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Goal: An Invitation due to limited time
Cover Some Basic Quantum Computing & PL
Provide References / Pointers for further study

Format: Tutorial divided into 3 parts:

(1) Introduction to Quantum Computing and Potential Roles of
Programming Languages (29 min+30Q8&A)

[2) A Mini-Course of Quantum Hoare Logic on Quantum While
Language BOmin+508&A)

(3) Discussion on existing and potential Programming Language
research opportunities (20 min+508&A)



Wu: assistant professor at ump WoOrking on quantum computing
from CS perspective in general.




Wu: assistant professor at umn WOrking on quantum computin

Teaching in 0. Computing

Past Courses

This is a collection of courses that I have taught in the past for your references. Please be cautious as thes

University of Maryland, College Park (2017 - present)

= Complexity Theory (CMSC 652): graduate-level theory core course
= Fall 2017

= Introduction to Quantum Computing (CMSC/PHYS 457): undergraduate-level introduction to quar
= Spring 2018, Spring 2020, Spring 2021

= Introduction to Quantum Information Processing (CMSC 657): graduate-level introduction to quan
= Fall 2018, Fall 2019

University of Oregon (2015 - 2017)

= Intermediate Data Structure (CIS 313): undergraduate CS major theory course.
= Winter 2016, Fall 2016, Winter 2017.

= Introduction to Quantum Information Processing (CIS 410/510): senior undergraduate / graduate |
= Spring 2016, Spring 2017.

Mini-Library on Quantum Information and Computation

This page is meant to be a collection of representative and available references for the study and research of the theoretic:
as possible and will be regularly maintained. Send me an email if you have any good suggestion.

Expository Writings and Lecture Notes by myself

= Tutorial at POPL 2021: An Invitation to the Intersection of Quantum Computing and Programming Languages
= (Part I) A brief introduction to quantum computing and potential roles of programming languages

= (Part II) A mini-course on the verification of quantum while languages based on quantum Hoare logic

= (Part IIT) A discussion of existing and possible research directions at the intersection of quantum computing an«
= Lecture Notes (Fall 2019)

= Quantum Approximate Optimization Algorithm (QAOA)

= Introduction to Quantum Hoare Logic (slides)
= Lecture Notes (Fall 2018)

= Quantum Interactive Proofs and QIP=PSPACE

= Quantum Algorithms for Linear Equation Systems

= Quantum Algorithms for Semidefinite Programs

Scientific Reports from Relevant Research Communities

= National Academies of Sciences, Engineering, and Medicine. 2019. Quantum Computing: Progress and Prospects. Wa
= National Academies of Sciences, Engineering, and Medicine. 2020. Manipulating Quantum Systems: An Assessment «
= Quantum Frontiers Report on community input to the Nation's Strategy for Quantum Information Science, October, :
= Next Steps in Quantum Computing: Computer Science's Role: Computing Community Consortium Workshop Report
= More Reports at Quantum|Gov.

General Study: Courses, Lecture Notes & Textbooks

= Self-learning Materials for Beginners
= Why now is the right time to study quantum computing by A. Harrow.

= S. Aaronson: @UWaterloo Quantum Computing since Democritus
= M. Nielsen’s Quantum Computing for the determined: 22 short (5-15 mins) youtube videos, each explaining a b:
= 12th Canadian Summer School on Quantum Information Lecture Notes YouTubes
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(1) Introduction to Quantum Computing and Potential Roles of
Programming Languages (29 min+3(Q&A)

[2) A Mini-Course of Quantum Hoare Logic on Quantum While
language BOmMin+350&A)

(3] Discussion on existing and potential Programming
Language research opportunities (20 min+50&A)

Reference: tutorial slides and some references are
available at hitps://www.cs.umd.edu/~xwu/mini _lib.html
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It Isn’t A Simple Matter of Trying
All Possible Answers In Parallel
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Roadman in 2010s

A Quantum
COMPUTER

Super-conducting

IBM will soon launch a 53-qubit Google has reached quantum
supremacy — here's what it should
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Google Supremacy: RCS (2019) USTC: Boson Sampling (2020)




surge of Interests from Gov, Academia, & Industry

GO PR Heri MARK A. HOROWITZ,
CONSENSUS STUDY REPORT Stanford University, Chair

ALAN ASPURU-GUZIK, H. R. 6227

QUANTUM COMPUTING University of Toronto National Quantum Initiative Act

Progress and Prospects DAVID D. AWSCHALOM,
University of Chicago

BOB BLAKLEY,
Citigroup 3 4 8 - 1 1
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Princeton University

MICHELE MOSCA,

University of Waterloo

WILLIAM D. OLIVER,

Massachusetts Institute of Technology
KRYSTA SVORE,

Microsoft Research

UMESH V. VAZIRANI,

University of California, Berkeley

House Vote #442 -- 12/19/18

Gov: US (NSF, DOE + National Labs, DoD, NIST), China, Europe, ....
Industry: Google, IBM, Microsoft, Amazon, Alibaba, Tecent, Baidu, ....
Academia: #faculty in quantum computing ++

