - T —

ML RERE

\ \ \
o T L I e I o Bt B 4o % 0
& e AR N RV

Probability of Successful Trial
-
W
\
|
|
\

Competing Goals: [Disolated

Depth vs High-quality Qubits Sequential: always high-quality qubits a)/Q ,b:\O %f&% 45‘30 b(\ %,&Q @70 %f%
g Q A) Q Q 0 Q
10 MQCC R TR S
AN

Multi-Programming with MQCC _ _ _
Multi-Tasks over Simple Quantum Algorithms

Cross-talk: (Xtalk - ASPLOS 2020)

| | | | | |
0.8} . :DSquDParDDXtalkllMQCC

e Competing Goals:
Circuit Depth (decoherence)
vs Cross-Talk

Benchmark over
SWAP circuits

\~~
-~
-

5 connecting a-b on
IBM Boeblingen

d’ -
’f
-

ool b AL %

| | | | |
0-8 8-15 7-16 9-16 10-19 14-15 2-12

Probability of Successful Trial
-
@)
N
|

Gase Study: Multi-Programming + Gross-Talk

Optimizing Goal:
Noise + Decoherence + Crosstalk

loseq Sequential: always high-quality qubits.
but larger depth (decoherence)

0o multi-p Multi-programs without considering crosstalk
short depth, but large crosstalk errors

l0multi-c Multi-programs with crosstalk
short depth and large successful probability

Attribute Crosstalk
T: dep : Map of Reg — N
rep : Map of N — Set of (str X Reg)
empty () := init s:T, s.dep = 0, s.rep = 0
return s

value (s : T):= return calCross(rep)
— —
op (s : T, opID : str, exps : R, regs : Reg):=
1f opld == "barrier"
cur = max s.dep.values
for 1€regs: s.dep.update (i, cur)
else:
share = s.dep.keys M regs
next = max {s.dep[i] | i € share} + 1
s.repl[next].insert ((OpID, regs))

for 1€regs: s.dep.update (i, next)
return s
case (s : T, group : Vector of T):=
all = |J n.dep.keys, nEgroup
s.dep = {(k, max {n.deplk]|n€Egroup})| k€all}
s.rep = {(k, LJnngmp n.replk]) |Ju € group, k€ u}
return s

EASY implementation in MQCC

All experiments performed on IBMQ machines

=
= |- | | | | | _
= DDSGqDDmulti—pDDmulti—c
Z 08} :
% . . — —
3 - - _
= 06 | M _ O
n u T -
= 04 N
2
= 0.2 H N
e
-c'é 0 | | | | |_| |_|
S
& kel *o@ QL X N
3 b‘» X
N O

(a) Probability of Successful Trial. Here higher PST is

better.
| | | | |

20 | DDSGqDDmulti—pDDmulti—c M -
= —
[_
a) 15 ~ N
il
oL H
1 linn
X
DS

(b) Circuit Depth. Here lower circuit depth is better.

Nature

Quantum Error Correction
Fight
Quantum Decoherence

Nature

Quantum Error Correction
Fight
Quantum Decoherence

Human

Pentium FDIY Error

Ariane 5

MCAS safety system engages

Horizontal aown
rail

Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- guantum mechanics prohibits certain testing, e.g., assertions

Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

oo [l A
o B—O Bo—On
o o [l—iH —
o o [E— i

oo E—-8 ~

confirming the circuit by observation.... not scalable...

L @

- @

:

H = e
%L_.‘

AN

Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

QISKIT Compiler ERRORs

@ |0) 5 E

QL E_é . Much HARDER to detect!
X T

Q o —— -7 L — = Serious Consequences!
0 —i -

o0 B— -0 -

confirming the circuit by observation.... not scalable...

n
@

[
|
- 4
:
H = -
%r‘

AN

Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

QISKIT Compiler ERRORs

@y o) 5f E,:

Q,) H . “_E_E: Much HARDER to detect!
@ 0 H_H n—ﬂz Serious Consequences!
%o B—I o

ETETE S ()

confirming the circuit by observation.... not scalable... Similar Concerns

: In classical !
= — E : -
= E g More SERIOUS
E é E o In quantum !

Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE
Microsoft Research Ltd., Cambridge, UK Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for

Computing Research GCC : many bugs in software testing
CompCert: a certified “GCC”, bug-free

TONY HOARE
Microsoft Research Ltd., Cambridge, UK Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for
Computing Research

GCC : many bugs in software testing

CompCert: a certified “GCC”, bug-free

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Journal of the ACM, Vol 50, 2003

............. =
....................... w wg B Imperative Programs SQL .2@
: . Language: 3§53 . ~ iapplication' .
;%}lﬁt:: funtime ; ggig §§C—% gg Quick-
® S %5 Q i Coq + Functional ‘5&" Chick
. ' U]
g a g I)s‘ggghsle g(Galhna (Coq))..: Programs ‘g
-g (Spec of C program §'§ compiler
'3 Program Floyd g 2' - QI GHC frontend
] Logic proof 03) o(Core Haskell)
8 » o a0T g 29 : (unverified) :
Z & (Concurrent (Verifiable C = E GHC compiler
't: E% soundness fsoundness : :
3 ClightX g = proof proof Clight LLVM)
: to LLVM .
o o Concurrent (Clight e tvm | :
. -~ 93 ' compiler | : %)%;t{rl}g !
1Y
compiler - concurrencyf [CompCert EE 'E phase : unv}eigsféed ;
) correctness | [optimizing [§© 4 .
> proof compiler d g LLVM)
e :
x86 or ARM Instruction Set Architecture > S LLVM i LLY'M 5
— S| compiler § ¢ ferifita
~CGuleny) CC DO ¢ prase | i phwe
- . v
O [l jons, ~ Machine -
'&' = mgailnsjfalzitggzns | @ = models and E =) x86 or ARM ISA
A g proofs E 82 memory é =
g 8 (T) 8@ models 6 Reist
thin lines are ~ . egister
o) § colle{boraltitons (5) ~(Core Verllog Transfer
- external to

DeepSpec group

x86/ARM RTL) Language

Verified II
Software
Toolchain Il

CERTIKOS
l ellvm
verified
LLVM
W— Certi\X Coq

Certified software: a solution to validation of q. software

Software Writing

2sting
Coq Theorem Prover g-free

Proof
Assistant

— x86

'Guest:: Lan
' VM © 1u

()

\. J

Code \ 1
7

Extremely strong
CertiKOS
0.5, guarantees about

kernel
|
~rad \ actual S)’Stelll. J IKOS

\ J

CertiKOS
(Shao)

Proofs Writing

(1) Ensure correctness of code by construction.

(2) Scalability for quantum based on symbolic proofs. 5%

-2 o 3 . Register
(5) Core Verilog Transfer

x86/ARM RTL) Language

Project
(researcher)

Y Kami

JOINT CENTER FOR
QUANTUM INFORMATION 7 UM
AND COMPUTER SCIENCE

High-level Language
E.g. QWIRE, Quipper, Q#

(Verified Optimizer for Quantum Circuits)

VOQC

Hardware Description

E.g. Gate set, connectivity
constraints

OpenQASM OCaml Coq

! -

I /,,'/

[

l __II

|

|

| source General Purpose IR

souree | | sQIR e E.g. SQIRE, Open QASM, Quil

: circuit POPL

|

, v | 2021
5/ | voac |N\sFK | voac Distinguished
o Op“_mizfirs’ PElgs OP“_miZ?{rS’ Machine-specific IR 9
Sk | mapper | |E| | mapp Paper
-] o pper

! target

| arge

routt | ! SQIR e .

: circuit Hardware Instructions

|

|

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq,.

(Verifie

OpenQAS

source
circuit

target
circuit

VOQC: a first step towards a fully certified quantum compiler.

JOINT CENTER FOR
QUANTUM INFORMATION
AND COMPUTER SCIENCE

30

25

20

% reduction

10

Reduction in Rotation Gate Count

e el B
e el B
e el B B

I
TR RN

m\VvVOoQC
M Qiskit

OPL

021
guished
aper

SQIRE: a simple quantum intermediate-representation embedded in Coq,.

