On the Principles of Differentiable Quantum
Programming Languages

Shaopeng Zhu Shih-Han Hung Shouvanik Chakrabarti Xiaodi Wu

. JOINT CENTER FOR
QUANTUM INFORMATION
AND COMPUTER SCIENCE

PLDI 2020 - Language Design |

@ UNIVERSITY OF
% MARYLAND

A Tale of Two Emerging Programming Languages

Heard of Quantum Programming Languages? [0),11),p

%[[P(x)]] Heard of Differentiable Programming Languages?

This talk is about the happy marriage of both:

However, It is not just a brain teaser but with strong practical motivation!

With the establishment of Quantum Supremacy,

IBMwillsoonlauncha53-qubit So0BlRnasTeRched diantum - Variational Quantum Circuits (VQC)

do next

quantum computer

o

qubit 1 1) —{UA e U@ - -~ —
qubit2 0} —~{U(@)H U@ - —

-

:
- Ve
:

qubit N 0 —-1?"“(_0;)-~ MU Ne — -~~~ —
"~ U

D~ vmes

Its training requires gradient-computation
Infeasible for classical computation power

s critical for the scalability of gradient-based quantum applications!

Classical vs Quantum 101

classical:
.......................... > Vl \
nput V3 . output
.......................... . V5 _—
e.g M = V3 =V 4 v,
0
—M=v,=v, XV ;
00 3= 12
V.3 =V1XV2+V1XV°2
observations:

o actual state (v;) = representation (v;)
» all v; are reals, thus differentiable

e store v, V,, V3, Vq, V5, V3 at the same time

dv; 0vy dvy 0vy Ov,
chain-rule: — = |

' 00 dv, 00 ov, 90

quantum:

quantum
observables

quantum I I g Measure :

classical classical
iInput output

key differences:

e actual state p is a quantum state; its classical
representation is an exponential (in # of gbits) matrix.

e Unit operation U, takes 1 unit time on g. machines;
classically simulating UI,OU;r takes exponential time.

0
. a priori unclear —'0 for both p and @ part

00

* cannot store all intermediate p due to no-cloning

e hard to make sense of chain-rules

Classical vs Quantum 101: cont’d

Classical Neural Networks (CNNs)

iInput

@ nput Layer () Hidden Layer @ Output Layer

Replace x — vV (classical) by

Variational Quantum Circuits (VQCs)

quantum
observables

quantum I . Measure I

classical 5 5 classical

iInput P(6) output

Training of VQCs, similar to CNNs, will optimize the loss functions

loss = L(x,y,60) forVQC P(0) w/ d. semantics [P(0)]]

X — P, — YV (quantum) w/ potential speedups -
v
— uantum quantum
_ y(x9 9) o Tr(Oy[[P(e)]](px : state observable
Input output & &
X
o = Y oL oy | |
v —{E@ ey —-----— A 4 Gradient — can be computed from — exponential classical cost
quantum —{e=@k A - o A9 | Measure 00 a0
ment
Fx —2 @y — - - — e 1 g. gadget for simple P w/o formal formulation and program features
) v)

Variational Quantum Circuits (VQCs)

CowoeptuaL challenges from the begiwwiwg and more to come!

Contributions

“Deep Learning est mort. Vive Differentiable Programming!”
----- Yann LeCun

 Formal Formulation of Differentiable Quantum Programming Languages:

* basic concepts: parameterized quantum programs, semantics of differentiation

* code-transformation: two-stage code-transformation, a logic proving its correctness

* features: support controls, compositions, also w/ resource efficiency

* Implementation of a prototype in OCaml and benchmark tests on representative cases

* quantum neuro-symbolic application. parameterized quantum programs in machine learning

* resource efficiency. empirically demonstrated efficiency for representative cases

r

Differentiable Quantum Prog-Lang:
github:/LibertasSpZ/adcompile

.

Formal Formulations:

. Use parameterized quantum while-language Variational Quantum Circuits (VQCs)

to formulate P(60) with classically parameterized et e quantum
observables

Pauli rotation gates: e.qg.,
: : quantum Measure
el@Z, 619X®X state p _. . . _> ment y

which forms a universal gate set and can be readily C|IanSSL|JC;a| T R C(')auStSﬁ?
implemented on near-term quantum machines. P P(0) P

« Model quantum observable on P(f) by Observable Semantics

[[(Oy , px)—> P(Q)]] — Tr(Oy | P(Q)]] (px)) matches exactly the observable quantum output

Note that it will serve as (1) the target to differentiate; and (2) the read-out of any quantum programs.

