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Abstract
Variational Quantum Circuits (VQCs), or the so-called quan-
tum neural-networks, are predicted to be one of the most im-
portant near-term quantum applications, not only because of
their similar promises as classical neural-networks, but also
because of their feasibility on near-term noisy intermediate-
size quantum (NISQ) machines. The need for gradient in-
formation in the training procedure of VQC applications
has stimulated the development of auto-di!erentiation tech-
niques for quantum circuits. We propose the "rst formaliza-
tion of this technique, not only in the context of quantum
circuits but also for imperative quantum programs (e.g., with
controls), inspired by the success of di!erentiable program-
ming languages in classical machine learning. In particular,
we overcome a few unique di#culties caused by exotic quan-
tum features (such as quantum no-cloning) and provide a
rigorous formulation of di!erentiation applied to bounded-
loop imperative quantum programs, its code-transformation
rules, as well as a sound logic to reason about their correct-
ness. Moreover, we have implemented our code transforma-
tion in OCaml and demonstrated the resource-e#ciency of
our scheme both analytically and empirically. We also con-
duct a case study of training a VQC instance with controls,
which shows the advantage of our scheme over existing
auto-di!erentiation for quantum circuits without controls.
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1 Introduction
Background. Recent years have witnessed the rapid de-
velopment of quantum computing, with practical advances
coming from both research and industry. Quantum program-
ming is one topic that has been actively investigated. Early
work on language design [23, 33, 40, 41, 45] has been fol-
lowed up recently by several implementations of these lan-
guages, including Quipper [25], Sca!old [2], LIQUi|〉 [48],
Q# [47], and QWIRE [34]. Extensions of program logics have
also been proposed for veri"cation of quantum programs
[4, 10, 11, 19, 28, 29, 51, 53]. See also surveys [20, 44, 52].
With the availability of prototypes of quantum ma-

chines, especially the recent establishment of quantum
supremacy [3], the research of quantum computing has en-
tered a new stage where near-term Noisy Intermediate-Scale
Quantum (NISQ) computers [38], e.g., the 53-qubit quantum
machines from Google [3] and IBM [22], become the im-
portant platform for demonstrating quantum applications.
Variational quantum circuits (VQCs) [17, 18, 36], or the so-
called quantum neural networks, are predicted to be one of
the most important applications on NISQ machines. It is not
only because VQCs bear a lot of similar promises like classi-
cal neural networks as well as potential quantum speed-ups
from the perspective of machine learning (e.g., see the sur-
vey [9]), but also because VQC is, if not the only, one of the
few candidates that can be implemented on NISQ machines.
Because of this, a lot of study has already been devoted to the
design, analysis, and small-scale implementation of VQCs
(e.g., see the survey [7]).
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Heard of Quantum Programming Languages? |0⟩, |1⟩, ρ

Heard of Differentiable Programming Languages?
∂
∂x

[[P(x)]]

A Tale of Two Emerging Programming Languages

This talk is about the happy marriage of both: 

Differentiable Quantum Programming Languages



However, it is not just a brain teaser but with strong practical motivation!

With the establishment of Quantum Supremacy, 

Variational Quantum Circuits (VQC)

Its training requires gradient-computation  
Infeasible for classical computation power   

Thus, 

Using quantum programs to compute the gradients of quantum programs

Is critical for the scalability of gradient-based quantum applications!  



Classical vs Quantum 101

classical: quantum:
v1

v2
v3

e.g. M ≡ v3 = v1 × v2∂
∂θ

M ≡ v3 = v1 × v2;
·v3 = ·v1 × v2 + v1 × ·v2

observations:

• actual state ( ) = representation ( )vi vi

• all  are reals, thus differentiable vi

• store  at the same timev1, v2, v3, ·v1, ·v2, ·v3

• chain-rule:  
∂v3
∂θ

= ∂v3
∂v1

∂v1
∂θ

+ ∂v3
∂v2

∂v2
∂θ

input output

key differences:

• actual state  is a quantum state; its classical 
representation is an exponential (in # of qbits) matrix. 

ρ

• Unit operation  takes 1 unit time on q. machines; 
classically simulating  takes exponential time. 

U1
U1ρU†

1

U1 yρ U2
Measure
ment

classical 
input

classical
output

quantum 
state x

quantum 
observables

• a priori unclear  for both  and  part
∂ρ
∂θ

ρ θ

• cannot store all intermediate  due to no-cloningρ

• hard to make sense of chain-rules



Classical vs Quantum 101: cont’d

input 
x

output
y

quantum
ρx

Measure
ment

Variational Quantum Circuits (VQCs)

input 
x

output
y

Classical Neural Networks (CNNs)

x → yReplace              (classical)  by

x → ρx → y (quantum) w/ potential speedups  

Training of VQCs, similar to CNNs, will optimize the loss functions

loss = L(x, y, θ)

y(x, θ) = Tr(Oy[[P(θ)]](ρx))

for VQC  w/ d. semantics  P(θ) [[P(θ)]]

quantum 
observable

quantum 
state

Gradient   can be computed from 
∂L
∂θ

∂y
∂θ

exponential classical cost

 q. gadget for simple P w/o formal formulation and program features  ∃

Conceptual challenges from the beginning and more to come! 

Variational Quantum Circuits (VQCs)

eiθZ yρ eiθX Measure
ment

classical 
input

classical
output

quantum 
state x

quantum 
observables

P(θ) Oy



Contributions

“Deep Learning est mort. Vive Differentiable Programming!”
                                                                                                                 ----- Yann LeCun

• Formal Formulation of Differentiable Quantum Programming Languages:      

• basic concepts: parameterized quantum programs, semantics of differentiation   

• code-transformation: two-stage code-transformation, a logic proving its correctness  

• features:  support controls, compositions, also w/ resource efficiency  

• Implementation of a prototype in OCaml and benchmark tests on representative cases

• quantum neuro-symbolic application: parameterized quantum programs in machine learning  

• resource efficiency: empirically demonstrated efficiency for representative cases 
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Formal Formulations: 
Variational Quantum Circuits (VQCs)

eiθZ yρ eiθX Measure
ment

classical 
input

classical
output

quantum 
state x

quantum 
observables

P(θ) Oy

• Use parameterized quantum while-language 
to formulate  with classically parameterized 
Pauli rotation gates: e.g., 

P(θ)

eiθZ, eiθX⊗X

which forms a universal gate set and can be readily 
implemented on near-term quantum machines. 

• Model quantum observable on  by Observable Semantics P(θ)

, ) ( ))[[(Oy ρx →P(θ)]] ≡ Tr(Oy[[P(θ)]] ρx matches exactly the observable quantum output

Note that it will serve as (1) the target to differentiate; and (2) the read-out of any quantum programs.  