JOINT CENTER FOR
QUANTUM INFORMATION 7 UM

AND COMPUTER SCIENCE

Reduction in Rotation Gate Count

(Verifie

30

OpenQAS 25

source
circuit

N
o

I OPL
m \vVoQC 021

m Qiskit guished
aper

% reduction

(i [

o Ul
e]
—— []
n————]

I
TR RN

target
circuit

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq,.

Our infrastructure powerful enough:
an end-to-end implementation of Shor’s algorithm & its correctness proof.

Example: simple local gate rewrites

- Rzb;HDb; CNOT a

b

- Rz b j; CNOT a b ; Rz'
— Rz a ; CNOT a b = CNOT a b ;

- X b ; CNOT a b = CNOT a b

— CNOT a ¢ ; CNOT b c
— CNOT a ¢ ; CNOT a b
— CNOT a b; H b; CNOT

b

Hb=HDb g ; CNOTab; Hb ;; Rz b

b ; CNOT a b = CNOT a b ; Rz" b ; CNOT a b ;
Rz a
; X b
CNOT b ¢ ; CNOT a c
CNOT a b ; CNOT a c
c; Hb=HDb; CNOT b c; H b; CNOT a b

Implementation (~200 lines)

Definition Rz_commute_rulel {dim} q (1 : PI4_ucom_1 dim) :=

match (next_single_qubit_gate 1 q) with

| Some (11, UPI4_H, 12) =>
match (next_two_qubit_gate 12 q) with
| Some (13, UPI4_CNOT, ql, g2, 14) =>

Rz b

Spec + Proofs (~700 lines)

Lemma PI4_PI4_combine : forall {dim} q k k',

@Appl _ dim (UPI4_PI4 k) q :: Appl (UPI4_PI4 k') q ::

Proof.
intros.
unfold uc_equiv_1; simpl.
repeat rewrite SKIP_id_r.

if q =7 q2 unfold uc_equiv; simpl.
then match (next_single_qubit_gate 14 q) with autorewrite with eval db.
I Some (15, UPI4_H, 16) => Some (11 ++ [H q1 ++ 13 ++ [CNOT ql repeat rewrite phase_shift_rotation.
| _ => None gridify.
end rewrite phase_mul.
else None repeat rewrite <— Rmult_div_assoc.
| _ => None rewrite <— Rmult_plus_distr_r.
end rewrite plus_IZR.
| -> None rewrite Rplus_comm.

end.

Definition Rz_commute_rule2 {dim} q (1 : PI4_ucom_1 dim) :=

match (next_two_qubit_gate 1 q) with
| Some (11, UPI4_CNOT, q1, q2, 12) =>

reflexivity.
Qed.

Lemma PI4_PI4_m8_combine : forall {dim} q k k',

@Appl _ dim (UPI4_PI4 k) q :: Appl (UPI4_PI4 k') q ::

Proof.
intros.
unfold uc_equiv_1; simpl.
repeat rewrite SKIP_id_r.
unfold uc_equiv; simpl.
autorewrite with eval_db.
repeat rewrite phase_shift_rotation.

[1 =1= Appl (UPI4_PI4 (k+k')) q ::

(1.

[1 =1= Appl (UPI4_PI4 (k+k'-8)) q ::

[1.

Gomputational Thinking in Quantum Gomputing

Provable Quantum Speedups Quantum Generative Models Q. Program Analysis & Verification
in optimization, machine learning Q. Neuro-Symbolic Applications Differentiable QPL
Quantum ¢ ¢ ¢
Application Algorithm & Complexity Variational Methods Programming Languages

Q. Localization and Synchronization Certified

Networks l Quantum

System JSoftware

Quantum Network Tool
END-TO-END
(Practical) Verification of
Quantum Computation Q U AN T U M
Meta-
P
APPLICATIONS [z
A

Cryptography yicchanized and Automatic rchite tra dc-eoffs
Quantum Security Analysis Cture
between
errors
Post-Quantum Cryptograph
ryprograpiy Q. Hardware Description Language Quantum Pulse Engineering and
esources

Computer-aided Q. Design

e

Quantum Hardware Quantum
Design Control

Quantum Supremacy

Preskill (2012): (1) What quantum tasks are feasible? in the near term?
(2) What quantum tasks are hard to simulate classically?

