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Wu:  assistant professor at UMD working on quantum computing 

           from CS perspective in general. 

Teaching in Q. Computing

Disclaimer: perspectives and claims are potentially limited

or biased by personal knowledge. 



Outline

  (1) Introduction to Quantum Computing and Potential Roles of  

        Programming Languages                            (25  min + 5 Q & A )


  (2) A Mini-Course of Quantum Hoare Logic on Quantum  While              

         Language                                                               (30 min + 5 Q & A )


  (3) Discussion on existing and potential Programming 

         Language research opportunities        (20  min + 5 Q & A)

Reference: tutorial slides and some references are 
available at  https://www.cs.umd.edu/~xwu/mini_lib.html 

https://www.cs.umd.edu/~xwu/mini_lib.html
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It Isn’t A Magic Bullet That Solves 
All Problems Instantly

NP

NP-complete
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Factoring

BQP

It Isn’t A Simple Matter of Trying 
All Possible Answers In Parallel

But Nor Is It Science Fiction

Credit: Scott Aaronson
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Experimental Comparison of Two Quantum Computing Architectures
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2National Science Foundation, Arlington, VA 22230
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4Microsoft Research, Redmond, WA 98052
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We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based
on di↵erent technology platforms. One is a publicly accessible superconducting transmon device [1]
with limited connectivity, and the other is a fully connected trapped-ion system [2]. Even though the
two systems have di↵erent native quantum interactions, both can be programmed in a way that is
blind to the underlying hardware, thus allowing the first comparison of identical quantum algorithms
between di↵erent physical systems. We show that quantum algorithms and circuits that employ more
connectivity clearly benefit from a better connected system of qubits. While the quantum systems
here are not yet large enough to eclipse classical computers, this experiment exposes critical factors
of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the
results suggest that co-designing particular quantum applications with the hardware itself will be
paramount in successfully using quantum computers in the future.

Inspired by the vast computing power a universal quan-
tum computer could o↵er, several candidate systems
are being explored. They have allowed experimental
demonstrations of quantum gates, operations, and algo-
rithms of ever increasing sophistication. Recently, two ar-
chitectures, superconducting transmon qubits [3–7] and
trapped ions [2, 8], have reached a new level of matu-
rity. They have become fully programmable multi-qubit
machines that provide the user with the flexibility to im-
plement arbitrary quantum circuits from a high-level in-
terface. This makes it possible for the first time to test
quantum computers irrespective of their particular phys-
ical implementation.

While the quantum computers considered here are still
small scale and their capabilities do not currently reach
beyond small demonstration algorithms, this line of in-
quiry can still provide useful insights into the perfor-
mance of existing systems and the role of architecture
in quantum computer design. These will be crucial for
the realization of more advanced future incarnations of
the present technologies.

The standard abstract model of quantum computa-
tion assumes that interactions between arbitrary pairs
of qubits are available. However, physical architectures
will in general have certain constraints on qubit connec-
tivity, such as nearest-neighbor couplings only. These re-
strictions do not in principle limit the ability to perform
arbitrary computations, since SWAP operations may be
used to e↵ect gates between arbitrary qubits using the
connections available. For a general circuit, reducing a
fully-connected system to the more sparse star-shaped or
linear nearest-neighbor connectivity requires an increase
in the number of gates of O(n), where n is the number

(a) 4

5

3

2

1

FIG. 1. Graphic representations of the two systems: (a) the
superconducting qubits connected by microwave resonators
(Credit: IBM Research), and (b) the linear chain of trapped
ions connected by laser-mediated interactions. Insets: Qubit
connectivity graphs, (a) star-shaped and (b) fully connected.

of qubits [9]. How much overhead is incurred in practice
depends on the connections used in a particular circuit
and how e�ciently they can be matched to the physical
qubit-to-qubit interaction graph.

In this article, we make use of the public access re-
cently granted by IBM to a 5-qubit superconducting de-
vice (illustrated in fig.1(a)) via their “Quantum Experi-
ence” cloud service [1]. This allows us to repeat algo-
rithms that we perform in our own ion trap experiment
on an independent quantum computer of identical size
and comparable capability but with a di↵erent physical
implementation at its core.
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Quantum Computing (T)

Computation can be 

carried out by  Q1, Q2, ⋯, QT

Classical Computing (T)

Computation can be 

carried out by  P1, P2, ⋯, PT

Quantum Simulation

Nature isn't classical, and if you want to make a 
simulation of Nature, you'd better make it quantum 
mechanical, and by golly it's a wonderful problem, 
because it doesn't look so easy.

                       Richard Feynman, 1982 

Simulating quantum systems is critical for the scientific discovery for natural science

include physics, chemistry, biology, material science, and so on. And nowadays, it 
consumes a significant amount of our HPC computing power. 
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- Linear systems
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It was a good surprise that quantum physics

 can help solve classical problems that 

 look nothing like quantum physics at all! 

Any high-level intuition why?