• Make sense of  computing the derivative of  (Differential Semantics) 
∂
∂θ

P(θ) P(θ)

, )  = , )  [[(Oy ρx → ∂
∂θ

P(θ)]] ∂
∂θ

[[(Oy ρx →P(θ)]] one  for any  and ∂
∂θ

P(θ) Oy ρx

strong requirement: achievable and critical 



Formal Formulations: cont’d 
Move to code-transformation and construction of  based on previous formulations  

∂
∂θ

P(θ)

U1 yρ U2
Measure
mentx

P(θ)

P(θ) ≡ U1(θ); U2(θ);

 ??
∂
∂θ

P(θ) ≡ ∂
∂θ

U1(θ); U2(θ); + U1(θ); ∂
∂θ

U2(θ);

∂
∂θ

M ≡ v3 = v1 × v2;
·v3 = ·v1 × v2 + v1 × ·v2

classical analogue

Making sense of “ ”: +
 classical “ ”:  run both  and  on the input, and then sum the outputs+ ·v1 × v2 v1 × ·v2
 quantum “ ”:  hope to do the same. However, the input cannot be cloned, and will be consumed for each+

Thus,  needs to be a collection of programs running on copies of the input state  —> complication!
∂
∂θ

P(θ)

 (1) hope to have a similar code-transformation like classical for intuition and implementation,                                           
dddbut still able to keep track of the right collection of programs in an efficient way. 

Ideally, 

 (2) hope to control the size of the collection —> # of copies of the input state for efficiency. 



Two-stage Code-Transformation

Parameterized
Quantum 
Programs

additive 
programs

collection of 
programs

 : code-transformation
∂
∂θ

P(θ) compilation

differential semantics

execute on quantum machines

additive 
programs

Quantum While-Programs   +     Sum Operator
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(Abort) 〈abort[q], ρ〉 → 〈↓, 0〉

(Skip) 〈skip[q], ρ〉 → 〈↓, ρ〉

(Init) 〈q := |0〉, ρ〉 → 〈↓, ρq0 〉

where ρ
q
0 =

{
Ebool
q→0(ρ) if type(q) = Bool

EB−int
q→0 (ρ) if type(q) = Bdd Int

(Unitary) 〈q := U (θ∗)[q], ρ〉 → 〈↓, U (θ∗)ρU †(θ∗)〉

(Sequence)

〈P1(θ∗), ρ〉 → 〈P ′1(θ
∗), ρ ′〉

〈P1(θ∗); P2(θ∗), ρ〉 → 〈P ′1(θ
∗); P2(θ∗), ρ ′〉

(Casem) 〈caseM[q] =m → Pm (θ∗) end, ρ〉 →

〈Pm (θ∗),Em (ρ)〉 , ∀ outcomem ofM = {Mm }

(While(T ) 0) 〈while(T ) M[q] = 1 do P1(θ∗) done, ρ〉 →
〈↓, E0(ρ)〉

(While(T ) 1) 〈while(T ) M[q] = 1 do P1(θ∗) done, ρ〉 →

〈P1(θ∗);while(T−1),E1(ρ)〉

(a)

[[abort[q]]]ρ = 0
[[skip[q]]]ρ = ρ

[[q := |0〉]]ρ = Ebool
q→0(ρ) or E

B−int
q→0 (ρ)

[[q := U (θ∗)[q]]]ρ = U (θ∗)ρU †(θ∗)
[[P1(θ∗); P2(θ∗)]]ρ = [[P2(θ∗)]]([[P1(θ∗)]]ρ)

[[caseM[q] =m → Pm (θ∗) end]]ρ =
∑
m [[Pm (θ∗)]]Em (ρ)

[[while(T ) M[q] = 1 do P1(θ∗) done]]ρ =
∑T−1
n=0 E0◦

([[P1(θ∗)]] ◦ E1)n (ρ)

(b)

Figure 1. Parameterized T -bounded quantum while pro-
grams: (a) operational semantics (b) denotational semantics.

These programs essentially don’t contribute to the !nite com-
putation output, as semantically aborted programs always
result in zero output state 0.
We formalize this concept (essential-abortion for unpa-

rameterized programs may be analogously de!ned) so that
the compilation of our programs could be optimized:

De!nition 3.2 (“Essentially Abort”). Let P(θ ) ∈
q-while(T )

v
(θ ). P(θ ) “essentially aborts” if one of the

following holds:

1. P(θ ) ≡ abort[q];
2. P(θ ) ≡ P1(θ ); P2(θ ), and either P1(θ ) or P2(θ ) essentially

aborts;
3. P ≡ case M[q] = m → Pm(θ ) end, and each Pm(θ )

essentially aborts.

(Sum Components) 〈P1(θ∗) + P2(θ∗), ρ〉 → 〈P1(θ∗), ρ〉,

〈P1(θ∗) + P2(θ∗), ρ〉 → 〈P2(θ∗), ρ〉

Figure 2. additive parameterized quantum bounded while-
programs: operational semantics. We !x θ ∗ ∈ Rk and inherit
all the other rules from parameterized programs in Fig. 1a.

4 Additive Parameterized Quantum
Bounded While-Programs

We introduce a variant of additive quantum programs as
a succinct way to describe the collection of programs that
are necessary to compute the derivatives. To that end, we
introduce our design of the syntax and the semantics of
additive quantum programs as well as a compilation method
that turns any additive quantum program into a collection of
normal programs for the actual computation of derivatives.

4.1 Syntax

We adopt the convention to use underlines to indicate ad-
ditive programs, such as P(θ ), to distinguish from normal
program P(θ ). The syntax of P(θ ) is given by

P(θ ) ::= abort[q] | skip[q] | q := |0〉 | q := U (θ )[q] |

P1(θ ); P2(θ ) | caseM[q] =m → Pm(θ ) end |

while(T ) M[q] = 1 do P1(θ ) done | P1(θ ) + P2(θ ),

where the only new syntax + is the additive choice. In-
tuitively, P1(θ ) + P2(θ ) allows the program to either exe-
cute P1(θ ) or P2(θ ) nondeterminisitcally. The denotational
semantics will include all possible execution traces. We
assume + has lower precedence order than composition,
and is left associative.5 If P(θ ) = P1(θ ) + P2(θ ), then
qVar(P(θ )) ≡ qVar(P1(θ )) ∪ qVar(P2(θ )). Denote the col-
lection of all non-deterministic P(θ ) s.t. qVar(P(θ )) = v as

add-q-while(T )
v

(θ ).

4.2 Operational and Denotational Semantics

We exhibit operational semantics in Figure 2 and de-
!ne a similar denotational semantics for any P(θ ∗) ∈
add-q-while(T )

v
(θ ).

De!nition 4.1 (Denotational Semantics). ∀θ ∗, ρ ∈ D(Hv ),

[[P(θ ∗)]](ρ) ≡ {|ρ ′ : 〈P(θ ∗), ρ〉 →∗ 〈↓, ρ ′〉 |}. (4.1)

Note that there is no sum in (4.1) compared with (3.3).
This is because we want to capture the behavior of + by stor-
ing all possible execution traces in a multi-set. This resem-
bles the idea of the sum operator in the di"erential lambda-
calculus [14].

5E.g., X + Y ;Z = X + (Y ;Z ), X + Y + Z := (X + Y ) + Z .
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bles the idea of the sum operator in the di"erential lambda-
calculus [14].