US GOV Policy & Efforts: ) (quantum|gov)




uantum Gomputing: still too early to call!
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The 2019 Gartner Hype Cycle for Artificial Intelligence, with quantum computing highlighted in yellow. Credit: Gartner
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CIENCES * ENGINEERING - MEDICINE

CONSENSUS STUDY REPORT

QUANTUM COMPUTING
Progress and Prospects

QUANTUM FRONTIERS
REPORT ON COMMUNITY INPUT TO THE NATION'S

STRATEGY FOR QUANTUM INFORMATION SCIENCE

Product of

Computer Science’s Role THE WHITE HOUSE

NATIONAL QUANTUM COORDINATION OFFICE

| Next Steps in Quantum Computing:

CCC October 2020

Computing Community Consortium

Reference: links are availahle at https://www.cs.umd.edu/
~Xwu/mini_lib.htmi
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An Operation O — — —> A Physical Evolution P
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Computation:
Evolution of the Machine: Py, P,, P, -+

The accumulative evolution carries some computation!

A Mechanical Computer



An Operation O — — —> A Physical Evolution P

Computation:
Evolution of the Machine: Py, P,, P, -+

The accumulative evolution carries some computation!

An Operation O —> A Quantum Physical Evolution Q

Computation:

Evolution of the Machine: Qy, O,, 05, -

The accumulative evolution carries some computation!

A Quantum Computer
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Assume a unit operation requires a unit time on respective machines.

Computation can be Computation can be
carried out by Py, P,, -+, Py carried out by Q, Q,, -*+, O7
Classical Computing (T) Quantum Computing (T)
Quantum Simulation

Nature isn’t classical, and 1f you want to make a

simulation cf Nature, you’c[ better make it quantum

mechanical, and Ey go(fy it’sa wondéq%[ Jaroﬁ[ém,

evolution t
time

because it doesn’t look so easy.
quantum

system | Oy Richard Feynman, 1982
&

Simulating quantum systems is critical for the scientific discovery for natural science
iInclude physics, chemistry, biology, material science, and so on. And nowadays, it
consumes a significant amount of our HPC computing power.
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Quantum Computation: Get computational paths leading to incorrect
answers to interfere destructively and cancel each other out.



Waves of equal amplitude and opposite phase cancel out

Recording and inverting noise leaves you with your desired signal

Active Noise-Canceling!

Quantum Computation: Get computational paths leading to incorrect
answers to interfere destructively and cancel each other out.

Randomized Computation: Probabilities of computational paths
leading to /incorrect answers only add up, never cancel out.
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50 ~ 200, ~ 1000 controllable but noisy qubits, no fault-tolerant qubits Quantum Simulation
Or special-purpose quantum machines, like analog quantum simulators Variational Q. Methods

Other quantum applications not in the computation domain: quantum sensing, quantum communication

Fault-Tolerant QC: ~ unknown future, a lot of uncertainty here
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The Role of Programming Languages

Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!

But of course, quantum computing model demonstrates some
fundamental differences and unique needs, which requires new
techniques to deal with.

Disciaimer: perspectives and ciaims are potentially limited or biased by personal knowledge.

How to Program Q. Applications, Debug, and Verify Gorrectness?

How to Develop Software for ). Computing, e.g., compiler, system?
How to Design and implement Architecture for Quantum Gomputing?
How to Handie Quantum Security Issues in Designgimplementation?
How to Scale and Automate the Design of Quantum Hardware 2
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The natural question with MOST investigation, but still a huge gap!
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Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs
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(3) lack of many desirable analyses, automation, & optimization: a
lot of burdens on the programmers



How to Develop Software for . Gomputing, e.g., compiler, systems

a 1950s computing

Assembly language
(low-level) programs

Relay circuits and
discrete wires

b Classical computing today

Algonthms
High-level languages

Compiler

Classical architecture
(memory, arithemetic
operations, control
operations, communication)

Hardware building
blocks: gates, bits

VLSI circuits

Semiconductor
transistors

€ Quantum computing

Algorithms

High-level languages

Classical compiler Quantum compiler

Classical
architecture Quantum

(control operations) architecture
(QC gates, qubits,

Hardware building communication)
blocks (gates, bits)

Error-correction
and control pulses

Semiconductor Underlying technology
transistors (semiconductors,

trapped ions)

VLSI circuits

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.



How to Develop Software for (). Computing, e.g., compiler, system?

a 1950s computing b Classical computing today € Quantum computing

Algorithms Algorithms
High-level languages High-level languages

Compiler Classical compiler | Quantum compiler
Classical architecture |
(memory, arithemetic

operations, control ;
operations, communication) (control operations)

Classical

architecture Quantum
architecture

(QC gates, qubits,
Hardware building Hardware building communication)
blocks: gates, bits blocks (gates, bits)

Error-correction

Assembly language
and control pulses

(low-level) programs

VLSI circuits VLSI circuits

Semiconductor Semiconductor Underlying technology

transistors transistors (semiconductors,
trapped ions)

Relay circuits and
discrete wires

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- guantum mechanics prohibits certain testing, e.g., assertions



How to Develop Software for (). Computing, e.g., compiler, system?

