
An Invitation to the intersection of

Quantum Computing & Programming Languages

D

Tutorial at POPL 2021

Xiaodi Wu

QuICS & UMD

About this Tutorial:
Goal: An Invitation due to limited time

 Cover Some Basic Quantum Computing & PL

 Provide References / Pointers for further study

About this Tutorial:
Goal: An Invitation due to limited time

 Cover Some Basic Quantum Computing & PL

 Provide References / Pointers for further study

Format: Tutorial divided into 3 parts:

 (1) Introduction to Quantum Computing and Potential Roles of

 Programming Languages (25 min + 5 Q & A)

 (2) A Mini-Course of Quantum Hoare Logic on Quantum While

 Language (30 min + 5 Q & A)

 (3) Discussion on existing and potential Programming Language

 research opportunities (20 min + 5 Q & A)

About the Speaker:
Wu: assistant professor at UMD working on quantum computing

 from CS perspective in general.

About the Speaker:
Wu: assistant professor at UMD working on quantum computing

 from CS perspective in general.

Teaching in Q. Computing

About the Speaker:
Wu: assistant professor at UMD working on quantum computing

 from CS perspective in general.

Teaching in Q. Computing

Disclaimer: perspectives and claims are potentially limited

or biased by personal knowledge.

Outline

 (1) Introduction to Quantum Computing and Potential Roles of

 Programming Languages (25 min + 5 Q & A)

 (2) A Mini-Course of Quantum Hoare Logic on Quantum While

 Language (30 min + 5 Q & A)

 (3) Discussion on existing and potential Programming

 Language research opportunities (20 min + 5 Q & A)

Reference: tutorial slides and some references are
available at https://www.cs.umd.edu/~xwu/mini_lib.html

https://www.cs.umd.edu/~xwu/mini_lib.html

What Quantum Computing is NOT
It Isn’t Just Today’s Computers But

Smaller or Faster

2n n2

n

Credit: Scott Aaronson

What Quantum Computing is NOT
It Isn’t Just Today’s Computers But

Smaller or Faster

2n n2

n

It Isn’t A Magic Bullet That Solves
All Problems Instantly

NP

NP-complete

P
Factoring

BQP

Credit: Scott Aaronson

What Quantum Computing is NOT
It Isn’t Just Today’s Computers But

Smaller or Faster

2n n2

n

It Isn’t A Magic Bullet That Solves
All Problems Instantly

NP

NP-complete

P
Factoring

BQP

It Isn’t A Simple Matter of Trying
All Possible Answers In Parallel

Credit: Scott Aaronson

What Quantum Computing is NOT
It Isn’t Just Today’s Computers But

Smaller or Faster

2n n2

n

It Isn’t A Magic Bullet That Solves
All Problems Instantly

NP

NP-complete

P
Factoring

BQP

It Isn’t A Simple Matter of Trying
All Possible Answers In Parallel

But Nor Is It Science Fiction

Credit: Scott Aaronson

Ion-Trap (UMD)

Super-conducting

Experimental Comparison of Two Quantum Computing Architectures

N. M. Linke,1 D. Maslov,2, 3 M. Roetteler,4 S. Debnath,1 C.
Figgatt,1 K. A. Landsman,1 K. Wright,1 and C. Monroe1, 3, 5

1Joint Quantum Institute and Department of Physics,
University of Maryland, College Park, MD 20742

2National Science Foundation, Arlington, VA 22230
3Joint Center for Quantum Information and Computer Science,

University of Maryland, College Park, MD 20742
4Microsoft Research, Redmond, WA 98052

5IonQ, Inc., College Park, MD 20742

We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based
on di↵erent technology platforms. One is a publicly accessible superconducting transmon device [1]
with limited connectivity, and the other is a fully connected trapped-ion system [2]. Even though the
two systems have di↵erent native quantum interactions, both can be programmed in a way that is
blind to the underlying hardware, thus allowing the first comparison of identical quantum algorithms
between di↵erent physical systems. We show that quantum algorithms and circuits that employ more
connectivity clearly benefit from a better connected system of qubits. While the quantum systems
here are not yet large enough to eclipse classical computers, this experiment exposes critical factors
of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the
results suggest that co-designing particular quantum applications with the hardware itself will be
paramount in successfully using quantum computers in the future.

Inspired by the vast computing power a universal quan-
tum computer could o↵er, several candidate systems
are being explored. They have allowed experimental
demonstrations of quantum gates, operations, and algo-
rithms of ever increasing sophistication. Recently, two ar-
chitectures, superconducting transmon qubits [3–7] and
trapped ions [2, 8], have reached a new level of matu-
rity. They have become fully programmable multi-qubit
machines that provide the user with the flexibility to im-
plement arbitrary quantum circuits from a high-level in-
terface. This makes it possible for the first time to test
quantum computers irrespective of their particular phys-
ical implementation.

While the quantum computers considered here are still
small scale and their capabilities do not currently reach
beyond small demonstration algorithms, this line of in-
quiry can still provide useful insights into the perfor-
mance of existing systems and the role of architecture
in quantum computer design. These will be crucial for
the realization of more advanced future incarnations of
the present technologies.

The standard abstract model of quantum computa-
tion assumes that interactions between arbitrary pairs
of qubits are available. However, physical architectures
will in general have certain constraints on qubit connec-
tivity, such as nearest-neighbor couplings only. These re-
strictions do not in principle limit the ability to perform
arbitrary computations, since SWAP operations may be
used to e↵ect gates between arbitrary qubits using the
connections available. For a general circuit, reducing a
fully-connected system to the more sparse star-shaped or
linear nearest-neighbor connectivity requires an increase
in the number of gates of O(n), where n is the number

(a) 4

5

3

2

1

FIG. 1. Graphic representations of the two systems: (a) the
superconducting qubits connected by microwave resonators
(Credit: IBM Research), and (b) the linear chain of trapped
ions connected by laser-mediated interactions. Insets: Qubit
connectivity graphs, (a) star-shaped and (b) fully connected.

of qubits [9]. How much overhead is incurred in practice
depends on the connections used in a particular circuit
and how e�ciently they can be matched to the physical
qubit-to-qubit interaction graph.

In this article, we make use of the public access re-
cently granted by IBM to a 5-qubit superconducting de-
vice (illustrated in fig.1(a)) via their “Quantum Experi-
ence” cloud service [1]. This allows us to repeat algo-
rithms that we perform in our own ion trap experiment
on an independent quantum computer of identical size
and comparable capability but with a di↵erent physical
implementation at its core.

ar
X

iv
:1

70
2.

01
85

2v
1

 [q
ua

nt
-p

h]
 7

 F
eb

 2
01

7

IBMGoogle

(2012)

(2017)

(2019)

Google Supremacy: RCS (2019) USTC: Boson Sampling (2020)

Roadmap in 2010s

MARK A. HOROWITZ,
Stanford University, Chair
ALÁN ASPURU-GUZIK,
University of Toronto
DAVID D. AWSCHALOM,
University of Chicago
BOB BLAKLEY,
Citigroup
DAN BONEH,
Stanford University
SUSAN N. COPPERSMITH,
University of Wisconsin, Madison
JUNGSANG KIM,
Duke University
JOHN M. MARTINIS,
Google, Inc.
MARGARET MARTONOSI,
Princeton University
MICHELE MOSCA,
University of Waterloo
WILLIAM D. OLIVER,
Massachusetts Institute of Technology
KRYSTA SVORE,
Microsoft Research
UMESH V. VAZIRANI,
University of California, Berkeley

H. R. 6227
National Quantum Initiative Act

Surge of Interests from Gov, Academia, & Industry

Gov: US (NSF, DOE + National Labs, DoD, NIST), China, Europe, ….

Industry: Google, IBM, Microsoft, Amazon, Alibaba, Tecent, Baidu, ….

Academia: #faculty in quantum computing ++

US GOV Policy & Efforts:

Quantum Computing: still too early to call!

Scientific Reports from relevant research communities
MARK A. HOROWITZ,
Stanford University, Chair
ALÁN ASPURU-GUZIK,
University of Toronto
DAVID D. AWSCHALOM,
University of Chicago
BOB BLAKLEY,
Citigroup
DAN BONEH,
Stanford University
SUSAN N. COPPERSMITH,
University of Wisconsin, Madison
JUNGSANG KIM,
Duke University
JOHN M. MARTINIS,
Google, Inc.
MARGARET MARTONOSI,
Princeton University
MICHELE MOSCA,
University of Waterloo
WILLIAM D. OLIVER,
Massachusetts Institute of Technology
KRYSTA SVORE,
Microsoft Research
UMESH V. VAZIRANI,
University of California, Berkeley

H. R. 6227
National Quantum Initiative Act

Reference: links are available at https://www.cs.umd.edu/
~xwu/mini_lib.html

https://www.cs.umd.edu/~xwu/mini_lib.html
https://www.cs.umd.edu/~xwu/mini_lib.html

What is Quantum Computing?

A Mechanical Computer

An Operation O ———> A Physical Evolution P

Computation:

Evolution of the Machine:

The accumulative evolution carries some computation!

P1, P2, P3, ⋯

What is Quantum Computing?

A Mechanical Computer

An Operation O ———> A Physical Evolution P

Computation:

Evolution of the Machine:

The accumulative evolution carries some computation!

P1, P2, P3, ⋯

A Quantum Computer

An Operation O —> A Quantum Physical Evolution Q

Computation:

Evolution of the Machine:

The accumulative evolution carries some computation!

Q1, Q2, Q3, ⋯

What is Quantum Computing good at?
Assume a unit operation requires a unit time on respective machines.

What is Quantum Computing good at?
Assume a unit operation requires a unit time on respective machines.

Quantum Computing (T)

Computation can be

carried out by Q1, Q2, ⋯, QT

Classical Computing (T)

Computation can be

carried out by P1, P2, ⋯, PT

What is Quantum Computing good at?
Assume a unit operation requires a unit time on respective machines.

Quantum Computing (T)

Computation can be

carried out by Q1, Q2, ⋯, QT

Classical Computing (T)

Computation can be

carried out by P1, P2, ⋯, PT

What is Quantum Computing good at?
Assume a unit operation requires a unit time on respective machines.

Quantum Computing (T)

Computation can be

carried out by Q1, Q2, ⋯, QT

Classical Computing (T)

Computation can be

carried out by P1, P2, ⋯, PT

Quantum Simulation

Nature isn't classical, and if you want to make a
simulation of Nature, you'd better make it quantum
mechanical, and by golly it's a wonderful problem,
because it doesn't look so easy.

 Richard Feynman, 1982

Simulating quantum systems is critical for the scientific discovery for natural science

include physics, chemistry, biology, material science, and so on. And nowadays, it
consumes a significant amount of our HPC computing power.

What is Quantum Computing good at?

- Linear systems
- Graph problems (minimum spanning tree,

connectivity, shortest path, triangle finding,
etc.)

- Formula evaluation
- Decomposing groups (abelian, dihedral, etc.)
- ……

What is Quantum Computing good at?

- Linear systems
- Graph problems (minimum spanning tree,

connectivity, shortest path, triangle finding,
etc.)

- Formula evaluation
- Decomposing groups (abelian, dihedral, etc.)
- ……

It was a good surprise that quantum physics

 can help solve classical problems that

 look nothing like quantum physics at all!

Any high-level intuition why?

What is Quantum Computing good at?

- Linear systems
- Graph problems (minimum spanning tree,

connectivity, shortest path, triangle finding,
etc.)

- Formula evaluation
- Decomposing groups (abelian, dihedral, etc.)
- ……

It was a good surprise that quantum physics

 can help solve classical problems that

 look nothing like quantum physics at all!

Any high-level intuition why?

Quantum Duality :

 Particle + Wave

What is Quantum Computing good at?

- Linear systems
- Graph problems (minimum spanning tree,

connectivity, shortest path, triangle finding,
etc.)

