An Invitation to the intersection of
Quantum Computing & Programming Languages

Tutorial at POPL 2021

A QuanTum

Xiaodi Wu
QuICS & UMD

JOINT CENTER FOR
QUANTUM INFORMATION
AND COMPUTER SCIENCE

UNIVERSITY OF

MARYLAND

%

About this Tutorial:

Goal: An Invitation due to limited time
Cover Some Basic Quantum Computing & PL
Provide References / Pointers for further study

About this Tutorial:

Goal: An Invitation due to limited time
Cover Some Basic Quantum Computing & PL
Provide References / Pointers for further study

Format: Tutorial divided into 3 parts:

(1) Introduction to Quantum Computing and Potential Roles of
Programming Languages (29 min+30Q8&A)

[2) A Mini-Course of Quantum Hoare Logic on Quantum While
Language BOmin+508&A)

(3) Discussion on existing and potential Programming Language
research opportunities (20 min+508&A)

Wu: assistant professor at ump WoOrking on quantum computing
from CS perspective in general.

Wu: assistant professor at umn WOrking on quantum computin

Teaching in 0. Computing

Past Courses

This is a collection of courses that I have taught in the past for your references. Please be cautious as thes

University of Maryland, College Park (2017 - present)

= Complexity Theory (CMSC 652): graduate-level theory core course
= Fall 2017

= Introduction to Quantum Computing (CMSC/PHYS 457): undergraduate-level introduction to quar
= Spring 2018, Spring 2020, Spring 2021

= Introduction to Quantum Information Processing (CMSC 657): graduate-level introduction to quan
= Fall 2018, Fall 2019

University of Oregon (2015 - 2017)

= Intermediate Data Structure (CIS 313): undergraduate CS major theory course.
= Winter 2016, Fall 2016, Winter 2017.

= Introduction to Quantum Information Processing (CIS 410/510): senior undergraduate / graduate |
= Spring 2016, Spring 2017.

Mini-Library on Quantum Information and Computation

This page is meant to be a collection of representative and available references for the study and research of the theoretic:
as possible and will be regularly maintained. Send me an email if you have any good suggestion.

Expository Writings and Lecture Notes by myself

= Tutorial at POPL 2021: An Invitation to the Intersection of Quantum Computing and Programming Languages
= (Part I) A brief introduction to quantum computing and potential roles of programming languages

= (Part II) A mini-course on the verification of quantum while languages based on quantum Hoare logic

= (Part IIT) A discussion of existing and possible research directions at the intersection of quantum computing an«
= Lecture Notes (Fall 2019)

= Quantum Approximate Optimization Algorithm (QAOA)

= Introduction to Quantum Hoare Logic (slides)
= Lecture Notes (Fall 2018)

= Quantum Interactive Proofs and QIP=PSPACE

= Quantum Algorithms for Linear Equation Systems

= Quantum Algorithms for Semidefinite Programs

Scientific Reports from Relevant Research Communities

= National Academies of Sciences, Engineering, and Medicine. 2019. Quantum Computing: Progress and Prospects. Wa
= National Academies of Sciences, Engineering, and Medicine. 2020. Manipulating Quantum Systems: An Assessment «
= Quantum Frontiers Report on community input to the Nation's Strategy for Quantum Information Science, October, :
= Next Steps in Quantum Computing: Computer Science's Role: Computing Community Consortium Workshop Report
= More Reports at Quantum|Gov.

General Study: Courses, Lecture Notes & Textbooks

= Self-learning Materials for Beginners
= Why now is the right time to study quantum computing by A. Harrow.

= S. Aaronson: @UWaterloo Quantum Computing since Democritus
= M. Nielsen’s Quantum Computing for the determined: 22 short (5-15 mins) youtube videos, each explaining a b:
= 12th Canadian Summer School on Quantum Information Lecture Notes YouTubes

Wu: assistant professor at umn WOrking on quantum computin

Teaching in 0. Computing

Past Courses

This is a collection of courses that I have taught in the past for your references. Please be cautious as thes

University of Maryland, College Park (2017 - present)

= Complexity Theory (CMSC 652): graduate-level theory core course
= Fall 2017

= Introduction to Quantum Computing (CMSC/PHYS 457): undergraduate-level introduction to quar
= Spring 2018, Spring 2020, Spring 2021

= Introduction to Quantum Information Processing (CMSC 657): graduate-level introduction to quan
= Fall 2018, Fall 2019

University of Oregon (2015 - 2017)

= Intermediate Data Structure (CIS 313): undergraduate CS major theory course.
= Winter 2016, Fall 2016, Winter 2017.

= Introduction to Quantum Information Processing (CIS 410/510): senior undergraduate / graduate |
= Spring 2016, Spring 2017.

Disciaimer: perspectives and claims are potentially limited

Mini-Library on Quantum Information and Computation

This page is meant to be a collection of representative and available references for the study and research of the theoretic:
as possible and will be regularly maintained. Send me an email if you have any good suggestion.

Expository Writings and Lecture Notes by myself

= Tutorial at POPL 2021: An Invitation to the Intersection of Quantum Computing and Programming Languages
= (Part I) A brief introduction to quantum computing and potential roles of programming languages

= (Part II) A mini-course on the verification of quantum while languages based on quantum Hoare logic

= (Part IIT) A discussion of existing and possible research directions at the intersection of quantum computing an«
= Lecture Notes (Fall 2019)

= Quantum Approximate Optimization Algorithm (QAOA)

= Introduction to Quantum Hoare Logic (slides)
= Lecture Notes (Fall 2018)

= Quantum Interactive Proofs and QIP=PSPACE

= Quantum Algorithms for Linear Equation Systems

= Quantum Algorithms for Semidefinite Programs

Scientific Reports from Relevant Research Communities

= National Academies of Sciences, Engineering, and Medicine. 2019. Quantum Computing: Progress and Prospects. Wa
= National Academies of Sciences, Engineering, and Medicine. 2020. Manipulating Quantum Systems: An Assessment «
= Quantum Frontiers Report on community input to the Nation's Strategy for Quantum Information Science, October, :
= Next Steps in Quantum Computing: Computer Science's Role: Computing Community Consortium Workshop Report
= More Reports at Quantum|Gov.

General Study: Courses, Lecture Notes & Textbooks

= Self-learning Materials for Beginners
= Why now is the right time to study quantum computing by A. Harrow.

= S. Aaronson: @UWaterloo Quantum Computing since Democritus

= M. Nielsen’s Quantum Computing for the determined: 22 short (5-15 mins) youtube videos, each explaining a b:
= 12th Canadian Summer School on Quantum Information Lecture Notes YouTubes

or hiased hy personal knowledge.

(1) Introduction to Quantum Computing and Potential Roles of
Programming Languages (29 min+3(Q&A)

[2) A Mini-Course of Quantum Hoare Logic on Quantum While
language BOmMin+350&A)

(3] Discussion on existing and potential Programming
Language research opportunities (20 min+50&A)

Reference: tutorial slides and some references are
available at hitps://www.cs.umd.edu/~xwu/mini _lib.html

https://www.cs.umd.edu/~xwu/mini_lib.html

What Q“ant“m cﬂmn“ting is N“T Credit: Scott Aaronson

It Isn’t Just Today’s Computers But
Smaller or Faster

wnal Q“ant“m cﬂmn“ting is N“T Credit: Scott Aaronson

It Isn’t Just Today’s Computers But It Isn’t A Magic Bullet That Solves
Smaller or Faster All Problems Instantly

NP-complete

N

NP

Factoring

wnal ﬂ“ant“m cﬂmn“ting is N“T Credit: Scott Aaronson

It Isn’t Just Today’s Computers But It Isn’t A Magic Bullet That Solves
Smaller or Faster All Problems Instantly

NP-complete

N

NP

Factoring

It Isn’t A Simple Matter of Trying
All Possible Answers In Parallel

wnal ﬂ“ant“m cﬂmn“ting is N“T Credit: Scott Aaronson

It Isn’t Just Today’s Computers But It Isn’t A Magic Bullet That Solves
Smaller or Faster All Problems Instantly

100 T

90 T

80 T

NP

70 T

60 T

50 T
40 T
Factoring

30 T

20 T

10 +

It Isn’t A Simple Matter of Trying
All Possible Answers In Parallel

But Nor Is It Science Fiction

Roadman in 2010s

A Quantum
COMPUTER

Super-conducting

IBM will soon launch a 53-qubit Google has reached quantum
supremacy — here's what it should

uantum computer
| P donext 2019
Frederic Lardinois @frecericl / 8:00am EDT * September 18,2019 TECHNOLOGY | ANALYSIS 26 September 2019
- A EN o '

{

<_,
) Y
N\

7%

4 o

Google Supremacy: RCS (2019) USTC: Boson Sampling (2020)

surge of Interests from Gov, Academia, & Industry

GO PR Heri MARK A. HOROWITZ,
CONSENSUS STUDY REPORT Stanford University, Chair

ALAN ASPURU-GUZIK, H. R. 6227

QUANTUM COMPUTING University of Toronto National Quantum Initiative Act

Progress and Prospects DAVID D. AWSCHALOM,
University of Chicago

BOB BLAKLEY,
Citigroup 3 4 8 - 1 1

vz EEE R R RN, ssvseeese
|0) I DAN BONEH, 'TITILIY ssususus
o == Stanford University SEsmEmEE Passed eRmsasEs
EmNgEanns LN BN L
SUSAN N. COPPERSMITH, . '-'. ““ "“ % o .': :: s
University of Wisconsin, Madison . ‘,‘.“"..‘.:o:o.. ‘.0’.0:.'..' .'..' o
JUNGSANG KIM, ‘.",‘."..o, o,:o,:.-. - --“ .o:,o ,o..'....'..'
Duke University * ’.’0.’02’0 ' raneunnt® "o’:o’.o’, K
JOHN M. MARTINIS 0 b0 e, Thannunnt 0 00
S S | ' o te ey Tranaunnn® 0% 0%
‘ ok % e Google, Inc. NS LTI T TT L er i o
e _ftgg_‘gp;_:;."..--—-' b MARGARET MARTONOSI, Tl -_-_-_-_-_'_‘_..-

Princeton University

MICHELE MOSCA,

University of Waterloo

WILLIAM D. OLIVER,

Massachusetts Institute of Technology
KRYSTA SVORE,

Microsoft Research

UMESH V. VAZIRANI,

University of California, Berkeley

House Vote #442 -- 12/19/18

Gov: US (NSF, DOE + National Labs, DoD, NIST), China, Europe,
Industry: Google, IBM, Microsoft, Amazon, Alibaba, Tecent, Baidu,
Academia: #faculty in quantum computing ++

US GOV Policy & Efforts:) (quantum|gov)

uantum Gomputing: still too early to call!