a 1950s computing b Classical computing today € Quantum computing

Algorithms Algorithms
High-level languages High-level languages

Compiler Classical compiler Quantum compiler
\
Classical architecture

(memory, arithemetic Classical v
operations, control architecture

: S ' hitecture
operations, communication (control operations) ' '
perati ication) (QC gates, qubits,

Hardware building Hardware building communication)
blocks: gates, bits blocks (gates, bits)

Error-correction

Assembly language
and control pulses

(low-level) programs

VLSI circuits VLSI circuits

Semiconductor Semiconductor Underlying technology

transistors : (semiconductors,
e trapped ions)

Relay circuits and
discrete wires

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- guantum mechanics prohibits certain testing, e.g., assertions

A possible solution : fully certified software, e.g., VOQC (POPL 2021)
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A lot of controlling
operations need to be
located close to
quantum chips for
small responsive time.

ISA + Fast Compilation

Mapping, Error Mitigation, ...
approximate computing
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How to Handie Quantum Security Issues in Design and Implementations

Verification of Quantum Cryptography: * _Quantuni’Kep
Relational Quantum Hoare Logic (Unruh; Barthe et al.)

Distribution

Quantum Cryptanalysis:
Resource estimation of Complex Quantum Attack Programs

Post-Quantum Cryptography:
Classical Cryptographic Systems Resilient to Quantum “?""\'_&/ \

For Classical Cryptographic Systems
(1) Identify their post-quantum security

(2) automate the procedure to upgrade its post-quantum security
(3) formal post-quantum security proofs

Formally generated security analysis will provide not only efficient and high
assurance proofs that can replace the tedious and error-prone analysis for ler
experts, but also independently verifiable proofs that can be used by security oo T

practitioners without much quantum knowledge.
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Applies to Quantum Hardware too!
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Further Readings: Thank You! Q& A

>

CIENCES * ENGINEERING - MEDICINE

CONSENSUS STUDY REPORT

QUANTUM COMPUTING
Progress and Prospects

QUANTUM FRONTIERS
REPORT ON COMMUNITY INPUT TO THE NATION'S

STRATEGY FOR QUANTUM INFORMATION SCIENCE

Product of

Computer Science’s Role THE WHITE HOUSE

NATIONAL QUANTUM COORDINATION OFFICE

| Next Steps in Quantum Computing:

CCC October 2020

Computing Community Consortium

Reference: links are availahle at https://www.cs.umd.edu/
~Xwu/mini_lib.htmi



https://www.cs.umd.edu/~xwu/mini_lib.html
https://www.cs.umd.edu/~xwu/mini_lib.html

(1) Introduction to Quantum Gomputing and Potential Roles of
Programming Languages 25 mMin+30&A)

[(2) A Mini-Course of Quantum Hoare Logic on Quantum While
language BOmin+508&A)

(3] Discussion on existing and potential Programming
Language research opportunities (20 min+50&A)

Reference: tutorial slides and some references are
available at hitps://www.cs.umd.edu/~xwu/mini _lib.html



https://www.cs.umd.edu/~xwu/mini_lib.html
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An Operation O —> A Quantum Physical Evolution Q

Computation:

Evolution of the Machine: Q, O,, O3, **

The accumulative evolution carries some computation!
A Quantum Computer

Consider quantum machines of finite-dimension. Hilbert space -> Euclidean space

The Math Model of Quantum Machines comes from the math model of Os.
(semantics)

Four Postulates for Quantum Mechanics:

State Space postulate
Evolution postulate — No-Cloning theorem
Composite System postulate

Measurement postulate
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Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in C* ® C? (dim-4), where C? (dim-2) is for a qubit.

So [00) =10) ® |0) , |01) ) | 10) ) [
1 1 0 1 0 0
(o)®(o): 0 0 1 0

0 0 0 1

A n-qubit system requires 2" dimensional space. Exponential cost in classical simulation!

Examples of Common Quantum Gates » The controlled-NOT (CNOT) gate:  Two-qubit Gate
1 0 00
» Pauli gates:  Single-qubit Gate
0100
CNOT = 1
v (01 y_ (0 —i s_ (1 0 000
~\1o0)” " \i 0 ) "7 {0 —1 0 010

» Hadarmard gate:

NO-CLONING Theorem
H = 1 ( 11 ) Assume a cloning procedure U, then

V21 -1
Ul0)[0)=10)[0 Ull)|0)=|1)]|1
» Rotation about x—axis of the Bloch sphere: | >| > | > | > | >| > | >| >
9 9 Consider an arbitrary state |y) = a|0) + ]| 1)

R:(0) = ( —isixfg —cosgi ) Uly)|0) =al0)|0)+4[1)]1)
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This information reading procedure will distribute/collapse the underlying g. systems.

> A measurement is modelled as a set of operators M = {M,,} Examples  Consider |0)
with Y. M' M,, = I.