- Formula evaluation
- Decomposing groups (abelian, dihedral, etc.)
- ……

It was a good surprise that quantum physics

 can help solve classical problems that

 look nothing like quantum physics at all!

Any high-level intuition why?

Quantum Duality :

 Particle + Wave

Interference of Waves :

Make Interference Work:

Active Noise-Canceling!

Make Interference Work:

Active Noise-Canceling!

Make Interference Work for Computation:
Quantum Computation: Get computational paths leading to incorrect
answers to interfere destructively and cancel each other out.

Make Interference Work:

Active Noise-Canceling!

Make Interference Work for Computation:
Quantum Computation: Get computational paths leading to incorrect
answers to interfere destructively and cancel each other out.

Randomized Computation: Probabilities of computational paths
leading to incorrect answers only add up, never cancel out.

Quantum vs Randomized:

A Rough Timeline of Quantum Applications
NOW: Quantum Supremacy
Computational tasks, not necessarily useful, which is

feasible to implement w/ current q. machines, but

hard to simulate by classical computation.

Google: Random Circuit Sampling USTC: Boson Sampling
A Milestone Toward Useful Quantum Computation

A Rough Timeline of Quantum Applications
NOW: Quantum Supremacy
Computational tasks, not necessarily useful, which is

feasible to implement w/ current q. machines, but

hard to simulate by classical computation.

Google: Random Circuit Sampling USTC: Boson Sampling
A Milestone Toward Useful Quantum Computation

NISQ: Noise Intermediate-Scale Quantum machines ~ near future

50 ~ 200, ~ 1000 controllable but noisy qubits, no fault-tolerant qubits

Or special-purpose quantum machines, like analog quantum simulators

Quantum Simulation

Variational Q. Methods

A Rough Timeline of Quantum Applications
NOW: Quantum Supremacy
Computational tasks, not necessarily useful, which is

feasible to implement w/ current q. machines, but

hard to simulate by classical computation.

Google: Random Circuit Sampling USTC: Boson Sampling
A Milestone Toward Useful Quantum Computation

NISQ: Noise Intermediate-Scale Quantum machines ~ near future

50 ~ 200, ~ 1000 controllable but noisy qubits, no fault-tolerant qubits

Or special-purpose quantum machines, like analog quantum simulators

Quantum Simulation

Variational Q. Methods

Other quantum applications not in the computation domain: quantum sensing, quantum communication

A Rough Timeline of Quantum Applications
NOW: Quantum Supremacy
Computational tasks, not necessarily useful, which is

feasible to implement w/ current q. machines, but

hard to simulate by classical computation.

Google: Random Circuit Sampling USTC: Boson Sampling
A Milestone Toward Useful Quantum Computation

NISQ: Noise Intermediate-Scale Quantum machines ~ near future

50 ~ 200, ~ 1000 controllable but noisy qubits, no fault-tolerant qubits

Or special-purpose quantum machines, like analog quantum simulators

Quantum Simulation

Variational Q. Methods

Other quantum applications not in the computation domain: quantum sensing, quantum communication

Fault-Tolerant QC: ~ unknown future, a lot of uncertainty here

- Linear systems
- Graph problems (minimum spanning tree,

connectivity, shortest path, triangle finding,
etc.)

- Formula evaluation
- Decomposing groups (abelian, dihedral, etc.)
- ……

The Role of Programming Languages
 Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!

The Role of Programming Languages
 Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!
 But of course, quantum computing model demonstrates some
fundamental differences and unique needs, which requires new
techniques to deal with.

The Role of Programming Languages
 Like the role of PL played for any other computing models, many
similar first-principle questions can be asked in the context of
quantum computing as well!
 But of course, quantum computing model demonstrates some
fundamental differences and unique needs, which requires new
techniques to deal with.

Disclaimer: perspectives and claims are potentially limited or biased by personal knowledge.

How to Program Q. Applications, Debug, and Verify Correctness?
How to Develop Software for Q. Computing, e.g., compiler, system?
How to Design and Implement Architecture for Quantum Computing?
How to Handle Quantum Security Issues in Design&Implementation?
How to Scale and Automate the Design of Quantum Hardware ?

How to Program Q. Applications, Debug, and Verify Correctness?
The natural question with MOST investigation, but still a huge gap!

How to Program Q. Applications, Debug, and Verify Correctness?
The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
 semantics in various pictures, q. Hoare logic and verification, …

How to Program Q. Applications, Debug, and Verify Correctness?
The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
 semantics in various pictures, q. Hoare logic and verification, …

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
 QWIRE/SQIR (embedded in Coq), SILQ, … <- academia
 python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AWS), <- industry

How to Program Q. Applications, Debug, and Verify Correctness?
The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
 semantics in various pictures, q. Hoare logic and verification, …

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
 QWIRE/SQIR (embedded in Coq), SILQ, … <- academia
 python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AWS), <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs

How to Program Q. Applications, Debug, and Verify Correctness?
The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
 semantics in various pictures, q. Hoare logic and verification, …

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
 QWIRE/SQIR (embedded in Coq), SILQ, … <- academia
 python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AWS), <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs

Verifying the circuit

by observation

…. not scalable …

(2) lack of scalable verification: very hard to write correct programs

How to Program Q. Applications, Debug, and Verify Correctness?
The natural question with MOST investigation, but still a huge gap!

THEORY: quantum lambda-calculus, functional quantum PL, q. while language
 semantics in various pictures, q. Hoare logic and verification, …

LANGUAGES: Quipper (embedded in Haskel), Scaffold (based on LLVM), Q# (based on F#, MSR),
 QWIRE/SQIR (embedded in Coq), SILQ, … <- academia
 python-lib Qiskit (IBM), Cirq (Google), Forrest (Rigetti), Braket (AWS), <- industry

Gap: (1) too-low-level-abstraction: very hard to write complex programs

(3) lack of many desirable analyses, automation, & optimization: a

 lot of burdens on the programmers

Verifying the circuit

by observation

…. not scalable …

(2) lack of scalable verification: very hard to write correct programs

How to Develop Software for Q. Computing, e.g., compiler, system?

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.

How to Develop Software for Q. Computing, e.g., compiler, system?

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

How to Develop Software for Q. Computing, e.g., compiler, system?

F. Chong, D. Franklin, M. Martonosi, Nature 549, 180

Large Design Space for System Software for Quantum Computers.
High-Assurance Software Tool-chain both desirable and challenging.

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

A possible solution : fully certified software, e.g., VOQC (POPL 2021)

How to Design and Implement Architecture for Quantum Computing?

ibmq_toronto

Mapping, Error Mitigation, …
approximate computing

How to Design and Implement Architecture for Quantum Computing?

ibmq_toronto

Mapping, Error Mitigation, …
approximate computing

X. Fu et al MICRO 17

A lot of controlling
operations need to be
located close to
quantum chips for
small responsive time.

ISA + Fast Compilation

How to Handle Quantum Security Issues in Design and Implementation?

Verification of Quantum Cryptography:
 Relational Quantum Hoare Logic (Unruh; Barthe et al.)

How to Handle Quantum Security Issues in Design and Implementation?

Verification of Quantum Cryptography:
 Relational Quantum Hoare Logic (Unruh; Barthe et al.)

Quantum Cryptanalysis:
 Resource estimation of Complex Quantum Attack Programs

How to Handle Quantum Security Issues in Design and Implementation?

Verification of Quantum Cryptography:
 Relational Quantum Hoare Logic (Unruh; Barthe et al.)

Quantum Cryptanalysis:
 Resource estimation of Complex Quantum Attack Programs

Post-Quantum Cryptography:
 Classical Cryptographic Systems Resilient to Quantum Attacks

For Classical Cryptographic Systems

 (1) Identify their post-quantum security
 (2) automate the procedure to upgrade its post-quantum security
 (3) formal post-quantum security proofs

Formally generated security analysis will provide not only efficient and high
assurance proofs that can replace the tedious and error-prone analysis for
experts, but also independently verifiable proofs that can be used by security
practitioners without much quantum knowledge.

How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

Neutral Atoms Credit: arXiv:2006.12326

How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

Neutral Atoms Credit: arXiv:2006.12326

QRAM Architecture

Credit: ArXiv 0807.4994

How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

Neutral Atoms Credit: arXiv:2006.12326

Demonstrate A Lot of Design Choices
Hard to Scale without Automatic Tools

QRAM Architecture

Credit: ArXiv 0807.4994

How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

Neutral Atoms Credit: arXiv:2006.12326

SNAPL 2019

Demonstrate A Lot of Design Choices
Hard to Scale without Automatic Tools

QRAM Architecture

Credit: ArXiv 0807.4994

How to Scale and Automate the Design of Quantum Hardware ?

Superconducting Credit: arXiv:1704.06208

Neutral Atoms Credit: arXiv:2006.12326

SNAPL 2019

Demonstrate A Lot of Design Choices
Hard to Scale without Automatic Tools

QRAM Architecture

Credit: ArXiv 0807.4994

Applies to Quantum Hardware too!

Summary

Quantum PLs

Software Tool-chain

Architecture

Security

Hardware Design

some

a little

a little

a little

almost none

Summary

Quantum PLs

Software Tool-chain

Architecture

Security

Hardware Design

some

a little

a little

a little

almost none

Satisfactory

Summary

Quantum PLs

Software Tool-chain

Architecture

Security

Hardware Design

some

a little

a little

a little

almost none

Satisfactory

More questions could be asked !

Summary

Quantum PLs

Software Tool-chain

Architecture

Security

Hardware Design

some

a little

a little

a little

almost none

Satisfactory

More questions could be asked !

More details will come back in Part III of the tutorial.

Further Readings: Thank You! Q & A
MARK A. HOROWITZ,
Stanford University, Chair
ALÁN ASPURU-GUZIK,
University of Toronto
DAVID D. AWSCHALOM,
University of Chicago
BOB BLAKLEY,
Citigroup
DAN BONEH,
Stanford University
SUSAN N. COPPERSMITH,
University of Wisconsin, Madison
JUNGSANG KIM,
Duke University
JOHN M. MARTINIS,
Google, Inc.
MARGARET MARTONOSI,
Princeton University
MICHELE MOSCA,
University of Waterloo
WILLIAM D. OLIVER,
Massachusetts Institute of Technology
KRYSTA SVORE,
Microsoft Research
UMESH V. VAZIRANI,
University of California, Berkeley

H. R. 6227
National Quantum Initiative Act

Reference: links are available at https://www.cs.umd.edu/
~xwu/mini_lib.html

https://www.cs.umd.edu/~xwu/mini_lib.html
https://www.cs.umd.edu/~xwu/mini_lib.html

Outline

 (1) Introduction to Quantum Computing and Potential Roles of

 Programming Languages (25 min + 5 Q & A)

 (2) A Mini-Course of Quantum Hoare Logic on Quantum While

 Language (30 min + 5 Q & A)

 (3) Discussion on existing and potential Programming

 Language research opportunities (20 min + 5 Q & A)

Reference: tutorial slides and some references are
available at https://www.cs.umd.edu/~xwu/mini_lib.html

https://www.cs.umd.edu/~xwu/mini_lib.html

What is Quantum Computing?

A Quantum Computer

An Operation O —> A Quantum Physical Evolution Q

Computation:

Evolution of the Machine:

The accumulative evolution carries some computation!

Q1, Q2, Q3, ⋯

What is Quantum Computing?

A Quantum Computer

An Operation O —> A Quantum Physical Evolution Q

Computation:

Evolution of the Machine:

The accumulative evolution carries some computation!

Q1, Q2, Q3, ⋯

Consider quantum machines of finite-dimension. Hilbert space -> Euclidean space

What is Quantum Computing?

A Quantum Computer

An Operation O —> A Quantum Physical Evolution Q

Computation:

Evolution of the Machine:

The accumulative evolution carries some computation!

