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Abstract

Driven by the need from real-world applications,
Auxiliary Modality Learning (AML) offers the pos-
sibility to utilize more information from auxiliary
data in training, while only requiring data from
one or fewer modalities in testing, to save the
overall computational cost and reduce the amount
of input data for inferencing. In this work, we
formally define “Auxiliary Modality Learning”
(AML), systematically classify types of auxiliary
modality (in visual computing) and architectures
for AML, and analyze their performance. We also
analyze the conditions under which AML works
well from the optimization and data distribution
perspectives. To guide various choices to achieve
optimal performance using AML, we propose a
novel method to assist in choosing the best aux-
iliary modality and estimating an upper bound
performance before executing AML. In addition,
we propose a new AML method using generalized
curriculum distillation to enable more effective
curriculum learning. Our method achieves the
best performance compared to other SOTA meth-
ods.

1. Introduction
Learning from images and videos is among some of the most
popular research focuses (Esteva et al., 2021; Guo et al.,
2022; Chai et al., 2021), as RGB images are informative
and easy to acquire. In addition, RGB camera is cheap and
can be easily deployed. There are also works considering
multiple modalities, i.e., multi-modal learning (Wang, 2021;
Jiang et al., 2021; Joshi et al., 2021). Furthermore, some
works consider to use multiple modalities in training but use
fewer modalities during test since in certain applications it’s
difficult to use all modalities during inference. For example,
it is expensive to deploy Lidar on commodity self-driving
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cars, but it’s reasonable to equip a few developer’s cars with
Lidar for training. However, this specific type of learning
task, i.e., ”test with fewer modalities than during training”,
is not standardized yet. For example, there is no formal term
or definition. There have been concepts, such as ”learning
with side information” (Hoffman et al., 2016), ”learning
with privileged information” (Garcia et al., 2019), ”learning
with auxiliary modality” (Piasco et al., 2021), ”learning with
partial-modalities” (Wang et al., 2018), and ”modality dis-
tillation” (Garcia et al., 2018), etc. We therefore formalize
these learning tasks as Auxiliary Modality Learning (AML)
in Sec. 3.

To apply AML to real-world tasks, there are some key is-
sues: “what types of auxiliary modalities can be used, and
how to add the auxiliary modalities into the network and
make them most effective?” We systematically list and clas-
sify auxiliary modalities in visual computing and network
architectures for AML, and then conduct experiments to
address these questions. Specifically, we classify the auxil-
iary modalities into 3 types: low-level sensing data (Type
1), middle-level equivalent representation (Type 2), and
high-level conceptual information (Type 3) in Sec. 4.1.1,
according to the types of information. We also classify
the network architectures into four types, according to the
mechanism that introduces the auxiliary modality. They are
auxiliary modalities in the input (Type A), in the middle
(Type B), in the end (Type C), and in the teacher (Type D),
as defined in Sec. 4.1.2. In addition, we design experiments
to see which architecture and which auxiliary modality per-
form best within each task and across tasks (Sec. 4.1.3) that
provides experimental guidelines and theoretical foundation
to our method in Sec. 5.

Given this formal framing, we can apply AML to real-world
tasks. There remains the question of explainability: “Why
AML can work without auxiliary modality in the test?” It’s
not obvious that adding auxiliary modality only in training
can always help improve test performance with only the
main modality. In Sec. 4.2, we explore this line of inquiries
from optimization and data perspectives. Specifically, we
introduce a new concept of “supermodel” to support our
claim, which also offers insights and inspiration to design
the new AML method presented in Sec. 5.2.