5E.g., X + Y ;Z = X + (Y ;Z ), X + Y + Z := (X + Y ) + Z .
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Operational Semantics of Sum

exactly match the intuition of “+” 
for differential semantics  

compilation Output a collection of quantum programs while keeping the size small

Compile( ) , size 2
∂
∂θ

P(θ) ≡ {| ∂
∂θ

U1(θ); U2(θ); , U1(θ); ∂
∂θ

U2(θ); |}

∂
∂θ

P(θ) ≡ ∂
∂θ

U1(θ); U2(θ); + U1(θ); ∂
∂θ

U2(θ);
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4.3 Compilation Rules

We exhibit the compilation rules in Figure 3 as a way to
transform an additive program P(θ ) into a multiset of normal
programs. The compiled set of programs will be later used in
the actual implementation of the di!erentiation procedure.
Our compilation rule is also well-de"ned as it is compatible
with the denotational semantics and operational semantics
of P(θ ) in the following sense:

Proposition 4.2. Denoting with
∐

the union of multisets,
then for any ρ ∈ D(Hv ),

{|ρ ′ : ρ ′ ! 0, ρ ′ ∈ [[P(θ ∗)]]ρ |} =
∐

Q (θ )∈Compile(P (θ ))

{|ρ ′ ! 0 : 〈Q(θ ∗), ρ〉 →∗ 〈↓, ρ ′〉 |}. (4.2)

Proof. Structural Induction. See the full version [55] for de-
tails. !

Note that (4.2) removes 0 from the multi-set as we are
only interested in non-trivial "nal states. In Compile(P(θ )),
some programs may essentially abort (De"nition 3.2). For
implementation, we are interested in the number of Q(θ ) ∈
Compile(P(θ )) that do not essentially abort:

De!nition 4.3. The number of non-aborting programs of
P(θ ), denoted as |#P(θ )|, is de!ned as

|#P(θ )| = |Compile(P(θ )) \ {|Q(θ ) ∈ Compile(P(θ )) :
Q(θ ) essentially aborts.|}|

where |C | is the cardinality of a multisetC andC0!C1 denotes
the multiset di"erence of C0 and C1.

We remark that |#P(θ )| could be exponentially large for
general P(θ ), e.g., P(θ ) ≡ (Q1+R1); ...; (Qn+Rn). However, as
we show in Section 7, for instances of additive programs from
di!erentiation, this number is well bounded. (i.e., instances
with exponential blow-up are irrelevant in our context.)

Example 4.1 (Generic-Case). Consider the following simple
program with the case statement

P(θ ) ≡ caseM[q] = 0 → P1(θ ) + P2(θ ),
1 → P3(θ )

where P1(θ ), P2(θ ), P3(θ ) ∈ q-while(T )
v

(θ ), none of them essen-
tially aborts, and each of P1(θ ), P2(θ ), P3(θ ) contains no control
gates. Then for any ρ ∈ D(Hv ), !xing θ ∗ we have

〈P(θ ∗), ρ〉
(Casem)
→ 〈P1(θ ∗) + P2(θ ∗),M0ρM

†
0 〉

(Sum)
→ 〈P1(θ ∗),M0ρM

†
0 〉

→∗ 〈↓, [[P1(θ ∗)]](M0ρM
†
0 )〉;

〈P(θ ∗), ρ〉
(Casem)
→ 〈P1(θ ∗) + P2(θ ∗),M0ρM

†
0 〉

(Sum)
→ 〈P2(θ ∗),M0ρM

†
0 〉→

∗〈↓, [[P2(θ ∗)]](M0ρM
†
0 )〉;

〈P(θ ∗), ρ〉
(Casem)
→ 〈P3(θ ∗),M1ρM

†
1 〉

→∗ 〈↓, [[P3(θ ∗)]](M1ρM
†
1 )〉

(Atomic) Compile(P(θ )) ≡ {|P(θ )|},
if P(θ ) ≡ abort[v] | skip[v] | q := |0〉
|v := U (θ )[v].

(Sequence) Compile(P1(θ ); P2(θ )) ≡





{|abort|}, if Compile(P1(θ )) = {|abort|};
{|abort|}, if Compile(P2(θ )) = {|abort|};
{|Q1(θ );Q2(θ ) : Qb (θ ) ∈ Compile(Pb (θ ))|},

otherwise.
(Casem) Compile(case) ≡ FB(case), described in Fig.3b .

(While(T )) Compile(while(T)) : use (Casem) and (Sequence).
(Sum ) Compile(P1(θ ) + P2(θ )) ≡






Compile(P1(θ ))
∐
Compile(P2(θ )), if ∀b ∈ {1,

2}, Compile(Pb (θ )) ! {|abort|};
Compile(P1(θ )), if Compile(P2(θ )) = {|abort|},

Compile(P1(θ )) ! {|abort|};
Compile(P2(θ )), if Compile(P1(θ )) = {|abort|},

Compile(P2(θ )) ! {|abort|};
{|abort|}, otherwise

(a)
1. ∀m ∈ [0,w], letCm denote the sub-multiset of Compile(Pm (θ ))

composed of programs that do not essentially abort; without
loss of generality, assume |C0 | ≥ |C1 | ≥ · · · ≥ |Cw |.

2. If all Cm ’s are empty, return FB(case) ≡ {|abort[v]|}; else, pad
each Cm to size |C0 | by adding “abort[v]”.

3. ∀m ∈ [0,w], index programs in Cm as {|Qm,0(θ ), · · · ,
Qm, |C0 |−1(θ )|}. Return FB(case) ≡ {| case M[q] =

m → Qm, j∗ end |}j∗ with 0 ≤ j∗ ≤ |C0 | − 1.

(b)

Figure 3. nondeterministic programs: (a) compilation rules.
(b) “Fill and Break” (“FB(•)”) procedure for computing

Compile(case). case stands for caseM[q] =m → Pm(θ ) end;
while(T) stands for while(T ) M[q] = 1 do P1(θ ) done. Here∐

denotes union of multisets. One may observe from a rou-
tine structural induction and the de"nition of “essentially
abort” that: for all P(θ ), either Compile(P(θ )) = {|abort|}, or
Compile(P(θ )) does not contain essentially abort programs.

Hence by De!nition 4.1.

[[P(θ ∗)]]ρ = {|[[P1(θ ∗)]](M0ρM
†
0 ), [[P2(θ

∗)]](M0ρM
†
0 ),

[[P3(θ ∗)]](M1ρM
†
1 )|}

We verify computation results from the compilation rules
are consistent with this. Writing “compilation rule” as “CP”,

one observes Compile(P1(θ ) + P2(θ ))
CP,Sum
= {|P1(θ ), P2(θ )|},

while Compile(P3(θ )) = {|P3(θ )|} since we assumed non-

essentially-abortness. Apply our “!ll and break” procedure
to obtain C0 = {|P1(θ ), P2(θ )|}, C1 = {|P3(θ ), abort[v]|}.
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general compilation follows the same intuition but more complicated : 
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De!nition 5.3 (Di!erential Semantics). Given additive pro-

gram S(θ ) ∈ add-q-while(T )
v

(θ ), its j-th di!erential seman-
tics is de!ned by

∂

∂θ j
([[(O, ρ)!S(θ )]]), (5.6)

which is again a function from Rk to R. Moreover, for any

S ′(θ ) ∈ add-q-while(T )
v∪{A}(θ ) with ancilla A, we say that

“S ′(θ ) computes the j-th di!erential semantics of S(θ )” if and
only if there exists an observableOA on ancillaA for S ′(θ ) such
that ∀O ∈ Ov , ρ ∈ D(Hv ),

[[((O,OA), ρ)!S ′(θ )]] =
∂

∂θ j
([[(O, ρ)!S(θ )]]). (5.7)

We remark that (5.6) is well de"ned because [[(O, ρ) !

S(θ )]] is a function from Rk to R. It is also a smooth function
because we assume that parameterized unitaries are entry-
wise smooth, and the observable semantics is obtained by
multiplication and addition of such entries. Note also that
there is one speci"c choice of OA in our current design. We
leave it as a parameter to allow #exibility for future designs.