Q1, Q2, Q3, ⋯

Consider quantum machines of finite-dimension. Hilbert space -> Euclidean space

The Math Model of Quantum Machines comes from the math model of s.Qi
(semantics)

What is Quantum Computing?

A Quantum Computer

An Operation O —> A Quantum Physical Evolution Q

Computation:

Evolution of the Machine:

The accumulative evolution carries some computation!

Q1, Q2, Q3, ⋯

Consider quantum machines of finite-dimension. Hilbert space -> Euclidean space

Four Postulates for Quantum Mechanics:
State Space postulate
Evolution postulate — No-Cloning theorem
Composite System postulate
Measurement postulate

The Math Model of Quantum Machines comes from the math model of s.Qi
(semantics)

State Space postulate: (pure) quantum state represented by unit complex vectors

State Space postulate: (pure) quantum state represented by unit complex vectors

wave in

continuous

domain

State Space postulate: (pure) quantum state represented by unit complex vectors

wave in

continuous

domain

A quantum bit (qubit) refers to a quantum system of dimension 2

State Space postulate: (pure) quantum state represented by unit complex vectors

wave in

continuous

domain

A quantum bit (qubit) refers to a quantum system of dimension 2

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

classical 0 and 1: classical bits are special
cases of quantum.

State Space postulate: (pure) quantum state represented by unit complex vectors

wave in

continuous

domain

A quantum bit (qubit) refers to a quantum system of dimension 2

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

classical 0 and 1: classical bits are special
cases of quantum.

Dirac Notation

State Space postulate: (pure) quantum state represented by unit complex vectors

wave in

continuous

domain

A quantum bit (qubit) refers to a quantum system of dimension 2

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

classical 0 and 1: classical bits are special
cases of quantum.

Dirac NotationA general qubit:

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

 are general complex numbers.

Constraint due to Born’s probability

amplitude interpretation.

α, β

State Space postulate: (pure) quantum state represented by unit complex vectors

wave in

continuous

domain

A quantum bit (qubit) refers to a quantum system of dimension 2

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

classical 0 and 1: classical bits are special
cases of quantum.

Dirac NotationA general qubit:

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

 are general complex numbers.

Constraint due to Born’s probability

amplitude interpretation.

α, β

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆
Example:

State Space postulate: (pure) quantum state represented by unit complex vectors

wave in

continuous

domain

A quantum bit (qubit) refers to a quantum system of dimension 2

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

classical 0 and 1: classical bits are special
cases of quantum.

Dirac NotationA general qubit:

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

 are general complex numbers.

Constraint due to Born’s probability

amplitude interpretation.

α, β

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆
Example:

Evolution postulate: evolution of quantum systems is unitary

Unitary evolution is a simple consequence of being linear and preserving normℓ2

State Space postulate: (pure) quantum state represented by unit complex vectors

wave in

continuous

domain

A quantum bit (qubit) refers to a quantum system of dimension 2

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

classical 0 and 1: classical bits are special
cases of quantum.

Dirac NotationA general qubit:

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

 are general complex numbers.

Constraint due to Born’s probability

amplitude interpretation.

α, β

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆
Example:

Evolution postulate: evolution of quantum systems is unitary

Unitary evolution is a simple consequence of being linear and preserving normℓ2

Precisely,

Unitary matrices

I Dynamics of a closed quantum system is described by a
unitary matrix:

|yi 7! U|yi

I A matrix U is unitary if U†U = I, where U† is the
conjugate and transpose of U

I Hadamard matrix

H =
1
p

2

✓
1 1
1 �1

◆

is an unitary operator in the 2-dimensional Hilbert space
I H|0i = |+i, H|1i = |�i

since is also a quantum state, so that U |ψ⟩

⟨ψ |U†U |ψ⟩ = 1,∀ |ψ⟩ ⟹ U†U = I unitary (reversible)

State Space postulate: (pure) quantum state represented by unit complex vectors

wave in

continuous

domain

A quantum bit (qubit) refers to a quantum system of dimension 2

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

classical 0 and 1: classical bits are special
cases of quantum.

Dirac NotationA general qubit:

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

 are general complex numbers.

Constraint due to Born’s probability

amplitude interpretation.

α, β

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆

Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I A pure state of qubit is:

|yi = a|0i+ b|1i =
✓

a
b

◆
with |a|2 + |b|2 = 1.

I A qubit can be in the basis states:

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆

I A qubit can also be in a superposition of |0i, |1i, e.g.

|+i =
1
p

2
(|0i+ |1i) =

1
p

2

✓
1
1

◆

|�i =
1
p

2
(|0i � |1i) =

1
p

2

✓
1
�1

◆
Example:

Evolution postulate: evolution of quantum systems is unitary

Unitary evolution is a simple consequence of being linear and preserving normℓ2

Precisely,

Unitary matrices

I Dynamics of a closed quantum system is described by a
unitary matrix:

|yi 7! U|yi

I A matrix U is unitary if U†U = I, where U† is the
conjugate and transpose of U

I Hadamard matrix

H =
1
p

2

✓
1 1
1 �1

◆

is an unitary operator in the 2-dimensional Hilbert space
I H|0i = |+i, H|1i = |�i

since is also a quantum state, so that U |ψ⟩

⟨ψ |U†U |ψ⟩ = 1,∀ |ψ⟩ ⟹ U†U = I unitary (reversible)

Example:

Unitary matrices

I Dynamics of a closed quantum system is described by a
unitary matrix:

|yi 7! U|yi

I A matrix U is unitary if U†U = I, where U† is the
conjugate and transpose of U

I Hadamard matrix

H =
1
p

2

✓
1 1
1 �1

◆

is an unitary operator in the 2-dimensional Hilbert space
I H|0i = |+i, H|1i = |�i

H |0⟩ = | + ⟩, H |1⟩ = | − ⟩

Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in (dim-4), where (dim-2) is for a qubit. ℂ2 ⊗ ℂ2 ℂ2

Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in (dim-4), where (dim-2) is for a qubit. ℂ2 ⊗ ℂ2 ℂ2

So |00⟩ = |0⟩ ⊗ |0⟩ |01⟩ |10⟩ |11⟩

Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in (dim-4), where (dim-2) is for a qubit. ℂ2 ⊗ ℂ2 ℂ2

So |00⟩ = |0⟩ ⊗ |0⟩ |01⟩ |10⟩ |11⟩

A n-qubit system requires dimensional space. Exponential cost in classical simulation! 2n

Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in (dim-4), where (dim-2) is for a qubit. ℂ2 ⊗ ℂ2 ℂ2

So |00⟩ = |0⟩ ⊗ |0⟩ |01⟩ |10⟩ |11⟩

A n-qubit system requires dimensional space. Exponential cost in classical simulation! 2n

Examples of Common Quantum GatesQuantum gates – one-qubit gates

I Pauli gates:

X =

✓
0 1
1 0

◆
, Y =

✓
0 �i
i 0

◆
, Z =

✓
1 0
0 �1

◆

I Hadarmard gate:

H =
1
p

2

✓
1 1
1 �1

◆

I Rotation about x�axis of the Bloch sphere:

Rx(q) =

✓
cos q

2 �i sin q
2

�i sin q
2 cos q

2

◆

Quantum gates – two-qubit gate

I The controlled-NOT (CNOT) gate:

CNOT =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA

I CNOT generates entanglement: separable state |+ 0i is
transformed to EPR (Einstein-Podolsky-Rosen) pair:

CNOT(|+ 0i) =
1
p

2
(|00i+ |11i)

Single-qubit Gate

Two-qubit Gate

Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in (dim-4), where (dim-2) is for a qubit. ℂ2 ⊗ ℂ2 ℂ2

So |00⟩ = |0⟩ ⊗ |0⟩ |01⟩ |10⟩ |11⟩

A n-qubit system requires dimensional space. Exponential cost in classical simulation! 2n

Examples of Common Quantum GatesQuantum gates – one-qubit gates

I Pauli gates:

X =

✓
0 1
1 0

◆
, Y =

✓
0 �i
i 0

◆
, Z =

✓
1 0
0 �1

◆

I Hadarmard gate:

H =
1
p

2

✓
1 1
1 �1

◆

I Rotation about x�axis of the Bloch sphere:

Rx(q) =

✓
cos q

2 �i sin q
2

�i sin q
2 cos q

2

◆

Quantum gates – two-qubit gate

I The controlled-NOT (CNOT) gate:

CNOT =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA

I CNOT generates entanglement: separable state |+ 0i is
transformed to EPR (Einstein-Podolsky-Rosen) pair:

CNOT(|+ 0i) =
1
p

2
(|00i+ |11i)

Single-qubit Gate

Two-qubit Gate

NO-CLONING Theorem
Assume a cloning procedure U, then

 U |0⟩ |0⟩ = |0⟩ |0⟩ U |1⟩ |0⟩ = |1⟩ |1⟩

Composite System postulate: joint system (A,B) in the tensor-product of A and B

The representation of two qubits lies in (dim-4), where (dim-2) is for a qubit. ℂ2 ⊗ ℂ2 ℂ2

So |00⟩ = |0⟩ ⊗ |0⟩ |01⟩ |10⟩ |11⟩

A n-qubit system requires dimensional space. Exponential cost in classical simulation! 2n

Examples of Common Quantum GatesQuantum gates – one-qubit gates

I Pauli gates:

X =

✓
0 1
1 0

◆
, Y =

✓
0 �i
i 0

◆
, Z =

✓
1 0
0 �1

◆

I Hadarmard gate:

H =
1
p

2

✓
1 1
1 �1

◆

I Rotation about x�axis of the Bloch sphere:

Rx(q) =

✓
cos q

2 �i sin q
2

�i sin q
2 cos q

2

◆

Quantum gates – two-qubit gate

I The controlled-NOT (CNOT) gate:

CNOT =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA

I CNOT generates entanglement: separable state |+ 0i is
transformed to EPR (Einstein-Podolsky-Rosen) pair:

CNOT(|+ 0i) =
1
p

2
(|00i+ |11i)

Single-qubit Gate

Two-qubit Gate

NO-CLONING Theorem
Assume a cloning procedure U, then

 U |0⟩ |0⟩ = |0⟩ |0⟩ U |1⟩ |0⟩ = |1⟩ |1⟩
Consider an arbitrary state |ψ⟩ = α |0⟩ + β |1⟩

U |ψ⟩ |0⟩ = α |0⟩ |0⟩ + β |1⟩ |1⟩

≠ |ψ⟩ |ψ⟩
CONTRADICTION!

Measurement postulate: how to read classical info out of q. system?
This information reading procedure will distribute/collapse the underlying q. systems.

Measurement postulate: how to read classical info out of q. system?
This information reading procedure will distribute/collapse the underlying q. systems.

Quantum measurements

I The way to extract information about a quantum system is
quantum measurement.

I In quantum computation, measurement is used to read out
a computational result.

I A measurement is modelled as a set of operators M = {Mm}

with Âm M†
mMm = I.

I If a quantum system was in pure state |yi before the
measurement, then:

I the probability that measurement outcome is l:

p(m) = ||Mm|yi||
2

where || · || is the length of vector.
I the state of the system after the measurement:

Mm|yip
p(m)

Measurement postulate: how to read classical info out of q. system?
This information reading procedure will distribute/collapse the underlying q. systems.

Quantum measurements

I The way to extract information about a quantum system is
quantum measurement.

I In quantum computation, measurement is used to read out
a computational result.

I A measurement is modelled as a set of operators M = {Mm}

with Âm M†
mMm = I.

I If a quantum system was in pure state |yi before the
measurement, then:

I the probability that measurement outcome is l:

p(m) = ||Mm|yi||
2

where || · || is the length of vector.
I the state of the system after the measurement:

Mm|yip
p(m)

Examples Consider |0⟩

Measured in { |0⟩⟨0 | , |1⟩⟨1 |}

-> w/ prob. 1 (recover classical)|0⟩

Measurement postulate: how to read classical info out of q. system?
This information reading procedure will distribute/collapse the underlying q. systems.