Quantum Duality :


                        Particle  +  Wave

Interference of Waves :
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Make Interference Work:

Active Noise-Canceling! 

Make Interference Work for Computation:
Quantum Computation: Get computational paths leading to incorrect 
answers to interfere destructively and cancel each other out.

Randomized Computation: Probabilities of computational paths 
leading to incorrect answers only add up, never cancel out. 

Quantum vs Randomized:
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A Rough Timeline of Quantum Applications
NOW:  Quantum Supremacy
Computational tasks, not necessarily useful, which is 

feasible to implement w/ current q. machines, but 

hard to simulate by classical computation. 

Google: Random Circuit Sampling USTC: Boson Sampling 
A Milestone Toward Useful Quantum Computation

NISQ:  Noise Intermediate-Scale Quantum machines    ~ near future

50 ~ 200, ~ 1000 controllable but noisy qubits, no fault-tolerant qubits 

Or special-purpose quantum machines, like analog quantum simulators 

Quantum Simulation

Variational Q. Methods

Other quantum applications not in the computation domain:  quantum sensing,  quantum communication

Fault-Tolerant QC:  ~ unknown future, a lot of uncertainty here

- Linear systems
- Graph problems (minimum spanning tree, 

connectivity, shortest path, triangle finding, 
etc.)

- Formula evaluation
- Decomposing groups (abelian, dihedral, etc.)
- ……



The Role of Programming Languages
 Like the role of PL played for any other computing models, many 
similar first-principle questions can be asked in the context of 
quantum computing as well! 



The Role of Programming Languages
 Like the role of PL played for any other computing models, many 
similar first-principle questions can be asked in the context of 
quantum computing as well! 
 But of course, quantum computing model demonstrates some 
fundamental differences and unique needs, which requires new 
techniques to deal with. 



The Role of Programming Languages
 Like the role of PL played for any other computing models, many 
similar first-principle questions can be asked in the context of 
quantum computing as well! 
 But of course, quantum computing model demonstrates some 
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Disclaimer: perspectives and claims are potentially limited or biased by personal knowledge. 

How to Program Q. Applications, Debug, and Verify Correctness?
How to Develop Software for Q. Computing, e.g., compiler, system?
How to Design and Implement Architecture for Quantum Computing?
How to Handle Quantum Security Issues in Design&Implementation?
How to Scale and Automate the Design of Quantum Hardware ?
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THEORY:  quantum lambda-calculus, functional quantum PL, q. while language 
               semantics in various pictures, q. Hoare logic and verification, …

LANGUAGES:  Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR), 
                          QWIRE/SQIR (embedded in Coq), SILQ, …                             <- academia  
      python-lib      Qiskit (IBM),  Cirq (Google),  Forrest (Rigetti), Braket (AWS),   <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs       

(3) lack of many desirable analyses, automation, & optimization: a 

     lot of burdens on the programmers

Verifying the circuit 

by observation


…. not scalable …

(2) lack of scalable verification: very hard to write correct programs
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How to Develop Software for Q. Computing, e.g., compiler, system?

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers. 
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions 

A possible solution :  fully certified software, e.g., VOQC (POPL 2021)
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How to Design and Implement Architecture for Quantum Computing?

ibmq_toronto

Mapping, Error Mitigation, …
approximate computing

X. Fu et al MICRO 17

A lot of controlling 
operations need to be 
located close to 
quantum chips for 
small responsive time. 

ISA + Fast Compilation
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How to Handle Quantum Security Issues in Design and Implementation?

Verification of Quantum Cryptography:  
                  Relational Quantum Hoare Logic (Unruh; Barthe et al.)

Quantum Cryptanalysis: 
                 Resource estimation of Complex Quantum Attack Programs

Post-Quantum Cryptography: 
                 Classical Cryptographic Systems Resilient to Quantum Attacks

For Classical Cryptographic Systems  
               
           (1) Identify their post-quantum security 
           (2) automate the procedure to upgrade its post-quantum security 
           (3) formal post-quantum security proofs

Formally generated security analysis will provide not only efficient and high 
assurance proofs that can replace the tedious and error-prone analysis for 
experts, but also independently verifiable proofs that can be used by security 
practitioners without much quantum knowledge.
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How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

Neutral Atoms Credit: arXiv:2006.12326

SNAPL 2019

Demonstrate A Lot of Design Choices  
Hard to Scale without Automatic Tools              

QRAM Architecture

Credit: ArXiv 0807.4994

Applies to Quantum Hardware too!              
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Summary

Quantum PLs

Software Tool-chain

Architecture 

Security

Hardware Design

some

a little

a little

a little

almost none

Satisfactory

More questions could be asked !

More details will come back in Part III of the tutorial.
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What is Quantum Computing?

A Quantum Computer 

An Operation O —>  A Quantum Physical Evolution Q

Computation: 


Evolution of the Machine:  


The accumulative evolution carries some computation!