Based on the detailed analysis in Sec. 4, we propose a simple
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yet effective method, Smart Auxiliary Modality Distillation
(SAMD), that can smartly choose the best auxiliary modality
and perform a special auxiliary modality distillation with
generalized curriculum distillation. Firstly, in Sec. 4.1.3,
we show that different auxiliary modalities can contribute
to different tasks at a different level, thus we propose a
method to choose the best auxiliary modality and estimate
upper-bound performance for a given task before actually
executing AML. Inspired by Squeeze-and-Excitation Net-
work (SENet) (Hu et al., 2018), we use channel-level atten-
tion in the SE block to estimate the AML performance for
each modality, and show the consistently positive correla-
tion between them through experiments on different tasks
and auxiliary modalities. See details in Sec. 5.1. Also, in
Sec. 4.1.3, we show the knowledge distillation based ar-
chitecture (Type D) is better than other forms. However,
when analyzing the reason for the effectiveness of AML in
Sec. 4.2, we find the “supermodel condition”, which helps
AML to perform better, is not fully utilized in the general
knowledge distillation based architecture. We thus introduce
a new method that uses supermodel in a more effective way
that allows the teacher network to be aware of the student’s
status in a curriculum way, leading to a better distillation.
Our method achieves better performance compared to other
SOTA methods (Sec. 5.2).

Our analysis provides experimental understanding and the-
oretical underpinning for the simple yet effective method
design. To the best of our knowledge, this is the first detailed
analysis to guide the design and choices of AML methods
for visual computing based on tasks, datasets, and network
architectures. In summary, our contributions are:

• Systematically list and classify different types of aux-
iliary modalities and architectures (Sec. 4.1.2) for
AML, and analyze the performance behavior of dif-
ferent types of auxiliary modalities and architectures
for AML across different datasets, backbones and tasks
(Sec. 4.1.3). We find (1) architecture effectiveness is
relatively consistent across different tasks, datasets
and backbones; (2) auxiliary modality effectiveness is
consistent within one task with different datasets and
backbones, but not consistent across tasks.

• Propose a novel AML method, “Smart Auxiliary
Modality Distillation (SAMD)”, that automatically (1)
chooses the best auxiliary modality for the main distil-
lation process, and (2) performs knowledge distillation
under a special “supermodel condition” to enable the
teacher network to be aware of the student’s status.
SAMD achieves SOTA results on variant tasks, with
improvement up to 10% on end-to-end steering task,
5% on multi-view handwriting classification task, and
up to 15.6% across tasks, etc. (Sec. 5).

• Analyze and explain the reasons for the effectiveness

of AML from both optimization perspective and data
perspective (Sec. 4.2), providing theoretical support to
the SAMD method.

2. Related Work
Auxiliary Modality Learning aims to use auxiliary modality
in training to boost the test performance without the auxil-
iary modality during inference. Cross-modality Learning
and Knowledge Distillation are comparatively promising
solutions and we discuss related works in each here.

2.1. Cross-modality Learning

To utilize the prior knowledge between different modalities,
Gupta et al. (Gupta et al., 2016) learned the representation
of one modality with a pretrained network on another modal-
ity. Hoffman et al. (Hoffman et al., 2016) presented early
work on modality hallucination, which used a hallucination
network with RGB image as input but tried to mimic a depth
network, by combining with RGB network to achieve multi-
modal learning. Some (Garcia et al., 2018; 2019) train the
hallucination network with a different process to achieve
better performance, while others (Wang et al., 2018; Piasco
et al., 2021) use GAN or U-Net to generate another paired
modality data with one modality. MSD (Jin et al., 2021)
transfers knowledge from a teacher on multimodal tasks
by learning the teacher’s behavior within each modality. A
recent work (Garcia et al., 2021) trains the different modal-
ity data in different pipelines and distills the best modality
pipeline knowledge to other modality pipelines. In addition
to action recognition, AML has also been applied in medical
image processing (Gao et al., 2019; Li et al., 2020). Specifi-
cally, Zheng et al. (Zheng, 2015) investigated the effective-
ness of shape priors learned from a different modality (e.g.,
CT) to improve the segmentation accuracy on the target
modality (e.g., MRI). Valindria et al. (Valindria et al., 2018)
proposed dual-stream encoder-decoder framework, which
assigns each modality with a specific branch and extracts
cross-modality features with carefully designed parameter
sharing strategies. Li et al. (Li et al., 2020) exploited the
priors of assisted modality to promote the performance on
another modality by enhancing model generalization ability,
where only target-modality data is required in the test.