Quantum measurements

I The way to extract information about a quantum system is
quantum measurement.

I In quantum computation, measurement is used to read out
a computational result.

I A measurement is modelled as a set of operators M = {Mm}

with Âm M†
mMm = I.

I If a quantum system was in pure state |yi before the
measurement, then:

I the probability that measurement outcome is l:

p(m) = ||Mm|yi||
2

where || · || is the length of vector.
I the state of the system after the measurement:

Mm|yip
p(m)

Examples Consider |0⟩

Measured in { |0⟩⟨0 | , |1⟩⟨1 |}

-> w/ prob. 1 (recover classical)|0⟩

Measured in { | + ⟩⟨ + | , | − ⟩⟨ − |}

-> w/ prob. 0.5

-> w/ prob. 0.5

| + ⟩
| − ⟩

Measurement postulate: how to read classical info out of q. system?
This information reading procedure will distribute/collapse the underlying q. systems.

Quantum measurements

I The way to extract information about a quantum system is
quantum measurement.

I In quantum computation, measurement is used to read out
a computational result.

I A measurement is modelled as a set of operators M = {Mm}

with Âm M†
mMm = I.

I If a quantum system was in pure state |yi before the
measurement, then:

I the probability that measurement outcome is l:

p(m) = ||Mm|yi||
2

where || · || is the length of vector.
I the state of the system after the measurement:

Mm|yip
p(m)

Examples Consider |0⟩

Measured in { |0⟩⟨0 | , |1⟩⟨1 |}

-> w/ prob. 1 (recover classical)|0⟩

Measured in { | + ⟩⟨ + | , | − ⟩⟨ − |}

-> w/ prob. 0.5

-> w/ prob. 0.5

| + ⟩
| − ⟩

More advanced math formulation of ensemble of quantum states
Density matrices

I In the n-dimensional Hilbert space Cn, an operator is
represented by an n ⇥ n complex matrix A.

I The trace of an operator A is tr(A) = Âi Aii (the sum of the
entries on the main diagonal).

I A positive semidefinite matrix r is called a partial density
matrix if tr(r)  1; in particular, a density matrix r is a
partial density matrix with tr(r) = 1.

Mixed states = density matrices

I Matrix |yihy| is the multiplication of column vector |yi
and the row vector hy| (the conjugate and transpose of
|yi).

I For any mixed state {(p1, |y1i), ..., (pk, |yki)},

r = Â
i

pi|yiihyi|

is a density operator
I For any density operator r, there is a mixed state

{(p1, |y1i), ..., (pk, |yki)} such that

r = Â
i

pi|yiihyi|.

I In particular, a pure state |yi is identified with the density
operator r = |yihy|.

Measurement postulate: how to read classical info out of q. system?
This information reading procedure will distribute/collapse the underlying q. systems.

Quantum measurements

I The way to extract information about a quantum system is
quantum measurement.

I In quantum computation, measurement is used to read out
a computational result.

I A measurement is modelled as a set of operators M = {Mm}

with Âm M†
mMm = I.

I If a quantum system was in pure state |yi before the
measurement, then:

I the probability that measurement outcome is l:

p(m) = ||Mm|yi||
2

where || · || is the length of vector.
I the state of the system after the measurement:

Mm|yip
p(m)

Examples Consider |0⟩

Measured in { |0⟩⟨0 | , |1⟩⟨1 |}

-> w/ prob. 1 (recover classical)|0⟩

Measured in { | + ⟩⟨ + | , | − ⟩⟨ − |}

-> w/ prob. 0.5

-> w/ prob. 0.5

| + ⟩
| − ⟩

More advanced math formulation of ensemble of quantum states
Density matrices

I In the n-dimensional Hilbert space Cn, an operator is
represented by an n ⇥ n complex matrix A.

I The trace of an operator A is tr(A) = Âi Aii (the sum of the
entries on the main diagonal).

I A positive semidefinite matrix r is called a partial density
matrix if tr(r)  1; in particular, a density matrix r is a
partial density matrix with tr(r) = 1.

Mixed states = density matrices

I Matrix |yihy| is the multiplication of column vector |yi
and the row vector hy| (the conjugate and transpose of
|yi).

I For any mixed state {(p1, |y1i), ..., (pk, |yki)},

r = Â
i

pi|yiihyi|

is a density operator
I For any density operator r, there is a mixed state

{(p1, |y1i), ..., (pk, |yki)} such that

r = Â
i

pi|yiihyi|.

I In particular, a pure state |yi is identified with the density
operator r = |yihy|.

Mixed states = density matrices

I Mixed state of a qubit:

{(
2
3

, |0i), (
1
3

, |�i)} with |�i =
1
p

2
(|0i � |1i)

I Density matrix:

r =
2
3
|0ih0|+

1
3
|�ih�| =

1
6

✓
5 �1
�1 1

◆

Mixed states = density matrices

I Mixed state of a qubit:

{(
2
3

, |0i), (
1
3

, |�i)} with |�i =
1
p

2
(|0i � |1i)

I Density matrix:

r =
2
3
|0ih0|+

1
3
|�ih�| =

1
6

✓
5 �1
�1 1

◆
Example:

Quantum While-Language
Quantum While-Language

Syntax

A core language for imperative quantum programming

S ::= skip | q := |0i
|S1; S2

| q := U[q]
| if (⇤m · M[q] = m ! Sm) fi
| while M[q] = 1 do S od

Quantum While-Language
Quantum While-Language

Syntax

A core language for imperative quantum programming

S ::= skip | q := |0i
|S1; S2

| q := U[q]
| if (⇤m · M[q] = m ! Sm) fi
| while M[q] = 1 do S od

Classically, one has

 t ~ expression.

However, due to no-cloning,

 1) initialization

 2) unitary operation

u := t

Quantum While-Language
Quantum While-Language

Syntax

A core language for imperative quantum programming

S ::= skip | q := |0i
|S1; S2

| q := U[q]
| if (⇤m · M[q] = m ! Sm) fi
| while M[q] = 1 do S od

Classically, one has

 t ~ expression.

However, due to no-cloning,

 1) initialization

 2) unitary operation

u := t

Quantum Data, Classical Control

Quantum While-Language
Quantum While-Language

Syntax

A core language for imperative quantum programming

S ::= skip | q := |0i
|S1; S2

| q := U[q]
| if (⇤m · M[q] = m ! Sm) fi
| while M[q] = 1 do S od

Classically, one has

 t ~ expression.

However, due to no-cloning,

 1) initialization

 2) unitary operation

u := t

Quantum Data, Classical Control

Classical control requires reading information out of quantum systems.

However, by measuring the guard, it leads to

 (1) a probabilistic choice of branches

 (2) a collapse of the guard state before entering each branch

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

1
1

0

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

1
1

0

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

coin space = {L, R}

position space = {0, …, n-1}

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

1
1

0

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

coin space = {L, R}

position space = {0, …, n-1}

Create a new coin in superposition!

Random walk based on that coin!

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

1
1

0

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

coin space = {L, R}

position space = {0, …, n-1}

Create a new coin in superposition!

Random walk based on that coin!

Terminal of loop: position 1

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

1
1

0

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

coin space = {L, R}

position space = {0, …, n-1}

Create a new coin in superposition!

Random walk based on that coin!

Terminal of loop: position 1

Goal: reason about this program

Semantics of Quantum While-Language
Operational Semantics

A configuration: hS, ri

I S is a quantum program or E (the empty program)
I r is a partial density operator in

Hall =
O

all q
Hq

Operational Semantics

(Sk)
hskip, ri ! hE, ri

(Ini)
hq := |0i, ri ! hE, r

q
0i

I type(q) = Boolean:

r
q
0 = |0iqh0|r|0iqh0|+ |0iqh1|r|1iqh0|

I type(q) = integer:

r
q
0 =

•

Â
n=�•

|0iqhn|r|niqh0|

Semantics of Quantum While-Language
Operational Semantics

A configuration: hS, ri

I S is a quantum program or E (the empty program)
I r is a partial density operator in

Hall =
O

all q
Hq

Operational Semantics

(Sk)
hskip, ri ! hE, ri

(Ini)
hq := |0i, ri ! hE, r

q
0i

I type(q) = Boolean:

r
q
0 = |0iqh0|r|0iqh0|+ |0iqh1|r|1iqh0|

I type(q) = integer:

r
q
0 =

•

Â
n=�•

|0iqhn|r|niqh0|Operational Semantics

(Uni)
hq := U[q], ri ! hE, UrU†i

(Seq)
hS1, ri ! hS0

1, r0i

hS1; S2, ri ! hS0

1; S2, r0i

Convention : E; S2 = S2.

(IF)
hif (⇤m · M[q] = m ! Sm) fi, ri ! hSm, MmrM†

mi

for each outcome m

Semantics of Quantum While-Language
Operational Semantics

A configuration: hS, ri

I S is a quantum program or E (the empty program)
I r is a partial density operator in

Hall =
O

all q
Hq

Operational Semantics

(Sk)
hskip, ri ! hE, ri

(Ini)
hq := |0i, ri ! hE, r

q
0i

I type(q) = Boolean:

r
q
0 = |0iqh0|r|0iqh0|+ |0iqh1|r|1iqh0|

I type(q) = integer:

r
q
0 =

•

Â
n=�•

|0iqhn|r|niqh0|Operational Semantics

(Uni)
hq := U[q], ri ! hE, UrU†i

(Seq)
hS1, ri ! hS0

1, r0i

hS1; S2, ri ! hS0

1; S2, r0i

Convention : E; S2 = S2.

(IF)
hif (⇤m · M[q] = m ! Sm) fi, ri ! hSm, MmrM†

mi

for each outcome m

Operational Semantics

(L0)
hwhile M[q] = 1 do S od, ri ! hE, M0rM†

0i

(L1)
hwhile M[q] = 1 do S, ri ! hS; while M[q] = 1 do S, M1rM†

1i

Loop:

Semantics of Quantum While-Language
Operational Semantics

A configuration: hS, ri

I S is a quantum program or E (the empty program)
I r is a partial density operator in

Hall =
O

all q
Hq

Operational Semantics

(Sk)
hskip, ri ! hE, ri

(Ini)
hq := |0i, ri ! hE, r

q
0i

I type(q) = Boolean:

r
q
0 = |0iqh0|r|0iqh0|+ |0iqh1|r|1iqh0|

I type(q) = integer:

r
q
0 =

•

Â
n=�•

|0iqhn|r|niqh0|Operational Semantics

(Uni)
hq := U[q], ri ! hE, UrU†i

(Seq)
hS1, ri ! hS0

1, r0i

hS1; S2, ri ! hS0

1; S2, r0i

Convention : E; S2 = S2.

(IF)
hif (⇤m · M[q] = m ! Sm) fi, ri ! hSm, MmrM†

mi

for each outcome m

Operational Semantics

(L0)
hwhile M[q] = 1 do S od, ri ! hE, M0rM†

0i

(L1)
hwhile M[q] = 1 do S, ri ! hS; while M[q] = 1 do S, M1rM†

1i

Loop:

Capture the Collapse of the Guard state.

Semantics of Quantum While-Language
Denotational Semantics

Semantic function of quantum program S:

JSK : D(Hall) ! D(Hall)

JSK(r) = Â{|r0 : hS, ri !⇤
hE, r0i|} for all r 2 D(Hall)

Semantics of Quantum While-Language
Denotational Semantics

Semantic function of quantum program S:

JSK : D(Hall) ! D(Hall)

JSK(r) = Â{|r0 : hS, ri !⇤
hE, r0i|} for all r 2 D(Hall)

Observation:

tr(JSK(r))  tr(r)

for any quantum program S and all r 2 D(Hall).

I tr(r)� tr(JSK(r)) is the probability that program S
diverges from input state r.