» If a quantum system was in pure state |i) before the Measured in { |0)(0], | 1)(1]}
measurement, then:

> the probability that measurement outcome is A:
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More advanced math formulation of ensemble of quantum states

Density matrices » For any mixed state {(p1, [¥1)), ..., (Pr, |¥x))

> In the n-dimensional Hilbert space C", an operator is B Z |1/J> <1/J\
represented by an n X n complex matrix A. P = - Pil¥i i

» The trace of an operator A is tr(A) = Y; Aji (the sum of the
entries on the main diagonal).

» A positive semidefinite matrix p is called a partial density
matrix if tr(p) < 1; in particular, a density matrix p is a
partial density matrix with tr(p) = 1.
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Quantum While-language

Syntax Quantum Data, Classical Control

A core language for imperative quantum programming

Classically, one has

S = SkiP q ‘= \0> : u.=1 t~ expression.
51,57 |
grrerermres - However, due to no-cloning,
g := Ulg]: 1) initialization

if g[m -M[q]gz m — S ) fi 2) unitary operation

Classical control requires reading information out of guantum systems.
However, by measuring the guard, it leads to
(1) a probabilistic choice of branches

(2) a collapse of the guard state before entering each branch



Quantum 1-D Loop Walk

QW =c:= |L);
p:=|0); Vi
while M|p] = no do
¢ := Hc|;
c,p = Slep
od

Operator Definition

S :2 L)Ll ® |ie 1) +2 R)(R| ® i 1)(il.
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while M|p| = no do
c:= Hic);
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od

Operator Definition
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Quantum 1-D Loop Walk

QW —=C .= ‘L>, coin space = {L, R}
p = |O>, position space = {0, ..., n-1} 0’/1'
while M|p] = no do

c:=H [C ; Create a new coin in superposition!

C, P = S :C p p] Random walk based on that coin!

od

Operator Definition

S :2 L)Ll ® |ie 1) +2 R)(R| ® i 1)(il.



Quantum 1-D Loop Walk

QW —=C .= ‘L>, coin space = {L, R}
p = |O>, position space = {0, ..., n-1} 0’/1'

While M[p — Mo dO Terminal of loop: position|1

c:=H [C ; Create a new coin in superposition!

C, P = S :C p p] Random walk based on that coin!

od

Operator Definition

S :2 L)Ll ® |ie 1) +2 R)(R| ® i 1)(il.



Quantum 1-D Loop Walk

Goal: reason about this program

QW —=C .= |L>, coin space = {L, R}
p = |O>, position space = {0, ..., n-1} 0’/1'

While M[p — Mo dO Terminal of loop: position|1

c:=H [C ; Create a new coin in superposition!

C, P = S :C p p] Random walk based on that coin!

od

Operator Definition

S :2 LY(L|® |io 1) +7:) RY(R|® i@ 1)
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A configuration: (S, p)
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Semantics of Quantum While-Language

Operational Semantics

A configuration: (S, p)

» Sis a quantum program or E (the empty program)

> 0 is a partial density operator in

Han = X) Hyq
all g

Uni — —
(ni) (g :=Ulq], p) — (E,UpU")
(S1,0) = (51,0')
Se
B 185 52,0) = (53 52,0)
Convention : E; S, = S».
(IF) lllllllll -

for each outcome m

(Sk)

» type(q) = Boolean:
po = 10)4{01p]0)4(0] + 10)4(1]p|1)(0]

> type(q) = integer:

o0

po =) 10)g(nloln)s(0]

n=—oo



Semantics of Quantum While-Language

Operational Semantics

A configuration: (S, p)

(Sk)

» Sis a quantum program or E (the empty program)

> 0 is a partial density operator in

Han = X) Hyq
all g

Uni — —
(ni) (g :=Ulq], p) — (E,UpU")
(S1,0) = (51,0')
Se
B 185 52,0) = (53 52,0)
Convention : E; S, = S».
(IF) lllllllll -

for each outcome m

» type(q) = Boolean:
po = 10)4{01p]0)4(0] + 10)4(1]p|1)(0]

> type(q) = integer:

o0

po =) 10)g(nloln)s(0]

n=—oo

Loop:
(L0) (while M[g] =1do Sod, p) — (E,E.Z\;I:);)].\/.Ig:
(Ll) lllllll




Semantics of Quantum While-Language

Operational Semantics (Sk)

(skip, p) — (E, p)

A configuration: (S, p)

» Sis a quantum program or E (the empty program)
» type(q) = Boolean:

po = 10)4(01p0)4 (0] + [0)4{1][1)4(0]

Han = ® Hq > type(q) = integer:
all g

> 0 is a partial density operator in

o0

po =) 10)g(nloln)s(0]

n=—oo

(Uni) — =

= U|qg|, E, UpU?