Quantum Supremacy

Preskill (2012): (1) What quantum tasks are feasible? in the near term?
(2) What quantum tasks are hard to simulate classically?

Many proposals: Boson Sampling, Random Circuit Sampling (RCS),
Instantaneous Quantum Computation,

Google Supremacy: RCS (2019) USTC: Boson Sampling (2020)

Quantum Supremacy

Preskill (2012): (1) What quantum tasks are feasible? in the near term?
(2) What quantum tasks are hard to simulate classically?

Many proposals: Boson Sampling, Random Circuit Sampling (RCS),
Instantaneous Quantum Computation,

Google Supremacy: RCS (2019) USTC: Boson Sampling (2020)

Theoretical Hardness of classical simulation of the output distribution of
Justification qguantum supremacy tasks under complexity-theoretical assumptions

References: Aaronson & Arkihipov 11, Bremner & Jozsa & Shepherd 11, Aaronson & Chen 17, Boixo et al 18,
Bouland & Fefferman & Nirkhe & Vazirani 19, and so on

Verifiahle Quantum Supremacy

GAP in the implementation: want verifiability in the real experiment!

Verifier

Quantum

Verifiahle Quantum Supremacy

GAP in the implementation: want verifiability in the real experiment!

Infeasible Solutions:
- Factoring (in NP)
- Mahadev’s delegation

Verifier

Quantum

Verifiahle Quantum Supremacy

GAP in the implementation: want verifiability in the real experiment!

Verifier

Quantum

Infeasible Solutions:
- Factoring (in NP)
- Mahadev’s delegation

Hardness of Simulation
#+ Hardness of Spoofing

needs additional assumption against
spoofing (Aaronson & Gunn 20)

Verifiahle Quantum Supremacy

GAP in the implementation: want verifiability in the real experiment!

Infeasible Solutions:
- Factoring (in NP)
- Mahadev’s delegation

Hardness of Simulation
#+ Hardness of Spoofing

Verifier

needs additional assumption against
spoofing (Aaronson & Gunn 20)

Quantum

Expensive Verification Procedure

)

>4 use supercomputers to calculate
& the outcome distribution of a given
circuit for the verification

simulate Boson Sampling
of small instances and
then extrapolate

Gooale Sunremacv: RCS USTC: Boson Smplinq

Verifiahle Quantum Supremacy: Break the Symmetry

Why it is HARD?

“If n is small enough for verification, it is also small enough for spoofing.”
- Scott Aaronson

Verifiahle Quantum Supremacy: Break the Symmetry

Why it is HARD?

“If n is small enough for verification, it is also small enough for spoofing.”
- Scott Aaronson

Break the symmetry

size-growing circuit obfuscation

C’=0b (C): C=C’, but C’ operates on

C’= Ob (C)
—_— larger machines, #qbts, #gates

> Verify with C: do whatever original verification
Verify with C at the cost of the original C

Verifiahle Quantum Supremacy: Break the Symmetry

Why it is HARD?

“If n is small enough for verification, it is also small enough for spoofing.”
- Scott Aaronson

Break the symmetry

size-growing circuit obfuscation

C’=0b (C): C=C’, but C’ operates on

C’= Ob (C)
—_— larger machines, #qbts, #gates
> ‘ Verify with C: do whatever original verification

<

(o]

Verify with C at the cost of the original C

Completeness: quantum machines can run C’'=0b(C) and return the
answer which will pass the original test

Verifiahle Quantum Supremacy: Break the Symmetry

Why it is HARD?

“If n is small enough for verification, it is also small enough for spoofing.”
- Scott Aaronson

Break the symmetry

size-growing circuit obfuscation

C’= Ob (C) C=0b(C): C=C’,butC’ operates on
—_— larger machines, #qbts, #gates

N
E<

(o]

Verify with C: do whatever original verification

Verify with C at the cost of the original C

Completeness: quantum machines can run C’'=0b(C) and return the
answer which will pass the original test

Soundness: intuitively, hard to find C from C’, backed by the hardness of
Quantum MECP. Need additional assumptions like others.