AutoML
Chatbots
Digi_tal
Ethics Conversational
Intelligent User Interfaces
Applications \ /

Deep Neural Networks

Quantum Deep Learnin
Computing _ / (Deep o)
Deep Neural —— Graph Analytics
Network ASICs L
Smart Robotics \ i Machine Learning
N aasS
Edge Al
S~

~ NLP
Al Developer

Toolkits
Al-Related
CA&SI Services \

VPA-Enabled Wireless Speakers

Speech Recognition
—— Robotic Process Automation Software T~

e Explainable Al

Data Labeling and
Annotation Services

. T Knowledge

Al Cloud Graphics —— FPGA Accelerators
Services —
Decision = Virtual Assistants

Intelligence —
Neuromorphic _—

Expectations

Hardware Computer Vision
Augmented . .
|mg||igence Insight Engines

Al Governance

Cognitive Computin
Reinforcement .~ 9 v

-~

GPU Accelerators

Learning P
Al Marketplaces
e
Artificial General
Intelligence Autonomous Vehicles
Peak of
Innovation Inflated Trough of Slope of Plateau of
Trigger Expectations Disillusionment Enlightenment Productivity
s M
3
Time
Plateau will be reached:
() less than 2 years @® 2to5years @ 51010 years @ more than 10 years @ obsolete before plateau As of July 2019

The 2019 Gartner Hype Cycle for Artificial Intelligence, with quantum computing highlighted in yellow. Credit: Gartner

v

CIENCES * ENGINEERING - MEDICINE

CONSENSUS STUDY REPORT

QUANTUM COMPUTING
Progress and Prospects

QUANTUM FRONTIERS
REPORT ON COMMUNITY INPUT TO THE NATION'S

STRATEGY FOR QUANTUM INFORMATION SCIENCE

Product of

Computer Science’s Role THE WHITE HOUSE

NATIONAL QUANTUM COORDINATION OFFICE

| Next Steps in Quantum Computing:

CCC October 2020

Computing Community Consortium

Reference: links are availahle at https://www.cs.umd.edu/
~Xwu/mini_lib.htmi

https://www.cs.umd.edu/~xwu/mini_lib.html
https://www.cs.umd.edu/~xwu/mini_lib.html

An Operation O — — —> A Physical Evolution P

-

Computation:
Evolution of the Machine: Py, P,, P, -+

The accumulative evolution carries some computation!

A Mechanical Computer

An Operation O — — —> A Physical Evolution P

Computation:
Evolution of the Machine: Py, P,, P, -+

The accumulative evolution carries some computation!

An Operation O —> A Quantum Physical Evolution Q

Computation:

Evolution of the Machine: Qy, O,, 05, -

The accumulative evolution carries some computation!

A Quantum Computer

Assume a unit operation requires a unit time on respective machines.

Assume a unit operation requires a unit time on respective machines.

Computation can be Computation can be
carried out by Py, P,, -+, Py carried out by Q, Q,, -*+, O7

Classical Computing (T) Quantum Computing (T)

Assume a unit operation requires a unit time on respective machines.

Computation can be Computation can be
carried out by Py, P,, -+, Py /‘—E || ? carried out by Q, Q,, -*+, O7

Classical Computing (T) Quantum Computing (T)

Assume a unit operation requires a unit time on respective machines.

Computation can be Computation can be
carried out by Py, P,, -+, Py carried out by Q, Q,, -*+, O7
Classical Computing (T) Quantum Computing (T)
Quantum Simulation

Nature isn’t classical, and 1f you want to make a

simulation cf Nature, you’c[better make it quantum

mechanical, and Ey go(fy it’sa wondéq%[Jaroﬁ[ém,

evolution t
time

because it doesn’t look so easy.
quantum

system | Oy Richard Feynman, 1982
&

Simulating quantum systems is critical for the scientific discovery for natural science
iInclude physics, chemistry, biology, material science, and so on. And nowadays, it
consumes a significant amount of our HPC computing power.

3107418240490043721350750035888567
9300373460228427275457201619488232
0644051808150455634682967172328678
2437916272838033415471073108501919
5485290073377248227835257423864540
14691736602477652346609

1634733645809253848443 1 3388386509
085984 7836700330923 12181 | 1085238
933310010450815121211816751 1579
X
19008712816648221131268515739354|
397547 18967899685 | 549366663853908
8027103802104498957 19126146557

- Linear systems

- Graph problems (minimum spanning tree,
connectivity, shortest path, triangle finding,
etc.)

- Formula evaluation

- Decomposing groups (abelian, dihedral, etc.)

000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000002200000
000000000000000000000000@)0000
00000000000000000000000000U000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000

3107418240490043721350750035888567
9300373460228427275457201619488232
0644051808150455634682967172328678
2437916272838033415471073108501919
5485290073377248227835257423864540
14691736602477652346609

1634733645809253848443 1 3388386509
085984 7836700330923 12181 | 1085238
933310010450815121211816751 1579
X
19008712816648221131268515739354|
397547 18967899685 | 549366663853908
8027103802104498957 19126146557

- Linear systems It was a good surprise that quantum physics
can help solve classical problems that

- Graph problems (minimum spanning tree,
connectivity, shortest path, triangle finding,

000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000002200000
000000000000000000000000@)0000
00000000000000000000000000U000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000

etc.) look nothing like quantum physics at all!

- Formula evaluation

- Decomposing groups (abelian, dihedral, etc.) Any high-|eve| intuition why‘?

3107418240490043721350750035888567
9300373460228427275457201619488232
0644051808150455634682967172328678
2437916272838033415471073108501919
5485290073377248227835257423864540
14691736602477652346609

1634733645809253848443 1 3388386509
085984 7836700330923 12181 | 1085238
933310010450815121211816751 1579
X
19008712816648221131268515739354|
397547 18967899685 | 549366663853908
8027103802104498957 19126146557

- Linear systems It was a good surprise that quantum physics
can help solve classical problems that

- Graph problems (minimum spanning tree,
connectivity, shortest path, triangle finding,

000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000002200000
000000000000000000000000@)0000
00000000000000000000000000U000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000

etc.) look nothing like quantum physics at all!

- Formula evaluation

- Decomposing groups (abelian, dihedral, etc.) Any high-|eve| intuition why‘?

Quantum Duality:

Particle + Wave

3107418240490043721350750035888567
9300373460228427275457201619488232
0644051808150455634682967172328678
2437916272838033415471073108501919
5485290073377248227835257423864540
14691736602477652346609

1634733645809253848443 1 3388386509
085984 7836700330923 12181 | 1085238
933310010450815121211816751 1579
X
19008712816648221131268515739354|
397547 18967899685 | 549366663853908
8027103802104498957 19126146557

- Linear systems It was a good surprise that quantum physics
can help solve classical problems that

- Graph problems (minimum spanning tree,
connectivity, shortest path, triangle finding,

000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000002200000
000000000000000000000000@)0000
00000000000000000000000000U000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000

etc.) look nothing like quantum physics at all!

- Formula evaluation

- Decomposing groups (abelian, dihedral, etc.) Any high-|eve| intuition why‘?

Quantum Duality:
Particle + Wave

Waves of equal amplitude and opposite phase cancel out

VAVARSYY

Recording and inverting noise leaves you with your desired signal

||v,.\,||,'|’," i ki J,..]| I /\ /)
.m il i = \/\/\

Active Noise-Canceling!

Waves of equal amplitude and opposite phase cancel out

VAVARSV A4S

Recording and inverting noise leaves you with your desired signal

' "'\"1' "| IW "") — /\ /\

|J||[

Active Noise-Canceling!

Quantum Computation: Get computational paths leading to incorrect
answers to interfere destructively and cancel each other out.

Waves of equal amplitude and opposite phase cancel out

Recording and inverting noise leaves you with your desired signal

Active Noise-Canceling!

Quantum Computation: Get computational paths leading to incorrect
answers to interfere destructively and cancel each other out.

Randomized Computation: Probabilities of computational paths
leading to /incorrect answers only add up, never cancel out.

A Rough Timeline of Quantum Applications

NOW: Quantum Supremacy

Computational tasks, not necessarily useful, which is & =
feasible to implement w/ current g. machines, but
hard to simulate by classical computation.

A Milestone Toward Useful Quantum Computation N L E—
Google: Random Circuit Sampling USTC: Boson Samplina

A Rough Timeline of Quantum Applications

NOW: Quantum Supremacy

Computational tasks, not necessarily useful, which is i
feasible to implement w/ current g. machines, but
hard to simulate by classical computation.

A Milestone Toward Useful Quantum Computation | L o
Google: Random Circuit Sampling USTC: Boson Samplina

NISQ: Noise Intermediate-Scale Quantum machines ~ near future

50 ~ 200, ~ 1000 controllable but noisy qubits, no fault-tolerant qubits Quantum Simulation

Or special-purpose quantum machines, like analog quantum simulators Variational Q. Methods

A Rough Timeline of Quantum Applications

NOW: Quantum Supremacy

Computational tasks, not necessarily useful, which is
feasible to implement w/ current g. machines, but
hard to simulate by classical computation.

A Milestone Toward Useful Quantum Computation L o
Google: Random Circuit Sampling USTC: Boson Samplina

NISQ: Noise Intermediate-Scale Quantum machines ~ near future

50 ~ 200, ~ 1000 controllable but noisy qubits, no fault-tolerant qubits Quantum Simulation
Or special-purpose quantum machines, like analog quantum simulators Variational Q. Methods

Other quantum applications not in the computation domain: quantum sensing, quantum communication

A Rough Timeline of Quantum Applications

NOW: Quantum Supremacy) Lo

i

Computational tasks, not necessarily useful, which is
feasible to implement w/ current g. machines, but
hard to simulate by classical computation.

A Milestone Toward Useful Quantum Computation L o
Google: Random Circuit Sampling USTC: Boson Samplina

NISQ: Noise Intermediate-Scale Quantum machines ~ near future

50 ~ 200, ~ 1000 controllable but noisy qubits, no fault-tolerant qubits Quantum Simulation
Or special-purpose quantum machines, like analog quantum simulators Variational Q. Methods

Other quantum applications not in the computation domain: quantum sensing, quantum communication

Fault-Tolerant QC: ~ unknown future, a lot of uncertainty here

3107418240490043721350750035888567 000000000000000000000000000000000

930037346022842727545720 1 619488232 000000000000000000000000000000000 - Linear systems

06440518081 50455634682967 172328678 000000000000000000000000000000000 o .

2437916272838033415471073 108501919 000000000000000000000000000000000 - Graph problems (minimum spanning tree,

5485290073377248227835257423864540 000000000000000000000000000000000 . i .
000000000000000000000000000000000 connectivity, shortest path, triangle finding,

14691736602477652346609
= 000000000000000000000000000000000 etc)
000000000000000000000000000000000 '

oooooooooooooooooooooooowoooo - Formula evaluation

1634733645809253848443 13388386509
08598417836700330923 12181 11085238
933310010450815121211816751 1579
X
190087 12816648221 1312685157393541
397547 18967899685 | 549366663853908
802710380210449895719126 146557

| 000000000000000000000000€0 19P0000 , _ ,

.| 000000000000000000000000008600000 - Decomposing groups (abelian, dihedral, etc.)
Y 000000000000000000000000000000000

000000000000000000000000000000000 T seeees

000000000000000000000000000000000

The Role of Programming Languages

Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!

The Role of Programming Languages

Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!

But of course, quantum computing model demonstrates some
fundamental differences and unique needs, which requires new
techniques to deal with.

The Role of Programming Languages

Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!

But of course, quantum computing model demonstrates some
fundamental differences and unique needs, which requires new
techniques to deal with.

Disciaimer: perspectives and ciaims are potentially limited or biased by personal knowledge.

How to Program Q. Applications, Debug, and Verify Gorrectness?

How to Develop Software for). Computing, e.g., compiler, system?
How to Design and implement Architecture for Quantum Gomputing?
How to Handie Quantum Security Issues in Designgimplementation?
How to Scale and Automate the Design of Quantum Hardware 2

How to Program Q. Applications, Debug, and Verify Gorrectness?

The natural question with MOST investigation, but still a huge gap!

How to Program Q. Applications, Debug, and Verify Gorrectness?

The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
semantics in various pictures, q. Hoare logic and verification, ...