Q1, Q2, Q3, ⋯

Consider quantum machines of finite-dimension.  Hilbert space -> Euclidean space

Four Postulates for Quantum Mechanics:
State Space postulate 
Evolution postulate  — No-Cloning theorem  
Composite System postulate 
Measurement postulate 

The Math Model of Quantum Machines comes from the math model of s.Qi
(semantics)
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wave in

continuous 


domain

A quantum bit (qubit) refers to a quantum system of dimension 2

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

classical 0 and 1: classical bits are special 
cases of quantum.  
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Evolution postulate: evolution of quantum systems is unitary  

Unitary evolution is a simple consequence of being linear and preserving  normℓ2
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Evolution postulate: evolution of quantum systems is unitary  

Unitary evolution is a simple consequence of being linear and preserving  normℓ2

Precisely, 

Unitary matrices

I Dynamics of a closed quantum system is described by a
unitary matrix:

|yi 7! U|yi

I A matrix U is unitary if U†U = I, where U† is the
conjugate and transpose of U

I Hadamard matrix

H =
1
p

2

✓
1 1
1 �1

◆

is an unitary operator in the 2-dimensional Hilbert space
I H|0i = |+i, H|1i = |�i

since  is also a quantum state, so that  U |ψ⟩

⟨ψ |U†U |ψ⟩ = 1,∀ |ψ⟩ ⟹ U†U = I unitary (reversible)
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Examples of Common Quantum GatesQuantum gates – one-qubit gates

I Pauli gates:

X =

✓
0 1
1 0

◆
, Y =

✓
0 �i
i 0

◆
, Z =

✓
1 0
0 �1

◆

I Hadarmard gate:

H =
1
p

2

✓
1 1
1 �1

◆

I Rotation about x�axis of the Bloch sphere:

Rx(q) =

✓
cos q

2 �i sin q
2

�i sin q
2 cos q

2

◆

Quantum gates – two-qubit gate

I The controlled-NOT (CNOT) gate:

CNOT =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA

I CNOT generates entanglement: separable state |+ 0i is
transformed to EPR (Einstein-Podolsky-Rosen) pair:

CNOT(|+ 0i) =
1
p

2
(|00i+ |11i)

Single-qubit Gate

Two-qubit Gate
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Quantum gates – two-qubit gate

I The controlled-NOT (CNOT) gate:

CNOT =
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1 0 0 0
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transformed to EPR (Einstein-Podolsky-Rosen) pair:

CNOT(|+ 0i) =
1
p

2
(|00i+ |11i)

Single-qubit Gate

Two-qubit Gate

NO-CLONING Theorem
Assume a cloning procedure U, then 

 U |0⟩ |0⟩ = |0⟩ |0⟩  U |1⟩ |0⟩ = |1⟩ |1⟩
Consider an arbitrary state |ψ⟩ = α |0⟩ + β |1⟩



                  
U |ψ⟩ |0⟩ = α |0⟩ |0⟩ + β |1⟩ |1⟩

≠ |ψ⟩ |ψ⟩
CONTRADICTION!
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Quantum measurements

I The way to extract information about a quantum system is
quantum measurement.

I In quantum computation, measurement is used to read out
a computational result.

I A measurement is modelled as a set of operators M = {Mm}

with Âm M†
mMm = I.

I If a quantum system was in pure state |yi before the
measurement, then:

I the probability that measurement outcome is l:

p(m) = ||Mm|yi||
2

where || · || is the length of vector.
I the state of the system after the measurement:

Mm|yip
p(m)
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Quantum measurements

I The way to extract information about a quantum system is
quantum measurement.

I In quantum computation, measurement is used to read out
a computational result.
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More advanced math formulation of ensemble of quantum states
Density matrices

I In the n-dimensional Hilbert space Cn, an operator is
represented by an n ⇥ n complex matrix A.

I The trace of an operator A is tr(A) = Âi Aii (the sum of the
entries on the main diagonal).

I A positive semidefinite matrix r is called a partial density
matrix if tr(r)  1; in particular, a density matrix r is a
partial density matrix with tr(r) = 1.

Mixed states = density matrices

I Matrix |yihy| is the multiplication of column vector |yi
and the row vector hy| (the conjugate and transpose of
|yi).

I For any mixed state {(p1, |y1i), ..., (pk, |yki)},

r = Â
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is a density operator
I For any density operator r, there is a mixed state

{(p1, |y1i), ..., (pk, |yki)} such that

r = Â
i

pi|yiihyi|.

