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Interplay: Quantum, Optimization & Machine Learning

I Optimization and Machine Learning – two sides of the
same coin!

I Many ways to bring quantum into this picture!

Quantum Speed-up for Optimization and Machine Learning

I one of important quantum applications.

I Heuristic: variational, annealer, QAOA, ....

I Provable: (1) thorough understanding of heuristics; (2)
valuable guideline when empirical results are scarce.

I This talk focuses on quantization of classical algorithms.
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Quantization of Classical Algorithms

A typical classical iterative algorithm:

I Assume a feasible set P . Want to optimize f(x) s.t. x ∈ P .

I A generic iterative algorithm with T iterations:

I x1 → x2 → · · · → xT . Cost for each step: (1) store xi; (2)
determine xi based on xi−1, · · · , x1, P , f(x).

How quantum potentially speeds up this procedure?

I Reduce the cost for each step. Make it quantum and/or
store xis quantumly. However, this could complicate the
determination of next xis.

I Not clear how to reduce the number of iterations T .
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Cases where we can make it work

I Convex Optimization: a quantum algorithm using Õ(n)
queries to the evaluation and the membership oracles,
whereas the best known classical algorithms makes O(n2)
such queries.

I Quantum SDP solvers : a quantum algorithm solves
n-dimensional semidefinite programs with m constraints,
sparsity s and error ε in time Õ((

√
m+

√
n)s2(Rr/ε)8)

where R, r are bounds on the primal/dual solutions.

I Classification: a sublinear quantum algorithm for training
linear and kernel-based classifiers that runs in O(

√
n+
√
d)

given n data points in Rd, whereas the state-of-the-art
(and optimal) classical algorithm runs in O(n+ d).

Yes, we do have accompanying lower bounds.
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Convex optimization

Convex optimization is a central topic in computer science with
applications in:

I Machine learning: training a model is equivalent to
optimizing a loss function.

I Algorithm design: LP/SDP-relaxation, such as various
graph algorithms (vertex cover, max cut,. . .)

I ......

Classically, it is a major class of optimization problems that has
polynomial time algorithms.



Convex optimization

In general, convex optimization has the following form:

min f(x) s.t. x ∈ C,

where C ⊆ Rn is promised to be a convex body and f : Rn → R
is promised to be a convex function.

It is common to be provided with two oracles:

I membership oracle: input an x ∈ Rn, tell whether x ∈ C;
I evaluation oracle: input an x ∈ C, output f(x).

Given a parameter ε > 0 for accuracy, the goal is to output an
x̃ ∈ C such that

f(x̃) ≤ min
x∈C

f(x) + ε.
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Convex optimization

Classically, it is well-known that such an x̃ can be found in
polynomial time using the ellipsoid method, cutting plane
methods or interior point methods.

Currently, the state-of-the-art result by Lee, Sidford, and
Vempala uses Õ(n2) queries and additional Õ(n3) time.

Quantumly, we are promised to have unitaries OC and Of s.t.

I for any x ∈ Rn, OC |x〉|0〉 = |x〉|IC(x)〉, where IC(x) = 1 if
x ∈ C and IC(x) = 0 if x /∈ C;

I for any x ∈ C, Of |x〉|0〉 = |x〉|f(x)〉.
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Convex optimization

Main result. Convex optimization takes

I Õ(n) and Ω(
√
n) quantum queries to OC ;

I Õ(n) and Ω̃(
√
n) quantum queries to Of .

Furthermore, the quantum algorithm also uses Õ(n3) additional
time.

As a result, we obtain:

I The first nontrivial quantum upper bound on general
convex optimization.

I Impossibility of generic exponential quantum speedup of
convex optimization! The speedup is at most polynomial.
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Convex optimization: quantum upper bound

Lee-Sidford-Vempala gives classical oracle reductions:

MEM SEP OPT
Õ(n) Õ(n)

We give corresponding quantum oracle reductions:

MEM SEP OPT
Õ(1) Õ(n)

Both papers use the same cutting plane based reduction from
OPT to SEP. We show an improved upper bound by reducing
the query complexity of the reduction from SEP to MEM.
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Construction of SEP from MEM

I A O(n) classical reduction w/ sub-gradient computation.