The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
semantics in various pictures, q. Hoare logic and verification, ...

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
QWIRE/SQIR (embedded in Coq), SILQ, ... <- academia
python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AWS), <- industry

The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
semantics in various pictures, q. Hoare logic and verification, ...

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
QWIRE/SQIR (embedded in Coq), SILQ, ... <- academia
python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AwS), <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs

How to Program Q. Applications, Debug, and Verify Gorrectness?

The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
semantics in various pictures, q. Hoare logic and verification, ...

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
QWIRE/SQIR (embedded in Coq), SILQ, ... <- academia
python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AwS), <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs

%o —

o B8 é B—Bi— G Verifying the circuit
Q 1 f——— 111 Ey— by observation
0 [[S not scalable ...
on El—IHE =

How to Program Q. Applications, Debug, and Verify Gorrectness?

The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
semantics in various pictures, q. Hoare logic and verification, ...

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
QWIRE/SQIR (embedded in Coq), SILQ, ... <- academia
python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AWS), <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs

LN fa—

o B8 é B—Bi— G Verifying the circuit
Q 1 f——— 111 Ey— by observation
0 [[S not scalable ...
oo El—T-E0 -

(3) lack of many desirable analyses, automation, & optimization: a
lot of burdens on the programmers

How to Develop Software for . Gomputing, e.g., compiler, systems

a 1950s computing

Assembly language
(low-level) programs

Relay circuits and
discrete wires

b Classical computing today

Algonthms
High-level languages

Compiler

Classical architecture
(memory, arithemetic
operations, control
operations, communication)

Hardware building
blocks: gates, bits

VLSI circuits

Semiconductor
transistors

€ Quantum computing

Algorithms

High-level languages

Classical compiler Quantum compiler

Classical
architecture Quantum

(control operations) architecture
(QC gates, qubits,

Hardware building communication)
blocks (gates, bits)

Error-correction
and control pulses

Semiconductor Underlying technology
transistors (semiconductors,

trapped ions)

VLSI circuits

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.

How to Develop Software for (). Computing, e.g., compiler, system?

a 1950s computing b Classical computing today € Quantum computing

Algorithms Algorithms
High-level languages High-level languages

Compiler Classical compiler | Quantum compiler
Classical architecture |
(memory, arithemetic

operations, control ;
operations, communication) (control operations)

Classical

architecture Quantum
architecture

(QC gates, qubits,
Hardware building Hardware building communication)
blocks: gates, bits blocks (gates, bits)

Error-correction

Assembly language
and control pulses

(low-level) programs

VLSI circuits VLSI circuits

Semiconductor Semiconductor Underlying technology

transistors transistors (semiconductors,
trapped ions)

Relay circuits and
discrete wires

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- guantum mechanics prohibits certain testing, e.g., assertions

How to Develop Software for (). Computing, e.g., compiler, system?

a 1950s computing b Classical computing today € Quantum computing

Algorithms Algorithms
High-level languages High-level languages

Compiler Classical compiler Quantum compiler
\
Classical architecture

(memory, arithemetic Classical v
operations, control architecture

: S ' hitecture
operations, communication (control operations) ' '
perati ication) (QC gates, qubits,

Hardware building Hardware building communication)
blocks: gates, bits blocks (gates, bits)

Error-correction

Assembly language
and control pulses

(low-level) programs

VLSI circuits VLSI circuits

Semiconductor Semiconductor Underlying technology

transistors : (semiconductors,
e trapped ions)

Relay circuits and
discrete wires

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- guantum mechanics prohibits certain testing, e.g., assertions

A possible solution : fully certified software, e.g., VOQC (POPL 2021)

® (17
Q'?'Q'é'@'?'@'é'@'? Mapping, Error Mitigation, ...
? ? ? approximate computing
9-9'?'@'@'@'?'@-@'@
O 20,

ibmqg_toronto

ibmqg_toronto

A lot of controlling
operations need to be
located close to
quantum chips for
small responsive time.

ISA + Fast Compilation

Mapping, Error Mitigation, ...
approximate computing

Main Memory (instructions & data)

g LT Quantum Coprocessor Quantum Classical Interface
§ Fetch Quantum Analog-Digital Interface
Control Unit Fm Y _@
: I Timing Control Unit 7
EXx. II?:(ielglster @mmg Queue g) - 9‘
Physical m . - .C
Quantum Microcode g, Event I Queue 1 O
Unit ~
Instruction _"'6: @. o E
Cache AP}) (Event 1 Queven () S |E;rd:s I NEN @ >
— = m org Lut ". +—
Host CPU v Store 5 § :m L= - =
o T —i0aNt - S
Execution g E -J - o
Controller || e F
o : -
5 : :
: g
A
|

[
Synchronization Clock

X. Fu et al MICRO 17

How to Handie Quantum Security Issues in Design and Implementations

Verification of Quantum Cryptography: _QuantunPKep'
Relational Quantum Hoare Logic (Unruh; Barthe et al.) Distribution 5

How to Handie Quantum Security Issues in Design and Implementations

Verification of Quantum Cryptography: _QuantunPKep'
Relational Quantum Hoare Logic (Unruh; Barthe et al.) Distribution 5

Quantum Cryptanalysis:
Resource estimation of Complex Quantum Attack Programs

How to Handie Quantum Security Issues in Design and Implementations

Verification of Quantum Cryptography: * _Quantuni’Kep
Relational Quantum Hoare Logic (Unruh; Barthe et al.)

Distribution

Quantum Cryptanalysis:
Resource estimation of Complex Quantum Attack Programs

Post-Quantum Cryptography:
Classical Cryptographic Systems Resilient to Quantum “?""\'_&/ \

For Classical Cryptographic Systems
(1) Identify their post-quantum security

(2) automate the procedure to upgrade its post-quantum security
(3) formal post-quantum security proofs

Formally generated security analysis will provide not only efficient and high
assurance proofs that can replace the tedious and error-prone analysis for ler
experts, but also independently verifiable proofs that can be used by security oo T

practitioners without much quantum knowledge.

(a)

(b) . Transmon CPW resonator)

L |--€) i
: 13fF | 4 |
S il et 2,250 0, f =4.6 GHz ;

36.3 GHz

Tﬂﬂm m

|
|
|
|
1!
1!
1!
1!
1!
¥ L/(2m+1)?
1!
|
I
1!
1!
1!
1!
1!
I
|
l

G,

Superconducting Credit: arXiv:1704.06208

) NN .- s FHE
| § SES88’
- (Bigsssssssssasy gsssssssssssss @0 gae
! DU B :
| e ___ -
i = pu=s -== -
' - 53 jsssssss i
| (R e i,
| e giiiiysiiiss [asssssssssssss HHH+H
(b) , Transmon Y CPW resonator

A0 e

513fF | 403 fF
i Z,=50 Q, f =4.6 GHz

L 9¢

36.3 GHz

L, L/(2m+1)?

s L me «E:mj 2L
C, C,
»® B | o
E, I

CI'I

(c)

Superconducting Credit: arXiv:1704.06208

2D

Neutral Atoms Credit: arXiv:2006.12326

How to Scale and Automate the Design of Quantum Hardware 2
U e g il

.............
.........
WL

HEEE B
.. > =r
Ht '< “Ene
B T B
i
| sans
.
i
| e
i
j 1!
- V) :
22
Ind gist
A
]
=
B

s AR N o1 1 :
e = — — =\ fummmss’ LSLolololisssssss semmmsas It It Tt 5
(b) ' Transmon Ny CPW resonator 8 QRAM Architecture
A=) Hi SELEE Lo AL J1 Credit: ArXiv 0807.4994

5.13fF | 403 fF

Z =500, f=4.6 GHz

. . L] T
o . Zndi ot -

HEEEET NN

36.3 GHz : p]it
oL L/(2m+1)? % s
(c) ' g e
o | e | il - 5 T
C_| C; :
3 -
E, I G
Superconducting Credit: arXiv:1704.06208
2D

Neutral Atoms Credit: arXiv:2006.12326

How to Scale and Automate the Design of Quantum Hardware 2
U e g il

NESSSSSSSNNNS sEmEmEEsEEsEE 000 ERRANY
T

| BSEIIEEE G g0 i
| G"K I . . : I - {
E ;v SR i “; : 0 T
| iy 1 T i
S I il e T T 2
= L SE8S880 (SSSSSSssssssssss 2942 cuassans l:|—|: E—t EI_E 5
(b) , Transmon “: ' CPW resonator i | 8 QRAM Architecture
A=) Hi SELEE Lo AL J1 Credit: ArXiv 0807.4994
5.13fF | 403 f:F 7 2500, f =46 GHz - .]
o . Zndi e]
36.3 GHz : ﬁs =]
, oL L/(2m+1)? & T -
C | g T
-IF—II——II—W—Eﬁ ‘E:“H i 5 g
C, C T
’E‘ 5 '_'CF Demonstrate A Lot of Design Choices
' " Hard to Scale without Automatic Tools
Superconducting Credit: arXiv:1704.06208
2D ...-

Neutral Atoms Credit: arXiv:2006.12326

(a) | — 5 1111 sssmnas
R i

s ‘r W;—\
e g B

SESEgEEESEE/ .======= saaaaas ..:g

(b) " Transmon

5.13fF | 403 fF

L3¢

Z,=50 Q, f =4.6 GHz

o L, /(2m+1)?
e IR L ﬁg_fﬁj%

C, C,

% HE

E, 0 G

Superconducting Credit: arXiv:1704.06208

2D

Neutral Atoms Credit: arXiv:2006.12326

Ioes | mem | w9 HF

5 0 1
%” D] o T Y {
A, i W
:
il |l :
£y i A !
1 2 QRAM Architecture
ESELEEL . N @ Credit: ArXiv 0807.4994

- T 1T H

: T H

o L —

Demonstrate A Lot of Design Choices
Hard to Scale without Automatic Tools

A Golden Age of Hardware Description Languages:
Applying Programming Language Techniques to
Improve Design Productivity
Lenny Truong

Stanford University, USA
lenny@cs.stanford.edu

Verilog

Pat Hanrahan
Stanford University, USA
hanrahan@cs.stanford.edu

SNAPL 2019 HDL

(a)

(b) " Transmon

513fF | 403 fF
| Z,=50 Q, f =4.6 GHz

(c) | L L,/9 L,/(2m+1)?

c 'I|-<’—||_"—||E—"-"6'60'65‘ ’Mﬁ"‘E:“H"—h'
C, C. :
% HE A
E, : C, C C

Superconducting Credit: arXiv:1704.06208
3D B

2D

Neutral Atoms Credit: arXiv:2006.12326

%HFHF%) Hf

g0 I
B 1 ey o Y {
2 o P -
| il 1 §
Ly irn | fr 5
i g QRAM Architecture
SIS Al J1 Credit: ArXiv 0807.4994

A

L
i —

L
I T

L
I C

Output register :> D
4
1

£
I |

T
HEEEET NN

Demonstrate A Lot of Design Choices
Hard to Scale without Automatic Tools

A Golden Age of Hardware Description Languages:
Applying Programming Language Techniques to
Improve Design Productivity
Lenny Truong

Stanford University, USA
lenny@cs.stanford.edu

Verilog

Pat Hanrahan
Stanford University, USA
hanrahan@cs.stanford.edu

HDL

SNAPL 2019

Applies to Quantum Hardware too!