([ 4], p) — (E,UpUT) Loop:

<Sll p> — <S/11 10/> (LO) EEssmmsm -

(566]) <Sl; 52, p> N <S/1, 52, p/> (while M[ﬁ] =1 dO S Od,p> — <E’EA./I.O€M§ /u
Convention : E;S; = So. (L1) (while M[g] =1do S,p) — (S; while M[g] = 1do S:erpM]-
UE) R (O M = m = 5, fop) = (S MooMis
e PP P Capture the Collapse of the Guard state.

for each outcome m



Semantics of Quantum While-Language

Denotational Semantics

Semantic function of quantum program S:

[[S]] : D(Hall) — D(%all)

[SI(p) =) _{lo": (S,0) =" (E,p")|} forall p € D(Han)



Semantics of Quantum While-Language

Denotational Semantics

Semantic function of quantum program S:

[[S]] : D(Hall) — D(,Hall)

[SI(p) =) _{lo": (S,0) =" (E,p")|} forall p € D(Han)

Observation:

tr([S1(p)) = tr(p)
for any quantum program S and all p € D(H,y).

» tr(p) — tr([S](p)) is the probability that program S
diverges from input state p.



Quantum Predicate & Hoare Triple

> A quantum predicate is a Hermitian operator (obsevable) P
such that0 C P C I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.
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Quantum Predicate & Hoare Triple

> A quantum predicate is a Hermitian operator (obsevable) P

suchthat 0 C P C I. Continuous logic
0, 1]
Matrix Upgrade
[1] E. D’Hondt and P. Panangaden, Quantum weakest

preconditions, Mathematical Structures in Computer Science
2006.

> A correctness formula is a statement of the form:

{P}S{Q} n .
Similar as Classical

where: Hoare triple w/

: different semantics
» Sisa quantum program

> P and Q are quantum predicates.
» Operator P is called the precondition and Q the postcondition.
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Quantum Predicate & Hoare Triple

> A quantum predicate is a Hermitian operator (obsevable) P

suchthat 0 C P C I. Continuous logic
0, 1]
Matrix Upgrade
[1] E. D’Hondt and P. Panangaden, Quantum weakest

preconditions, Mathematical Structures in Computer Science
2006.

> A correctness formula is a statement of the form:

{P}S{Q} n .
Similar as Classical

where: Hoare triple w/

: different semantics
» Sisa quantum program

> P and Q are quantum predicates.
» Operator P is called the precondition and Q the postcondition.

1. {P}5{Q} is true in the sense of total correctness: 2. {P1S{Q} is true in the sense of partial correctness:

‘:tot {P}S{Q} |:par {P}S{Q}/
if Pre-S State Post-S State if
tr(Pp) < tr(Q[S](p)) for all p. tr(Pp) < tr(Q[S](p)) + [tr(p) — tr([S1(p))]

+~ T+

Semantics Divergence



(Axiom Sk) {P}Skip{P}

e Se 1P}5i1{QF  {Q}Sa{R}
(Axiom Ini) (Rule Seq) {P}51; 52{R}

type(q) = Boolean :

(Rule IF) {P,}Sn{Q} for all m
{10),(0|P|0), (0] + |1),(0|P|0}, (1|} := [0){P} {0 MY Py, }pif (Om - Mlg] = m — S,) fi{Q}
type(q) = integer : (Rule LP) {Q}yS{MIPMy + MIQM,}
{MIPM, + MIQM, }while M[g] = 1 do S{P}
{ Z 1)4(0[P|0)4(n|}q := [0){P}
(Rule Ord) PCP {P}S1QF QEQ

{P}S{Q}

(Axiom Uni) {u'pulg := U[g]{P}



(Axiom Sk) {P}Skip{P}
" Ruese) PISHQ) {QIS(R)
(Axiom Ini) {P}51; 52{R}

type(q) = Boolean :

(Rule IF) {Py,}5,{Q} for all m
110)4(0[P0)4{0] + [1)4(0[P|0)4(1[ }q := |0){P} (X M3, PMiy yif (O - M[g] = m — Sy) fi{Q}
type(q) = integer : {Q}S{MiPMy + MIQM; }
(Rule LP) {MIPM, + MIQM, }while M[g] = 1 do S{P}
{ Z [1)4(0[P|0)4(n| }q := |0){P} o o
(Rule Ord) PCP {P}S1Q} QEQ

.................... {P}S{Q}
(Axiom Uni) {u*m}q = U[g]{P} =
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(Axiom Sk) {P}Skip{P}
’ Rueseq)  LPISHQL {QIS:R)
(Axiom Ini) {P}51; 52{R}

type(q) = Boolean :

(Rule IP) ------------ { Pm}sm{Q} fOI' all m
{10)5 01PI0)4 (0] + 1), (0IP[0); (1] }q := [0){P} £ M}, P FE (O - MIg] = m — S,) R{Q]
type(q) = integer : {Q}s gf\;f*};i/f 0. I .I\./I.+.Q.;\;I.1 .E.
(Rule LP) IMIPM, + M*QMl}whlle MJg] = 1do S{P}
{ _Z_ 1)¢(0[P[0)q(n|}q := [0){P} o / /
(Rule Ord) PCP {P}S1Q} QEQ

.................... {P}S{Q}
(Axiom Uni) {u*m}q = U[g]{P} =

Parts of Classical Hoare Logic

AXIOM 2: ASSIGNMEN T

{p A B} 81 {q},{p A =B} S {g}
{p} if B then S, else S; fi {q}

{ir A B} S {p} :
{p} while B do S od {p A =B} =




(Axiom Sk) {P}Skip{P}

(Axiom Ini)
type(q)