. Make sense of — P(f)) computing the derivative of P(6) (Differential Semantics)

00

0 0
1(O,,p, —>£P(6’)]] = —[[(O P)—= POl one (%P(H) for any 0 and px

strong requirement: achievable and critical

Formal Formulations: cont’d

Move to code-transformation and construction of — P(6) based on previous formulations

00
0
G —> P(O) = U,(0); U,(0); g =V = Vi X

V3—V1XV2

>

0 0 0
51 0) = —2U10); Up0); + Uy (0); —2 Un(0); 22

00 20 I 0
Making sense of “+7:

classical “+”: run both v; X v, and v; X v, on the input, and then sum the outputs

+ vy XV,
A
classical analogue

quantum “+”: hope to do the same. However, the input cannot be cloned, and will be consumed for each

Thus, — P(60) needs to be a collection of programs running on copies of the input state —> complication!

00

i Ideally, (1) hope to have a similar code-transformation like classical for intuition and implementation,

but still able to keep track of the right collection of programs in an efficient way.

(2) hope to control the size of the collection —> # of copies of the input state for efficiency. |

Two-stage Code-Transformation

O_P(H) : code-transformation

differential semantics

compilation

Parameterized dditive

Quantum

rograms
Programs ProY

execute on quantum machines

Quantum While-Programs +

Sum Operator Operational Semantics of Sum

additive
programs

abort|q| | skip[q] | ¢:=10) | g:= U(oz[ﬁ] |
P1(0); P,(0) | case M[q] = m — Pm(H) end |

(PL(6) + P2(0°), p) — (P1(8), p).
(P1(87) + P2(8), p) — (P2(6"), p)

(Atomic)

(Sequence)

Output a collection of quantum programs while keeping the size small

0 0 0

—P(0) = —U,(0); Uy(0); + U, (0); —U,(6);

pY: (0) a pY: 1(0) 28() 1(0) v -(0) a o
Compile(a(91[)(6’) {\—U1(9) U,(0);, Ui(0); — py: »(0); [}, size 2 o

general compilation follows the same intuition but more complicated :

exactly match the intuition of “+”
for differential semantics

Compile(P()) = {|P()[},

if P(@) = abort[v] | skip[v] | g := |0)

|v := U(0)[v].

Compile(P1(0); P2(0)) =

{|abort|}, if Compile(P;(8)) = {|abort|};

J {|abort|}, if Compile(P5(8)) = {|abort|};
{101(8); Q2(8) : Qp(8) € Compile(Py(0))[},

otherwise.
Compile(case) = FB(case), described in Fig.3b.

Compile(while(T)) : use (Case m) and (Sequence).
Compile(P1(0) + P2(0)) =
Compile(P1(@))] [Compile(Py(@)), if Vb € {1,
2}, Compile(Py(0)) # {|abort|};
Compile(P1(@)), if Compile(P,(@)) = {|abort|},
3 Compile(P;(@)) # {|abort|};
Compile(P,(@)), if Compile(P;(@)) = {|abort|},
Compile(P2(@)) # {|abort|};
{|abort|}, otherwise -

Code-Transformation

Similar to classical for the convenience of compiler implementation!
(Trivial) ag(abort[v]), 69(sk1p[v]), ae(q = |0)) =
abort[o U {A}].

(Trivial-U) (7 := U(@)[0]) = abort[v U {A}],if 0; ¢ 6.

(1) modify existing phase-shift rule using two-circuit-difference to

:'('1Tc{b') ----- G = R Olg) = Ag = R (B)[A -q;]- one circuit with super-posed control for composition and efficiency.
. (2 qb) %(%&12 = RU@O‘(Q)[qlaQZ]) = :
E_ 4025 Raaol@ldal.........0 (2) the proof relies on the strong requirement in differential semantics
: (Sequence) 75(51(0);52(0)) = (51(0); 55(52(0))) + :
o (%5(5100));5:(0)). 0 i |
" (Case)” """ 59-(553-37\7[ﬁ = m—>3S. (@ end) =" """ : [(O, p)— %(50(0); S10)1 =0, p)- m(SO(e))Q 51(0)]
: case M[q] = m — #;(Sn(6) end. +(0,) = So(8); 25(S:1())].
 (while")) Use (Case) and (Sequence). _ :
(S-C) 50010 + 50) = 575(5:0) +5H(=00.
[0 p) Su(6): ~-(S:(6)]= 10, I5u(6)1(p) > - —(51(9»11 make use of the premises of 6% 5.0,
0
iP(Q) : code-transformation . 9 0 pE=m======= —35,(0), for different (0, /0) pairs

[(0.p)~ —(50(9)) S1@1=[(IS:O)1(0). p)- —(50(9))]] o0

ey
Parameterized dditive

Quantum

differential semantics programs

Programs

(3) support case unconditionally, better than the classical case

_ _ support bounded loop, matching the classical case [Plotkin, POPL’18]
We develop a sound logic to prove its correctness.

Recap ...