simmary

Quantum PLs S o

Software Tool-chain = e
Architecture ey
Security O - e

Hardware Design == zimost none

siimmary
Satisfactory

Quantum PLs S o

Software Tool-chain = e
Architecture ey
Security O - e

Hardware Design == zimost none

siimmary
Satisfactory

Quantum PLs S o

Software Tool-chain = e
Architecture ey
Security O - e

Hardware Design == zimost none

simmary

Satisfactory

N some

- R alittle

r
i 1
i 1
i 1
i 1
i 1
! :
|
— |
I "
: Software Tool-chain : e e
|
|
i 1
! :
I |
I |
I |
|

Security O - e

Hardware Design == zimost none

Further Readings: Thank You! Q& A

>

CIENCES * ENGINEERING - MEDICINE

CONSENSUS STUDY REPORT

QUANTUM COMPUTING
Progress and Prospects

QUANTUM FRONTIERS
REPORT ON COMMUNITY INPUT TO THE NATION'S

STRATEGY FOR QUANTUM INFORMATION SCIENCE

Product of

Computer Science’s Role THE WHITE HOUSE

NATIONAL QUANTUM COORDINATION OFFICE

| Next Steps in Quantum Computing:

CCC October 2020

Computing Community Consortium

Reference: links are availahle at https://www.cs.umd.edu/
~Xwu/mini_lib.htmi

https://www.cs.umd.edu/~xwu/mini_lib.html
https://www.cs.umd.edu/~xwu/mini_lib.html

(1) Introduction to Quantum Gomputing and Potential Roles of
Programming Languages 25 mMin+30&A)

[(2) A Mini-Course of Quantum Hoare Logic on Quantum While
language BOmin+508&A)

(3] Discussion on existing and potential Programming
Language research opportunities (20 min+50&A)

Reference: tutorial slides and some references are
available at hitps://www.cs.umd.edu/~xwu/mini _lib.html

https://www.cs.umd.edu/~xwu/mini_lib.html

An Operation O —> A Quantum Physical Evolution Q

Computation:

Evolution of the Machine: Oy, O,, 05, -*-

The accumulative evolution carries some computation!

A Quantum Computer

An Operation O —> A Quantum Physical Evolution Q

Computation:

Evolution of the Machine: Oy, O,, 05, -*-

The accumulative evolution carries some computation!
A Quantum Computer

Consider quantum machines of finite-dimension. Hilbert space -> Euclidean space

An Operation O —> A Quantum Physical Evolution Q

Computation:

Evolution of the Machine: Q, O,, O3, **

The accumulative evolution carries some computation!

A Quantum Computer

Consider quantum machines of finite-dimension. Hilbert space -> Euclidean space

The Math Model of Quantum Machines comes from the math model of Os.
(semantics)

An Operation O —> A Quantum Physical Evolution Q

Computation:

Evolution of the Machine: Q, O,, O3, **

The accumulative evolution carries some computation!
A Quantum Computer

Consider quantum machines of finite-dimension. Hilbert space -> Euclidean space

The Math Model of Quantum Machines comes from the math model of Os.
(semantics)

Four Postulates for Quantum Mechanics:

State Space postulate
Evolution postulate — No-Cloning theorem
Composite System postulate

Measurement postulate

State Space postulate: (pure) quantum state represented by unit complex vectors

State Space postulate: (pure) quantum state represented by unit complex vectors

wave in
continuous
domain

State Space postulate: (pure) quantum state represented by unit complex vectors

A quantum bit (qubit) refers to a quantum system of dimension 2

wave in
continuous
domain

State Space postulate: (pure) quantum state represented by unit complex vectors

A quantum bit (qubit) refers to a quantum system of dimension 2

wave in 1 0
continuous . . L . classical bits are special
domain classical 0 and 1: ‘O> o () / |1> B () cases of quantum.

State Space postulate: (pure) quantum state represented by unit complex vectors

A quantum bit (qubit) refers to a quantum system of dimension 2

wave in -y 1 - 0
continuous . . I L I l_ classical bits are special
soman Classical0and 1: :|0).= (0) , 1)= (1 > 22565 of quantum,

Dirac Notation

State Space postulate: (pure) quantum state represented by unit complex vectors

A quantum bit (qubit) refers to a quantum system of dimension 2

wave in -y 1 - 0
continuous . . I L I l_ classical bits are special
soman Classical0and 1: :|0).= (0) , 1)= (1 > 22565 of quantum,

Dirac Notation

A general qubit:

) = a]0) + B|1)

a, 5 are general complex numbers.

(g) with ‘“‘2 + ‘13‘2 =1 Constraint due to Born’s probability

amplitude interpretation.

State Space postulate: (pure) quantum state represented by unit complex vectors

A quantum bit (qubit) refers to a quantum system of dimension 2

wave in -y 1 - 0
continuous . . I L I l_ classical bits are special
soman Classical0and 1: :|0).= (0) , 1)= (1 > 22565 of quantum,

Dirac Notation

A general qubit:

X a, 5 are general complex numbers.

‘l/)> — “|O> + ,8‘1> — (,B) Wlth ‘“‘2 + ‘13‘2 = 1. Constraint due to Born’s probability

amplitude interpretation.

Example: \+>:\%(|O>+|l>):\%(1) |_>:\%(‘O>_‘1>):\% (—11)

State Space postulate: (pure) quantum state represented by unit complex vectors

A quantum bit (qubit) refers to a quantum system of dimension 2

wave in -y 1 - 0
continuous . . I L I l_ classical bits are special
soman Classical0and 1: :|0).= (0) , 1)= (1) 22565 of quantum,

Dirac Notation

A general qubit:

X a, 5 are general complex numbers.

‘ll)> — “|O> + ,8‘1> — (,B) Wlth ‘“‘2 + ‘13‘2 = 1. Constraint due to Born’s probability

amplitude interpretation.

Example: \+>:\%(|O>+|l>):\%(1) |_>:\%(‘O>_‘1>):\% (—11)

Evolution postulate: evolution of quantum systems is unitary

Unitary evolution is a simple consequence of being linear and preserving £, norm

State Space postulate: (pure) quantum state represented by unit complex vectors

\/\/\ A quantum bit (qubit) refers to a quantum system of dimension 2
C(;/\r/1?i\:1eljcl)nus AL : (1) PR : (0) classical bits are special

doman ClassicalOand 1: :0):={ 1= 1{ e Of aamtumm,

Dirac Notation

A general qubit:

X a, 5 are general complex numbers.

‘ll)> — “|O> + ,8‘1> — (,B > Wlth ‘“‘2 + ‘13‘2 = 1. Constraint due to Born’s probability

amplitude interpretation.

Example: \+>:\%(|O>+|l>):\%(1 > |_>:\%(‘O>_‘1>):\% (—11)

Evolution postulate: evolution of quantum systems is unitary

Unitary evolution is a simple consequence of being linear and preserving £, norm

Precisely, |¢) — U|y) since U|w) is also a quantum state, so that

(y| UTU|1//> =1,V|y) = U'U =1 unitary (reversible)

State Space postulate: (pure) quantum state represented by unit complex vectors

\/\/\ A quantum bit (qubit) refers to a quantum system of dimension 2
C(;/\r/1?i\:1eljcl)nus AL : (1) PR : (0) classical bits are special

doman ClassicalOand 1: :0):={ 1= 1{ e Of aamtumm,

Dirac Notation

A general qubit:

X a, 5 are general complex numbers.

‘ll)> — “|O> + ,8‘1> — (,B > Wlth ‘“‘2 + ‘13‘2 = 1. Constraint due to Born’s probability

amplitude interpretation.

Example: \+>:\%(|O>+|l>):\%(1 > |_>:\%(‘O>_‘1>):\% (—11)

Evolution postulate: evolution of quantum systems is unitary

Unitary evolution is a simple consequence of being linear and preserving £, norm

Precisely, |¢) — U|w) since U|y) is also a quantum state, so that
(y| UTU|1//> =1,V|y) = U'U =1 unitary (reversible)

Example: H=—= (1 1) HI0)=|+).HI1)=]-)

Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in C* ® C? (dim-4), where C? (dim-2) is for a qubit.

Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in C> ® C? (dim-4), where C? (dim-2) is for a qubit.

i

So [00) =0) ® |0) [01) 10) [11)

" "

o O O
o = O O
_o O O

Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in C* ® C? (dim-4), where C? (dim-2) is for a qubit.

So [00)=10y®l0) 1oLy o 10 o)
OEORH N
0 0 0 1

A n-qubit system requires 2" dimensional space. Exponential cost in classical simulation!

Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in C* ® C? (dim-4), where C? (dim-2) is for a qubit.

So [00) =10) ® |0) , |01)) | 10)) [
1 1 0 1 0 0
(o)®(o): 0 0 1 0

0 0 0 1

A n-qubit system requires 2" dimensional space. Exponential cost in classical simulation!

Examples of Common Quantum Gates » The controlled-NOT (CNOT) gate: Two-qubit Gate
1 0 00
» Pauli gates: Single-qubit Gate
0100
CNOT = 1
v (01 y_ (0 —i s_ (1 0 000
~\1o0)” " \i 0) "7 {0 —1 0 010

» Hadarmard gate:

- (00)

» Rotation about x—axis of the Bloch sphere:

6 6

COS 3 —isin 2
RO = (_Sm2, e

—1S1In > COS 5

Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in C* ® C? (dim-4), where C? (dim-2) is for a qubit.

So [00) =10) ® |0) , |01)) | 10)) [
1 1 0 1 0 0
(o)®(o): 0 0 1 0

0 0 0 1

A n-qubit system requires 2" dimensional space. Exponential cost in classical simulation!

Examples of Common Quantum Gates » The controlled-NOT (CNOT) gate: Two-qubit Gate
1 0 00
» Pauli gates: Single-qubit Gate
0100
CNOT = 1
v (01 y_ (0 —i s_ (1 0 000
~\1o0)” " \i 0) "7 {0 —1 0 010

» Hadarmard gate:

NO-CLONING Theorem
H = 1 (11) Assume a cloning procedure U, then

Uul0)10) =10y10) UIL[0)=]1)]1)

VA

» Rotation about x—axis of the Bloch sphere:

6 6

COS 3 —isin 2
R(O) = (S, IR)

—1S1In > COS 5

Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in C* ® C? (dim-4), where C? (dim-2) is for a qubit.

So [00) =10) ® |0) , |01)) | 10)) [
1 1 0 1 0 0
(o)®(o): 0 0 1 0

0 0 0 1

A n-qubit system requires 2" dimensional space. Exponential cost in classical simulation!

Examples of Common Quantum Gates » The controlled-NOT (CNOT) gate: Two-qubit Gate
1 0 00
» Pauli gates: Single-qubit Gate
0100
CNOT = 1
v (01 y_ (0 —i s_ (1 0 000
~\1o0)” " \i 0) "7 {0 —1 0 010

» Hadarmard gate:

NO-CLONING Theorem
H = 1 (11) Assume a cloning procedure U, then

V21 -1
Ul0)[0)=10)[0 Ull)|0)=|1)]|1
» Rotation about x—axis of the Bloch sphere: | >| > | > | > | >| > | >| >
9 9 Consider an arbitrary state |y) = a|0) +]| 1)

R:(0) = (—isixfg —cosgi) Uly)|0) =al0)|0)+4[1)]1)

) ly) CONTRADICTION!

Measurement postulate: how to read classical info out of g. system?

This information reading procedure will distribute/collapse the underlying g. systems.

Measurement postulate: how to read classical info out of g. system?

This information reading procedure will distribute/collapse the underlying g. systems.

» A measurement is modelled as a set of operators M = {M,, }
with Y, M M,, = L.