= Boolean :
{10)4(0[P]0)4(0] + [1)4(0[P|0)4(1|}q := [0){P}

type(q) = integer :

{Z|n

n=—0oo

(01P[0)4 (1| }q := |0){P}

(Axiom Uni)

Parts of Classical Hoare Logic

AXIOM 2: ASSIGNMEN T

{p A B} S1 {q},{p A =B} S> {q}:
{p} if B then S; else S> fi {¢}

{p A B} S {p} :
{p} while B do S od {p A =B} =

{P15i1{QF  {Q}S2{R}
(Rule Seq) (P}S1;5:{R}
............ W} SmiQ} for all m
B MR i O M= 5, R
s )
(Rule LP) fMiDM, +M+QM1}wh11e M([g] = 1 do S{P}
(Rule Ord) PEP IJSICT OEQ

{P}S{Q}

Theorem (Soundness and Completeness)

For any quantum program S and quantum predicates P, Q,

—par {P}S{Q} if and only if Fpp {P}S{Q}.

Ying. TOPLAS, 2011.



Quantum Hoare logic for Total Gorrectness

Proof System for Total Correctness

Let P be a quantum predicate and € > 0. A function
t : D(Han) (density operators) — IN

is called a (P, €)-ranking function of quantum loop:

while M|g] = 1do S od (1) {Q}yS{M{PM,y + MIQM, }
(2) for any € > 0, t. is a (MQM;, €)—ranking

function of loop

if for all p:

1. t([S](M1pM?)) < t(p); (Rule LT) {M?PM, + MiQM; jwhile M[7] = 1 do S od{P}
2. tr(Pp) > € implies t([S](M1pMT)) < t(p)

Theorem (Soundness and Completeness)

For any quantum program S and quantum predicates P Q,

=it {P}S{Q} if and only if Frp {P}S{Q}.

[2] M. S. Ying, Floyd-Hoare logic for quantum programs, ACM
Transactions on Programming Languages and Systems 2011



Quantum Hoare logic and Invariants : POPL17

QW —C .= ‘L>, coin space = {L, R}
p = ‘O), position space = {0, ..., n-1} 0,/1'

While M p = 1no dO Terminal of loop: position|1
c:= Hl|c

p Create a new coin in superposition!

C,p = S :C p p] Random walk based on that coin!

od
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Quantum Hoare logic and Invariants : POPL17

OW =c := |L>, coin space = {L, R} 1
p = ‘O>, position space = {0, ..., n-1} Or/'

While M [p = 1no dO Terminal of loop: position|1
c:=H [C ; Create a new coin in superposition!
C,p = o|C, p] Random walk based on that coin!
Od Invariants
» A set II of paths is prime if for each
o O
\ its proper initial segments [; a4 % I € I1forall k < n.
S
™~
[ M. o » LetG = (H,L,Ip,—), ® a quantum predicate (initial
Ie @ Myes € “ / l2 condition), I € L. An invariant at | is a quantum predicate O
lout .L/ H®I, such that for any density operator p, any prime set IT of
C J / paths from [y to I:
7 [y o

tr(®p) <1—tr(& tr (O&
Control - Flow - Graph r(@p) <1—tr(ulp)) +tr(O&n(p))

where & = Y {|&€r : m e 11|} .



Quantum Hoare logic and Invariants : POPL17

QW —=C .= |L>, coin space = {L, R}
p = ‘O>, position space = {0, ..., n-1} 0’/1'

While M[p = 1no dO Terminal of loop: position|1

c:=H [C ; Create a new coin in superposition!

C,p = S :C p p] Random walk based on that coin!

Od Invariants
» A set II of paths is prime if for each
pO\ [ 00 n:lli...gn_;llnen
0
L
\ its proper initial segments [; a4 % I € I1forall k < n.
S
~ 5
[. 2 M,. o 2 » LetG = (H,L,Ip,—), ® a quantum predicate (initial
Ie @ Myes °¢ / l2 condition), I € L. An invariant at | is a quantum predicate O
lout | / H®I, such that for any density operator p, any prime set I of

( J 03 / paths from [y to I:
Z

tr(©p) < 1—tr(Eulp)) + tr (O&m(p))
where & = Y {|&€r : m e 11|} .
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Theorem (Partial Correctness)

P

oyt 1IN Sp,

Let P be a quantum program. If O is an invariant at
then

‘:par {(H)}P{O}



Theorem (Partial Correctness)

P

Let P be a quantum program. If O is an invariant at [, ,

then

in Sp,

‘:par {@}P{O}

Reducing Global Constraints
Into Local Ones

Inductive Assertion Maps

» Given G = (H, L, Iy, —) with a cutset C and initial
condition ©.

> An assertion map is a mapping 77 from each cutpoint! € C
to a quantum predicate 7(/).

> IT;: the set of all basic paths from [ to some cutpoint.

> [;: the last location in a path 7.

» An assertion map 7 is inductive if:
» Initiation: for any density operator p:

tr(@p) <1—tr (&ny (0)) + X tr(1(1x)Ex(p));

7T€HZO

» Consecution: for any density operator p, each cutpoint
leC:

tr(n(Dp) <1 —tr(Em(p)) + Y, tr(1Ix)Ex(p)).