Jordan’s algorithm for gradients!

I Prepare the state eif(x)|x〉 with Õ(1) queries.

I Since f(x) ≈
∑n

k=1
∂f
∂xk

xk,

∑
x

eif(x)|x〉 ≈
∑
x

n⊗
k=1

e
i ∂f
∂xk

xk |xk〉.

Apply QFT reveals ∂f
∂x1

, . . . , ∂f∂xn .

From gradients to sub-gradients

I Compute the gradient of the mollification of the original
function!

I Achieve so by carefully sampling from the neighborhood.
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Semidefinite programming (SDP)

Given m real numbers a1, . . . , am ∈ R, s-sparse n× n Hermitian
matrices A1, . . . , Am, C, the SDP is defined as

max tr[CX]

s.t. tr[AiX] ≤ ai ∀ i ∈ [m];

X � 0.

SDPs can be solved in polynomial time. Classical
state-of-the-art algorithms include:

I Cutting-plane method:
Õ(m(m2 + n2.374 +mns) poly log(Rr/ε)).

I Matrix multiplicative weight: Õ(mns(Rr/ε)7).
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Quantum algorithms for SDPs

Brandão and Svore gave a quantum algorithm with complexity
Õ(
√
mns2(Rr/ε)32), a quadratic speed-up in m,n, (later

improved to Õ(
√
mns2(Rr/ε)8), based on the Matrix

Multiplicative Weight Update method.

No exponential speed-up: also proved Ω(
√
m+

√
n) as a lower

bound.

Input model

An oracle that takes input j ∈ [m+ 1], k ∈ [n], l ∈ [s], and
performs the map

|j, k, l, 0〉 7→ |j, k, l, (Aj)k,sjk(l)〉,

where (Aj)k,sjk(l) is the lth nonzero element in the kth row of
matrix Aj .
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Optimal quantum algorithms for SDPs

Can we close the gap between Õ(
√
mn) and Ω(

√
m+

√
n)?

Yes!

Theorem
For any ε > 0, there is a quantum algorithm that solves the
SDP using at most

Õ
(
(
√
m+

√
n)s2(Rr/ε)8

)
quantum gates and queries to oracles.

paper result

BS17 Õ(
√
mns2(Rr/ε)32)

vAGGdW17 Õ(
√
mns2(Rr/ε)8)

this talk Õ((
√
m+

√
n)s2(Rr/ε)8)
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Optimal quantum algorithms for SDPs

The behavior of the algorithm:

I The good: optimal in m,n

I The bad: dependence on R, r, ε−1 is too high: (Rr/ε)8

Applications:

I The good: Some machine learning, especially compressed
sensing problems have Rr/ε = O(1) (Ex. quantum
compressed sensing by Gross et al. 09).

I The bad: The SDP in the Goeman-Williams algorithm for
MAX-CUT has Rr/ε = Θ(n) (and many other algorithmic
SDP applications).
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Matrix multiplicative weight method (MMW)

Versatile Framework

I MMW: (matrix) boosting, online learning, ....

I A way to get good advices from a few mediocre experts.

I Arora-Kale: use MMW to solve the primal-dual problem of
SDPs, which leads to a classical SDP solvers.

I A good candidate to quantize:

I The number of iterations T is poly-log in terms of n and m.
I Each intermediate solution is

ρ(t) =
exp
[
ε
4

∑t−1
τ=1M

(τ)
]

Tr[exp
[
ε
4

∑t−1
τ=1M

(τ)
]
]
,

which is a Gibbs state that quantumly can generate
efficiently! (e.g, PW09)
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Matrix multiplicative weight method (MMW)
Consider the following SDP feasibility problem:

tr[AiX] ≤ ai + ε ∀ i ∈ [m]; (1)

X � 0; Tr[X] = 1. (2)

Zero-sum Game View

I Player 1: a feasible X ∈ Sε.
I Player 2: any violation of any proposed X.