» If a quantum system was in pure state |{) before the
measurement, then:

> the probability that measurement outcome is A:

p(m) = ||Mun|)||

where || - || is the length of vector.
> the state of the system after the measurement:
M)

p(m)

Measurement postulate: how to read classical info out of g. system?

This information reading procedure will distribute/collapse the underlying g. systems.

> A measurement is modelled as a set of operators M = {M,,} Examples Consider |0)
with Y. M' M,, = I.

» If a quantum system was in pure state |i) before the Measured in { |0)(0], | 1)(1]}
measurement, then:

> the probability that measurement outcome is A:

p(m) = ||Mun|)||

-> | 0) w/ prob. 1 (recover classical)

where || - || is the length of vector.
> the state of the system after the measurement:
M)

p(m)

Measurement postulate: how to read classical info out of g. system?

This information reading procedure will distribute/collapse the underlying g. systems.

> A measurement is modelled as a set of operators M = {M,,} Examples Consider |0)
with Y. M' M,, = I.

» If a quantum system was in pure state |i) before the Measured in { |0)(0], | 1)(1]}
measurement, then:

> the probability that measurement outcome is A:

p(m) = ||Mun|)||

-> | 0) w/ prob. 1 (recover classical)

Measuredin { |+ (+|,| =) — |}
where || - || is the length of vector. [+ C+H =) =
> the state of the system after the measurement: -> | +) w/ prob. 0.5
-> | —) w/ prob. 0.5
M|) | =) w/p

p(m)

Measurement postulate: how to read classical info out of g. system?

This information reading procedure will distribute/collapse the underlying g. systems.

> A measurement is modelled as a set of operators M = {M,,} Examples Consider |0)
with Y. M' M,, = I.

» If a quantum system was in pure state |i) before the Measured in { |0)(0], | 1)(1]}
measurement, then:

> the probability that measurement outcome is A:

p(m) = |[Mu|p)||?

-> | 0) w/ prob. 1 (recover classical)

Measuredin { |+){(+|,]| =){(—|}

where || - || is the length of vector.
> the state of the system after the measurement: -> | +) w/ prob. 0.5
-> | —) w/ prob. 0.5
M| 9) | —)w/p
p(m)

More advanced math formulation of ensemble of quantum states

Density matrices » For any mixed state {(p1, [¥1)), ..., (Pr, |¥x))

> In the n-dimensional Hilbert space C", an operator is B Z |1/J> <1/J\
represented by an n X n complex matrix A. P = - Pil¥i i

» The trace of an operator A is tr(A) = Y; Aji (the sum of the
entries on the main diagonal).

» A positive semidefinite matrix p is called a partial density
matrix if tr(p) < 1; in particular, a density matrix p is a
partial density matrix with tr(p) = 1.

Measurement postulate: how to read classical info out of g. system?

This information reading procedure will distribute/collapse the underlying g. systems.

> A measurement is modelled as a set of operators M = {M,,} Examples Consider |0)
with Y. M' M,, = I.

» If a quantum system was in pure state |i) before the Measured in { |0)(0], | 1)(1]}
measurement, then:

> the probability that measurement outcome is A:

p(m) = |[Mu|p)||?

-> | 0) w/ prob. 1 (recover classical)

Measuredin { |+){(+|,]| =){(—|}

where || - || is the length of vector.
> the state of the system after the measurement: -> | +) w/ prob. 0.5
-> | —) w/ prob. 0.5
M| 9) | —)w/p
p(m)

More advanced math formulation of ensemble of quantum states

Density matrices » For any mixed state {(p1, |$1)), .., (P, | k) },
> In the n-dimensional Hilbert space C", an operator is _ Z) (W,
represented by an 1 X n complex matrix A. o= LPiYi Y
» The trace of an operator A is tr(A) = Y; Aji (the sum of the)
entries on the main diagonal). Example
» A positive semidefinite matrix p is called a partial densit 2 < 15 1
p p p Y AG 10 1)} = = 510000+ 5101 =5 (5

matrix if tr(p) < 1; in particular, a density matrix p is a
partial density matrix with tr(p) = 1.

Quantum While-language

Syntax

A core language for imperative quantum programming

S ::=skip | g:= |0)

if (Um-M|gl=m—S,) fi
while M|g] = 1do S od

Quantum While-language

Syntax

A core language for imperative quantum programming

R . Classically, one has

5 1= skip q:‘0> u:=1t t~ expression.
51,57 |
grosmmenenes - However, due to no-cloning,
g = U [6]]__ 1) initialization
if (Om-Mlgl=m — S,,) fi 2) unitary operation
while M|g] = 1do S od

Quantum While-language

Syntax Quantum Data, Classical Control

A core language for imperative quantum programming

R . Classically, one has
S = skip g :=|0) : u: =1 t~ expression.
51,52 |
grrerererens b However, due to no-cloning,
g = U|g]: 1) initialization

Quantum While-language

Syntax Quantum Data, Classical Control

A core language for imperative quantum programming

Classically, one has

S = SkiP q ‘= \0> : u.=1 t~ expression.
51,57 |
grrerermres - However, due to no-cloning,
g := Ulg]: 1) initialization

if g[m -M[q]gz m — S) fi 2) unitary operation

Classical control requires reading information out of guantum systems.
However, by measuring the guard, it leads to
(1) a probabilistic choice of branches

(2) a collapse of the guard state before entering each branch

Quantum 1-D Loop Walk

QW =c:= |L);
p:=|0); Vi
while M|p] = no do
¢ := Hc|;
c,p = Slep
od

Operator Definition

S :2 L)Ll ® |ie 1) +2 R)(R| ® i 1)(il.

Quantum 1-D Loop Walk

QW =c:= |L); coin space = {L, R}
p:=10); position space = (0, ..., n-1} IV
while M|p| = no do
c:= Hic);
c,p = Sle,pl
od

Operator Definition

S :2 L)Ll ® |ie 1) +&(:) R)(R| ® i 1)(il.

Quantum 1-D Loop Walk

QW —=C .= ‘L>, coin space = {L, R}
p = |O>, position space = {0, ..., n-1} 0’/1'
while M|p] = no do

c:=H [C ; Create a new coin in superposition!

C, P = S :C p p] Random walk based on that coin!

od

Operator Definition

S :2 L)Ll ® |ie 1) +2 R)(R| ® i 1)(il.

Quantum 1-D Loop Walk

QW —=C .= ‘L>, coin space = {L, R}
p = |O>, position space = {0, ..., n-1} 0’/1'

While M[p — Mo dO Terminal of loop: position|1

c:=H [C ; Create a new coin in superposition!

C, P = S :C p p] Random walk based on that coin!

od

Operator Definition

S :2 L)Ll ® |ie 1) +2 R)(R| ® i 1)(il.

Quantum 1-D Loop Walk

Goal: reason about this program

QW —=C .= |L>, coin space = {L, R}
p = |O>, position space = {0, ..., n-1} 0’/1'

While M[p — Mo dO Terminal of loop: position|1

c:=H [C ; Create a new coin in superposition!

C, P = S :C p p] Random walk based on that coin!

od

Operator Definition

S :2 LY(L|® |io 1) +7:) RY(R|® i@ 1)

Semantics of Quantum While-Language

Operational Semantics Sk S = E o)

A configuration: (S, p)

» Sis a quantum program or E (the empty program)
» type(q) = Boolean:

po = 10)4(01p0)4 (0] + [0)4{1][1)4(0]

Han = ® Hq > type(q) = integer:
all g

> 0 is a partial density operator in

o0

po =) 10)g(nloln)s(0]

n=—oo

Semantics of Quantum While-Language

Operational Semantics

A configuration: (S, p)

» Sis a quantum program or E (the empty program)

> 0 is a partial density operator in

Han = X) Hyq
all g

Uni — —
(ni) (g :=Ulq], p) — (E,UpU")
(S1,0) = (51,0')
Se
B 185 52,0) = (53 52,0)
Convention : E; S, = S».
(IF) lllllllll -

for each outcome m

(Sk)

» type(q) = Boolean:
po = 10)4{01p]0)4(0] + 10)4(1]p|1)(0]

> type(q) = integer:

o0

po =) 10)g(nloln)s(0]

n=—oo

Semantics of Quantum While-Language

Operational Semantics

A configuration: (S, p)

(Sk)

» Sis a quantum program or E (the empty program)

> 0 is a partial density operator in

Han = X) Hyq
all g

Uni — —
(ni) (g :=Ulq], p) — (E,UpU")
(S1,0) = (51,0')
Se
B 185 52,0) = (53 52,0)
Convention : E; S, = S».
(IF) lllllllll -

for each outcome m

» type(q) = Boolean:
po = 10)4{01p]0)4(0] + 10)4(1]p|1)(0]

> type(q) = integer:

o0

po =) 10)g(nloln)s(0]

n=—oo

Loop:
(L0) (while M[g] =1do Sod, p) — (E,E.Z\;I:);)].\/.Ig:
(Ll) lllllll

Semantics of Quantum While-Language

Operational Semantics (Sk)

(skip, p) — (E, p)

A configuration: (S, p)

» Sis a quantum program or E (the empty program)
» type(q) = Boolean:

po = 10)4(01p0)4 (0] + [0)4{1][1)4(0]

Han = ® Hq > type(q) = integer:
all g

> 0 is a partial density operator in

o0

po =) 10)g(nloln)s(0]

n=—oo

(Uni) — =

= U|qg|, E, UpU?

([4], p) — (E,UpUT) Loop:

<Sll p> — <S/11 10/> (LO) EEssmmsm -

(566]) <Sl; 52, p> N <S/1, 52, p/> (while M[ﬁ] =1 dO S Od,p> — <E’EA./I.O€M§ /u
Convention : E;S; = So. (L1) (while M[g] =1do S,p) — (S; while M[g] = 1do S:erpM]-
UE) R (O M = m = 5, fop) = (S MooMis
e PP P Capture the Collapse of the Guard state.

for each outcome m

Semantics of Quantum While-Language

Denotational Semantics

Semantic function of quantum program S:

[[S]] : D(Hall) — D(%all)

[SI(p) =) _{lo": (S,0) =" (E,p")|} forall p € D(Han)

Semantics of Quantum While-Language

Denotational Semantics

Semantic function of quantum program S:

[[S]] : D(Hall) — D(,Hall)

[SI(p) =) _{lo": (S,0) =" (E,p")|} forall p € D(Han)

Observation:

tr([S1(p)) = tr(p)
for any quantum program S and all p € D(H,y).

» tr(p) — tr([S](p)) is the probability that program S
diverges from input state p.

Quantum Predicate & Hoare Triple

> A quantum predicate is a Hermitian operator (obsevable) P
such that0 C P C I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

Quantum Predicate & Hoare Triple

> A quantum predicate is a Hermitian operator (obsevable) P

suchthat 0 C P C I. Continuous logic
0, 1]

Matrix Upgrade
[1] E. D’Hondt and P. Panangaden, Quantum weakest

preconditions, Mathematical Structures in Computer Science
2006.

Quantum Predicate & Hoare Triple

> A quantum predicate is a Hermitian operator (obsevable) P

suchthat 0 C P C I. Continuous logic
0, 1]
Matrix Upgrade
[1] E. D’Hondt and P. Panangaden, Quantum weakest

preconditions, Mathematical Structures in Computer Science
2006.

> A correctness formula is a statement of the form:

1P}S1Q}

where:

» Sis a quantum program
> P and Q are quantum predicates.
» Operator P is called the precondition and Q the postcondition.