Quantum Predicate & Hoare TripleDefinitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Quantum Predicate & Hoare TripleDefinitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Continuous logic

[0, 1]

Matrix Upgrade

Quantum Predicate & Hoare TripleDefinitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Definitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Continuous logic

[0, 1]

Matrix Upgrade

Quantum Predicate & Hoare TripleDefinitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Definitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Continuous logic

[0, 1]

Matrix Upgrade

Similar as Classical

Hoare triple w/

different semantics

Quantum Predicate & Hoare TripleDefinitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Definitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Continuous logic

[0, 1]

Matrix Upgrade

Similar as Classical

Hoare triple w/

different semantics

Definitions

1. {P}S{Q} is true in the sense of total correctness:

|=tot {P}S{Q}

if
tr(Pr)  tr(QJSK(r)) for all r.

2. {P}S{Q} is true in the sense of partial correctness:

|=par {P}S{Q},

if
tr(Pr)  tr(QJSK(r)) + [tr(r)� tr(JSK(r))]

for all r.

Quantum Predicate & Hoare TripleDefinitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Definitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Continuous logic

[0, 1]

Matrix Upgrade

Similar as Classical

Hoare triple w/

different semantics

Definitions

1. {P}S{Q} is true in the sense of total correctness:

|=tot {P}S{Q}

if
tr(Pr)  tr(QJSK(r)) for all r.

2. {P}S{Q} is true in the sense of partial correctness:

|=par {P}S{Q},

if
tr(Pr)  tr(QJSK(r)) + [tr(r)� tr(JSK(r))]

for all r.

Semantics

Quantum Predicate & Hoare TripleDefinitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Definitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Continuous logic

[0, 1]

Matrix Upgrade

Similar as Classical

Hoare triple w/

different semantics

Definitions

1. {P}S{Q} is true in the sense of total correctness:

|=tot {P}S{Q}

if
tr(Pr)  tr(QJSK(r)) for all r.

2. {P}S{Q} is true in the sense of partial correctness:

|=par {P}S{Q},

if
tr(Pr)  tr(QJSK(r)) + [tr(r)� tr(JSK(r))]

for all r.

Pre-S State Post-S State

Semantics

Quantum Predicate & Hoare TripleDefinitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Definitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Continuous logic

[0, 1]

Matrix Upgrade

Similar as Classical

Hoare triple w/

different semantics

Definitions

1. {P}S{Q} is true in the sense of total correctness:

|=tot {P}S{Q}

if
tr(Pr)  tr(QJSK(r)) for all r.

2. {P}S{Q} is true in the sense of partial correctness:

|=par {P}S{Q},

if
tr(Pr)  tr(QJSK(r)) + [tr(r)� tr(JSK(r))]

for all r.

Definitions

1. {P}S{Q} is true in the sense of total correctness:

|=tot {P}S{Q}

if
tr(Pr)  tr(QJSK(r)) for all r.

2. {P}S{Q} is true in the sense of partial correctness:

|=par {P}S{Q},

if
tr(Pr)  tr(QJSK(r)) + [tr(r)� tr(JSK(r))]

for all r.

Pre-S State Post-S State

Semantics

Quantum Predicate & Hoare TripleDefinitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Definitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.

Continuous logic

[0, 1]

Matrix Upgrade

Similar as Classical

Hoare triple w/

different semantics

Definitions

1. {P}S{Q} is true in the sense of total correctness:

|=tot {P}S{Q}

if
tr(Pr)  tr(QJSK(r)) for all r.

2. {P}S{Q} is true in the sense of partial correctness:

|=par {P}S{Q},

if
tr(Pr)  tr(QJSK(r)) + [tr(r)� tr(JSK(r))]

for all r.

Definitions

1. {P}S{Q} is true in the sense of total correctness:

|=tot {P}S{Q}

if
tr(Pr)  tr(QJSK(r)) for all r.

2. {P}S{Q} is true in the sense of partial correctness:

|=par {P}S{Q},

if
tr(Pr)  tr(QJSK(r)) + [tr(r)� tr(JSK(r))]

for all r.

Pre-S State Post-S State

Semantics Divergence

Quantum Hoare logic for Partial CorrectnessProof System for Partial Correctness

(Axiom Sk) {P}Skip{P}

(Axiom Ini)
type(q) = Boolean :

{|0iqh0|P|0iqh0|+ |1iqh0|P|0iqh1|}q := |0i{P}

type(q) = integer :

{

•

Â
n=�•

|niqh0|P|0iqhn|}q := |0i{P}

(Axiom Uni) {U†PU}q := U[q]{P}

Proof System for Partial Correctness

(Rule Seq)
{P}S1{Q} {Q}S2{R}

{P}S1; S2{R}

(Rule IF)
{Pm}Sm{Q} for all m

{Âm M†
mPmMm}if (⇤m · M[q] = m ! Sm) fi{Q}

(Rule LP)
{Q}S{M†

0PM0 + M†
1QM1}

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}

(Rule Ord)
P v P0

{P0
}S{Q0

} Q0
v Q

{P}S{Q}

Quantum Hoare logic for Partial CorrectnessProof System for Partial Correctness

(Axiom Sk) {P}Skip{P}

(Axiom Ini)
type(q) = Boolean :

{|0iqh0|P|0iqh0|+ |1iqh0|P|0iqh1|}q := |0i{P}

type(q) = integer :

{

•

Â
n=�•

|niqh0|P|0iqhn|}q := |0i{P}

(Axiom Uni) {U†PU}q := U[q]{P}

Proof System for Partial Correctness

(Rule Seq)
{P}S1{Q} {Q}S2{R}

{P}S1; S2{R}

(Rule IF)
{Pm}Sm{Q} for all m

{Âm M†
mPmMm}if (⇤m · M[q] = m ! Sm) fi{Q}

(Rule LP)
{Q}S{M†

0PM0 + M†
1QM1}

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}

(Rule Ord)
P v P0

{P0
}S{Q0

} Q0
v Q

{P}S{Q}

Parts of Classical Hoare Logic

Quantum Hoare logic for Partial CorrectnessProof System for Partial Correctness

(Axiom Sk) {P}Skip{P}

(Axiom Ini)
type(q) = Boolean :

{|0iqh0|P|0iqh0|+ |1iqh0|P|0iqh1|}q := |0i{P}

type(q) = integer :

{

•

Â
n=�•

|niqh0|P|0iqhn|}q := |0i{P}

(Axiom Uni) {U†PU}q := U[q]{P}

Proof System for Partial Correctness

(Rule Seq)
{P}S1{Q} {Q}S2{R}

{P}S1; S2{R}

(Rule IF)
{Pm}Sm{Q} for all m

{Âm M†
mPmMm}if (⇤m · M[q] = m ! Sm) fi{Q}

(Rule LP)
{Q}S{M†

0PM0 + M†
1QM1}

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}

(Rule Ord)
P v P0

{P0
}S{Q0

} Q0
v Q

{P}S{Q}

Parts of Classical Hoare Logic

Quantum Hoare logic for Partial CorrectnessProof System for Partial Correctness

(Axiom Sk) {P}Skip{P}

(Axiom Ini)
type(q) = Boolean :

{|0iqh0|P|0iqh0|+ |1iqh0|P|0iqh1|}q := |0i{P}

type(q) = integer :

{

•

Â
n=�•

|niqh0|P|0iqhn|}q := |0i{P}

(Axiom Uni) {U†PU}q := U[q]{P}

Proof System for Partial Correctness

(Rule Seq)
{P}S1{Q} {Q}S2{R}

{P}S1; S2{R}

(Rule IF)
{Pm}Sm{Q} for all m

{Âm M†
mPmMm}if (⇤m · M[q] = m ! Sm) fi{Q}

(Rule LP)
{Q}S{M†

0PM0 + M†
1QM1}

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}

(Rule Ord)
P v P0

{P0
}S{Q0

} Q0
v Q

{P}S{Q}

Parts of Classical Hoare Logic

Theorem (Soundness and Completeness)

For any quantum program S and quantum predicates P, Q,

|=par {P}S{Q} if and only if `PD {P}S{Q}.

Ying. TOPLAS, 2011.

Quantum Hoare logic for Total Correctness
Proof System for Total Correctness

Let P be a quantum predicate and e > 0. A function

t : D(Hall) (density operators) ! N

is called a (P, e)-ranking function of quantum loop:

while M[q] = 1 do S od

if for all r:
1. t(JSK(M1rM†

1))  t(r);
2. tr(Pr) � e implies t(JSK(M1rM†

1)) < t(r)

Proof System for Total Correctness

(Rule LT)

(1) {Q}S{M†
0PM0 + M†

1QM1}

(2) for any e > 0, te is a (M†
1QM1, e)�ranking

function of loop
{M†

0PM0 + M†
1QM1}while M[q] = 1 do S od{P}

Theorem (Soundness and Completeness)
For any quantum program S and quantum predicates P Q,

|=tot {P}S{Q} if and only if `TD {P}S{Q}.

[2] M. S. Ying, Floyd-Hoare logic for quantum programs, ACM
Transactions on Programming Languages and Systems 2011

Quantum Hoare logic and Invariants : POPL17

Quantum Hoare logic and Invariants : POPL17

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

Control - Flow - Graph

Quantum Hoare logic and Invariants : POPL17

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

Control - Flow - Graph

Invariants
I A set P of paths is prime if for each

p = l1
E1
! ...

En�1
! ln 2 P

its proper initial segments l1
E1
! ...

Ek�1
! lk /2 P for all k < n.

I Let G = hH, L, l0,!i, Q a quantum predicate (initial
condition), l 2 L. An invariant at l is a quantum predicate O
such that for any density operator r, any prime set P of
paths from l0 to l:

tr(Qr)  1 � tr (EP(r)) + tr (OEP(r))

where EP = Â {|Ep : p 2 P|} .

Quantum Hoare logic and Invariants : POPL17

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

Control - Flow - Graph

Invariants
I A set P of paths is prime if for each

p = l1
E1
! ...

En�1
! ln 2 P

its proper initial segments l1
E1
! ...

Ek�1
! lk /2 P for all k < n.

I Let G = hH, L, l0,!i, Q a quantum predicate (initial
condition), l 2 L. An invariant at l is a quantum predicate O
such that for any density operator r, any prime set P of
paths from l0 to l:

tr(Qr)  1 � tr (EP(r)) + tr (OEP(r))

where EP = Â {|Ep : p 2 P|} .

O0

O1

O2

O3

Finding Quantum Invariants
Theorem (Partial Correctness)

Let P be a quantum program. If O is an invariant at lPout in SP,
then

|=par {Q}P{O}

Finding Quantum Invariants
Theorem (Partial Correctness)

Let P be a quantum program. If O is an invariant at lPout in SP,
then

|=par {Q}P{O}

Inductive Assertion Maps

I Given G = hH, L, l0,!i with a cutset C and initial
condition Q.

I An assertion map is a mapping h from each cutpoint l 2 C
to a quantum predicate h(l).

I Pl: the set of all basic paths from l to some cutpoint.
I lp: the last location in a path p.
I An assertion map h is inductive if:

I Initiation: for any density operator r:

tr(Qr)  1 � tr
⇣
EPl0

(r)
⌘
+ Â

p2Pl0

tr (h(lp)Ep(r)) ;

I Consecution: for any density operator r, each cutpoint
l 2 C:

tr(h(l)r)  1 � tr
�
EPl(r)

�
+ Â

p2Pl

tr (h(lp)Ep(r)) .

Reducing Global Constraints
Into Local Ones

Finding Quantum Invariants
Theorem (Partial Correctness)

Let P be a quantum program. If O is an invariant at lPout in SP,
then

|=par {Q}P{O}

Inductive Assertion Maps

I Given G = hH, L, l0,!i with a cutset C and initial
condition Q.