2.2. Knowledge Distillation

Knowledge Distillation can be classified as one-way or
mutual-learning knowledge distillation. One-way knowl-
edge distillation mainly distills the knowledge of a fixed
teacher model (usually large) to a student model (usually
small). In the early days, Hinton et al. (Hinton et al., 2015)
proposed compressing the knowledge in an ensemble of
multiple models into a single model that is much easier
to deploy by mimicking the class distribution via softened
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softmax from the ensemble teacher. Some studies (Ding
et al., 2019; Wen et al., 2019) went further to explore the
trade-off between the supervision of soft logits and hard
task label. Furthermore, there are also methods exploiting
the intermediate feature (Romero et al., 2015; Kim et al.,
2018a; Jin et al., 2019) as transferred knowledge, which
can improve the middle layer’s representational ability in a
student network. Other than the one-way distillation from
teacher to student, some focus on mutual knowledge dis-
tillation among models trained from scratch. This line of
research is especially notable for scenarios without an avail-
able pretrained teacher model. A significant work is deep
mutual learning (DML) (Zhang et al., 2018). During the
training phase, DML uses a pool of randomly initialized
models as the student pool, and every student is guided by
the output of other students and the task label.

We share a similar philosophy with distillation, but aim to
design a cross-modality learning framework to utilize the
hidden information from auxiliary modalities, resulting in a
different methodology.

3. Auxiliary Modality Learning
Auxiliary modality learning offers promising potential, but
has not been fully examined. Previous works studied aux-
iliary modality learning in certain applications without a
formal definition or a unified terminology. (Hoffman et al.,
2016) named this process “learning with side information”,
(Garcia et al., 2019) called it “learning with privileged in-
formation”, (Piasco et al., 2021) referred to it as “learning
with auxiliary modality”, (Wang et al., 2018) suggested
“learning with partial-modalities”, (Garcia et al., 2018) in-
troduced the term “modality distillation”, etc. In this paper,
we formally define the Auxiliary Modality Learning (AML)
as follows:

Definition 3.1 Given data with one set of modalities IM
and data with another set of modalities IA, if a modelM
can take both IM and IA as input during training, but only
use IM during test, then we call model M an auxiliary
modality model, IM as the main modality data and IA as the
auxiliary modality data. Furthermore, we call the training
process of an auxiliary modality model as auxiliary modality
learning.

Formally, the training process is
minθ L(Mθ, (IM , IA), GT ), where θ is the weights
of the model, L is the loss function, and GT is the ground
truth, while the test process isMθ(IM ).

The goal of AML is to achieve better performance with
the help of auxiliary modalities IA than only train on main
modalities IM . AML can be found in the real world, e.g.,
when you cannot solve a problem in class, the teacher gives

you some hints so the students can understand the relation-
ship between the problem and the answer better. Then, after
class, the student can solve similar types of new problems
without hints. In this paper, for visual computing, we fix the
main modality as RGB images, but the auxiliary modality
can be others, like point cloud, depth map, or other cus-
tomized formats.

AML is useful in the following scenarios: (1) Getting the
extra modality data during test is not feasible. For example,
the extra modality can be the human-labeled attention map,
which is achievable during training, but we cannot ask the
user to label the attention map in real time. (2) Getting the
extra modality data during test is feasible but expensive. For
example, in autonomous driving, we need to use Lidar to get
point cloud data. Using point clouds during training only
requires several Lidar sensors on the cars for development,
but using point clouds during test means every car needs
to install Lidar, which is costly. AML can reduce the cost
dramatically compared with the solutions that require the
Lidar+camera, and can perform better than the solutions
that only use camera. Similarly for robot navigation.

4. Analysis
In this section, we aim to do analysis on two key problems
of AML when applying on real-world tasks: (1) What kinds
of auxiliary modalities can we use, and how can we add
them into the network to make them effective? (2) Why
AML can work without auxiliary modality in test?

4.1. Auxiliary Modality and Architecture

In this section, we first systematically list and classify the
types of auxiliary modalities and the types of auxiliary
modality learning architecture, then analyze how different
auxiliary modalities and architectures can affect auxiliary
modality learning through experiments.