Quantum Predicate & Hoare Triple

> A quantum predicate is a Hermitian operator (obsevable) P

suchthat 0 C P C I. Continuous logic
0, 1]
Matrix Upgrade
[1] E. D’Hondt and P. Panangaden, Quantum weakest

preconditions, Mathematical Structures in Computer Science
2006.

> A correctness formula is a statement of the form:

{P}S{Q} n .
Similar as Classical

where: Hoare triple w/

: different semantics
» Sisa quantum program

> P and Q are quantum predicates.
» Operator P is called the precondition and Q the postcondition.

Quantum Predicate & Hoare Triple

> A quantum predicate is a Hermitian operator (obsevable) P

suchthat 0 C P C I. Continuous logic
0, 1]
Matrix Upgrade
[1] E. D’Hondt and P. Panangaden, Quantum weakest

preconditions, Mathematical Structures in Computer Science
2006.

> A correctness formula is a statement of the form:

{P}S{Q} n .
Similar as Classical

where: Hoare triple w/

: different semantics
» Sisa quantum program

> P and Q are quantum predicates.
» Operator P is called the precondition and Q the postcondition.

1. {P}S{Q} is true in the sense of total correctness:

‘:tot {P}S{Q}
if
tr(Pp) < tr(Q[S](p)) for all p.

Quantum Predicate & Hoare Triple

> A quantum predicate is a Hermitian operator (obsevable) P

suchthat 0 C P C I. Continuous logic
0, 1]
Matrix Upgrade
[1] E. D’Hondt and P. Panangaden, Quantum weakest

preconditions, Mathematical Structures in Computer Science
2006.

> A correctness formula is a statement of the form:

{P}S{Q} n .
Similar as Classical

where: Hoare triple w/

: different semantics
» Sisa quantum program

> P and Q are quantum predicates.
» Operator P is called the precondition and Q the postcondition.

1. {P}S{Q} is true in the sense of total correctness:

‘:tot {P}S{Q}
if
tr(Pp) < tr(Q[S](p)) for all p.

+~

Semantics

Quantum Predicate & Hoare Triple

> A quantum predicate is a Hermitian operator (obsevable) P

suchthat 0 C P C I. Continuous logic
0, 1]
Matrix Upgrade
[1] E. D’Hondt and P. Panangaden, Quantum weakest

preconditions, Mathematical Structures in Computer Science
2006.

> A correctness formula is a statement of the form:

{P}S{Q} n .
Similar as Classical

where: Hoare triple w/

: different semantics
» Sisa quantum program

> P and Q are quantum predicates.
» Operator P is called the precondition and Q the postcondition.

1. {P}S{Q} is true in the sense of total correctness:

Ftot {PS{Q}
if Pre-S State Post-S State
tr(Pp) < tr(Q[S](p)) for all p.

+~

Semantics

Quantum Predicate & Hoare Triple

> A quantum predicate is a Hermitian operator (obsevable) P

suchthat 0 C P C I. Continuous logic
0, 1]
Matrix Upgrade
[1] E. D’Hondt and P. Panangaden, Quantum weakest

preconditions, Mathematical Structures in Computer Science
2006.

> A correctness formula is a statement of the form:

{P}S{Q} n .
Similar as Classical

where: Hoare triple w/

: different semantics
» Sisa quantum program

> P and Q are quantum predicates.
» Operator P is called the precondition and Q the postcondition.

1. {P}5{Q} is true in the sense of total correctness: 2. {P1S{Q} is true in the sense of partial correctness:

‘:tot {P}S{Q} |:par {P}S{Q}/
if Pre-S State Post-S State if
tr(Pp) < tr(Q[S](p)) for all p. tr(Pp) < tr(Q[S](p)) + [tr(p) — tr([S1(p))]

+~

Semantics

Quantum Predicate & Hoare Triple

> A quantum predicate is a Hermitian operator (obsevable) P

suchthat 0 C P C I. Continuous logic
0, 1]
Matrix Upgrade
[1] E. D’Hondt and P. Panangaden, Quantum weakest

preconditions, Mathematical Structures in Computer Science
2006.

> A correctness formula is a statement of the form:

{P}S{Q} n .
Similar as Classical

where: Hoare triple w/

: different semantics
» Sisa quantum program

> P and Q are quantum predicates.
» Operator P is called the precondition and Q the postcondition.

1. {P}5{Q} is true in the sense of total correctness: 2. {P1S{Q} is true in the sense of partial correctness:

‘:tot {P}S{Q} |:par {P}S{Q}/
if Pre-S State Post-S State if
tr(Pp) < tr(Q[S](p)) for all p. tr(Pp) < tr(Q[S](p)) + [tr(p) — tr([S1(p))]

+~ T+

Semantics Divergence

(Axiom Sk) {P}Skip{P}

e Se 1P}5i1{QF {Q}Sa{R}
(Axiom Ini) (Rule Seq) {P}51; 52{R}

type(q) = Boolean :

(Rule IF) {P,}Sn{Q} for all m
{10),(0|P|0), (0] + |1),(0|P|0}, (1|} := [0){P} {0 MY Py, }pif (Om - Mlg] = m — S,) fi{Q}
type(q) = integer : (Rule LP) {Q}yS{MIPMy + MIQM,}
{MIPM, + MIQM, }while M[g] = 1 do S{P}
{ Z 1)4(0[P|0)4(n|}q := [0){P}
(Rule Ord) PCP {P}S1QF QEQ

{P}S{Q}

(Axiom Uni) {u'pulg := U[g]{P}

(Axiom Sk) {P}Skip{P}
" Ruese) PISHQ) {QIS(R)
(Axiom Ini) {P}51; 52{R}

type(q) = Boolean :

(Rule IF) {Py,}5,{Q} for all m
110)4(0[P0)4{0] + [1)4(0[P|0)4(1[}q := |0){P} (X M3, PMiy yif (O - M[g] = m — Sy) fi{Q}
type(q) = integer : {Q}S{MiPMy + MIQM; }
(Rule LP) {MIPM, + MIQM, }while M[g] = 1 do S{P}
{ Z [1)4(0[P|0)4(n| }q := |0){P} o o
(Rule Ord) PCP {P}S1Q} QEQ

.................... {P}S{Q}
(Axiom Uni) {u*m}q = U[g]{P} =

Parts of Classical Hoare Logic

AXIOM 2: ASSIGNMEN T

(Axiom Sk) {P}Skip{P}
’ Rueseq) LPISHQL {QIS:R)
(Axiom Ini) {P}51; 52{R}

type(q) = Boolean :

(Rule IP) ------------ { Pm}sm{Q} fOI' all m
{10)5 01PI0)4 (0] + 1), (0IP[0); (1] }q := [0){P} £ M}, P FE (O - MIg] = m — S,) R{Q]
type(q) = integer : {Q}s gf\;f*};i/f 0. I .I\./I.+.Q.;\;I.1 .E.
(Rule LP) IMIPM, + M*QMl}whlle MJg] = 1do S{P}
{ _Z_ 1)¢(0[P[0)q(n|}q := [0){P} o / /
(Rule Ord) PCP {P}S1Q} QEQ

.................... {P}S{Q}
(Axiom Uni) {u*m}q = U[g]{P} =

Parts of Classical Hoare Logic

AXIOM 2: ASSIGNMEN T

{p A B} 81 {q},{p A =B} S {g}
{p} if B then S, else S; fi {q}

{ir A B} S {p} :
{p} while B do S od {p A =B} =

(Axiom Sk) {P}Skip{P}

(Axiom Ini)
type(q)

= Boolean :
{10)4(0[P]0)4(0] + [1)4(0[P|0)4(1|}q := [0){P}

type(q) = integer :

{Z|n

n=—0oo

(01P[0)4 (1| }q := |0){P}

(Axiom Uni)

Parts of Classical Hoare Logic

AXIOM 2: ASSIGNMEN T

{p A B} S1 {q},{p A =B} S> {q}:
{p} if B then S; else S> fi {¢}

{p A B} S {p} :
{p} while B do S od {p A =B} =

{P15i1{QF {Q}S2{R}
(Rule Seq) (P}S1;5:{R}
............ W} SmiQ} for all m
B MR i O M= 5, R
s)
(Rule LP) fMiDM, +M+QM1}wh11e M([g] = 1 do S{P}
(Rule Ord) PEP IJSICT OEQ

{P}S{Q}

Theorem (Soundness and Completeness)

For any quantum program S and quantum predicates P, Q,

—par {P}S{Q} if and only if Fpp {P}S{Q}.

Ying. TOPLAS, 2011.

Quantum Hoare logic for Total Gorrectness

Proof System for Total Correctness

Let P be a quantum predicate and € > 0. A function
t : D(Han) (density operators) — IN

is called a (P, €)-ranking function of quantum loop:

while M|g] = 1do S od (1) {Q}yS{M{PM,y + MIQM, }
(2) for any € > 0, t. is a (MQM;, €)—ranking

function of loop

if for all p:

1. t([S](M1pM?)) < t(p); (Rule LT) {M?PM, + MiQM; jwhile M[7] = 1 do S od{P}
2. tr(Pp) > € implies t([S](M1pMT)) < t(p)

Theorem (Soundness and Completeness)

For any quantum program S and quantum predicates P Q,

=it {P}S{Q} if and only if Frp {P}S{Q}.

[2] M. S. Ying, Floyd-Hoare logic for quantum programs, ACM
Transactions on Programming Languages and Systems 2011

Quantum Hoare logic and Invariants : POPL17

QW —C .= ‘L>, coin space = {L, R}
p = ‘O), position space = {0, ..., n-1} 0,/1'

While M p = 1no dO Terminal of loop: position|1
c:= Hl|c

p Create a new coin in superposition!

C,p = S :C p p] Random walk based on that coin!

od

Quantum Hoare logic and Invariants : POPL17

QW =C ‘= ‘L)l coin space = {L, R} 1
p = ‘O), position space = {0, ..., n-1} 0»/1'
While M p = 1no dO Terminal of loop: position|1
c:=H C ; Create a new coin in superposition!
C,p = S :C p p] Random walk based on that coin!
od
Po \ lo

Lout
) .

Control - Flow - Graph

Quantum Hoare logic and Invariants : POPL17

OW =c := |L>, coin space = {L, R} 1
p = ‘O>, position space = {0, ..., n-1} Or/'

While M [p = 1no dO Terminal of loop: position|1
c:=H [C ; Create a new coin in superposition!
C,p = o|C, p] Random walk based on that coin!
Od Invariants
» A set II of paths is prime if for each
o O
\ its proper initial segments [; a4 % I € I1forall k < n.
S
™~
[M. o » LetG = (H,L,Ip,—), ® a quantum predicate (initial
Ie @ Myes € “ / l2 condition), I € L. An invariant at | is a quantum predicate O
lout .L/ H®I, such that for any density operator p, any prime set IT of
C J / paths from [y to I:
7 [y o

tr(®p) <1—tr(& tr (O&
Control - Flow - Graph r(@p) <1—tr(ulp)) +tr(O&n(p))

where & = Y {|&€r : m e 11|} .

Quantum Hoare logic and Invariants : POPL17

QW —=C .= |L>, coin space = {L, R}
p = ‘O>, position space = {0, ..., n-1} 0’/1'

While M[p = 1no dO Terminal of loop: position|1

c:=H [C ; Create a new coin in superposition!

C,p = S :C p p] Random walk based on that coin!