Why? * Need a feasible construction to run!
* Complexity arguments usually asymptotic! Care about empirical performance
for a certain parameter range!

Why? * Need a feasible construction to run!
* Complexity arguments usually asymptotic! Care about empirical performance
for a certain parameter range!

G

Need to Identify A Problem Where
Reducing Circuit-Size is HARD!

Circuit Optimization as we just see

Why? * Need a feasible construction to run!
* Complexity arguments usually asymptotic! Care about empirical performance

for a certain parameter range!

Need to Identify A Problem Where
Reducing Circuit-Size is HARD!
o/ N ‘.')) i i i
j -n Circuit Optlmlzatlon as we just see

Reverse the construction of Circuit Optimizers

- Reverse the local rewrites used for reducing the circuit size.

- Apply these local rewrites in a random order. |dentify the order for reducing the
size is hard. ldentify this random order is harder.

- Also include teleportation + random cancelling pairs to grow the circuit size.

Why? * Need a feasible construction to run!
* Complexity arguments usually asymptotic! Care about empirical performance

for a certain parameter range!

Need to Identify A Problem Where
,, Reducing Circuit-Size is HARD!
B\ |
j -n Circuit Optimization as we just see

Reverse the construction of Circuit Optimizers

- Reverse the local rewrites used for reducing the circuit size.
- Apply these local rewrites in a random order. |dentify the order for reducing the

size is hard. ldentify this random order is harder.
- Also include teleportation + random cancelling pairs to grow the circuit size.

Implementation in Coq with the SQIR infrastructure!

Additional Benefits: the correctness of the obfuscation is guaranteed by construction!

Total number of gates

1.5

—

e
o

104

L

i .

i

I
gf2-16-mult

I
x-6-y-8-layers-7 x-10-y-10-layers-7 IQP-30

00 original 0 obfuscated I Dafter VOQC BB after Qiskit Blafter staq

IQP-35

Reducing the Obfuscation w/

- VOQC
- Qiskit
- STAQ

Obfuscated circuits maintain
- all qubits will be entangled during
execution
- average depth = # gates/ # qbits at
least the one of the original
to avoid simple attacks.

Total number of gates

104

1.5

—
I

e
o

O,

I .-

i

Hi

I I
gf2-16-mult x-6-y-8-layers-7 x-10-y-10-layers-7 IQP-30

00 original 0 obfuscated I Dafter VOQC BB after Qiskit Blafter staq

ghly Extensible Framework

IQP-35

Reducing the Obfuscation w/

- VOQC
- Qiskit
- STAQ

Obfuscated circuits maintain
- all qubits will be entangled during
execution
- average depth = # gates/ # qbits at
least the one of the original
to avoid simple attacks.

- Demonstrate a framework with theoretical evidence and empirical study.
- This framework is feasible for NISQ machines and passes sanity check for its

empirical performance.

- The construction of the obfuscation is highly extensible. One can easily adjust
the framework for different supremacy tasks and experimental platforms.

Provable Quantum Speedups Quantum Generative Models Q. Program Analysis & Verification

in optimization, machine learning Q. Neuro-Symbolic Applications Differentiable QPL
Quantum ¢ ¢ ’
Application Algorithm & Complexity Variational Methods Programming Languages

Q. Localization and Synchronization Certified
Networks

ﬁ Quantum

System [Software

Quantum Network Tool
END-TO-END
(Practical) Verification of
Quantum Computation
Meta-
. Program
APPLICATIONS [==
A

Cryptography Mechanized and Automatic rchite)

Quantum Security Analysis cture g:fﬁ:::
errors
Post-Quantum Cryptography and

Q. Hardware Description Language Quantum Pulse Engineering

‘ Computer-aided Q. Design | esources
Quantum Hardware Quantum
Design Control
VOQC:

- github/INQWIRE/SQ
Thank You! github/INQWIRE/SQIR

Q. Obfuscator:
MQCC: - github/shouvanikc/
- github/sqrta/MQCC Quantum-Obfuscator