I In particular, a pure state |yi is identified with the density
operator r = |yihy|.
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I Density matrix:

r =
2
3
|0ih0|+

1
3
|�ih�| =

1
6

✓
5 �1
�1 1

◆

Mixed states = density matrices

I Mixed state of a qubit:

{(
2
3

, |0i), (
1
3

, |�i)} with |�i =
1
p

2
(|0i � |1i)

I Density matrix:

r =
2
3
|0ih0|+

1
3
|�ih�| =

1
6

✓
5 �1
�1 1

◆
Example:



Quantum While-Language
Quantum While-Language

Syntax

A core language for imperative quantum programming

S ::= skip | q := |0i
|S1; S2

| q := U[q]
| if (⇤m · M[q] = m ! Sm) fi
| while M[q] = 1 do S od



Quantum While-Language
Quantum While-Language

Syntax

A core language for imperative quantum programming

S ::= skip | q := |0i
|S1; S2

| q := U[q]
| if (⇤m · M[q] = m ! Sm) fi
| while M[q] = 1 do S od

Classically, one has 

       t ~ expression.


However, due to no-cloning, 

    1) initialization 

    2) unitary operation

u := t



Quantum While-Language
Quantum While-Language

Syntax

A core language for imperative quantum programming

S ::= skip | q := |0i
|S1; S2

| q := U[q]
| if (⇤m · M[q] = m ! Sm) fi
| while M[q] = 1 do S od

Classically, one has 

       t ~ expression.


However, due to no-cloning, 

    1) initialization 

    2) unitary operation

u := t

Quantum Data, Classical Control 



Quantum While-Language
Quantum While-Language

Syntax

A core language for imperative quantum programming

S ::= skip | q := |0i
|S1; S2

| q := U[q]
| if (⇤m · M[q] = m ! Sm) fi
| while M[q] = 1 do S od

Classically, one has 

       t ~ expression.


However, due to no-cloning, 

    1) initialization 

    2) unitary operation

u := t

Quantum Data, Classical Control 

Classical control requires reading information out of quantum systems. 


However, by measuring the guard, it leads to 


    (1) a probabilistic choice of branches 


    (2) a collapse of the guard state before entering each branch
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|RihR|⌦ |i� 1ihi|.

coin space = {L, R}

position space = {0, …, n-1}

Create a new coin in superposition! 

Random walk based on that coin! 

Terminal of loop: position 1

Goal: reason about this program
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Operational Semantics

A configuration: hS, ri

I S is a quantum program or E (the empty program)
I r is a partial density operator in
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Capture the Collapse of the Guard state. 
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Semantics of Quantum While-Language
Denotational Semantics

Semantic function of quantum program S:

JSK : D(Hall) ! D(Hall)

JSK(r) = Â{|r0 : hS, ri !⇤
hE, r0i|} for all r 2 D(Hall)

Observation:

tr(JSK(r))  tr(r)

for any quantum program S and all r 2 D(Hall).

I tr(r)� tr(JSK(r)) is the probability that program S
diverges from input state r.
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I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.
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Semantics Divergence



Quantum Hoare logic for Partial CorrectnessProof System for Partial Correctness

(Axiom Sk) {P}Skip{P}

(Axiom Ini)
type(q) = Boolean :

{|0iqh0|P|0iqh0|+ |1iqh0|P|0iqh1|}q := |0i{P}

type(q) = integer :

{

•

Â
n=�•

|niqh0|P|0iqhn|}q := |0i{P}

(Axiom Uni) {U†PU}q := U[q]{P}

Proof System for Partial Correctness

(Rule Seq)
{P}S1{Q} {Q}S2{R}

{P}S1; S2{R}

(Rule IF)
{Pm}Sm{Q} for all m

{Âm M†
mPmMm}if (⇤m · M[q] = m ! Sm) fi{Q}

(Rule LP)
{Q}S{M†

0PM0 + M†
1QM1}

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}

(Rule Ord)
P v P0

{P0
}S{Q0

} Q0
v Q

{P}S{Q}
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Parts of Classical Hoare Logic

Theorem (Soundness and Completeness)

For any quantum program S and quantum predicates P, Q,

|=par {P}S{Q} if and only if `PD {P}S{Q}.

Ying. TOPLAS, 2011. 



Quantum Hoare logic for Total Correctness
Proof System for Total Correctness

Let P be a quantum predicate and e > 0. A function

t : D(Hall) (density operators) ! N

is called a (P, e)-ranking function of quantum loop:

while M[q] = 1 do S od

if for all r:
1. t(JSK(M1rM†

1))  t(r);
2. tr(Pr) � e implies t(JSK(M1rM†

1)) < t(r)

Proof System for Total Correctness

(Rule LT)

(1) {Q}S{M†
0PM0 + M†

1QM1}

(2) for any e > 0, te is a (M†
1QM1, e)�ranking

function of loop
{M†

0PM0 + M†
1QM1}while M[q] = 1 do S od{P}

Theorem (Soundness and Completeness)
For any quantum program S and quantum predicates P Q,

|=tot {P}S{Q} if and only if `TD {P}S{Q}.

[2] M. S. Ying, Floyd-Hoare logic for quantum programs, ACM
Transactions on Programming Languages and Systems 2011



Quantum Hoare logic and Invariants : POPL17



Quantum Hoare logic and Invariants : POPL17

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

Control - Flow - Graph
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Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

Control - Flow - Graph

Invariants
I A set P of paths is prime if for each

p = l1
E1
! ...