4.1.1. TYPES OF AUXILIARY MODALITY

Previous auxiliary modality learning works usually only
consider one or several given types of auxiliary modality
without systematic analysis (Hoffman et al., 2016; Garcia
et al., 2019; Piasco et al., 2021; Wang et al., 2018; Garcia
et al., 2018; Gupta et al., 2016; Jin et al., 2021). This
is usually because of the limitation of data sources, e.g.,
limited sensor types. However, there is actually a wide
range of auxiliary modality options that can be used. Except
for the sensing data directly from the sensors (like depth map
or infra-red image), other data generated from the original
image (like segmentation image or frequency image) or
even annotated by a human expert (like attention map) can
also be used as an auxiliary modality. In our work, we
classify the potentially useful auxiliary modalities that are
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Figure 1. Architectures for auxiliary modality learning. Type A:
Auxiliary modality in the input. Type B: Auxiliary modality in the
middle. Type C: Auxiliary modality in the end. Type D: Auxiliary
modality in the teacher network. The dashed area in each type is
the test pipeline that only use main modality. See Sec. 4.1.2.

commonly seen in daily life and show their effectiveness
through experiments.

Formally, we suggest the following three types of data,
which can be used as auxiliary modality in visual computing,
according to the information contained in them:

Type 1: Low-level sensing data with additional informa-
tion. For example, given the main modality is RGB image,
depth map or infra-red image can be used as an auxiliary
modality, which is already commonly used (Wang et al.,
2018; Xiao et al., 2020). The additional depth or infra-red
information can be used when the RGB image is not able to
capture enough information like at night.

Type 2: Middle-level representation with equivalent in-
formation but in different spaces. For example, RGB image
can be transferred to/from frequency space with 2D FFT,
which is a one-to-one mapping. Although they contain the
same information, one presentation in one space may have a
closer relation to the goal, thus helping the network to learn
better.

Type 3: High-level conceptual data with compacted in-
formation. For example, expert annotated image with em-
phasized key features (like attention image). This kind of
auxiliary modality helps reduce the redundant noises and
helps the network focus on key elements quickly.

Type 1 is the most common type of auxiliary modality,
but Type 2 and 3 are also auxiliary modalities that can
potentially contribute to the task. See example tasks for
different modalities in Appendix A.1.

4.1.2. ARCHITECTURES FOR AUXILIARY MODALITY
LEARNING

Existing works explore variant ways to achieve the goal of
auxiliary modality learning. However, to the best of our
knowledge, no one compares architectures in a systematic
way (Hoffman et al., 2016; Garcia et al., 2019; Piasco et al.,
2021; Wang et al., 2018; Garcia et al., 2018; Gupta et al.,
2016; Jin et al., 2021). In this section, we list and compare
the existing architecture designs for the auxiliary modality
learning systematically.

We classify the possible auxiliary modality learning archi-
tectures into four types:

Type A: Auxiliary modality in the input, same architec-
ture as multi-modality learning during training, but only
use the main modality branch for test, as shown in Fig. 1(a).
General multi-modality architecture is already been stud-
ied (Xiao et al., 2020), but multi-modality based AML still
needs to be explored.

Type B: Auxiliary modality in the middle as supervision.
The basic idea is to generate auxiliary modality with the
main modality first, and then use the multi-modality archi-
tecture, as shown in Fig. 1(b). Existing works like (Wang
et al., 2018; Li et al., 2020; Wei et al., 2016) show the
effectiveness of this type of solution.

Type C: Auxiliary modality in the end as supervision,
same architecture as multi-task learning (Ruder, 2017) or
indirect supervision (Chang et al., 2010), but only need to
use the original task pipeline for test, as shown in Fig. 1(c).
The basic idea is the original task and the auxiliary modality
generation task share certain common features, thus the
auxiliary modality can help the learning of the original task.

Type D: Auxiliary modality in a teacher network and
teach a student network without auxiliary modality, refer to
cross-modality knowledge distillation, as shown in Fig. 1(d).
Existing works like (Garcia et al., 2021; 2018) show the
effectiveness of this type of solution.

Notice existing works mostly focus on Type B and D, but
few discuss or conduct experiments with Type A and C,
which are also potential solutions.

4.1.3. EXPERIMENTS

We conduct experiments to see how different auxiliary
modalities and architectures of AML perform within single
task and across tasks.

