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Unlike classical NNs, empirical study of g. variational method is limited:
- due to exponential cost in classical simulation of parameterized g. Circuits
- due to noisy and size-limited available quantum machines (NISQ)
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Quantum Variational Methods: Theory-guided Empirical Study

Unlike classical NNs, empirical study of g. variational method is limited:
- due to exponential cost in classical simulation of parameterized g. Circuits
- due to noisy and size-limited available quantum machines (NISQ)

Unboxing Techniques from Machine Learning

theoretical empirical
study study
classical ML scale

A theoretical jump

theoretical .. - to guide the empirical study?
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quantum ML empirical 1Ot s0 easy to scale ! scale
study

In particular:
We focus on how to train quantum variational models efficiently !!
loss function design + variational model design



Landscape in Training Quantum Variational Methods

VQCs could be very hard in training:
(a) random initialization => zero gradients for slightly larger
VQCs [McClean et al., Nat Com, 9(1):4812, 2018]
(b) bad numerical landscape e.g., arXiv:1903.02537

Candidate training strategy of VQCs in special cases
(a) QAOA for certain classes of instances,
(b) extremely over-parameterized circuits, e.g.,
arXiv:2001.11897/, arXiv:1905.12134
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VQCs could be very hard in training:
(a) random initialization => zero gradients for slightly larger
VQCs [McClean et al., Nat Com, 9(1):4812, 2018]
(b) bad numerical landscape e.g., arXiv:1903.02537

Candidate training strategy of VQCs in special cases
(a) QAOA for certain classes of instances,
(b) extremely over-parameterized circuits, e.g.,
arXiv:2001.11897/, arXiv:1905.12134

[You & Wu, ICML 2021] in the context of supervised learning

Theorem 1 (Construction) For almost all p-parameter d-dimensional under-
parameterized QNN designs (U, M) with p = O(log d), there exists a hard dataset
S such that the loss function L(0;S) has 2P — 1 local minima within each period.

Theorem 2 (Upper bound) The number of strict local minima for p-parameter
QNNs are bounded by (4p)? for non-degenerated cases.




Classical Neural-Networks vs VQCs

Input: x, Output: y, parameters: W, for data point (x,y), Loss = I(y,j}(x, W))

The loss function over m training data points Square Loss

L(W) = Z I(y;, Y (W, x)) I(y,9) = (y — 5’)2

[Kawaguchi, NIPS 16] No bad local optima for (deep) linear networks

[Auer et al, NIPS 95] Exponentially many local optima for 1 neuron.




Classical Neural-Networks vs VQCs

Px

No RelLU/Sigmoid. Very linear with nice input encoding and output
measurement except the Pauli-rotation gates. Does it have a nice landscape?



Classical Neural-Networks vs VQCs

Px

No RelLU/Sigmoid. Very linear with nice input encoding and output
measurement except the Pauli-rotation gates. Does it have a nice landscape?

Unfortunately, no! Quantum has another way to create local optimal!

Non-linearity => Classical Local Optima Interference => Q. Local Optima
Sample 3
+ Sample2

Sample 1

-4

Figure 1: 1 qubit with spurious local minima



We use the classical idea of symmetry breaking to construct hard
ﬁ

datasets
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- For quantum neural networks: the existence (Sy) and breaking (S;) of the J-translational

Invariance 1 parameterization

- Expanding the observable in the Heinsenberg’s picture

M(0) :=U"(OMU(@B) = Y  D(M) [ cos26; J] sin26;

£€{0,1,2}r 1&=1
with ®¢(M) being Hermitians, the form of which depending on

l’ifl/ZQ
the QNN design.

- Datasets Sy and &7 can be constructed by solving a linear system given that
{®¢(M) }eeqo1.21.e20 forms a linearly independent set (L.D. condition)
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- For quantum neural networks: the existence (Sy) and breaking (S;) of the J-translational

Invariance 1 parameterization

- Expanding the observable in the Heinsenberg’s picture

M(0) :=U"(OMU(@B) = Y  D(M) [ cos26; J] sin26;

£€{0,1,2}r 1&=1
with ®¢(M) being Hermitians, the form of which depending on

l’ifl/ZQ
the QNN design.

- Datasets Sy and &7 can be constructed by solving a linear system given that
{®¢(M) }eeqo1.21.e20 forms a linearly independent set (L.D. condition)

L.D. condition proven to hold for almost all under-parameterized QNNSs.



Generative Models

Powerful tool from machine learning: generative adversarial networks (GANs)
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single-qubit gate:

classical distributions
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classical distributions

quantum circuits are good
at sampling!

most quantum supremacy proposals (Google’s random
circuits, Boson sampling, etc) are sampling tasks

quantum data

only quantum circuits can generate q. data!

probing unknown quantum materials w/ GANs!
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» Implementation: simple prototypes of quantum GANs are likely implementable
on near-term noisy-intermediate-size-quantum (NISQ) machines.