I Feasibility implies a feasible point X0 (provided by Player
1) with no violation found by Player 2.

An equilibrium point of such can be found by MMW.

Efficiency of Implementation

I Player 1 is due to quantum Gibbs sampling.

I Player 2 is due to a faster quantum OR lemma.
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A visualization of classification

Ø

I (linear) Given X1, · · · , Xn ∈ Rd and a label vector
y ∈ {−1,+1}n, find a hyperplane w ∈ Rd, s.t.

yi ·XT
i w ≥ 0,∀i ∈ [n].

I (kernel-based) Xi → Φ(Xi) for some kernel function Φ(·).
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Input/Output Model & Result

Input/Output Model

I (input) Standard coherent access to each entry of Xi.

I (output) Classical efficient representation of w (recover any
wi with Õ(1) overhead).

Result & Comparison

paper result technique

CHW12 Θ(n+ d) classical efficient sampling

KWS16 Õ(
√
nd) quantized Perceptron

this talk Õ(
√
n+
√
d) quantized fast sampling

Similar results apply to kernel-based classification, minimum
enclosing ball, and `2-SVM.
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High-level Technique

I This is an equilibrium value problem in disguise. Take
Xi ← (−1)yiXi, it reduces to maxw miniX

>
i w ≥ 0.

I However, this is an example over `2 unit balls.

I Fortunately, there exists a classical `2 sampling approach
with O(n + d) cost for multiplicative weight updates.
(analysis relies on martingale concentration bounds.)

I Extend `2 sampling to quantum is equivalent to state
preparation of particular quantum states.

I Main contributions:

I O(
√
n+
√
d) quantum sampling of the desired state.

I Extension of the concentration analysis to quantum.

Feature of the quantum algorithm

classical output, highly classical-quantum hybrid, state sampling
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The lower bound

I Convex Optimization: Convex optimization takes
I Õ(n) and Ω(

√
n) quantum queries to OC ;

I Õ(n) and Ω̃(
√
n) quantum queries to Of .

I Semidefinite Programs:
I Upper bound: Õ((

√
m+

√
n)s2(Rr/ε)8).

I Lower bound: Ω(
√
m+

√
n).

I Classification:
I Upper bound: Õ(

√
n+
√
d).

I Lower bound: Ω(
√
n+
√
d).

High-level difficulty:

I (1) continuous domain (vs Boolean oracle query);

I (2) classical lower bounds are not studied comprehensively;

I (3) how to go beyond Ω(
√
n)?
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What could we do next?

Continue on this thread:

I More quantization of classical MCMC algorithms (hitting
or mixing)?
upcoming: quantum algorithms for log-concave sampling
and volume estimation in high dimension.

I Near-term implementation: quantum sampler, variational
solver, annealer, or QAOA?

Find genuine quantum algorithms!

I Go beyond classical framework! Make use of quantum
dynamics (e.g., tunneling).

I Non-convex optimization: (1) ubiquitous in ML; (2)
numerical evidence of quantum speed-up. Anything
provable?
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Technical Open Questions I:

I Can we close the gap for both membership and evaluation
queries? Our upper bounds on both oracles use Õ(n)
queries, whereas the lower bounds are only Ω̃(

√
n).

I Can we improve the time complexity of our quantum
algorithm? The time complexity Õ(n3) of our current
quantum algorithm matches that of the classical
state-of-the-art algorithm.

I What is the quantum complexity of convex optimization
with a first-order oracle (i.e., with direct access to the
gradient of the objective function)?



Technical Open Questions II:

I Concrete applications where quantum algorithms (both for
convex optimization and SDPs) can have provable
speed-ups?

I The use of QRAM (or non-trivial quantum data structure)
in the state preparation steps in both quantum algorithms
for SDPs and classification? Advantage for amortized
complexity?

I Quantum algorithms for equilibrium point problems over
other domain (e.g., game theory, learning theory)? The
efficiency will depend on specific sampling techniques.



Thank you!

Q & A
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