We also remark that the order of quanti"ers in (5.7) is the
strongest that one can hope for. This is because the observ-
able semantics of S(θ ) will depend on O and ρ in general.
Thus, the program to compute its di!erential semantics could
also depend on O and ρ in general. However, in our de"ni-
tion, S ′(θ ) is a single "xed program that works for any O

and ρ regardless of the seemingly complicated relationship.
This de"nition is consistent with the classical case where a
single program can compute the derivatives for any input.
We can achieve the same de"nition in the quantum setting
and it is critical in the proof of Theorem 6.2 (item (5)).

6 Code Transformations and the
Di"erentiation Logic

We describe the code transformation rules of the di!erentia-
tion operator ∂

∂θ (·) in Section 6.1. We also de"ne a logic and
prove its soundness for reasoning about the correctness of
these code transformations, with the following judgement

S ′(θ )|S(θ ), (6.1)

which states that S ′(θ ) computes the di!erential semantics of
S(θ ) in the sense of De"nition 5.3. We "x θ = θ j and hence

A stands for Aj,v and ∂
∂θ for ∂

∂θ j
through this section.7

6.1 Code Transformations

We "rst de"ne some gates associated with the single-qubit
rotation and the two-qubit coupling gates, which will appear
in the code transformation rules. Let A be a single qubit.

7If A already exists, i.e., S (θ ) ∈ add-q-while(T )
v∪{A}(θ ), we treat vnew as

vold ∪ Aold and add Anew. Any observable O on vold becomes OAold ⊗ O

on vnew. Both Aold and Anew are initialized to |0〉 in observable semantics.

(Trivial) ∂
∂θ (abort[v]),

∂
∂θ (skip[v]),

∂
∂θ (q := |0〉) ≡
abort[v ∪ {A}].

(Trivial-U) ∂
∂θ (v := U (θ )[v]) ≡ abort[v ∪ {A}], if θ j ! θ .

(1-qb) ∂
∂θ (q1 := Rσ (θ )[q1]) ≡ A,q1 := R′

σ (θ )[A,q1].
(2-qb) ∂

∂θ (q1,q2 := Rσ ⊗σ (θ )[q1,q2]) ≡
A,q1,q2 := R′

σ ⊗σ (θ )[A,q1,q2].
(Sequence) ∂

∂θ (S1(θ ); S2(θ )) ≡ (S1(θ ); ∂
∂θ (S2(θ ))) +

( ∂
∂θ (S1(θ )); S2(θ )).

(Case) ∂
∂θ (caseM[q] =m → Sm(θ ) end) ≡

caseM[q] = m → ∂
∂θ (Sm(θ )) end.

(while(T )) Use (Case) and (Sequence).
(S-C) ∂

∂θ (S1(θ ) + S2(θ )) ≡ ∂
∂θ (S1(θ )) +

∂
∂θ (S2(θ )).

Figure 4. Code Transformation Rules. For (1-qb Rotation)
and (2-qb Coupling), (σ ∈ {X ,Y ,Z }); R′

σ (θ ),R′
σ ⊗σ (θ ) are as

in De"nition 6.1. θ j ! θ means “the unitary U (θ ) trivially
uses θ j ”: for example in P(θ ) ≡ RX (θ1);RZ (θ2), θ = (θ1,θ2)
and RX (θ1) trivially uses θ2.

De!nition 6.1. 1. Consider unitary Rσ (θ ) where σ ∈
{X ,Y ,Z }. We de!ne unitary C_Rσ (θ ) as

C_Rσ (θ ) ≡ |0〉A〈0| ⊗ Rσ (θ ) + |1〉A〈1| ⊗ Rσ (θ+π ). (6.2)

We also de!ne a new gadget program R′
σ (θ ) as

R′
σ (θ )[A,q1] ≡ A := H [A];A,q1 := C_Rσ (θ )[A,q1];

A := H [A]. (6.3)

2. Substituting σ ⊗σ for σ andq1,q2 forq1 in Eqns (6.2,6.3),
one de!nes C_Rσ ⊗σ (θ ),R′

σ ⊗σ (θ ).

For 1-qubit rotation Rσ (θ ), the “controlled-rotation” gate
C_Rσ (θ )maps |0,q1〉 )→ |0〉 ⊗Rσ (θ ) |q1〉, and |1,q1〉 )→ |1〉 ⊗
Rσ (θ+π ) |q1〉; R′

σ (θ ) conjugates C_Rσ (θ ) with Hadamard.
Similarly for corresponding two-qubit coupling gates.

We exhibit our code transformation rules in Figure 4. For
Unitary rules we only include 1-qubit rotations and two-
qubit coupling gates, since they form a universal gate set
and are easy to implement on quantum machines. It is also
possible to include more unitary rules (e.g., by following the
calculations in [42]), which we will leave as future directions.

6.2 The Di"erentiation Logic and Its Soundness

We develop the di!erentiation logic given in Figure 5 to rea-
son about the correctness of code transformations. It su$ces
to show that our logic is sound. For ease of notation, in fu-
ture analysis we write ∂

∂θ (P(θ )) in place of ∂
∂θ (P(θ )) when

P(θ ) ∈ q-while(T )
v

(θ ).

Theorem 6.2 (Soundness). Let S(θ ) ∈ add-q-while(T )
v

(θ ),
S ′(θ ) ∈ add-q-while(T )

v∪{A}(θ ). Then, S
′(θ )|S(θ ) implies that

S ′(θ ) computes the di"erential semantics of S(θ ).
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Code-Transformation

Parameterized
Quantum 
Programs

additive 
programs

 : code-transformation
∂
∂θ

P(θ)

differential semantics

We develop a sound logic to prove its correctness. 

Similar to classical for the convenience of compiler implementation!

(1) modify existing phase-shift rule using two-circuit-difference to 
one circuit with super-posed control for composition and efficiency.

(2) the proof relies on the strong requirement in differential semantics
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(Abort) ∂
∂θ (abort[v])|abort[v] (Skip) ∂

∂θ (skip[v])|skip[v]

(Initialization) ∂
∂θ (q := |0〉)|(q := |0〉)

(Trivial-Unitary)

θ j ! θ
∂
∂θ (q = U (θ )[v])|q = U (θ )[v]

(Rot-Couple) ∂
∂θ (q = Rσ (θ )[v])|(q = Rσ (θ )[v])

(Sequence)

∂
∂θ (S0(θ ))|S0(θ )

∂
∂θ (S1(θ ))|S1(θ )

∂
∂θ (S0(θ ); S1(θ ))|(S0(θ ); S1(θ ))

(Case)

∀m, ∂
∂θ (Sm(θ ))|Sm(θ )

∂
∂θ (caseM[q] =m → Sm(θ ) end)|
caseM[q] =m → Sm(θ ) end

(While(T ))

∂
∂θ (S1(θ ))

!
!
!S1(θ )

∂
∂θ (while(T ) M[q] = 1 do S1(θ ) done)|
while(T ) M[q] = 1 do S1(θ ) done

(Sum Component)

∂
∂θ (S0(θ ))|S0(θ )

∂
∂θ (S1(θ ))|S1(θ )

∂
∂θ (S0(θ ) + S1(θ ))|(S0(θ ) + S1(θ ))

Figure 5. The di!erentiation logic. Wherever applicable,

q ∈ v,q ⊆ v, Si (θ ) ∈ add-q-while(T )
v

(θ ). In (Rot-Couple),
σ ∈ {X ,Y ,Z ,X ⊗ X ,Y ⊗ Y ,Z ⊗ Z }.