Robust Training of Quantum Generative Models

Training of classical GANs is delicate and unstable!
due to the property of the loss function

Training quantum data could be even worse!
existing quantum GANs scale up poorly (limited #qbits, #para,

very slow convergence) in [BGWS19, DK18, Hu et al. 19]
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Training of classical GANs is delicate and unstable!
due to the property of the loss function

Training quantum data could be even worse!
existing quantum GANs scale up poorly (limited #qbits, #para,

very slow convergence) in [BGWS19, DK18, Hu et al. 19]

- average fidelity, 8 qubits
1.0

0.8
—sigma =0.05

8 qubits —aemeo1s|  hoisy
200 para

sigma=0.2 4 qubits

fidelity

fidelity
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Contribution: [CHLFW19, NeurlPS 2019]
(1) more robust and scalable training even with noisy qubits

(2) a 52-gate circuit approximating a 10k-gate circuit (product-formula)
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Actual Circuit
Actual Circuit
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distinguish max:mally distinguish
& entangled

state —

approximate the output for one input

approximate the whole circuit using

worst-case -> average-case guarantee «
. . Choi-Jamiotkowski isomorphism

Examples:
(1) a 52-gate circuit approximating a 10k-gate circuit (product-formula)
output fidelity 0.9999 over average input, worst-case error 0.15.
(2) a scale-down experimental proposal for compressing 50 to 10 gates for
a lot of physics-motivated quantum circuits.



Quantum Wasserstein Distance w/ regularization
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* can induce a class of measures that are smooth and numerically stable.
- lead to the design of Wasserstein GAN
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Technical Contribution:
(1) one proposal to study optimal transport in operator/non-commutative
space, including a quantum Wasserstein distance and its property.
(2) architecture of quantum WGAN for robust and scalable training, i.e., all
training steps could in principle run efficiently on quantum machines.



Quantum Wasserstein Distance w/ regularization

pe (T (X)) Optimal transport

over probability

- spaces Q;, Q,

T(X) 0,

* can induce a class of measures that are smooth and numerically stable.
- lead to the design of Wasserstein GAN

Technical Contribution:
(1) one proposal to study optimal transport in operator/non-commutative
space, including a quantum Wasserstein distance and its property.
(2) architecture of quantum WGAN for robust and scalable training, i.e., all
training steps could in principle run efficiently on quantum machines.

* Proposals using quantum optimal transport to study non-equilibrium physics
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Classically,
Neural Networks + Program Features (Control/Loop) -> Differentiable Programming

“Deep Learning est mort. Vive Differentiable Programming!”
————— Yann LeCun
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Measurement induced

Resets + Measurements to Save Resources in NISQ machines .
Phase Transition

Classically,

Neural Networks + Program Features (Control/Loop) -> Differentiable Programming

“Deep Learning est mort. Vive Differentiable Programming!”
————— Yann LeCun
Quantumly, build the foundation of differentiable quantum programming [PLDI’20]
allow efficient training of g. variational models w/ program features

demonstrate the first quantum neural-symbolic application



Quantum Neuro-Symbholic Application
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Rz(y9)lq1]; Rz(y10)[q2); Rz(y11)[q3]; Rz (y12)[q4],
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Quantum Neuro-Symbholic Application

Q(T) = Rx(yn1)
Ry(ys)
Rz (y9)
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(w/ control) Py(0,d,¥) = Q(0); case M[q;] =0 —
(measurements in the middle) 1 —

Q(P)
Q(Y).
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Simple classification task w/ ground

f(Z) — _'(Zl D Z4)9Z = 214733y € 10,1 }4

via the following square loss

loss = Z 0.5 = (lg(z) — f(2))°

z€{0,1}*

Q(P)
Q(Y).
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P,(©, ®,¥) run the same
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Quantum Neuro-Symbholic Application

Q) = Rx(y)lg1]; Rx(y2)lgz]; Rx(y3)lgs]s Rx(ya)lqal;
Ry(ys)lq1]; Ry(ye)lq2]; Ry (y7)[q3]; Ry (ys)lqal;
Rz(y9)lq1]; Rz(y10)lq2]; Rz (y11)lq3]; Rz (y12)[q4l,

Note that P,(®, ®) and
P,(©, ®,¥) run the same

(no control) P1(©, ®) =0(); O(®). # of gates.
(w/ control) P,(©,d,¥) = Q(®);case M[q:] =0 —>  Q(D)
(measurements in the middle) 11— Q).

—#— Training without quantum control. Optimal Loss: 0.5000
—e— Training with quantum control. Optimal Loss: 0.0160

Simple classification task w/ ground

f(Z) — _'(Zl D Z4)9Z = 214733y € 10,1 }4

Squared Loss
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via the following square loss
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Quantum Wasserstein GAN:
(NeurlIPS 2019) github:/yiminghwang/qWGAN

Differentiable Quantum Prog-Lang:

NN | Rt
. (PLDI1 2020)  github:/LibertasSpZ/adcompile ik o