Single Task In this experiment, we consider four factors,
auxiliary modality, architectures, backbones and datasets.
We design experiments to answer: (1) Given fixed dataset
and backbone, do all the architectures help auxiliary modal-
ity learning? What’s the order among them w.r.t. perfor-
mance improvement? (2) Given fixed datasets and back-
bones, do all the auxiliary modalities help auxiliary modality
learning? What’s the order among them w.r.t. performance
improvement? (3) Are the previous two answers consistent
across different datasets and backbones?

The experiment setting is described in Appendix A.1. In
Table 5 (Appendix A.2), we show performance compari-
son (Mean Accuracy %) with a combination of three auxil-
iary modalities, four architectures, two backbones, and two
datasets. We find:
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(1) Knowledge distillation based architecture (Type D) per-
form best, followed by generation based architecture (Type
B). Multi-task based architecture does slightly better than
baseline (Type C), while Multi-modality based architecture
sometimes hurt the performance (Type A).

(2) All types of auxiliary modality used can help improve
performance. Attention image (Type 3) achieves the highest
performance improvement, followed by depth map (Type
1). Frequency image (Type 2) only performs slightly better
than baseline.

(3) Within this task, the effectiveness order for different
auxiliary modalities or architectures are consistent across
different datasets or backbones.

Multiple Tasks. In this experiment, we consider four
factors: auxiliary modality, architectures, backbones and
datasets. We design experiments to answer: (1) Is the effec-
tiveness of different architectures consistent across different
tasks? (2) Is the effectiveness of different auxiliary modali-
ties consistent across different tasks?

The experiment setting is presented in Appendix A.1. In
Table 6 (Appendix A.2), we show performance comparison
with a combination of two auxiliary modalities and four
architectures across three tasks. Notice when comparing
across tasks, we only focus on the relative accuracy order
of one task, since the metrics of different tasks are different.
We find:

(1) The effectiveness order of different auxiliary modalities
may be different for different tasks.

(2) The effectiveness order of different architectures is con-
sistent for different tasks.

4.2. Why AML Works?

We provide experimental results in Sec. 4.1.3 to show aux-
iliary modality learning can work, i.e., although only test
with the main modality, using auxiliary modality during
training can do better than only using the main modality.
This is also supported by other works (Hoffman et al., 2016;
Garcia et al., 2019; Piasco et al., 2021; Wang et al., 2018;
Garcia et al., 2018). However, most of them use experimen-
tal results to illustrate their effectiveness, there is no detailed
analysis to demonstrate why AML can work. In this section,
we explain why AML works from two perspectives.

4.2.1. OPTIMIZATION PERSPECTIVE

Here we explain why AML can work from the optimization
perspective.

(1) The optimal solution of AML is no worse than learning
with the main modality. Inspired by “superset”, we first
introduce a new concept “supermodel”.

Definition 4.1 Given a modelM(A)
θA

(IA) (weights θA and

input IA), and a modelM(B)
θB

(IB) (weights θB and input

IB), if for any θA, there is a θB , such that M(A)
θA

(IA) =

M(B)
θB

(IB) for any arbitrary valid input data IA and its
superset IB . We call model MB as a “supermodel” of
MA.

See an example of the supermodel in Fig. 5. We then intro-
duce a lemma based on the supermodel:

Lemma 4.1 Given a model M and its supermodel
M(s), the optimal training loss of M(s) (which
is argminθ(s) L(M(s)

θ(s)(I
(s)), GT )) is less than or

equal to the optimal training loss of M (which is
argminθ L(Mθ(I), GT )). where L is the loss function
and GT is the ground truth.

See the proof in Appendix A.4. Now we consider the single
network architectures (Type A, B, C in Sec. 4.1.2) and the
teacher network of Type D, all of them are supermodels of
their related main modality pipeline network. Specifically,
we can black out the auxiliary modality related branch (e.g.,
for Type A and C, use the pipeline in the dashed box, for
Type B, blackout the auxiliary modality generation branch,
for teacher network in Type D, it’s the same as Type 1) by
setting the weights of connection layers to specific values
(e.g., zeros, depends on the specific type of layer), then the
model takes both main and auxiliary modalities will have ex-
actly the same results of the model with only main modality,
thus meeting the supermodel definition A.1. According to
Lemma. 4.1, the AML model is no worse than the original
model with only the main modality.