I An assertion map is a mapping h from each cutpoint l 2 C
to a quantum predicate h(l).

I Pl: the set of all basic paths from l to some cutpoint.
I lp: the last location in a path p.
I An assertion map h is inductive if:

I Initiation: for any density operator r:

tr(Qr)  1 � tr
⇣
EPl0

(r)
⌘
+ Â

p2Pl0

tr (h(lp)Ep(r)) ;

I Consecution: for any density operator r, each cutpoint
l 2 C:

tr(h(l)r)  1 � tr
�
EPl(r)

�
+ Â

p2Pl

tr (h(lp)Ep(r)) .

Reducing Global Constraints
Into Local Ones

Reduce to a SDP (Semi-Definite Programming) Problem

I Assume C = {l0, l1, ..., lm}.
I Write Oi = h(li) for i = 0, 1,m.
I E

⇤

ij = Â{|E
⇤
p : basic path li

p
) lj |} for i, j = 0, 1, ..., m.

Theorem
Invariant Generation Problem is equivalent to find complex
matrices O0, O1, ..., Om satisfying the constraints:

0 v Â
j
E
⇤

0j(Oj) + A,

0 v Â
j 6=i

E
⇤

ij (Oj) + (E ⇤

ii � I)(Oi) + Ai (i = 0, 1, ..., m),

0 v Oi v I (i = 0, 1, ..., m),

where: (
A = I � Âj E

⇤

0j(I)� Q,
Ai = I � Âj E

⇤

ij (I) (i = 0, 1, ..., m).

SDPs for Quantum Invariants

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

O0

O3

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

O0

O3

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

O0

O3

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Using SDP Solver

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.) Namely, QW always terminates

at the position regardless
of the input state

|1⟩
ρ0 .

Quantum 1-D Loop Walk

QW ⌘c := |Li;
p := |0i;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n�1

Â
i=0

|LihL|⌦ |i 1ihi|+
n�1

Â
i=0

|RihR|⌦ |i� 1ihi|.

O0

O3

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.)

Using SDP Solver

Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Q = I. Invariants O0
and O3 satisfy the following constraints:

0 v E
⇤

00(O0) + E
⇤

03(O3)� Q, (1)
0 v (E ⇤

00 � I)(O0) + E
⇤

03(O3), (2)
0 v (E ⇤

33 � I)(O3)� (I � E
⇤

33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 � E†
00, E03 = E03 � E†

03, E33 = I ,
E00 = S(H ⌦ Ip)(Ic ⌦ Mno), E03 = Ic ⌦ Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⌦ |1ih1| ! tr(O3rout) � tr(Qrin) = 1, i.e., always

terminates at the position |1i regardless of the input state
r0. (O0 omitted.) Namely, QW always terminates

at the position regardless
of the input state

|1⟩
ρ0 .

Drawback: all these matrices
are exponentially large.

Further Readings: Thank You! Q & A Solving Constraints: Use SDP solvers!

Applications

I Quantum walk on an n-circle.
I Quantum Metropolis sampling on n-qubits.
I Repeat-Until-Success.
I Quantum Search.
I Quantum Bernoulli Factory.
I Recursively written Quantum Fourier Transformation.

[3] M. S. Ying, S. G. Ying and X. Wu, Invariants of quantum
programs: characterisations and generation, POPL 2017.

Solving Constraints: Use SDP solvers!

References
I M. S. Ying. Floyd-Hoare Logic for Quantum Programs,

TOPLAS, 2011.
I M. S. Ying. Foundations of Quantum Programming,

Morgan Kaufmann, 2016.
I M. S. Ying, S. G. Ying and X. Wu, Invariants of quantum

programs: characterizations and generation, POPL 2017.
I Y. Li, and M. S. Ying. Algorithmic Analysis of Termination

Problems for Quantum Programs, POPL, 2018.
I L. Zhou, N. Yu, and M. S. Ying. An Applied Quantum

Hoare Logic, PLDI, 2019.
I S. H. Hung, Y. Peng, X. Wang, S. Zhu, and X. Wu. On the

Theory and Practice of Invariant-based Verification of
Quantum Programs, manuscript, 2020.

Outline

 (1) Introduction to Quantum Computing and Potential Roles of

 Programming Languages (25 min + 5 Q & A)

 (2) A Mini-Course of Quantum Hoare Logic on Quantum While

 Language (30 min + 5 Q & A)

 (3) Discussion on existing and potential Programming

 Language research opportunities (20 min + 5 Q & A)

Reference: tutorial slides and some references are
available at https://www.cs.umd.edu/~xwu/mini_lib.html

https://www.cs.umd.edu/~xwu/mini_lib.html

Summary from Part I

Quantum PLs

Software Tool-chain

Architecture

Security

Hardware Design

some

a little

a little

a little

almost none

Satisfactory

From the implementation perspective

Highlight some concrete problems! (Not a survey)

Design of Quantum Programming Languages
Gap: (1) too-low-level-abstraction: very hard to write complex programs

(3) lack of many desirable analyses, automation, & optimization: a

 lot of burdens on the programmers

Verifying the circuit

by observation

…. not scalable …

(2) lack of scalable verification: very hard to write correct programs

Design of Quantum Programming Languages
Gap: (1) too-low-level-abstraction: very hard to write complex programs

(3) lack of many desirable analyses, automation, & optimization: a

 lot of burdens on the programmers

Verifying the circuit

by observation

…. not scalable …

(2) lack of scalable verification: very hard to write correct programs

Existing work on type enforced correctness in QPLs

No-Cloning: use linear types for quantum variables (Quipper, QWIRE)

Design of Quantum Programming Languages
Gap: (1) too-low-level-abstraction: very hard to write complex programs

(3) lack of many desirable analyses, automation, & optimization: a

 lot of burdens on the programmers

Verifying the circuit

by observation

…. not scalable …

(2) lack of scalable verification: very hard to write correct programs

Existing work on type enforced correctness in QPLs

No-Cloning: use linear types for quantum variables (Quipper, QWIRE)

Ancilla: keep track of the scope of ancilla qubits (Quipper)

Design of QPLs: the level of abstraction
GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations
common as part of quantum algorithm design

information of the target applications.

Design of QPLs: the level of abstraction
GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations

Question 1: high-level DSLs for classical computation in superposition?

 Need to compile classical computation into reversible computation

 Handle the ancilla qubits and potentially simpler error-correction issues.

common as part of quantum algorithm design

information of the target applications.

Design of QPLs: the level of abstraction
GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations

Question 1: high-level DSLs for classical computation in superposition?

 Need to compile classical computation into reversible computation

 Handle the ancilla qubits and potentially simpler error-correction issues.

common as part of quantum algorithm design

information of the target applications.

Question 2: high-level abstractions for quantum applications?
Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Design of QPLs: the level of abstraction
GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations

Question 1: high-level DSLs for classical computation in superposition?

 Need to compile classical computation into reversible computation

 Handle the ancilla qubits and potentially simpler error-correction issues.

common as part of quantum algorithm design

information of the target applications.

Question 2: high-level abstractions for quantum applications?
Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Candidate applications: Quantum Simulation

 Quantum Variational Methods

Design of QPLs: the level of abstraction
GAP: in the past discussion, we focus on circuit-level-abstraction on bits

Hard to code even real numbers and basic arithmetic operations

Question 1: high-level DSLs for classical computation in superposition?

 Need to compile classical computation into reversible computation

 Handle the ancilla qubits and potentially simpler error-correction issues.

common as part of quantum algorithm design

information of the target applications.

Question 2: high-level abstractions for quantum applications?
Circuits pass little structural information of the target applications.

e.g., encoding, structural freedom or so for automation and optimization

Candidate applications: Quantum Simulation

 Quantum Variational Methods

Question 3: allow program analysis w/ high-level abstractions?

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

 But using classical DS in quantum faces many issues:
e.g., data manipulation is generally non-reversible, even if computation can be made so.
 Reversibility alone does not guarantee correct quantum interference b/c workspace.
 Efficiency issues about reimplementing DS w/ above constraints.

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

 But using classical DS in quantum faces many issues:
e.g., data manipulation is generally non-reversible, even if computation can be made so.
 Reversibility alone does not guarantee correct quantum interference b/c workspace.
 Efficiency issues about reimplementing DS w/ above constraints.

 However, well-defined classical problems that PL might help with.

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

 But using classical DS in quantum faces many issues:
e.g., data manipulation is generally non-reversible, even if computation can be made so.
 Reversibility alone does not guarantee correct quantum interference b/c workspace.
 Efficiency issues about reimplementing DS w/ above constraints.

 However, well-defined classical problems that PL might help with.

Question 5: allow programmers to define quantum object/DS?

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

 But using classical DS in quantum faces many issues:
e.g., data manipulation is generally non-reversible, even if computation can be made so.
 Reversibility alone does not guarantee correct quantum interference b/c workspace.
 Efficiency issues about reimplementing DS w/ above constraints.

 However, well-defined classical problems that PL might help with.

Question 5: allow programmers to define quantum object/DS?

Allow direct modeling of quantum hardware components (QRAM, Sensors)

Design of QPLs: the support of high-level objects
GAP: existing QPLs focus on describing circuits, while not using other

 common high-level abstractions, e.g., objects, data structures.

Question 4: allow programmers to use (classical) data structures?

 Growing need to use complicated DS. (e.g. Ambainis’s element distinctness)

 But using classical DS in quantum faces many issues:
e.g., data manipulation is generally non-reversible, even if computation can be made so.
 Reversibility alone does not guarantee correct quantum interference b/c workspace.
 Efficiency issues about reimplementing DS w/ above constraints.

 However, well-defined classical problems that PL might help with.

Question 5: allow programmers to define quantum object/DS?

Allow direct modeling of quantum hardware components (QRAM, Sensors)

Consider quantum stack ~ truly quantum recursion ~ quantum apps

Verifying Quantum Programs: Scalability & Settings
GAP: the drawback of q. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Verifying Quantum Programs: Scalability & Settings
GAP: the drawback of q. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?

 Hard questions also for classical programs. Solutions for special cases.

Verifying Quantum Programs: Scalability & Settings
GAP: the drawback of q. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?

 Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verifying Quantum Programs: Scalability & Settings
GAP: the drawback of q. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?

 Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Verifying Quantum Programs: Scalability & Settings
GAP: the drawback of q. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?

 Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Question 2: how to do verification of quantum internet applications?

Quantum Internet/Communication is another recent interest

Verifying Quantum Programs: Scalability & Settings
GAP: the drawback of q. Hoare logic make existing verification schemes
not scalable. Moreover, how about verification in more general settings?

Question 1: how to make verification of quantum programs scalable?

 Hard questions also for classical programs. Solutions for special cases.

Verification w/ classical machines:
symbolic, abstract interpretation, or so, but certainly nontrivial!

Verification w/ quantum machines:
Largely unexplored! Run-time verification or other possibility?

Question 2: how to do verification of quantum internet applications?

Quantum Internet/Communication is another recent interest

Develop Q Hoare logic for parallel, concurrent, distributed programs.
Some preliminary results exist. Essential difficulty exists due to quantum correlations.

Debugging Quantum Programs for NISQ
GAP: assertion-based debugging might in general distribute q. systems.

 Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in

 principle resolves the issue for capable quantum computers. How about NISQ?

Debugging Quantum Programs for NISQ
GAP: assertion-based debugging might in general distribute q. systems.

 Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in

 principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Debugging Quantum Programs for NISQ
GAP: assertion-based debugging might in general distribute q. systems.

 Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in

 principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple
e.g., only contains simple conditional and loops

Debugging Quantum Programs for NISQ
GAP: assertion-based debugging might in general distribute q. systems.

 Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in

 principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple
e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors
For NISQ machines, all operations could be erroneous

Debugging Quantum Programs for NISQ
GAP: assertion-based debugging might in general distribute q. systems.

 Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in

 principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple
e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors
For NISQ machines, all operations could be erroneous

Need also to be scalable
Classical simulation hard to scale; large q operations might contain more errors

Debugging Quantum Programs for NISQ
GAP: assertion-based debugging might in general distribute q. systems.

 Li et al. (OOPSLA 2020) provides projection-based assertion scheme, which in

 principle resolves the issue for capable quantum computers. How about NISQ?

Question 3: how to verify and debug NISQ applications?

Need to develop new frameworks as program features are simple
e.g., only contains simple conditional and loops

Need to be very resilient to hardware errors
For NISQ machines, all operations could be erroneous

Need also to be scalable
Classical simulation hard to scale; large q operations might contain more errors

Likely to be application-specific

Quantum Simulation Variational Quantum
Methods

Compilation of Quantum Application: Analog Machines
GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Compilation of Quantum Application: Analog Machines
GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or so

Compilation of Quantum Application: Analog Machines
GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or so

examples identified, but no systematic study
for e.g., efficiency, and verification

Shi et al. Proceedings of the IEEE, Jun 2020

Compilation of Quantum Application: Analog Machines
GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 2: direct compilation to analog / special purpose q machines?

Analog machine modeled
after the physics to simulate

Unexplored yet. But would be of great interests!

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or so

examples identified, but no systematic study
for e.g., efficiency, and verification

Shi et al. Proceedings of the IEEE, Jun 2020

Compilation of Quantum Application: Analog Machines
GAP: most of existing tool-chains compile to circuits with non-native gates
on the hardware. Lead to very inefficient use of NISQ machines.

Question 2: direct compilation to analog / special purpose q machines?

Analog machine modeled
after the physics to simulate

Unexplored yet. But would be of great interests!

Classical Examples:

 Achour et al. (PLDI16)

 Achour & Rinard (ASPLOS 20)

Question 1: develop hardware-aware compilation?

Recent study suggests : compilation to control pulses, qutrits, or so

examples identified, but no systematic study
for e.g., efficiency, and verification

Shi et al. Proceedings of the IEEE, Jun 2020

ERROR

ERROR

Nature

Quantum Error Correction
Fight

Quantum Decoherence

Approximate Computing & Quantum Computing

• General-purpose fault-tolerant quantum computers are impractical in
the near term.

• Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Approximate Computing & Quantum Computing

• General-purpose fault-tolerant quantum computers are impractical in
the near term.

• Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

Approximate Computing & Quantum Computing

• General-purpose fault-tolerant quantum computers are impractical in
the near term.

• Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

• Quantitive guarantee on the reliability/accuracy of quantum programs
based on specific hardware information.

Approximate Computing & Quantum Computing

• General-purpose fault-tolerant quantum computers are impractical in
the near term.

• Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

• Quantitive guarantee on the reliability/accuracy of quantum programs
based on specifi

• High-level abstraction of error-handling primitives in quantum
programs.

Approximate Computing & Quantum Computing

• General-purpose fault-tolerant quantum computers are impractical in
the near term.

• Near-term practical quantum applications must focus on Noisy and
Intermediate-Scale Quantum (NISQ) computers, where precisely
controllable quits are expensive, error-prone, and scarce.

Goal: reliable quantum programs with resource optimization!

• Quantitive guarantee on the reliability/accuracy of quantum programs
based on specifi

• High-level abstraction of error-handling primitives in quantum
programs.

• Automatic error-resource-optimization on a per-program basis!

Methodology

Methodology

• Elevate the handling of errors to the level of programming language.

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

• Return possibly inaccurate/approximate results!

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

• Return possibly inaccurate/approximate results!
 - unreliable hardware

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

• Return possibly inaccurate/approximate results!
 - unreliable hardware
 - limited computational resource

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

• Return possibly inaccurate/approximate results!
 - unreliable hardware
 - limited computational resource

• Good when approximate results are sufficient for applications!

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

• Return possibly inaccurate/approximate results!
 - unreliable hardware
 - limited computational resource

• Good when approximate results are sufficient for applications!
 - vision, machine learning; also with guarantees for critical data

Methodology

• Elevate the handling of errors to the level of programming language.

• Reason reliability/accuracy of quantum programs via static analysis.

• Conduct resource optimization via code synthesis of quantum programs.

An important classical tool: approximate computing !

• Return possibly inaccurate/approximate results!
 - unreliable hardware
 - limited computational resource

• Good when approximate results are sufficient for applications!
 - vision, machine learning; also with guarantees for critical data

• Various techniques developed in classical PL literature.

Overview

Software Developers Hardware Designer

Exact

Program

Reliability/Accuracy

Specification

Approximate Hardware

Specification

Reliability/Accuracy

Constraint Generator

Resource Optimization

Objective Generator

Back-end Optimizer

Neural-based Code Synthesizer

Reliable Quantum Programs with Optimal Resources

error handling
primitives

Overview

Software Developers Hardware Designer

Exact

Program

Reliability/Accuracy

Specification

Approximate Hardware

Specification

Reliability/Accuracy

Constraint Generator

Resource Optimization

Objective Generator

Back-end Optimizer

Neural-based Code Synthesizer

Reliable Quantum Programs with Optimal Resources

error handling
primitives

a basic framework

in POPL 19

ERROR

Nature

Quantum Error Correction
Fight

Quantum Decoherence

ERROR

Nature

Quantum Error Correction
Fight

Quantum Decoherence

Human

28CT&TC Jeannette M. Wing

Correctness: Avoiding Bugs to Save Money and
Lives

Ariane 5 failure

Now Intel uses formal verification.

Intel Pentium FPU error

Now Microsoft uses formal verification.

Ariane 5

Human Errors in Quantum Software Engineering
Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

Human Errors in Quantum Software Engineering
Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

confirming the circuit by observation…. not scalable…

Human Errors in Quantum Software Engineering
Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

confirming the circuit by observation…. not scalable…

QISKIT Compiler ERRORs

Much HARDER to detect!

Serious Consequences!

Human Errors in Quantum Software Engineering
Being careful cannot solve the human error problem in either classical or quantum.

Quantum case : Significantly More CHALLENGING than Classical

- standard software assurance techniques, e.g., black-box / unit test, expensive in q.

- quantum mechanics prohibits certain testing, e.g., assertions

Reality: testing in quantum today

confirming the circuit by observation…. not scalable…

QISKIT Compiler ERRORs

Much HARDER to detect!

Serious Consequences!

Similar Concerns

 in classical !

More SERIOUS

 in quantum !

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

GCC : many bugs in software testing
CompCert: a certified “GCC”, bug-free

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

GCC : many bugs in software testing
CompCert: a certified “GCC”, bug-free

The Verifying Compiler: A Grand Challenge for
Computing Research

TONY HOARE

Microsoft Research Ltd., Cambridge, UK

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge in science or
engineering from the many other kinds of short-term or long-term research problems that engage the
interest of scientists and engineers. As an example drawn from Computer Science, it revives an old
challenge: the construction and application of a verifying compiler that guarantees correctness of a
program before running it.

Introduction. The primary purpose of the formulation and promulgation of a
grand challenge is the advancement of science or engineering. A grand challenge
represents a commitment by a significant section of the research community to
work together towards a common goal, agreed to be valuable and achievable by
a team effort within a predicted timescale. The challenge is formulated by the
researchers themselves as a focus for the research that they wish to pursue in any
case. It may pursue purely scientific goals, independent of economic, commercial,
medical, military or social interests; and its initiation need not wait for political
initiatives or prior allocation of special funding.
An opportunity for a grand challenge arises only rarely in the history of science,

when a branch of study first reaches an adequate level of maturity to predict and
plan the direction of future progress. Most scientific advances, and nearly all break-
throughs, are accomplished by individuals or small teams working competitively
and in relative isolation; and the greater part of the research effort in any branch of
science should remain free of involvement in grand challenges.
A grand challenge may involve as much as a thousand man-years of research

effort, drawn from many countries and spread over ten years or more. The research
skill, experience, motivation and originality that it will absorb are qualities even
scarcer than the financial guarantees. For this reason, a proposed grand challenge
should be subjected to assessment by the most rigorous criteria before its proposal
and promotion. These criteria include all those proposed by Jim Gray [2003] as
desirable attributes of a long-range research goal. The additional criteria that are
proposed here relate to the maturity of the scientific discipline and the feasibility
of the project. Many of the long-term systems research problems identified by
Grey meet the original criteria in full measure; but they do not at the present time
meet the additional criteria needed to accord them the status of a grand challenge.
Fundamental. It arises from scientific curiosity about the foundation, the

nature or the limits of an entire scientific discipline, or a significant branch of it.
Astonishing. It gives scope for engineering ambition to build something never

imagined before.
Testable. It has a clear measure of success or failure, which can be applied at

any time.

Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63–69.

Journal of the ACM, Vol 50, 2003

Certified software: a solution to validation of q. software

GCC : many bugs in software testing
CompCert: a certified “GCC”, bug-free

Fully Formal Verification

Code

Spec

Proof
Assistant

Grad

interactively show
code satisfies
specification

Fully Formal Verification

Code

Spec

Proof
Assistant

Grad

ML x86

compile down to
machine code

Fully Formal Verification

Code

Spec

Proof
Assistant

Extremely strong
guarantees about

actual system!Grad

ML x86

Fully Formal Verification
Coq Theorem Prover

Software Writing

Theorem Writing

Proofs Writing

(1) Ensure correctness of code by construction.
(2) Scalability for quantum based on symbolic proofs.

source
circuit

target
circuit

VOQC
optimizers,

circuit
mapper ex

tra
ct

io
ntranslation

source
SQIR
circuit

target
SQIR
circuit

source
program

VOQC
optimizers,

circuit
mapper

OCaml

VOQC
Coq

✅✅

arch
spec

OpenQASM

(Verified Optimizer for Quantum Circuits)

Verified Optimization in a Quantum Intermediate Representation

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks
University of Maryland, College Park

We present a simple quantum language we call SQIRE
(pronounced “squire”) that can be used as an
intermediate representation (IR) in a certified compiler for
quantum programs. SQIRE is implemented in Coq [2], on
top of libraries developed for the QWIRE circuit language
[8]. This allows us to formally verify properties of SQIRE
programs and program transformations. We demonstrate
the power of SQIRE as a compiler intermediate
representation by verifying a number of useful program
transformations. For example, we verify soundness of an
optimization that removes unnecessary X gates from a
unitary program. We also consider a transformation that
turns general SQIRE programs into SQIRE programs that
can run on a linear nearest neighbor architecture.

The full paper is available at [5].

The corresponding code is available at [3].

Abstract

[1] The CompCert Verified Compiler. Available at http://compcert.inria.fr/.
[2] The Coq Proof Assistant. Available at https://coq.inria.fr/.
[3] SQIRE Development. Available at https://github.com/inQWIRE/SQIRE/.
[4] Qiskit. Available at https://qiskit.org/.
[5] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael
Hicks. Verified Optimization in a Quantum Intermediate Representation.
arXiv:1904.06319.
[6] Ali Javadi Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov,
Frederic T. Chong, and Margaret Martonosi. ScaffCC: Scalable Compilation
and Analysis of Quantum Programs. Parallel Computing 45. 2015.
[7] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri
Maslov. Automated Optimization of Large quantum Circuits with
Continuous Parameters. npj Quantum Information 4(1). 2018.
[8] Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE Practice:
Formal Verification of Quantum Circuits in Coq. QPL 2017.

References

Our work is a first step towards a verified compiler for
quantum programs. In the long term, we envision a fully-
verified compilation stack from high-level quantum
languages to hardware instructions, as shown below.

The transformation from the high-level language to the
general purpose IR must preserve the semantics of the
source program, so that properties proved of the source
program are also true in the IR representation.
Optimizations and machine-specific transformations
applied to the general purpose IR to produce machine-
specific IR must similarly preserve the semantics of the
program, and also ensure that the produced IR satisfies
the relevant hardware constraints. Finally, the compiler
should not introduce errors when translating from the
low-level IR to machine instructions.