Od Invariants
» A set II of paths is prime if for each
pO\ [00 n:lli...gn_;llnen
0
L
\ its proper initial segments [; a4 % I € I1forall k < n.
S
~ 5
[. 2 M,. o 2 » LetG = (H,L,Ip,—), ® a quantum predicate (initial
Ie @ Myes °¢ / l2 condition), I € L. An invariant at | is a quantum predicate O
lout | / H®I, such that for any density operator p, any prime set I of

(J 03 / paths from [y to I:
Z

tr(©p) < 1—tr(Eulp)) + tr (O&m(p))
where & = Y {|&€r : m e 11|} .

Control - Flow - Graph

Theorem (Partial Correctness)

P

oyt 1IN Sp,

Let P be a quantum program. If O is an invariant at
then

‘:par {(H)}P{O}

Theorem (Partial Correctness)

P

Let P be a quantum program. If O is an invariant at [, ,

then

in Sp,

‘:par {@}P{O}

Reducing Global Constraints
Into Local Ones

Inductive Assertion Maps

» Given G = (H, L, Iy, —) with a cutset C and initial
condition ©.

> An assertion map is a mapping 77 from each cutpoint! € C
to a quantum predicate 7(/).

> IT;: the set of all basic paths from [to some cutpoint.

> [;: the last location in a path 7.

» An assertion map 7 is inductive if:
» Initiation: for any density operator p:

tr(@p) <1—tr (&ny (0)) + X tr(1(1x)Ex(p));

7T€HZO

» Consecution: for any density operator p, each cutpoint
leC:

tr(n(Dp) <1 —tr(Em(p)) + Y, tr(1Ix)Ex(p)).

ﬂEHl

Theorem (Partial Correctness)

P

out mn Sp,

Let P be a quantum program. If O is an invariant at
then

‘:par {@}P{O}

Reducing Global Constraints
Into Local Ones

Inductive Assertion Maps

» Given G = (H, L, Iy, —) with a cutset C and initial
condition ©.

> An assertion map is a mapping 77 from each cutpoint! € C

to a quantum predicate #(/).
1 P T () Reduce to a SDP (Semi-Definite Programming) Problem

> IT;: the set of all basic paths from [to some cutpoint.
» Assume C = {lo,l1, ..., Im }

> [;: the last location in a path 7. > Write O; = 7(I;) fori = 0,1,m.
» An assertion map 7 is inductive if: > & = L{|€; s basic path [; = [; |} for i,j = 0,1,...,m.
» Initiation: for any density operator p:

tr(@p) <1—tr (&ny (0)) + X tr(1(1x)Ex(p));

7T€HZO

» Consecution: for any density operator p, each cutpoint
leC:

tr(n(Dp) <1 —tr(Em(p)) + Y, tr(1Ix)Ex(p)).

ﬂEHl

Theorem

Invariant Generation Problem is equivalent to find complex
matrices Oy, Oy, ..., Oy, satistying the constraints:

0C) &;(O)) + A,

~ O

2

IC ® A [yps [C X A [n.() /

]()ut

QW =c:=|L);
p:=10);
while M|p] = no do
¢ := Hc|; Ic® A [yes
C, p — S [C, p] l()uf. .
C) Os
od 7/
Invariant SDPs for Quantum 1-D Loop Walk
Choose cut-set C = {ly, I3} with I3 = [,;;. ® = [. Invariants O
and Oj satisty the following constraints:
0 C &p(Oo) + Ex3(03) — O, (1)
0 C (€00 —Z)(Oo) + £3(0s), (2)
0C (&3 —1)(0s) — (I = &55(D)), (3)
0C 0y, 03 C 1 (4)

[Ego = Eqo © E}y, Egs = Eg3 © E}s, B33 = Z,

Eoo = S(H®I,)(I. ® Myo), Eoz = I ® Myes, and I, I,, identities.

QW =c:=|L);
p:=1[0);
while M|p] = no do
c := Hic|; Ic @ Myes
c,p:= Slc,p ’ ,.7 0
od I/

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {ly, I3} with I3 = [,;;. ® = [. Invariants O
and Oj satisty the following constraints:

0 E Ep(Oo) +Ex(03) — O, (1)
0 C (o —Z)(00) + Ex3(03), (2)
0C (E53—2)(03) — (I—&3()), (3)
0E Op, O3 E1 (4)

Ego = Ego © E}y, Eos = Egz © E},, B33 = Z,
Eoo = S(H®1,)(I. ® My,), Eos = I ® Myes, and I, I, identities.

Using SDP Solver

O3 =1.®|1)(1]

3

tr(o3.00ut) > tr(@),oin) =1

Namely, QW always terminates
at the position | 1) regardless
of the input state p,, .

; . loo,
= 10); /
pi=10); N
while M|p] = no do S/ \
C .— H[C, [® \[J()s [X \[n() 2
C, ::SC, [out H®]p
p < p) J 0, . _
od 1 ©
Invariant SDPs for Quantum 1-D Loop Walk Using SDP Solver
Choose cut-set C = {ly, I3} with I3 = [,;;. ® = [. Invariants O O3 =1I.®|1)(1]
and Os satisty the following constraints: 3
>) =
0 C £n(00) + E(03) — ©, a (O = (Opn) =1
0C (£ —Z)(0p) + E33(03), (2) Namely, QW always terminates
0C (&5 —T1)(03) — (I—E5(D), (3) at the position | 1) regardless
0C Oy, 05 C 1 (4) of the input state p,, .
Ego = Ego © E}y, Eos = Egz © E},, B33 = Z, Drawback: all these matrices

Eoo = S(H® 1) (Ie ® Mpo), Eos = Ic ® Myes, and I, I, identities. are exponentially large.

Further Readings: Thank You! Q& A

Applications

» Quantum walk on an n-circle.

> Quantum Metropolis sampling on n-qubits.
» Repeat-Until-Success.

» Quantum Search.

» Quantum Bernoulli Factory.

> Recursively written Quantum Fourier Transformation.

References

» M. S. Ying. Floyd-Hoare Logic for Quantum Programs,
TOPLAS, 2011.

» M. S. Ying. Foundations of Quantum Programming, Foundations of

Morgan Kautmann, 2016. Quantum Programming
» M. S. Ying, S. G. Ying and X. Wu, Invariants of quantum

programs: characterizations and generation, POPL 2017.

» Y. Li, and M. S. Ying. Algorithmic Analysis of Termination
Problems for Quantum Programs, POPL, 2018.

» L. Zhou, N. Yu, and M. S. Ying. An Applied Quantum
Hoare Logic, PLDI, 2019.

» S. H. Hung, Y. Peng, X. Wang, S. Zhu, and X. Wu. On the
Theory and Practice of Invariant-based Verification of
Quantum Programs, manuscript, 2020.

(1) Introduction to Quantum Gomputing and Potential Roles of
Programming Languages 25 mMin+30&A)

[2) A Mini-Course of Quantum Hoare Logic on Quantum While
language BOmin+50&A)

(3) Discussion on existing and potential Programming
Language research opportunities (20 min+50&A)

Reference: tutorial slides and some references are
available at hitps://www.cs.umd.edu/~xwu/mini _lib.html

https://www.cs.umd.edu/~xwu/mini_lib.html

summary from Part |

i
o
I
‘

N some

- R alittle

r

1 1
1 1
1 1
1 1
1 1
1 1
1 1
| — 1
. Software Tool-chain : —— - i
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Security R it

Hardware Design == zimost none

Highlight some concrete probiems! (Nota survey)

Design of Quantum Programming Languages

Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs

Qo [0) n m—

o BN é B—E—— 8= Verifying the circuit
Q 1 ———1-0 K = by observation
Q0 [m_ hot scalable ...
o E—IHED -

(3) lack of many desirable analyses, automation, & optimization: a
lot of burdens on the programmers

Design of Quantum Programming Languages

Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs

v I o
@ o B é B—EB 70— &= Verifying the circuit
Q 1o ———71-1F 3 by observation
e o [m_ hot scalable ...
o n E—-0 o

(3) lack of many desirable analyses, automation, & optimization: a
lot of burdens on the programmers

Existing work on type enforced correctness in QPLs

No-Cloning: use linear types for quantum variables (Quipper, QWIRE)

Design of Quantum Programming Languages

Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs

Qp |0) n m—

N 2 B—Bi— i3 Verifying the circuit
Q 1o — - ? k3 = by observation
Q: o [- - not scalable ...
oo El—-E8 -

(3) lack of many desirable analyses, automation, & optimization: a
lot of burdens on the programmers

Existing work on type enforced correctness in QPLs
No-Cloning: use linear types for quantum variables (Quipper, QWIRE)

Ancilla: keep track of the scope of ancilla qubits (Quipper)

Design of QPLs: the level of ahstraction

GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

Design of QPLS: the level of ahstraction

GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

Question 1: high-level DSLs for classical computation in superposition?

Need to compile classical computation into reversible computation

Handle the ancilla gubits and potentially simpler error-correction issues.

Design of QPLS: the level of ahstraction

GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

Question 1: high-level DSLs for classical computation in superposition?

Need to compile classical computation into reversible computation

Handle the ancilla gubits and potentially simpler error-correction issues.

Question 2: high-level abstractions for guantum applications?

Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Design of QPLS: the level of ahstraction

GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

Question 1: high-level DSLs for classical computation in superposition?

Need to compile classical computation into reversible computation

Handle the ancilla gubits and potentially simpler error-correction issues.

Question 2: high-level abstractions for guantum applications?

Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Candidate applications: Quantum Simulation
Quantum Variational Methods

Design of QPLS: the level of ahstraction

GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

Question 1: high-level DSLs for classical computation in superposition?

Need to compile classical computation into reversible computation

Handle the ancilla gubits and potentially simpler error-correction issues.

Question 2: high-level abstractions for guantum applications?

Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Candidate applications: Quantum Simulation
Quantum Variational Methods

Question 3: allow program analysis w/ high-level abstractions?

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

But using classical DS in quantum faces many issues:

e.g., data manipulation is generally non-reversible, even if computation can be made so.
Reversibility alone does not guarantee correct quantum interference b/c workspace.
Efficiency issues about reimplementing DS w/ above constraints.

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

But using classical DS in quantum faces many issues:

e.g., data manipulation is generally non-reversible, even if computation can be made so.
Reversibility alone does not guarantee correct quantum interference b/c workspace.
Efficiency issues about reimplementing DS w/ above constraints.

However, well-defined classical problems that PL might help with.

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

But using classical DS in quantum faces many issues:

e.g., data manipulation is generally non-reversible, even if computation can be made so.
Reversibility alone does not guarantee correct quantum interference b/c workspace.
Efficiency issues about reimplementing DS w/ above constraints.

However, well-defined classical problems that PL might help with.

Question 5: allow programmers to define quantum object/DS?

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

But using classical DS in quantum faces many issues:

e.g., data manipulation is generally non-reversible, even if computation can be made so.
Reversibility alone does not guarantee correct quantum interference b/c workspace.
Efficiency issues about reimplementing DS w/ above constraints.

However, well-defined classical problems that PL might help with.
Question 5: allow programmers to define quantum object/DS?

Allow direct modeling of quantum hardware components (QRAM, Sensors)

Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

But using classical DS in quantum faces many issues:

e.g., data manipulation is generally non-reversible, even if computation can be made so.
Reversibility alone does not guarantee correct quantum interference b/c workspace.
Efficiency issues about reimplementing DS w/ above constraints.

However, well-defined classical problems that PL might help with.
Question 5: allow programmers to define quantum object/DS?
Allow direct modeling of quantum hardware components (QRAM, Sensors)

Consider quantum stack ~ truly quantum recursion ~ quantum apps

Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?