En�1
! ln 2 P

its proper initial segments l1
E1
! ...

Ek�1
! lk /2 P for all k < n.

I Let G = hH, L, l0,!i, Q a quantum predicate (initial
condition), l 2 L. An invariant at l is a quantum predicate O
such that for any density operator r, any prime set P of
paths from l0 to l:

tr(Qr)  1 � tr (EP(r)) + tr (OEP(r))

where EP = Â {|Ep : p 2 P|} .
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O0

O1

O2

O3



Finding Quantum Invariants
Theorem (Partial Correctness)

Let P be a quantum program. If O is an invariant at lPout in SP,
then

|=par {Q}P{O}



Finding Quantum Invariants
Theorem (Partial Correctness)

Let P be a quantum program. If O is an invariant at lPout in SP,
then

|=par {Q}P{O}

Inductive Assertion Maps

I Given G = hH, L, l0,!i with a cutset C and initial
condition Q.

I An assertion map is a mapping h from each cutpoint l 2 C
to a quantum predicate h(l).

I Pl: the set of all basic paths from l to some cutpoint.
I lp: the last location in a path p.
I An assertion map h is inductive if:

I Initiation: for any density operator r:

tr(Qr)  1 � tr
⇣
EPl0

(r)
⌘
+ Â

p2Pl0

tr (h(lp)Ep(r)) ;

I Consecution: for any density operator r, each cutpoint
l 2 C:

tr(h(l)r)  1 � tr
�
EPl(r)

�
+ Â

p2Pl

tr (h(lp)Ep(r)) .

Reducing Global Constraints  
Into Local Ones
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to a quantum predicate h(l).

I Pl: the set of all basic paths from l to some cutpoint.
I lp: the last location in a path p.
I An assertion map h is inductive if:

I Initiation: for any density operator r:

tr(Qr)  1 � tr
⇣
EPl0

(r)
⌘
+ Â

p2Pl0

tr (h(lp)Ep(r)) ;

I Consecution: for any density operator r, each cutpoint
l 2 C:

tr(h(l)r)  1 � tr
�
EPl(r)

�
+ Â

p2Pl

tr (h(lp)Ep(r)) .

Reducing Global Constraints  
Into Local Ones

Reduce to a SDP (Semi-Definite Programming) Problem

I Assume C = {l0, l1, ..., lm}.
I Write Oi = h(li) for i = 0, 1, ....m.
I E

⇤

ij = Â{|E
⇤
p : basic path li

p
) lj |} for i, j = 0, 1, ..., m.



Theorem
Invariant Generation Problem is equivalent to find complex
matrices O0, O1, ..., Om satisfying the constraints:

0 v Â
j
E
⇤

0j(Oj) + A,

0 v Â
j 6=i

E
⇤

ij (Oj) + (E ⇤

ii � I)(Oi) + Ai (i = 0, 1, ..., m),

0 v Oi v I (i = 0, 1, ..., m),

where: (
A = I � Âj E

⇤

0j(I)� Q,
Ai = I � Âj E

⇤

ij (I) (i = 0, 1, ..., m).

SDPs for Quantum Invariants
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Operator Definition
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Â
i=0

|LihL|⌦ |i 1ihi|+
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Â
i=0
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O0
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Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)



Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

O0

O3

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Using SDP Solver 

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.) Namely, QW always terminates 

at the position  regardless 
of the input state 

|1⟩
ρ0 .



Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

O0

O3

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Using SDP Solver 

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.) Namely, QW always terminates 

at the position  regardless 
of the input state 

|1⟩
ρ0 .

Drawback: all these matrices 
are exponentially large. 



Further Readings:    Thank You!  Q & A  Solving Constraints: Use SDP solvers!

Applications

I Quantum walk on an n-circle.
I Quantum Metropolis sampling on n-qubits.
I Repeat-Until-Success.
I Quantum Search.
I Quantum Bernoulli Factory.
I Recursively written Quantum Fourier Transformation.

[3] M. S. Ying, S. G. Ying and X. Wu, Invariants of quantum
programs: characterisations and generation, POPL 2017.

Solving Constraints: Use SDP solvers!
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Outline

  (1) Introduction to Quantum Computing and Potential Roles of  

        Programming Languages                            (25  min + 5 Q & A )


  (2) A Mini-Course of Quantum Hoare Logic on Quantum  While              

         Language                                                               (30 min + 5 Q & A )


  (3) Discussion on existing and potential Programming 

         Language research opportunities        (20  min + 5 Q & A)

Reference: tutorial slides and some references are 
available at  https://www.cs.umd.edu/~xwu/mini_lib.html 

https://www.cs.umd.edu/~xwu/mini_lib.html


Summary from Part I

Quantum PLs

Software Tool-chain

Architecture 

Security

Hardware Design

some

a little

a little

a little

almost none

Satisfactory

From the implementation perspective


Highlight some concrete problems!    (Not a survey)  