ﬂEHl



Theorem (Partial Correctness)

P

out mn Sp,

Let P be a quantum program. If O is an invariant at
then

‘:par {@}P{O}

Reducing Global Constraints
Into Local Ones

Inductive Assertion Maps

» Given G = (H, L, Iy, —) with a cutset C and initial
condition ©.

> An assertion map is a mapping 77 from each cutpoint! € C

to a quantum predicate #(/).
1 P T ( ) Reduce to a SDP (Semi-Definite Programming) Problem

> IT;: the set of all basic paths from [ to some cutpoint.
» Assume C = {lo,l1, ..., Im }

> [;: the last location in a path 7. > Write O; = 7(I;) fori = 0,1, ....m.
» An assertion map 7 is inductive if: > & = L{|€; s basic path [; = [; |} for i,j = 0,1,...,m.
» Initiation: for any density operator p:

tr(@p) <1—tr (&ny (0)) + X tr(1(1x)Ex(p));

7T€HZO

» Consecution: for any density operator p, each cutpoint
leC:

tr(n(Dp) <1 —tr(Em(p)) + Y, tr(1Ix)Ex(p)).

ﬂEHl



Theorem

Invariant Generation Problem is equivalent to find complex
matrices Oy, Oy, ..., Oy, satistying the constraints:

0C ) &;(O)) + A,




~ O

2

IC ® A [yps [C X A [n.() /

]()ut




QW =c:=|L);
p:=10);
while M|p] = no do
¢ := Hc|; Ic® A [yes
C, p — S [C, p] l()uf. .
C ) Os
od 7/
Invariant SDPs for Quantum 1-D Loop Walk
Choose cut-set C = {ly, I3} with I3 = [,;;. ® = [. Invariants O
and Oj satisty the following constraints:
0 C &p(Oo) + Ex3(03) — O, (1)
0 C (€00 —Z)(Oo) + £3(0s), (2)
0C (&3 —1)(0s) — (I = &55(D)), (3)
0C 0y, 03 C 1 (4)

[Ego = Eqo © E}y, Egs = Eg3 © E}s, B33 = Z,

Eoo = S(H®I,)(I. ® Myo), Eoz = I ® Myes, and I, I,, identities.




QW =c:=|L);
p:=1[0);
while M|p] = no do
c := Hic|; Ic @ Myes
c,p:= Slc,p ’ ,.7 0
od I/

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {ly, I3} with I3 = [,;;. ® = [. Invariants O
and Oj satisty the following constraints:

0 E Ep(Oo) +Ex(03) — O, (1)
0 C (o —Z)(00) + Ex3(03), (2)
0C (E53—2)(03) — (I—&3()), (3)
0E Op, O3 E1 (4)

Ego = Ego © E}y, Eos = Egz © E},, B33 = Z,
Eoo = S(H®1,)(I. ® My, ), Eos = I ® Myes, and I, I, identities.

Using SDP Solver

O3 =1.®|1)(1]

3

tr(o3.00ut) > tr(@),oin) =1

Namely, QW always terminates
at the position | 1) regardless
of the input state p,, .



; . loo,
= 10); /
pi=10); N
while M|p] = no do S/ \
C .— H[C, [ ® \[J()s [ X \[n() 2
C, ::SC, [out H®]p
p < p) J 0, . _
od 1 ©
Invariant SDPs for Quantum 1-D Loop Walk Using SDP Solver
Choose cut-set C = {ly, I3} with I3 = [,;;. ® = [. Invariants O O3 =1I.®|1)(1]
and Os satisty the following constraints: 3
> ) =
0 C £n(00) + E(03) — ©, a (O = (Opn) =1
0C (£ —Z)(0p) + E33(03), (2) Namely, QW always terminates
0C (&5 —T1)(03) — (I—E5(D), (3) at the position | 1) regardless
0C Oy, 05 C 1 (4) of the input state p,, .
Ego = Ego © E}y, Eos = Egz © E},, B33 = Z, Drawback: all these matrices

Eoo = S(H® 1) (Ie ® Mpo), Eos = Ic ® Myes, and I, I, identities. are exponentially large.



Further Readings: Thank You! Q& A

Applications

» Quantum walk on an n-circle.

> Quantum Metropolis sampling on n-qubits.
» Repeat-Until-Success.

» Quantum Search.

» Quantum Bernoulli Factory.

> Recursively written Quantum Fourier Transformation.

References

» M. S. Ying. Floyd-Hoare Logic for Quantum Programs,
TOPLAS, 2011.

» M. S. Ying. Foundations of Quantum Programming, Foundations of

Morgan Kautmann, 2016. Quantum Programming
» M. S. Ying, S. G. Ying and X. Wu, Invariants of quantum

programs: characterizations and generation, POPL 2017.

» Y. Li, and M. S. Ying. Algorithmic Analysis of Termination
Problems for Quantum Programs, POPL, 2018.

» L. Zhou, N. Yu, and M. S. Ying. An Applied Quantum
Hoare Logic, PLDI, 2019.