(2) AML allows the optimizer to search in a higher dimen-
sion with a higher possibility to find a path to the same
solution as learning with the main modality.

Suppose an optimizer g takes model M and its initial
weights θ0, loss function L, training data IM as input, and
output a path of model weights:

g(M, θ0, L, IM ) = {θ0, θ1, ..., θp1} = P1

where p1 is the step number, θp1 = θ∗ is the optimal so-
lution, and P1 is the path. Then the AML process on its
supermodelM(s) is

g(M(s), θ0 ⊕ δ0, L, (IM , IA))

= {θ0 ⊕ δ0, θ1 ⊕ δ1, ..., θp2
⊕ δp2

} = P2

where ⊕ is the dimension-level connection, δ as the weights
for the auxiliary dimension, δ0 = δp2

= 0, θp2
= θ∗. This

means that the start and end positions are only on the main
modality dimension, while in the middle it can explore on
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Figure 2. “Why AML works” from optimizer perspective. The
blue path (AML) is easier to be found by a gradient-based op-
timizer since there is no uphill, as the red path (main modality
only).

a higher dimension (main+auxiliary modality). For any
path P ∗

1 , there is a path P ∗
2 that represents the same path

(by setting p2 = p1, δi = 0 and use the same θi for i =
0, 1, ..., p1). But for a P ∗

2 , there’s no P ∗
1 that can represents

the same path when there is a δi ̸= 0 in P ∗
2 . It shows

even with the same start and end points, the AML can have
more path options, which may be easier to be found by a
given optimizer, e.g., the blue path in Fig. 2 is a gradient
descent path in a higher dimension, while the red path in
low dimension needs to go uphill in the middle, which is
more difficult for the gradient-based optimizer to find the
best solution.

4.2.2. DATA PERSPECTIVE

Next, we explain why AML works from data perspective.

(1) The auxiliary modality can help the main modality train-
ing better when main modality data is imbalanced or in
shortage. For example, the main modality data has few
examples that are the ‘hard cases’, which lead to a wrong
decision boundary. This is common in real-world datasets,
e.g., the autonomous driving dataset usually has fewer night
data, even worse, has few accident data. After adding the
auxiliary modality that provides more information on the
hard cases, it would be easier to learn a correct decision
boundary, then use this information to guide the training
process with the main modality. For example, the infra-red
image or depth map contains more information than RGB
image when captured at night. This observation explains
why the low-level sensing data (Type 1 in Sec. 4.1.1) can
help AML. See figures in Appendix A.5.

(2) The auxiliary modality data reveal a simpler mapping
function from input to output. As we know, the network is
used to learn a mapping function from input to output, e.g.,
f(IM ) = y. However, the function f may be complex and
difficult to learn. Then, one solution is to split the complex
function f into two parts, i.e., f(IM ) = f2(f1(IM )) =

f2((IM , IA)) = y, where f1 is “data reformating function”
that contains as much as inductive bias (according to the
domain expert experiences) for the given task, thus the f2
will be simpler than the original f and easier to be learned.
This observation explains why middle-level and high-level
conceptual data (Type 2 and 3 in Sec. 4.1.1) can help AML.

5. Smart Auxiliary Modality Distillation
(SAMD)

Based on the detailed analysis in Sec. 4, we propose a simple
yet effective method “Smart Auxiliary Modality Distillation”
to choose the best auxiliary modality and do an auxiliary
modality distillation.

5.1. Auxiliary Modality Choice for a Given Task

As discussed in Sec. 4.1.1, there are three types of auxil-
iary modality that are potentially useful, and each type can
have multiple kinds of modalities. Given the conclusion
in Sec. 4.1.3, there is no consistent best auxiliary modality
that can be used for all the tasks, we need to choose the
best auxiliary modality that can boost the performance most
for a given task. Suppose there are n types of auxiliary
modalities, do we need to train n times to find out the best
one? The answer is no. In this section, we propose a method
that can assist in deciding the importance order for a set of
auxiliary modalities within one training process.