Design of Quantum Programming Languages
Gap: (1) too-low-level-abstraction: very hard to write complex programs       

(3) lack of many desirable analyses, automation, & optimization: a 

     lot of burdens on the programmers

Verifying the circuit 

by observation


…. not scalable …

(2) lack of scalable verification: very hard to write correct programs
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by observation


…. not scalable …

(2) lack of scalable verification: very hard to write correct programs

Existing work on type enforced correctness in QPLs

No-Cloning: use linear types for quantum variables (Quipper, QWIRE)

Ancilla: keep track of the scope of ancilla qubits (Quipper)
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Candidate applications: Quantum Simulation 

                                       Quantum Variational Methods

Question 3:  allow program analysis w/ high-level abstractions?
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GAP:  existing QPLs focus on describing circuits, while not using other 

           common high-level abstractions, e.g., objects, data structures. 

Question 4:  allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness) 

 But using classical DS in quantum faces many issues:
e.g., data manipulation is generally non-reversible, even if computation can be made so. 
        Reversibility alone does not guarantee correct quantum interference b/c workspace.  
        Efficiency issues about reimplementing DS w/ above constraints.

 However, well-defined classical problems that PL might help with. 

Question 5:  allow programmers to define quantum object/DS?

Allow direct modeling of quantum hardware components (QRAM, Sensors)

Consider quantum stack ~ truly quantum recursion ~ quantum apps
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GAP:  the drawback of q. Hoare logic make existing verification schemes 
not scalable.  Moreover, how about verification in more general settings?

Question 1:  how to make verification of quantum programs scalable?

 Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines: 
symbolic, abstract interpretation, or so, but certainly nontrivial!  

Verification w/ quantum machines: 
Largely unexplored! Run-time verification or other possibility?

Question 2:  how to do verification of quantum internet applications?

Quantum Internet/Communication is another recent interest

Develop Q Hoare logic for parallel, concurrent, distributed programs.
Some preliminary results exist. Essential difficulty exists due to quantum correlations. 
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GAP: assertion-based debugging might in general distribute q. systems. 

         Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in 

           principle resolves the issue for capable quantum computers. How about NISQ?

Question 3:  how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple
e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors
For NISQ machines, all operations could be erroneous 

Need also to be scalable
Classical simulation hard to scale; large q operations might contain more errors

Likely to be application-specific

Quantum Simulation Variational Quantum 
Methods
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GAP: most of existing tool-chains compile to circuits with non-native gates 
on the hardware. Lead to very inefficient use of NISQ machines. 

Question 2: direct compilation to analog / special purpose q machines?

Analog machine modeled 
after the physics to simulate 

Unexplored yet. But would be of great interests!

Classical Examples:

  Achour et al. (PLDI16)

   Achour & Rinard (ASPLOS 20)

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or so  

examples identified, but no systematic study 
for e.g., efficiency, and verification 

Shi et al. Proceedings of the IEEE, Jun 2020
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the near term. 


• Near-term practical quantum applications must focus on Noisy and 
Intermediate-Scale Quantum (NISQ) computers, where precisely 
controllable quits are expensive, error-prone, and scarce. 


Goal: reliable quantum programs with resource optimization!

• Quantitive guarantee on the reliability/accuracy of quantum programs 
based on specifi

• High-level abstraction of error-handling primitives in quantum 
programs. 

• Automatic error-resource-optimization on a per-program basis!  
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Methodology

• Elevate the handling of errors to the level of programming language. 

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.  

An important classical tool:  approximate computing ! 

• Return possibly inaccurate/approximate results! 
    - unreliable hardware 
    - limited computational resource

• Good when approximate results are sufficient for applications! 
    - vision,  machine learning;  also with guarantees for critical data

• Various techniques developed in classical PL literature. 
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The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003
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Verified Optimization in a Quantum Intermediate Representation

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks
University of Maryland, College Park

We present a simple quantum language we call SQIRE 
(pronounced “squire”) that can be used as an 
intermediate representation (IR) in a certified compiler for 
quantum programs. SQIRE is implemented in Coq [2], on 
top of libraries developed for the QWIRE circuit language 
[8]. This allows us to formally verify properties of SQIRE 
programs and program transformations. We demonstrate 
the power of SQIRE as a compiler intermediate 
representation by verifying a number of useful program 
transformations. For example, we verify soundness of an 
optimization that removes unnecessary X gates from a 
unitary program. We also consider a transformation that 
turns general SQIRE programs into SQIRE programs that 
can run on a linear nearest neighbor architecture. 

The full paper is available at [5].

The corresponding code is available at [3].
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Our work is a first step towards a verified compiler for 
quantum programs. In the long term, we envision a fully-
verified compilation stack from high-level quantum 
languages to hardware instructions, as shown below.