Hard questions also for classical programs. Solutions for special cases.

Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?
Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?
Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?
Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Question 2: how to do verification of quantum internet applications?

Quantum Internet/Communication is another recent interest

Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?
Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Question 2: how to do verification of quantum internet applications?
Quantum Internet/Communication is another recent interest

Develop Q Hoare logic for parallel, concurrent, distributed programs.

Some preliminary results exist. Essential difficulty exists due to quantum correlations.

GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple

e.g., only contains simple conditional and loops

GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple

e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors

For NISQ machines, all operations could be erroneous

GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple
e.g., only contains simple conditional and loops
Need to be very resilient to hardware errors
For NISQ machines, all operations could be erroneous

Need also to be scalable

Classical simulation hard to scale; large q operations might contain more errors

GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple

e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors

For NISQ machines, all operations could be erroneous

Need also to be scalable

Classical simulation hard to scale; large q operations might contain more errors
Likely to be application-specific

q QE*F:%_L(,LQQQ—@@

UUggU-UgH=—Ht Quantum Simulation

Lwey Variational Quantum
Methods

UJ

e iR LT T

GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or sSo

do :.AJ <

¢ 5 5
z\vz

T

CR(+) CR(-)

ul H_Q_T 555
0 500 1000 1500 2000 2500

GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or sSo

* examples identified, but no systematic study
% fore.g., efficiency, and verification

CR(+) e Shi et al. Proceedings of the IEEE, Jun 2020

GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or sSo

dO +5—5—

dl

AL

500 1000 1500 2000 2500

examples identified, but no systematic study
for e.g., efficiency, and verification

Shi et al. Proceedings of the IEEE, Jun 2020

Question 2: direct compilation to analog / special purpose g machines?

Unexplored yet. But would be of great interests!

Analog machine modeled
after the phvysics to simulate

GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or sSo

d0 5

dl

500 1000 1500

examples identified, but no systematic study
for e.g., efficiency, and verification

Shi et al. Proceedings of the IEEE, Jun 2020

Question 2: direct compilation to analog / special purpose g machines?

Analog machine modeled
after the phvysics to simulate

Unexplored yet. But would be of great interests!

Classical Examples:

Achour et al. (PLDI16)
Achour & Rinard (ASPLOS 20)

ES |‘_ Z out X S E (a) generation (b) assembly

ERROR

Nature

ERROR

Quantum Error Correction
Fight

Quantum Decoherence

.........

ooooooooo

.....

.....
ooooo
.....

.....
.....
.....
.....
.....
.....
.....

.....
.....
.....
.....
.....

.....
aaaaa
.....
.....
.....

.........

Approximate Computing & Quantum Computing

e General-purpose fault-tolerant quantum computers are impractical in
the near term.

e Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Approximate Computing & Quantum Computing

e General-purpose fault-tolerant quantum computers are impractical in
the near term.

e Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

Approximate Computing & Quantum Computing

e General-purpose fault-tolerant quantum computers are impractical in
the near term.

e Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

e Quantitive guarantee on the reliability/accuracy of quantum programs
based on specific hardware information.

Approximate Computing & Quantum Computing

e General-purpose fault-tolerant quantum computers are impractical in
the near term.

e Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

e High-level abstraction of error-handling primitives in quantum
programes.

Approximate Computing & Quantum Computing

e General-purpose fault-tolerant quantum computers are impractical in
the near term.

e Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

e Automatic error-resource-optimization on a per-program basis!

Methodology

Methodology

¢ Elevate the handling of errors to the level of programming language.

Methodology

¢ Elevate the handling of errors to the level of programming language.

e Reason reliability/accuracy of quantum programs via static analysis.

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!
- unreliable hardware

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!
- unreliable hardware
- limited computational resource

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!
- unreliable hardware
- limited computational resource
® Good when approximate results are sufficient for applications!

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!
- unreliable hardware
- limited computational resource

® Good when approximate results are sufficient for applications!
- vision, machine learning; also with guarantees for critical data

Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!
- unreliable hardware
- limited computational resource
® Good when approximate results are sufficient for applications!
- vision, machine learning; also with guarantees for critical data
® Various techniques developed in classical PL literature.

Overview

Software Developers Hardware Designer
Exact Reliability/Accuracy Approximate Hardware
Program Specification Specification

Reliability/Accuracy ||error handling Resource Optimization

Constraint Generator primitives Objective Generator

L]

Back-end Optimizer

Neural-based Code Synthesizer

l

Reliable Quantum Programs with Optimal Resources

Overview

Software Developers Hardware Designer
Exact Reliability/Accuracy Approximate Hardware
Program Specification Specification

Reliability/Accuracy ||error handling Resource Optimization

Constraint Generator primitives Objective Generator
a basic frameworkg i l],
i inPOPLI19 Back-end Optimizer

Neural-based Code Synthesizer

l

Reliable Quantum Programs with Optimal Resources

Nature

ERROR

Quantum Error Correction
Fight

Quantum Decoherence

.........

ooooooooo

.....

.....
ooooo
.....

.....
.....
.....
.....
.....
.....
.....

.....
.....
.....
.....
.....

.....
aaaaa
.....
.....
.....

.........

Nature Human

Pentium FDIY Error

Quantum Error Correction
Fight
Quantum Decoherence

Ariane 5

MCAS safety system engages

Horizontal down
tail

Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- guantum mechanics prohibits certain testing, e.g., assertions

Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

- Sl Y
on B—HE—0— @
Y

o [I— i
confirming the circuit by observation.... not scalable...

o0 l—7-10 ~u

L @

- @

:

H = e
%L_.‘

AN

Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

Qp 10) n
o B—0
o n B—EHD

o0 B—E
o0 l—7-10

A
B

=

QISKIT Compiler ERRORs

Much HARDER to detect!

L — = Serious Consequences!
A
lat—

confirming the circuit by observation.... not scalable...
= g E

1
1
a .
H
4

EEEEHHHEE:EE

Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

QISKIT Compiler ERRORs

Qo [0) st mz

QO =_é - Much HARDER to detect!

e o Do _oa

Q 1o f—— 710 ? Serious Consequences!
)

H= WA RNWJ)

v [B—I8
confirming the circuit by observation.... not scalable... Similar Concerns

on l—
in classical !

More SERIOUS

o n o n (o E
E E o In quantum !

AR

il
li

EEEEHHHEE:EE

Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE
Microsoft Research Ltd., Cambridge, UK Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for

Computing Research GCC : many bugs in software testing
CompCert: a certified “GCC”, bug-free

TONY HOARE
Microsoft Research Ltd., Cambridge, UK Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for
Computing Research

GCC : many bugs in software testing

CompCert: a certified “GCC”, bug-free

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Journal of the ACM, Vol 50, 2003

............. =
....................... w wg B Imperative Programs SQL .2@
: . Language: 3§53 . ~ iapplication' .
;%}lﬁt:: funtime ; ggig §§C—% gg Quick-
® S %5 Q i Coq + Functional ‘5&" Chick
. ' U]
g a g I)s‘ggghsle g(Galhna (Coq))..: Programs ‘g
-g (Spec of C program §'§ compiler
'3 Program Floyd g 2' - QI GHC frontend
] Logic proof 03) o(Core Haskell)
8 » o a0T g 29 : (unverified) :
Z & (Concurrent (Verifiable C = E GHC compiler
't: E% soundness fsoundness : :
3 ClightX g = proof proof Clight LLVM)
: to LLVM .
o o Concurrent (Clight e tvm | :
. -~ 93 ' compiler | : %)%;t{rl}g !
1Y
compiler - concurrencyf [CompCert EE 'E phase : unv}eigsféed ;
) correctness | [optimizing [§© 4 .
> proof compiler d g LLVM)
e :
x86 or ARM Instruction Set Architecture > S LLVM i LLY'M 5
— S| compiler § ¢ ferifita
~CGuleny) CC DO ¢ prase | i phwe
- . v
O [l jons, ~ Machine -
'&' = mgailnsjfalzitggzns | @ = models and E =) x86 or ARM ISA
A g proofs E 82 memory é =
g 8 (T) 8@ models 6 Reist
thin lines are ~ . egister
o) § colle{boraltitons (5) ~(Core Verllog Transfer
- external to

DeepSpec group

x86/ARM RTL) Language

Verified II
Software
Toolchain Il

CERTIKOS
l ellvm
verified
LLVM
W— Certi\X Coq

Certified software: a solution to validation of q. software

Software Writing

2sting
Coq Theorem Prover g-free

Proof
Assistant

— x86

'Guest:: Lan
' VM © 1u

()

\. J

Code \ 1
7

Extremely strong
CertiKOS
0.5, guarantees about

kernel
|
~rad \ actual S)’Stelll. J IKOS

\ J

CertiKOS
(Shao)

Proofs Writing

(1) Ensure correctness of code by construction.

(2) Scalability for quantum based on symbolic proofs. 5%

-2 o 3 . Register
(5) Core Verilog Transfer

x86/ARM RTL) Language

Project
(researcher)

Y Kami

JOINT CENTER FOR
QUANTUM INFORMATION 7 UM
AND COMPUTER SCIENCE

High-level Language
E.g. QWIRE, Quipper, Q#

(Verified Optimizer for Quantum Circuits)

VOQC

OCaml Coq

Hardware Description

E.g. Gate set, connectivity

constraints

OpenQASM

General Purpose IR

source
SQIR

source
program

source

ourc E.g. SQIRE, Open QASM, Quil
circuit

/‘\ /"\
. .
“ R P
Y 1 1
- [N [N
- 4 ~ SS ~ S
I 4 S . N
o Sso SoN AN
S0 SN SO
NS LY L Y
<0] N
N U !
tORY
]

circuit
s vOQC 5 vOQC 2021
> optimizers, | | G optimizers, Machine—speciﬁc IR
) circuit & circuit
=] mapper) mapper
, ;
I
! t t
| arge
oot | SR Spec -
: circuit Hardware Instructions
|
|

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq,.

JOINT CENTER FOR
QUANTUM INFORMATION 7 UM
AND COMPUTER SCIENCE

High-level Language
E.g. QWIRE, Quipper, Q#

(Verified Optimizer for Quantum Circuits)

VOQC

OCaml Coq

Hardware Description

E.g. Gate set, connectivity

constraints

OpenQASM

General Purpose IR

source

source source

E.g. SQIRE, Open QASM, Quil

/‘\ /"\
. .
“ R P
Y 1 1
- [N [N
- 4 ~ SS ~ S
I 4 S . N
o Sso SoN AN
S0 SN SO
NS LY L Y
<0] N
N U !
tORY
]

o SQIR
circuit circuit program
s vOQC 5 vOQC 2021
> optimizers, | | G optimizers, Machine—speciﬁc IR
) circuit & circuit
=] mapper) mapper
, ;
I
! t t
| arge
oot | SR Spec -
! circuit Hardware Instructions
|
|

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq,.

Our infrastructure powerful enough:
an end-to-end implementation of Shor’s algorithm & its correctness proof.

out Today's Tutonal:

Goal: Some Basic Quantum Computing & PL + References

(1) Introduction to Quantum Computing and Potential Roles of
Programming Languages (29 min+30Q8&A)

[(2) A Mini-Course of Quantum Hoare Logic on Quantum While
Language BOmin+508&A)

(3] Discussion on existing and potential Programming Language
research opportunities (20 min+508&A)

Reference: tutorial slides and some references are
available at https://www.cs.umd.edu/~xwu/mini lib.htmi

[=]r

https://www.cs.umd.edu/~xwu/mini_lib.html