» S. H. Hung, Y. Peng, X. Wang, S. Zhu, and X. Wu. On the
Theory and Practice of Invariant-based Verification of
Quantum Programs, manuscript, 2020.




(1) Introduction to Quantum Gomputing and Potential Roles of
Programming Languages 25 mMin+30&A)

[2) A Mini-Course of Quantum Hoare Logic on Quantum While
language BOmin+50&A)

(3) Discussion on existing and potential Programming
Language research opportunities (20 min+50&A)

Reference: tutorial slides and some references are
available at hitps://www.cs.umd.edu/~xwu/mini _lib.html



https://www.cs.umd.edu/~xwu/mini_lib.html
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Design of Quantum Programming Languages

Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs
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Design of Quantum Programming Languages

Gap: (1) too-low-level-abstraction: very hard to write complex programs
(2) lack of scalable verification: very hard to write correct programs
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(3) lack of many desirable analyses, automation, & optimization: a
lot of burdens on the programmers

Existing work on type enforced correctness in QPLs
No-Cloning: use linear types for quantum variables (Quipper, QWIRE)

Ancilla: keep track of the scope of ancilla qubits (Quipper)
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GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

Question 1: high-level DSLs for classical computation in superposition?

Need to compile classical computation into reversible computation

Handle the ancilla gubits and potentially simpler error-correction issues.

Question 2: high-level abstractions for guantum applications?

Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Candidate applications: Quantum Simulation
Quantum Variational Methods

Question 3: allow program analysis w/ high-level abstractions?
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Design of QPLs: the support of high-level objects

GAP: existing QPLs focus on describing circuits, while not using other
common high-level abstractions, e.qg., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

But using classical DS in quantum faces many issues:

e.g., data manipulation is generally non-reversible, even if computation can be made so.
Reversibility alone does not guarantee correct quantum interference b/c workspace.
Efficiency issues about reimplementing DS w/ above constraints.

However, well-defined classical problems that PL might help with.
Question 5: allow programmers to define quantum object/DS?
Allow direct modeling of quantum hardware components (QRAM, Sensors)

Consider quantum stack ~ truly quantum recursion ~ quantum apps
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Verifyving Quantum Programs: Scalability & Settings

GAP: the drawback of g. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?
Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Question 2: how to do verification of quantum internet applications?
Quantum Internet/Communication is another recent interest

Develop Q Hoare logic for parallel, concurrent, distributed programs.

Some preliminary results exist. Essential difficulty exists due to quantum correlations.
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GAP: assertion-based debugging might in general distribute g. systems.

Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in
principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple

e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors

For NISQ machines, all operations could be erroneous

Need also to be scalable

Classical simulation hard to scale; large q operations might contain more errors
Likely to be application-specific
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GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or sSo

*  examples identified, but no systematic study
% fore.g., efficiency, and verification
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GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or sSo

d0 5

dl

500 1000 1500

examples identified, but no systematic study
for e.g., efficiency, and verification

Shi et al. Proceedings of the IEEE, Jun 2020

Question 2: direct compilation to analog / special purpose g machines?

Analog machine modeled
after the phvysics to simulate

Unexplored yet. But would be of great interests!

Classical Examples:

Achour et al. (PLDI16)
Achour & Rinard (ASPLOS 20)
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Approximate Computing & Quantum Computing

e General-purpose fault-tolerant quantum computers are impractical in
the near term.

e Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

e Automatic error-resource-optimization on a per-program basis!
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Methodology

¢ Elevate the handling of errors to the level of programming language.
e Reason reliability/accuracy of quantum programs via static analysis.

e Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

e Return possibly inaccurate/approximate results!
- unreliable hardware
- limited computational resource
® Good when approximate results are sufficient for applications!
- vision, machine learning; also with guarantees for critical data
® Various techniques developed in classical PL literature.
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Overview

Software Developers Hardware Designer
Exact Reliability/Accuracy Approximate Hardware
Program Specification Specification

Reliability/Accuracy ||error handling Resource Optimization

Constraint Generator primitives Objective Generator
a basic frameworkg i l ],
i inPOPLI19 Back-end Optimizer

Neural-based Code Synthesizer

l

Reliable Quantum Programs with Optimal Resources
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Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
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Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.
- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today
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Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for
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Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for
Computing Research

GCC : many bugs in software testing

CompCert: a certified “GCC”, bug-free

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Journal of the ACM, Vol 50, 2003
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Certified software: a solution to validation of q. software
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VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq,.

Our infrastructure powerful enough:
an end-to-end implementation of Shor’s algorithm & its correctness proof.



out Today's Tutonal:

Goal: Some Basic Quantum Computing & PL + References

(1) Introduction to Quantum Computing and Potential Roles of
Programming Languages (29 min+30Q8&A)

[(2) A Mini-Course of Quantum Hoare Logic on Quantum While
Language BOmin+508&A)

(3] Discussion on existing and potential Programming Language
research opportunities (20 min+508&A)

Reference: tutorial slides and some references are
available at https://www.cs.umd.edu/~xwu/mini lib.htmi
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