Let us highlight the ideas behind the proof of the sound-
ness and all detailed proofs are deferred to the full ver-
sion [55]. First remember that θ = θ j and for all the proofs
we can choose ZA = |0〉〈0| − |1〉〈1| as the observable on the
one-qubit ancilla A. Thus, we will omit ZA and overload the

notation, ∀P ′(θ ) ∈ q-while(T )
v∪{A}(θ ):

[[(O, ρ)!P ′(θ )]] means [[((O,ZA), ρ)!P ′(θ )]], (6.4)

to simplify the presentation. We make similar overloading

convention for S ′(θ ) ∈ add-q-while(T )
v∪{A}(θ ). Let us go

through these logic rules one by one.

1. Abort, Skip, Initialization, Trivial-Unitary rules work be-
cause these statements do not depend on θ .

2. Since While(T ) can be deemed as a macro of other state-
ments, the correctness ofWhile(T ) rule follows by unfolding
while(T ) and applying other rules.

3. The Sum Component rule is due to the property of observ-
able semantics ([[·]]) and additive operator (+):

∂

∂θ
([[P1 + P2]]) = [[

∂

∂θ
(P1)]] + [[

∂

∂θ
(P2)]], (6.5)

which follows from our de"nition design.
4. Our Rot-Couple rule is di!erent from the phase-shift rule

in [42] by using only one circuit in derivative computing.
However, the proof of the Rot-Couple rule is largely inspired
by the one of the phase-shift rule.

5. The proof of the Sequence rule relies very non-trivially
on our design of the observable semantics with ancilla
(De"nition 5.2) and the strong requirement of computing
di!erential semantics in De"nition 5.3. Firstly, note that

[[(O, ρ)!
∂

∂θ
(S0(θ ); S1(θ ))]] = [[(O, ρ)! ∂

∂θ (S0(θ )); S1(θ )]]

+[[(O, ρ)!S0(θ ); ∂
∂θ (S1(θ ))]].

We use the induction hypothesis to reason about each
term above. Consider the case S0(θ ) = S0(θ ) and S1(θ ) =
S1(θ ). Note that S0(θ ), S1(θ ) ∈ q-while(T )

v
(θ ) and ∂

∂θ (S0(θ )),
∂
∂θ (S1(θ )) ∈ add-q-while(T )

v∪{A}(θ ). First, we show

[[(O, ρ)!S0(θ );
∂

∂θ
(S1(θ ))]]= [[(O, [[S0(θ )]](ρ))!

∂

∂θ
(S1(θ ))]].

(6.6)
This is because ∂

∂θ (S1(θ )) computes the derivative for any
input state and observable. We simply choose the input
state [[S0(θ )]](ρ) and observable O . Secondly, we show

[[(O, ρ)!
∂

∂θ
(S0(θ )); S1(θ )]]= [[([[S1(θ )]]∗(O), ρ)!

∂

∂θ
(S0(θ ))]].

(6.7)
For (6.7), we don’t change the state ρ but change the ob-
servable O by applying the dual super-operator [[S1(θ )]]∗.
Since ∂

∂θ (S0(θ )) computes the derivative for any input state
and any observable, we choose the input state ρ and observ-
able [[S1(θ )]]∗(O). The dual super-operator [[S1(θ )]]∗ has the
property that tr(O[[S1(θ )]](ρ)) = tr([[S1(θ )]]∗(O)ρ), which
corresponds to the Schrodinger picture (evolving states)
and Heisenberg picture (evolving observables) respectively
in quantum mechanics.

6. The proof of the Case rule basically follows from the linear-
ity of the observable semantics and the smooth semantics of
Case. It is interesting to compare with the classical case [6]
where the non-smoothness of the guard causes an issue for
auto di!erentiation.

Example 6.1 (Simple-Case). Consider the following simple
instantiating of Example 4.1

P(θ ) ≡ caseM[q1] = 0 → RX (θ )[q1];RY (θ )[q1],
1 → RZ (θ )[q1]

Let us apply code transformation and compilation. Let CT, CP
to denote “code transformation” and “compilation”, and “Seq”
and “Rot” denote Sequence and Rotation rules resp.

∂

∂θ
(P(θ )) CT,case

=

caseM[q1] = 0 → ∂
∂θ (RX (θ )[q1];

RY (θ )[q1]),
1 → ∂

∂θ (RZ (θ )[q1])
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(Abort) ∂
∂θ (abort[v])|abort[v] (Skip) ∂

∂θ (skip[v])|skip[v]

(Initialization) ∂
∂θ (q := |0〉)|(q := |0〉)

(Trivial-Unitary)

θ j ! θ
∂
∂θ (q = U (θ )[v])|q = U (θ )[v]

(Rot-Couple) ∂
∂θ (q = Rσ (θ )[v])|(q = Rσ (θ )[v])

(Sequence)

∂
∂θ (S0(θ ))|S0(θ )

∂
∂θ (S1(θ ))|S1(θ )

∂
∂θ (S0(θ ); S1(θ ))|(S0(θ ); S1(θ ))

(Case)

∀m, ∂
∂θ (Sm(θ ))|Sm(θ )

∂
∂θ (caseM[q] =m → Sm(θ ) end)|
caseM[q] =m → Sm(θ ) end

(While(T ))

∂
∂θ (S1(θ ))

!
!
!S1(θ )

∂
∂θ (while(T ) M[q] = 1 do S1(θ ) done)|
while(T ) M[q] = 1 do S1(θ ) done

(Sum Component)

∂
∂θ (S0(θ ))|S0(θ )

∂
∂θ (S1(θ ))|S1(θ )

∂
∂θ (S0(θ ) + S1(θ ))|(S0(θ ) + S1(θ ))

Figure 5. The di!erentiation logic. Wherever applicable,

q ∈ v,q ⊆ v, Si (θ ) ∈ add-q-while(T )
v

(θ ). In (Rot-Couple),
σ ∈ {X ,Y ,Z ,X ⊗ X ,Y ⊗ Y ,Z ⊗ Z }.

Let us highlight the ideas behind the proof of the sound-
ness and all detailed proofs are deferred to the full ver-
sion [55]. First remember that θ = θ j and for all the proofs
we can choose ZA = |0〉〈0| − |1〉〈1| as the observable on the
one-qubit ancilla A. Thus, we will omit ZA and overload the

notation, ∀P ′(θ ) ∈ q-while(T )
v∪{A}(θ ):

[[(O, ρ)!P ′(θ )]] means [[((O,ZA), ρ)!P ′(θ )]], (6.4)

to simplify the presentation. We make similar overloading

convention for S ′(θ ) ∈ add-q-while(T )
v∪{A}(θ ). Let us go

through these logic rules one by one.

1. Abort, Skip, Initialization, Trivial-Unitary rules work be-
cause these statements do not depend on θ .

2. Since While(T ) can be deemed as a macro of other state-
ments, the correctness ofWhile(T ) rule follows by unfolding
while(T ) and applying other rules.