—P(0) : code-transformation compilation
@O Y@y — -+~ — YA 0‘9/-\
T @ — - — HERe- | Parameterized " |
e, [U i additive collection of
- Quantum
—E @ He— ----- —_ e Programs differential semantics programs programs

o v U o)
D ~ times execute on quantum machines

 Formal Formulation of Differentiable Quantum Programming Languages:

* pasic concepts: parameterized quantum programs, semantics of differentiation

* code-transformation: two-stage code-transformation, a logic proving its correctness

e features: support controls, compositions, also w/ resource efficiency

* Implementation of a prototype in OCaml and benchmark tests on representative cases

* quantum neuro-symbolic application. parameterized quantum programs in machine learning

* resource efficiency. empirically demonstrated efficiency for representative cases

Definition 7.1. The “Occurrence Count for 0;” in P(0), de-

Resource Estimation noted OC (P(8)), i defined as follows

1. If P(@) = abort|[v]|skip[v]|lg := |0) (g € ©), then
OC;(P(@)) = 0;

2. P() = U(0): ifU(0) trivially uses 6;, then OC;(P(0)) =
0; otherwise OC;(P(@)) = 1.

compilation

" 3. If P(@) = U(@) = P1(0); P»(8)) then OC;(P(0)) =
additive OC;(P1(6)) +OC; (P»(8)). ’
programs 4. If P(0) = case M[q] = m — P,,(0) end then OC;(P(0))
= max,, OC;(Pn(8)).
5. If P(6) = while'”) M[g] = 1 do P;(6) done then
Generally EXP (in # of “+”s) programs after compilation OC;(PO) =T - OC;(P1(6)). .

However, for relevant — P(60), we show the # is bounded by occurrence count of 6

00
which basically counts the # of appearances of .. Z ..

P(0) -)|L4I|#%(-:) #gates #lines| #layery #qb
QNN ; 24 1165 | 189 |3 18
P(0) = U,(0); U,(0); occurrence count 2 QNN 24 j[est 121 [5 0 T8
QNN ; 1148 1] 363 [414 |6 36
P P P QNNp ., ([148 1| 2079 | 244 |33 | 36
: _) .)) : VQE s ; G150 1224 241 |3 12
Complle(—P(6’)) = {l _Ul(‘g)a U2(9)9) Ul(e)a _UZ(H)a ‘}, size 2 VQEﬁ,W '35 115 224 | 112 |5 12
00 00 00 VQE.; 40 1[40 1| 576 | 628 |5 40
VQEL . 248 .40] 1984 | 368 |17 40
) QAOAy; [18 '['18 '[120 [142 |3 18
Why occurrence could be a reasonable quantity? QAOAy. ., 142 1|18 1] 168 | 94 |5 18
QAOAL; h36 1|136 1| 264 |315 |6 36
_ QAOA[,, ;378 I|136 ![1512 | 190 | 33 36

V3 = Vy X Vy; occurrence count 2: v,(0), v,(0) in V3 e — —

one needs 2 extra registers to store v;, v,

Quantum Neuro-Symbolic Application

“Deep Learning est mort. Vive Differentiable Programming!”
----- Yann LeCun

O) = Rx(y)lai]; Rx(y2)lqz]; Rx(y3)lg3]; Rx (ya)lq4l;
Ry(ys)lq1]; Ry (ye)lqzl;s Ry (y7)lq3l; Ry (ys)lqal:;
Rz(yo)lq1ls Rz(y10)lg2]; Rz(y11)lgs]; Rz (y12)lq4l,

Learning function: flZ) = —~(Z4 ® 21)

N

v Traineng without quantum comtrol. Optimal Loss: 0.5000
Training with guantum control. Optimal Loss: 0.0160

O~ w0
| -

A VL VR N LN
AL A AL

CT TN

(no control) P1(©,) =Q(0); Q(P).

(w/ control) Py(©,®,¥) = Q(©);case M[g:] =0 — Q(P)

Squareg Loss

OO OO0 OO0 OO0 0O bt bt nrne bt 4t mrmr bt s N

Note that P,(®, ®) and P,(O, ®, ¥) run the same # of gates.

Bl i B B L B B L e B e

Ot W SN O~ DD O 0t Ay 35 (A Oy 00D Omr W 3o

t

Simple classification task w/ ground truth

0 100 200 300 400 %00 600 700 800 900
tpochs
f(2) = (2 ® 24), 2 = 21202324 € {0,1}* o

Training of /7, is conducted on our implementation, whereas
the training of P,is conducted on prior art (e.g., Pennylane).

via the following square loss function

loss = Z 0.5 * (lg(z) — f(2))° The use of quantum control could be significant for near-term.
ze€{0,1}*

Conclusions

—HP(Q) : code-transformation compilation

Parameterized /-\A

open questions:
additive collection of functional PL,

Quantum .
Programs differential semantics programs programs d. heuro-symbolic apps

Differentiable Probabilistic
: rogramming alegramming As a generalization of both
even if you are / (o) @ 9 ,
only interested - 4 [r— . our findings might provide hints of unifying
: - oes) Networks Models (e _ _ L _
In classical i differentiable and probabilistic programming!
- I

r

' Differentiable Quantum Prog-Lang:
= github:/LibertasSpZ/adcompile

\§

A - oN
Hoyyas3®