The transformation from the high-level language to the 
general purpose IR must preserve the semantics of the 
source program, so that properties proved of the source 
program are also true in the IR representation.
Optimizations and machine-specific transformations 
applied to the general purpose IR to produce machine-
specific IR must similarly preserve the semantics of the
program, and also ensure that the produced IR satisfies 
the relevant hardware constraints. Finally, the compiler 
should not introduce errors when translating from the 
low-level IR to machine instructions.

We are currently working on:
• Additional verified optimizations and mapping 

algorithms, taking inspiration from existing compilers 
for quantum programs like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce qubit and 
gate count to make programs more feasible to run on 
near-term machines, circuit mapping aims to address the 
connectivity constraints of near-term machines. Circuit 
mapping algorithms take as input an arbitrary program 
and output a program that respects the connectivity 
constraints of some underlying architecture

We have verified a naïve mapping algorithm for a toy
architecture. We assume a linear nearest neighbor (LNN) 
architecture where each qubit can only interact with its 
immediate neighbor. We map a program to this 
architecture by adding SWAP operations before and after 
every CNOT so that the target and control are adjacent 
when the CNOT is performed, and are returned to their 
original positions before the next operation. 

We have proven that this transformation is sound, and 
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of 
a piece of software is known as formal verification.  Formal 
verification has been used in classical computing for 
many years to prove correctness and security properties of 
critical code. However, formal verification is particularly 
useful in the field of quantum computing, where 
standard software assurance techniques such as unit 
testing and runtime debugging are infeasible.

Examples of formal verification that have been applied to 
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that 
a quantum program satisfies some specification. For 
example, consider a program describing the quantum
teleportation protocol. The goal may be to prove that, 
given a Bell pair and a qubit in any state, the program will 
correctly “teleport” the input qubit to one of the elements 
of the Bell pair.

Another useful application of formal verification, which 
has received relatively little attention from the quantum 
formal verification community, is proving the correctness 
of program transformations. Verifying program 
transformations allows the construction of certified
compilers, which are compilers that guarantee that the 
executable code they output behaves as specified by the 
input source program. Certified compilers are guaranteed 
not to introduce bugs in a program during compilation 
because they are correct by construction. The most 
famous example of a certified compiler (for classical 
computing) is CompCert [1], an optimizing compiler for C 
proved correct using the Coq proof assistant. 

Formal Verification

SQIRE supports five quantum programming constructs: 
skip, sequencing, unitary application, measurement of a 
single qubit, and resetting a single qubit to a fixed basis 
state. 

For simplicity, we support a fixed set of gates. This set can 
be extended in our implementation, or new gates can be 
defined in terms of built-in gates. For example, we define 
the SWAP operation as follows.

We can then state and prove properties about the 
semantics of the defined operations. For example, we can 
prove that the SWAP program swaps its arguments, as 
intended.

Example. Superdense coding is a protocol that allows a 
sender to transmit two classical bits, b1 and b2, to a 
receiver using a single quantum bit. The SQIRE program 
corresponding to the unitary part of the superdense
coding protocol is shown below.

Although SQIRE was designed to be used as an 
intermediate representation, we can also prove properties 
about SQIRE programs directly, since these programs and 
their semantics are embedded in Coq. For example, we 
can prove that the result of evaluating the program 
(superdense b1 b2) on an input state consisting of two 
qubits initialized to zero is the state ∣b1, b2⟩. In our 
development, we write this as follows.

In our full paper, we show examples of verifying properties 
of n-qubit GHZ state preparation, quantum teleportation, 
and the n-qubit Deutsch-Jozsa algorithm. 

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able 
to perform small computations before decoherence takes 
effect, compilers for quantum programs must apply 
sophisticated optimizations to reduce resource usage. 
These optimizations can be complicated to implement 
and are vulnerable to programmer error. It is thus 
important to verify that the implementations of program 
optimizations are correct. 

In general, we will be interested in proving that a 
transformation is semantics-preserving, meaning that the 
transformation does not change the behavior of the 
program. When a transformation is semantics-preserving, 
we say that it is sound. 

For example, consider the optimization, which removes 
skip operations from a program.

To prove that this transformation is semantics-preserving, 
we prove the following lemma.

In our full paper, we verify soundness of a more realistic 
optimization from [7], which removes unnecessary X 
gates from a unitary program. 
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(pronounced “squire”) that can be used as an 
intermediate representation (IR) in a certified compiler for 
quantum programs. SQIRE is implemented in Coq [2], on 
top of libraries developed for the QWIRE circuit language 
[8]. This allows us to formally verify properties of SQIRE 
programs and program transformations. We demonstrate 
the power of SQIRE as a compiler intermediate 
representation by verifying a number of useful program 
transformations. For example, we verify soundness of an 
optimization that removes unnecessary X gates from a 
unitary program. We also consider a transformation that 
turns general SQIRE programs into SQIRE programs that 
can run on a linear nearest neighbor architecture. 

The full paper is available at [5].
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Our work is a first step towards a verified compiler for 
quantum programs. In the long term, we envision a fully-
verified compilation stack from high-level quantum 
languages to hardware instructions, as shown below.