3. The Sum Component rule is due to the property of observ-
able semantics ([[·]]) and additive operator (+):

∂

∂θ
([[P1 + P2]]) = [[

∂

∂θ
(P1)]] + [[

∂

∂θ
(P2)]], (6.5)

which follows from our de"nition design.
4. Our Rot-Couple rule is di!erent from the phase-shift rule

in [42] by using only one circuit in derivative computing.
However, the proof of the Rot-Couple rule is largely inspired
by the one of the phase-shift rule.

5. The proof of the Sequence rule relies very non-trivially
on our design of the observable semantics with ancilla
(De"nition 5.2) and the strong requirement of computing
di!erential semantics in De"nition 5.3. Firstly, note that

[[(O, ρ)!
∂

∂θ
(S0(θ ); S1(θ ))]] = [[(O, ρ)! ∂

∂θ (S0(θ )); S1(θ )]]

+[[(O, ρ)!S0(θ ); ∂
∂θ (S1(θ ))]].

We use the induction hypothesis to reason about each
term above. Consider the case S0(θ ) = S0(θ ) and S1(θ ) =
S1(θ ). Note that S0(θ ), S1(θ ) ∈ q-while(T )

v
(θ ) and ∂

∂θ (S0(θ )),
∂
∂θ (S1(θ )) ∈ add-q-while(T )

v∪{A}(θ ). First, we show

[[(O, ρ)!S0(θ );
∂

∂θ
(S1(θ ))]]= [[(O, [[S0(θ )]](ρ))!

∂

∂θ
(S1(θ ))]].

(6.6)
This is because ∂

∂θ (S1(θ )) computes the derivative for any
input state and observable. We simply choose the input
state [[S0(θ )]](ρ) and observable O . Secondly, we show

[[(O, ρ)!
∂

∂θ
(S0(θ )); S1(θ )]]= [[([[S1(θ )]]∗(O), ρ)!

∂

∂θ
(S0(θ ))]].

(6.7)
For (6.7), we don’t change the state ρ but change the ob-
servable O by applying the dual super-operator [[S1(θ )]]∗.
Since ∂

∂θ (S0(θ )) computes the derivative for any input state
and any observable, we choose the input state ρ and observ-
able [[S1(θ )]]∗(O). The dual super-operator [[S1(θ )]]∗ has the
property that tr(O[[S1(θ )]](ρ)) = tr([[S1(θ )]]∗(O)ρ), which
corresponds to the Schrodinger picture (evolving states)
and Heisenberg picture (evolving observables) respectively
in quantum mechanics.

6. The proof of the Case rule basically follows from the linear-
ity of the observable semantics and the smooth semantics of
Case. It is interesting to compare with the classical case [6]
where the non-smoothness of the guard causes an issue for
auto di!erentiation.

Example 6.1 (Simple-Case). Consider the following simple
instantiating of Example 4.1

P(θ ) ≡ caseM[q1] = 0 → RX (θ )[q1];RY (θ )[q1],
1 → RZ (θ )[q1]

Let us apply code transformation and compilation. Let CT, CP
to denote “code transformation” and “compilation”, and “Seq”
and “Rot” denote Sequence and Rotation rules resp.

∂

∂θ
(P(θ )) CT,case

=

caseM[q1] = 0 → ∂
∂θ (RX (θ )[q1];

RY (θ )[q1]),
1 → ∂

∂θ (RZ (θ )[q1])
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(Abort) ∂
∂θ (abort[v])|abort[v] (Skip) ∂

∂θ (skip[v])|skip[v]

(Initialization) ∂
∂θ (q := |0〉)|(q := |0〉)

(Trivial-Unitary)

θ j ! θ
∂
∂θ (q = U (θ )[v])|q = U (θ )[v]

(Rot-Couple) ∂
∂θ (q = Rσ (θ )[v])|(q = Rσ (θ )[v])

(Sequence)

∂
∂θ (S0(θ ))|S0(θ )

∂
∂θ (S1(θ ))|S1(θ )

∂
∂θ (S0(θ ); S1(θ ))|(S0(θ ); S1(θ ))

(Case)

∀m, ∂
∂θ (Sm(θ ))|Sm(θ )

∂
∂θ (caseM[q] =m → Sm(θ ) end)|
caseM[q] =m → Sm(θ ) end

(While(T ))

∂
∂θ (S1(θ ))

!
!
!S1(θ )

∂
∂θ (while(T ) M[q] = 1 do S1(θ ) done)|
while(T ) M[q] = 1 do S1(θ ) done

(Sum Component)

∂
∂θ (S0(θ ))|S0(θ )

∂
∂θ (S1(θ ))|S1(θ )

∂
∂θ (S0(θ ) + S1(θ ))|(S0(θ ) + S1(θ ))

Figure 5. The di!erentiation logic. Wherever applicable,

q ∈ v,q ⊆ v, Si (θ ) ∈ add-q-while(T )
v

(θ ). In (Rot-Couple),
σ ∈ {X ,Y ,Z ,X ⊗ X ,Y ⊗ Y ,Z ⊗ Z }.

Let us highlight the ideas behind the proof of the sound-
ness and all detailed proofs are deferred to the full ver-
sion [55]. First remember that θ = θ j and for all the proofs
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notation, ∀P ′(θ ) ∈ q-while(T )
v∪{A}(θ ):

[[(O, ρ)!P ′(θ )]] means [[((O,ZA), ρ)!P ′(θ )]], (6.4)

to simplify the presentation. We make similar overloading

convention for S ′(θ ) ∈ add-q-while(T )
v∪{A}(θ ). Let us go

through these logic rules one by one.
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ments, the correctness ofWhile(T ) rule follows by unfolding
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3. The Sum Component rule is due to the property of observ-
able semantics ([[·]]) and additive operator (+):

∂

∂θ
([[P1 + P2]]) = [[

∂

∂θ
(P1)]] + [[

∂

∂θ
(P2)]], (6.5)

which follows from our de"nition design.
4. Our Rot-Couple rule is di!erent from the phase-shift rule

in [42] by using only one circuit in derivative computing.
However, the proof of the Rot-Couple rule is largely inspired
by the one of the phase-shift rule.

5. The proof of the Sequence rule relies very non-trivially
on our design of the observable semantics with ancilla
(De"nition 5.2) and the strong requirement of computing
di!erential semantics in De"nition 5.3. Firstly, note that

[[(O, ρ)!
∂

∂θ
(S0(θ ); S1(θ ))]] = [[(O, ρ)! ∂

∂θ (S0(θ )); S1(θ )]]

+[[(O, ρ)!S0(θ ); ∂
∂θ (S1(θ ))]].

We use the induction hypothesis to reason about each
term above. Consider the case S0(θ ) = S0(θ ) and S1(θ ) =
S1(θ ). Note that S0(θ ), S1(θ ) ∈ q-while(T )

v
(θ ) and ∂

∂θ (S0(θ )),
∂
∂θ (S1(θ )) ∈ add-q-while(T )

v∪{A}(θ ). First, we show

[[(O, ρ)!S0(θ );
∂

∂θ
(S1(θ ))]]= [[(O, [[S0(θ )]](ρ))!

∂

∂θ
(S1(θ ))]].

(6.6)
This is because ∂

∂θ (S1(θ )) computes the derivative for any
input state and observable. We simply choose the input
state [[S0(θ )]](ρ) and observable O . Secondly, we show

[[(O, ρ)!
∂

∂θ
(S0(θ )); S1(θ )]]= [[([[S1(θ )]]∗(O), ρ)!

∂

∂θ
(S0(θ ))]].