We are currently working on:
• Additional verified optimizations and mapping

algorithms, taking inspiration from existing compilers
for quantum programs like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce qubit and
gate count to make programs more feasible to run on
near-term machines, circuit mapping aims to address the
connectivity constraints of near-term machines. Circuit
mapping algorithms take as input an arbitrary program
and output a program that respects the connectivity
constraints of some underlying architecture

We have verified a naïve mapping algorithm for a toy
architecture. We assume a linear nearest neighbor (LNN)
architecture where each qubit can only interact with its
immediate neighbor. We map a program to this
architecture by adding SWAP operations before and after
every CNOT so that the target and control are adjacent
when the CNOT is performed, and are returned to their
original positions before the next operation.

We have proven that this transformation is sound, and
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of
a piece of software is known as formal verification. Formal
verification has been used in classical computing for
many years to prove correctness and security properties of
critical code. However, formal verification is particularly
useful in the field of quantum computing, where
standard software assurance techniques such as unit
testing and runtime debugging are infeasible.

Examples of formal verification that have been applied to
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that
a quantum program satisfies some specification. For
example, consider a program describing the quantum
teleportation protocol. The goal may be to prove that,
given a Bell pair and a qubit in any state, the program will
correctly “teleport” the input qubit to one of the elements
of the Bell pair.

Another useful application of formal verification, which
has received relatively little attention from the quantum
formal verification community, is proving the correctness
of program transformations. Verifying program
transformations allows the construction of certified
compilers, which are compilers that guarantee that the
executable code they output behaves as specified by the
input source program. Certified compilers are guaranteed
not to introduce bugs in a program during compilation
because they are correct by construction. The most
famous example of a certified compiler (for classical
computing) is CompCert [1], an optimizing compiler for C
proved correct using the Coq proof assistant.

Formal Verification

SQIRE supports five quantum programming constructs:
skip, sequencing, unitary application, measurement of a
single qubit, and resetting a single qubit to a fixed basis
state.

For simplicity, we support a fixed set of gates. This set can
be extended in our implementation, or new gates can be
defined in terms of built-in gates. For example, we define
the SWAP operation as follows.

We can then state and prove properties about the
semantics of the defined operations. For example, we can
prove that the SWAP program swaps its arguments, as
intended.

Example. Superdense coding is a protocol that allows a
sender to transmit two classical bits, b1 and b2, to a
receiver using a single quantum bit. The SQIRE program
corresponding to the unitary part of the superdense
coding protocol is shown below.

Although SQIRE was designed to be used as an
intermediate representation, we can also prove properties
about SQIRE programs directly, since these programs and
their semantics are embedded in Coq. For example, we
can prove that the result of evaluating the program
(superdense b1 b2) on an input state consisting of two
qubits initialized to zero is the state ∣b1, b2⟩. In our
development, we write this as follows.

In our full paper, we show examples of verifying properties
of n-qubit GHZ state preparation, quantum teleportation,
and the n-qubit Deutsch-Jozsa algorithm.

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able
to perform small computations before decoherence takes
effect, compilers for quantum programs must apply
sophisticated optimizations to reduce resource usage.
These optimizations can be complicated to implement
and are vulnerable to programmer error. It is thus
important to verify that the implementations of program
optimizations are correct.

In general, we will be interested in proving that a
transformation is semantics-preserving, meaning that the
transformation does not change the behavior of the
program. When a transformation is semantics-preserving,
we say that it is sound.

For example, consider the optimization, which removes
skip operations from a program.

To prove that this transformation is semantics-preserving,
we prove the following lemma.

In our full paper, we verify soundness of a more realistic
optimization from [7], which removes unnecessary X
gates from a unitary program.

Verified Optimization

High-level Language
E.g. QWIRE, Quipper, Q#

General Purpose IR
E.g. SQIRE, Open QASM, Quil

Machine-specific IR

Hardware Instructions

Hardware Description
E.g. Gate set, connectivity

constraints

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq.

POPL
2021

source
circuit

target
circuit

VOQC
optimizers,

circuit
mapper ex

tra
ct

io
ntranslation

source
SQIR
circuit

target
SQIR
circuit

source
program

VOQC
optimizers,

circuit
mapper

OCaml

VOQC
Coq

✅✅

arch
spec

OpenQASM

(Verified Optimizer for Quantum Circuits)

Verified Optimization in a Quantum Intermediate Representation

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks
University of Maryland, College Park

We present a simple quantum language we call SQIRE
(pronounced “squire”) that can be used as an
intermediate representation (IR) in a certified compiler for
quantum programs. SQIRE is implemented in Coq [2], on
top of libraries developed for the QWIRE circuit language
[8]. This allows us to formally verify properties of SQIRE
programs and program transformations. We demonstrate
the power of SQIRE as a compiler intermediate
representation by verifying a number of useful program
transformations. For example, we verify soundness of an
optimization that removes unnecessary X gates from a
unitary program. We also consider a transformation that
turns general SQIRE programs into SQIRE programs that
can run on a linear nearest neighbor architecture.

The full paper is available at [5].

The corresponding code is available at [3].

Abstract

[1] The CompCert Verified Compiler. Available at http://compcert.inria.fr/.
[2] The Coq Proof Assistant. Available at https://coq.inria.fr/.
[3] SQIRE Development. Available at https://github.com/inQWIRE/SQIRE/.
[4] Qiskit. Available at https://qiskit.org/.
[5] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael
Hicks. Verified Optimization in a Quantum Intermediate Representation.
arXiv:1904.06319.
[6] Ali Javadi Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov,
Frederic T. Chong, and Margaret Martonosi. ScaffCC: Scalable Compilation
and Analysis of Quantum Programs. Parallel Computing 45. 2015.
[7] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri
Maslov. Automated Optimization of Large quantum Circuits with
Continuous Parameters. npj Quantum Information 4(1). 2018.
[8] Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE Practice:
Formal Verification of Quantum Circuits in Coq. QPL 2017.

References

Our work is a first step towards a verified compiler for
quantum programs. In the long term, we envision a fully-
verified compilation stack from high-level quantum
languages to hardware instructions, as shown below.

The transformation from the high-level language to the
general purpose IR must preserve the semantics of the
source program, so that properties proved of the source
program are also true in the IR representation.
Optimizations and machine-specific transformations
applied to the general purpose IR to produce machine-
specific IR must similarly preserve the semantics of the
program, and also ensure that the produced IR satisfies
the relevant hardware constraints. Finally, the compiler
should not introduce errors when translating from the
low-level IR to machine instructions.

We are currently working on:
• Additional verified optimizations and mapping

algorithms, taking inspiration from existing compilers
for quantum programs like Qiskit [4] and ScaffCC [6].

• Verified circuit synthesis.
• Verified compilation of Boolean oracles.
• Verified translation from QWIRE to SQIRE.

Verified Compilation Stack

Similar to how optimization aims to reduce qubit and
gate count to make programs more feasible to run on
near-term machines, circuit mapping aims to address the
connectivity constraints of near-term machines. Circuit
mapping algorithms take as input an arbitrary program
and output a program that respects the connectivity
constraints of some underlying architecture

We have verified a naïve mapping algorithm for a toy
architecture. We assume a linear nearest neighbor (LNN)
architecture where each qubit can only interact with its
immediate neighbor. We map a program to this
architecture by adding SWAP operations before and after
every CNOT so that the target and control are adjacent
when the CNOT is performed, and are returned to their
original positions before the next operation.

We have proven that this transformation is sound, and
that the output program satisfies the LNN constraint.

Verified Circuit Mapping

The process of mathematically proving the correctness of
a piece of software is known as formal verification. Formal
verification has been used in classical computing for
many years to prove correctness and security properties of
critical code. However, formal verification is particularly
useful in the field of quantum computing, where
standard software assurance techniques such as unit
testing and runtime debugging are infeasible.

Examples of formal verification that have been applied to
the field of quantum computing include:
• Model checking
• Equivalence checking
• Program logics
• Direct proofs about semantics
• Diagrammatic reasoning

For the most part, these techniques are used to prove that
a quantum program satisfies some specification. For
example, consider a program describing the quantum
teleportation protocol. The goal may be to prove that,
given a Bell pair and a qubit in any state, the program will
correctly “teleport” the input qubit to one of the elements
of the Bell pair.

Another useful application of formal verification, which
has received relatively little attention from the quantum
formal verification community, is proving the correctness
of program transformations. Verifying program
transformations allows the construction of certified
compilers, which are compilers that guarantee that the
executable code they output behaves as specified by the
input source program. Certified compilers are guaranteed
not to introduce bugs in a program during compilation
because they are correct by construction. The most
famous example of a certified compiler (for classical
computing) is CompCert [1], an optimizing compiler for C
proved correct using the Coq proof assistant.

Formal Verification

SQIRE supports five quantum programming constructs:
skip, sequencing, unitary application, measurement of a
single qubit, and resetting a single qubit to a fixed basis
state.

For simplicity, we support a fixed set of gates. This set can
be extended in our implementation, or new gates can be
defined in terms of built-in gates. For example, we define
the SWAP operation as follows.

We can then state and prove properties about the
semantics of the defined operations. For example, we can
prove that the SWAP program swaps its arguments, as
intended.

Example. Superdense coding is a protocol that allows a
sender to transmit two classical bits, b1 and b2, to a
receiver using a single quantum bit. The SQIRE program
corresponding to the unitary part of the superdense
coding protocol is shown below.

Although SQIRE was designed to be used as an
intermediate representation, we can also prove properties
about SQIRE programs directly, since these programs and
their semantics are embedded in Coq. For example, we
can prove that the result of evaluating the program
(superdense b1 b2) on an input state consisting of two
qubits initialized to zero is the state ∣b1, b2⟩. In our
development, we write this as follows.

In our full paper, we show examples of verifying properties
of n-qubit GHZ state preparation, quantum teleportation,
and the n-qubit Deutsch-Jozsa algorithm.

SQIRE: A Small Quantum IR
Because near-term quantum machines will only be able
to perform small computations before decoherence takes
effect, compilers for quantum programs must apply
sophisticated optimizations to reduce resource usage.
These optimizations can be complicated to implement
and are vulnerable to programmer error. It is thus
important to verify that the implementations of program
optimizations are correct.

In general, we will be interested in proving that a
transformation is semantics-preserving, meaning that the
transformation does not change the behavior of the
program. When a transformation is semantics-preserving,
we say that it is sound.

For example, consider the optimization, which removes
skip operations from a program.

To prove that this transformation is semantics-preserving,
we prove the following lemma.

In our full paper, we verify soundness of a more realistic
optimization from [7], which removes unnecessary X
gates from a unitary program.

Verified Optimization

High-level Language
E.g. QWIRE, Quipper, Q#

General Purpose IR
E.g. SQIRE, Open QASM, Quil

Machine-specific IR

Hardware Instructions

Hardware Description
E.g. Gate set, connectivity

constraints

VOQC: a first step towards a fully certified quantum compiler.
SQIRE: a simple quantum intermediate-representation embedded in Coq.

POPL
2021

Our infrastructure powerful enough:
 an end-to-end implementation of Shor’s algorithm & its correctness proof.

About Today’s Tutorial:

Goal: Some Basic Quantum Computing & PL + References

 (1) Introduction to Quantum Computing and Potential Roles of

 Programming Languages (25 min + 5 Q & A)

 (2) A Mini-Course of Quantum Hoare Logic on Quantum While

 Language (30 min + 5 Q & A)

 (3) Discussion on existing and potential Programming Language

 research opportunities (20 min + 5 Q & A)

Reference: tutorial slides and some references are
available at https://www.cs.umd.edu/~xwu/mini_lib.html

https://www.cs.umd.edu/~xwu/mini_lib.html