The transformation from the high-level language to the 
general purpose IR must preserve the semantics of the 
source program, so that properties proved of the source 
program are also true in the IR representation.
Optimizations and machine-specific transformations 
applied to the general purpose IR to produce machine-
specific IR must similarly preserve the semantics of the
program, and also ensure that the produced IR satisfies 
the relevant hardware constraints. Finally, the compiler 
should not introduce errors when translating from the 
low-level IR to machine instructions.

We are currently working on:
• Additional verified optimizations and mapping 

algorithms, taking inspiration from existing compilers 
for quantum programs like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce qubit and 
gate count to make programs more feasible to run on 
near-term machines, circuit mapping aims to address the 
connectivity constraints of near-term machines. Circuit 
mapping algorithms take as input an arbitrary program 
and output a program that respects the connectivity 
constraints of some underlying architecture

We have verified a naïve mapping algorithm for a toy
architecture. We assume a linear nearest neighbor (LNN) 
architecture where each qubit can only interact with its 
immediate neighbor. We map a program to this 
architecture by adding SWAP operations before and after 
every CNOT so that the target and control are adjacent 
when the CNOT is performed, and are returned to their 
original positions before the next operation. 

We have proven that this transformation is sound, and 
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of 
a piece of software is known as formal verification.  Formal 
verification has been used in classical computing for 
many years to prove correctness and security properties of 
critical code. However, formal verification is particularly 
useful in the field of quantum computing, where 
standard software assurance techniques such as unit 
testing and runtime debugging are infeasible.

Examples of formal verification that have been applied to 
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that 
a quantum program satisfies some specification. For 
example, consider a program describing the quantum
teleportation protocol. The goal may be to prove that, 
given a Bell pair and a qubit in any state, the program will 
correctly “teleport” the input qubit to one of the elements 
of the Bell pair.

Another useful application of formal verification, which 
has received relatively little attention from the quantum 
formal verification community, is proving the correctness 
of program transformations. Verifying program 
transformations allows the construction of certified
compilers, which are compilers that guarantee that the 
executable code they output behaves as specified by the 
input source program. Certified compilers are guaranteed 
not to introduce bugs in a program during compilation 
because they are correct by construction. The most 
famous example of a certified compiler (for classical 
computing) is CompCert [1], an optimizing compiler for C 
proved correct using the Coq proof assistant. 

Formal Verification

SQIRE supports five quantum programming constructs: 
skip, sequencing, unitary application, measurement of a 
single qubit, and resetting a single qubit to a fixed basis 
state. 

For simplicity, we support a fixed set of gates. This set can 
be extended in our implementation, or new gates can be 
defined in terms of built-in gates. For example, we define 
the SWAP operation as follows.

We can then state and prove properties about the 
semantics of the defined operations. For example, we can 
prove that the SWAP program swaps its arguments, as 
intended.

Example. Superdense coding is a protocol that allows a 
sender to transmit two classical bits, b1 and b2, to a 
receiver using a single quantum bit. The SQIRE program 
corresponding to the unitary part of the superdense
coding protocol is shown below.

Although SQIRE was designed to be used as an 
intermediate representation, we can also prove properties 
about SQIRE programs directly, since these programs and 
their semantics are embedded in Coq. For example, we 
can prove that the result of evaluating the program 
(superdense b1 b2) on an input state consisting of two 
qubits initialized to zero is the state ∣b1, b2⟩. In our 
development, we write this as follows.

In our full paper, we show examples of verifying properties 
of n-qubit GHZ state preparation, quantum teleportation, 
and the n-qubit Deutsch-Jozsa algorithm. 

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able 
to perform small computations before decoherence takes 
effect, compilers for quantum programs must apply 
sophisticated optimizations to reduce resource usage. 
These optimizations can be complicated to implement 
and are vulnerable to programmer error. It is thus 
important to verify that the implementations of program 
optimizations are correct. 

In general, we will be interested in proving that a 
transformation is semantics-preserving, meaning that the 
transformation does not change the behavior of the 
program. When a transformation is semantics-preserving, 
we say that it is sound. 

For example, consider the optimization, which removes 
skip operations from a program.

To prove that this transformation is semantics-preserving, 
we prove the following lemma.

In our full paper, we verify soundness of a more realistic 
optimization from [7], which removes unnecessary X 
gates from a unitary program. 
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About Today’s Tutorial:

Goal:  Some Basic Quantum Computing & PL + References

  (1) Introduction to Quantum Computing and Potential Roles of  

        Programming Languages                                   (25  min + 5 Q & A )


  (2) A Mini-Course of Quantum Hoare Logic on Quantum  While              

         Language                                                                      (30 min + 5 Q & A )


  (3) Discussion on existing and potential Programming Language

         research opportunities                                      (20  min + 5 Q & A)

Reference: tutorial slides and some references are 
available at  https://www.cs.umd.edu/~xwu/mini_lib.html 

https://www.cs.umd.edu/~xwu/mini_lib.html