(6.7)
For (6.7), we don’t change the state ρ but change the ob-
servable O by applying the dual super-operator [[S1(θ )]]∗.
Since ∂

∂θ (S0(θ )) computes the derivative for any input state
and any observable, we choose the input state ρ and observ-
able [[S1(θ )]]∗(O). The dual super-operator [[S1(θ )]]∗ has the
property that tr(O[[S1(θ )]](ρ)) = tr([[S1(θ )]]∗(O)ρ), which
corresponds to the Schrodinger picture (evolving states)
and Heisenberg picture (evolving observables) respectively
in quantum mechanics.

6. The proof of the Case rule basically follows from the linear-
ity of the observable semantics and the smooth semantics of
Case. It is interesting to compare with the classical case [6]
where the non-smoothness of the guard causes an issue for
auto di!erentiation.

Example 6.1 (Simple-Case). Consider the following simple
instantiating of Example 4.1

P(θ ) ≡ caseM[q1] = 0 → RX (θ )[q1];RY (θ )[q1],
1 → RZ (θ )[q1]

Let us apply code transformation and compilation. Let CT, CP
to denote “code transformation” and “compilation”, and “Seq”
and “Rot” denote Sequence and Rotation rules resp.

∂

∂θ
(P(θ )) CT,case

=

caseM[q1] = 0 → ∂
∂θ (RX (θ )[q1];

RY (θ )[q1]),
1 → ∂

∂θ (RZ (θ )[q1])
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∂
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∂
∂θ

S1(θ) (O, ρ)
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     support bounded loop, matching the classical case [Plotkin, POPL’18]
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CT,Seq+Rot
=

caseM[q1] = 0 → (R′
X (θ )[A,q1];
RY (θ )[q1])+
(RX (θ )[q1];
R′

Y (θ )[A,q1]),
1 → R′

Z (θ )[A,q1]

Compile(•)
#−→

{
|
caseM[q1] = 0 → R′

X (θ )[A,q1];
RY (θ )[q1],

1 → R′
Z (θ )[A,q1],

caseM[q1] = 0 → RX (θ )[q1];
R′

Y (θ )[A,q1],
1 → abort.

|
}

7 Execution and Resource Analysis
In this section we illustrate the execution of the entire di!er-
entiation procedure and analyze its resource cost. Consider

any program P(θ ) ∈ q-while(T )
v

(θ ) and the parameter θ .

Execution. The "rst step in di!erentiation is to apply the
code transformation rules (in Section 6) to P(θ ) and obtain
an additive program ∂

∂θ (P(θ )). Then one needs to compile
∂
∂θ (P(θ )) into a multiset {|P ′

i (θ )|}
m
i=1 of normal non-aborting

programs P ′
i (θ ). The total count of these programs is given

bym = |# ∂
∂θ (P(θ ))|. Note that the above procedure could be

done at the compilation time.
Given any pair of O and ρ, the real execution to compute

the derivative of [[(O, ρ)! P(θ )]] is to approximate the ob-
servable semantics [[(O, ρ) !

∂
∂θ (P(θ ))]]. By De"nition 5.2,

we need to approximate

m∑

i=1

tr
( (
ZA ⊗ O

)
[[P ′

i (θ )]]((|0〉{A}〈0|) ⊗ ρ)
)
, (7.1)

where each term is the observable ZA ⊗O on the output state
of P ′

i (θ ) given input state ρ and the ancilla qubit |0〉.
To approximate the sum in (7.1) to precision δ , one could

"rst treat the sum divided bym as the observable applied on
the program that starts with a uniformly random choice of i
from 1, · · · ,m and then execute P ′

i (θ ). By Cherno! bound,
one only needs to repeat this procedure O(m2/δ 2) times.

Resource count.We are only interested in non-trivial (ex-
tra) resource that is something that you wouldn’t need if you
only run the original program. Ancilla qubits count as the
non-trivial resource. However, for our scheme, the number
of required ancillae is 1 qubit per each parameter.

The more non-trivial resource is the number of the copies
of input state (each copy of the input state is to be pre-
pared from scratch), which is directly related to the number
of repetitions in the procedure, which again connects to
m = |# ∂

∂θ (P(θ ))|. We argue that our code transformation is
e#cient so thatm is reasonably bounded. To that end, we
show the relation betweenm and a natural quantity de"ned
on the original program P(θ ) (i.e., before applying any ∂

∂θ (·)
operator) called the occurrence count of the parameter θ .

De!nition 7.1. The “Occurrence Count for θ j ” in P(θ ), de-
noted OCj (P(θ )), is de!ned as follows:

1. If P(θ ) ≡ abort[v]|skip[v]|q := |0〉 (q ∈ v), then
OCj (P(θ )) = 0;

2. P(θ ) ≡ U (θ ): ifU (θ ) trivially uses θ j , then OCj (P(θ )) =
0; otherwise OCj (P(θ )) = 1.

3. If P(θ ) ≡ U (θ ) = P1(θ ); P2(θ )) then OCj (P(θ )) =
OCj (P1(θ )) +OCj (P2(θ )).

4. If P(θ ) ≡ caseM[q] =m → Pm(θ ) end thenOCj (P(θ ))
= maxm OCj (Pm(θ )).

5. If P(θ ) ≡ while(T ) M[q] = 1 do P1(θ ) done then
OCj (P(θ )) = T · OCj (P1(θ )).

Intuition of the “Occurrence Count” de"nition is clear:
it basically counts the number of non-trivial occurrences
of θ j in the program, treating case as if it is determinis-
tic. To see why this is a reasonable quantity, consider the
auto-di!erentiation in the classical case. For any non-trivial
variable v (i.e., v has some dependence on the parameter
θ ), we will compute both v and ∂

∂θ (v) and store them both
as variables in the new program. Thus, the classical auto-
di!erentiation essentially needs the number of non-trivial
occurrences more space and related resources. As we argued
in the introduction, we cannot directly mimic the classical
case due to the no-cloning theorem. The extra space require-
ment in the classical setting turns into the requirement on
the extra copies of the input state in the quantum setting.
Indeed, we can boundm by the occurrence count.

Proposition 7.2. |# ∂
∂θ j

(P(θ ))| ≤ OCj (P(θ )).

Proof. Structural induction. For details, see the full ver-
sion [55]. !

8 Implementation and Case Study
We have built a compiler (written in OCaml) that implements
our code transformation and compilation rules8. We use it
to train one VQC instance with controls and empirically ver-
ify its resource-e#ciency on representative VQC instances.
Complete details can be found in the full version [55]. Exper-
iments are performed on a MacBook Pro with a Dual-Core
Intel Core i5 Processor clocked at 2.7 GHz, and 8GB of RAM.

8.1 Training VQC Instances with Controls

Consider a simple classi"cation problem over 4-bit inputs
z = z1z2z3z4 ∈ {0, 1}4 with true label given by f (z) = ¬(z1 ⊕
z4). We construct two 4-qubit VQCs P1 (no control) and P2
(with control) that consists of a single-qubit Pauli X,Y and Z
rotation gate on each qubit and compare their performance.

For parameters Γ = {γ1, . . . ,γ12} de"ne the program
Q(Γ) ≡ RX (γ1)[q1];RX (γ2)[q2];RX (γ3)[q3];RX (γ4)[q4];

RY (γ5)[q1];RY (γ6)[q2];RY (γ7)[q3];RY (γ8)[q4];
RZ (γ9)[q1];RZ (γ10)[q2];RZ (γ11)[q3];RZ (γ12)[q4],

8Codes are availabe at h#ps://github.com/LibertasSpZ/adcompile.
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However, for relevant , we show the # is bounded by occurrence count of 
∂
∂θ

P(θ) θ
which basically counts the # of appearances of θ

Compile( ) , size 2
∂
∂θ

P(θ) ≡ {| ∂
∂θ

U1(θ); U2(θ); , U1(θ); ∂
∂θ

U2(θ); |}

P(θ) ≡ U1(θ); U2(θ); occurrence count 2

Why occurrence could be a reasonable quantity?

v3 = v1 × v2;
·v3 = ·v1 × v2 + v1 × ·v2

occurrence count 2:    in   v1(θ), v2(θ) v3
instead of extra initial states,  classically 
one needs 2 extra registers to store ·v1, ·v2
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where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36
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CT,Seq+Rot
=

caseM[q1] = 0 → (R′
X (θ )[A,q1];
RY (θ )[q1])+
(RX (θ )[q1];
R′

Y (θ )[A,q1]),
1 → R′

Z (θ )[A,q1]

Compile(•)
#−→

{
|
caseM[q1] = 0 → R′

X (θ )[A,q1];
RY (θ )[q1],

1 → R′
Z (θ )[A,q1],

caseM[q1] = 0 → RX (θ )[q1];
R′

Y (θ )[A,q1],
1 → abort.

|
}

7 Execution and Resource Analysis
In this section we illustrate the execution of the entire di!er-
entiation procedure and analyze its resource cost. Consider

any program P(θ ) ∈ q-while(T )
v

(θ ) and the parameter θ .

Execution. The "rst step in di!erentiation is to apply the
code transformation rules (in Section 6) to P(θ ) and obtain
an additive program ∂

∂θ (P(θ )). Then one needs to compile
∂
∂θ (P(θ )) into a multiset {|P ′

i (θ )|}
m
i=1 of normal non-aborting

programs P ′
i (θ ). The total count of these programs is given

bym = |# ∂
∂θ (P(θ ))|. Note that the above procedure could be

done at the compilation time.
Given any pair of O and ρ, the real execution to compute

the derivative of [[(O, ρ)! P(θ )]] is to approximate the ob-
servable semantics [[(O, ρ) !

∂
∂θ (P(θ ))]]. By De"nition 5.2,

we need to approximate

m∑

i=1

tr
( (
ZA ⊗ O

)
[[P ′

i (θ )]]((|0〉{A}〈0|) ⊗ ρ)
)
, (7.1)

where each term is the observable ZA ⊗O on the output state
of P ′

i (θ ) given input state ρ and the ancilla qubit |0〉.
To approximate the sum in (7.1) to precision δ , one could

"rst treat the sum divided bym as the observable applied on
the program that starts with a uniformly random choice of i
from 1, · · · ,m and then execute P ′

i (θ ). By Cherno! bound,
one only needs to repeat this procedure O(m2/δ 2) times.

Resource count.We are only interested in non-trivial (ex-
tra) resource that is something that you wouldn’t need if you
only run the original program. Ancilla qubits count as the
non-trivial resource. However, for our scheme, the number
of required ancillae is 1 qubit per each parameter.

The more non-trivial resource is the number of the copies
of input state (each copy of the input state is to be pre-
pared from scratch), which is directly related to the number
of repetitions in the procedure, which again connects to
m = |# ∂

∂θ (P(θ ))|. We argue that our code transformation is
e#cient so thatm is reasonably bounded. To that end, we
show the relation betweenm and a natural quantity de"ned
on the original program P(θ ) (i.e., before applying any ∂

∂θ (·)
operator) called the occurrence count of the parameter θ .

De!nition 7.1. The “Occurrence Count for θ j ” in P(θ ), de-
noted OCj (P(θ )), is de!ned as follows:

1. If P(θ ) ≡ abort[v]|skip[v]|q := |0〉 (q ∈ v), then
OCj (P(θ )) = 0;

2. P(θ ) ≡ U (θ ): ifU (θ ) trivially uses θ j , then OCj (P(θ )) =
0; otherwise OCj (P(θ )) = 1.

3. If P(θ ) ≡ U (θ ) = P1(θ ); P2(θ )) then OCj (P(θ )) =
OCj (P1(θ )) +OCj (P2(θ )).

4. If P(θ ) ≡ caseM[q] =m → Pm(θ ) end thenOCj (P(θ ))
= maxm OCj (Pm(θ )).

5. If P(θ ) ≡ while(T ) M[q] = 1 do P1(θ ) done then
OCj (P(θ )) = T · OCj (P1(θ )).

Intuition of the “Occurrence Count” de"nition is clear:
it basically counts the number of non-trivial occurrences
of θ j in the program, treating case as if it is determinis-
tic. To see why this is a reasonable quantity, consider the
auto-di!erentiation in the classical case. For any non-trivial
variable v (i.e., v has some dependence on the parameter
θ ), we will compute both v and ∂

∂θ (v) and store them both
as variables in the new program. Thus, the classical auto-
di!erentiation essentially needs the number of non-trivial
occurrences more space and related resources. As we argued
in the introduction, we cannot directly mimic the classical
case due to the no-cloning theorem. The extra space require-
ment in the classical setting turns into the requirement on
the extra copies of the input state in the quantum setting.
Indeed, we can boundm by the occurrence count.

Proposition 7.2. |# ∂
∂θ j

(P(θ ))| ≤ OCj (P(θ )).

Proof. Structural induction. For details, see the full ver-
sion [55]. !

8 Implementation and Case Study
We have built a compiler (written in OCaml) that implements
our code transformation and compilation rules8. We use it
to train one VQC instance with controls and empirically ver-
ify its resource-e#ciency on representative VQC instances.
Complete details can be found in the full version [55]. Exper-
iments are performed on a MacBook Pro with a Dual-Core
Intel Core i5 Processor clocked at 2.7 GHz, and 8GB of RAM.

8.1 Training VQC Instances with Controls

Consider a simple classi"cation problem over 4-bit inputs
z = z1z2z3z4 ∈ {0, 1}4 with true label given by f (z) = ¬(z1 ⊕
z4). We construct two 4-qubit VQCs P1 (no control) and P2
(with control) that consists of a single-qubit Pauli X,Y and Z
rotation gate on each qubit and compare their performance.

For parameters Γ = {γ1, . . . ,γ12} de"ne the program
Q(Γ) ≡ RX (γ1)[q1];RX (γ2)[q2];RX (γ3)[q3];RX (γ4)[q4];

RY (γ5)[q1];RY (γ6)[q2];RY (γ7)[q3];RY (γ8)[q4];
RZ (γ9)[q1];RZ (γ10)[q2];RZ (γ11)[q3];RZ (γ12)[q4],

8Codes are availabe at h#ps://github.com/LibertasSpZ/adcompile.
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where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36
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where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
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Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:
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0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
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∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.
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We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation
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and with while controls.
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“medium, large”; {i,w} stands for including “if, while”.
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where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)
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vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂
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ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.
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We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)
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y is given by measuring the 4th qubit q4 in the 0/1 basis.
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evaluate classi!ers that assign a certain probability to each
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Training of  is conducted on our implementation, whereas 
the training of is conducted on prior art (e.g., Pennylane).
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The use of quantum control could be significant for near-term. 
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