Inspired by Squeeze-and-Excitation Network (SENet) (Hu
et al., 2018), we use channel-level attention to represent the
importance of each modality. Suppose we already have a
network f that can take the main modality Im as input and
perform prediction for a given task. Now we have n types of
auxiliary modalities that potentially can help. We first pack
the different modality data in the channel level, and feed
them into the Squeeze-and-Excitation (SE) block (Hu et al.,
2018), followed by a 1x1 convolutional layer to make the
channel number to be the same as the main modality Im, so
that the original network f can take that as input and perform
prediction. If different modality data has different image
sizes then they should be resized (or add a shallow network
to pre-process the data, if necessary) before being packed
in the channel level. In our experiments, all the image data
with different modalities have the same size, so they can be
packed directly. After training the modified network, the
channel weights in the SE block can be used to determine
the relative importance for the auxiliary modalities, i.e., the
modality that has the largest channel weight is the one that
can lead to the best AML performance.

5.2. Auxiliary Modality Distillation

Sec. 4.1.3 shows the knowledge-distillation (KD) based
architecture performs best in most cases. However, when
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Figure 3. SAMD architecture. In each round, a new curriculum
learning is started by resetting the teacher weights. Then we train
the model with our online distillation, until the student converges.
The teacher network should be a supermodel of the student network
to enable reset operation, which helps the teacher be aware of the
student’s status and perform more effectively.

Accuracy (%) on various angle threshold τ (degree)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 mAcc

(Hoffman et al., 2016) 51.7 70.6 89.6 94.7 83.6
(Garcia et al., 2018) 26.1 54.1 81.8 91.0 74.6
(Xiao et al., 2020) 28.6 51.2 80.0 92.0 74.4

(Garcia et al., 2021) 40.2 67.8 88.7 94.3 81.0
Ours (SAMD) 54.3 72.2 90.1 94.6 84.4

Table 1. Performance comparison on Audi dataset with Nvidia
PilotNet (Bojarski et al., 2016). All the methods are trained
on RGB+segmentation, and tested on RGB only. Our method
outperforms others by up to 10% improvement in accuracy.

analyzing reasons for the effectiveness of AML in Sec. 4.2,
we find the “supermodel condition”, which helps AML to
perform better, is not fully utilized in the general KD-based
architecture. We thereby introduce a new method that uses
“supermodel condition” that allows the teacher network to be
aware of the student’s status and leads to a better distillation.

We update the teacher-student in an online-like paradigm.
See framework illustration in Fig. 3. The training paradigm
contains t rounds. In each round, we first reset the teacher
with the student, then train the teacher independently while
training the student with both the general label loss and
knowledge distillation loss for k epochs. k should not be
too large to avoid the teacher being far away from the stu-
dent. The training process stops when the student converges
between different rounds or until finishing t rounds. See loss
function, “reset” definition, and algorithm in Appendix A.7.

To apply our training paradigm with reset operation, the
framework should meet the supermodel condition (Sec. 4.2),
i.e., the teacher network should be a supermodel of the
student network. This condition is what differentiates our
learning framework from other existing methods.

5.3. Experiments

In this section, we conduct experiments for autonomous
steering task (Appendix A.1) and 5 other tasks (Ap-

Figure 4. Different types of auxiliary modalities used in our exper-
iments.

Mean Accuracy (%)

Method w/o ours with ours Improvement

kd (Hinton et al., 2015) 71.5 83.4 11.9
hint (Romero et al., 2015) 67.6 83.2 15.6

similarity (Tung & Mori, 2019) 75.6 83.9 8.3
correlation (Peng et al., 2019) 77.0 74.3 -2.7

rkd (Park et al., 2019) 75.6 84.4 8.8
pkt (Passalis et al., 2020) 75.7 76.4 0.7

vid (Ahn et al., 2019) 83.4 83.2 -0.2
abound (Heo et al., 2019) 74.3 72.0 -2.3
factor (Kim et al., 2018b) 76.9 83.4 6.5

fsp (Yim et al., 2017) 72.0 70.1 -1.9

Table 2. Performance comparison with vs. without our training
paradigm (containing reset operation). By applying our training
paradigm on other knowledge distillation methods, we can achieve
better performance in most cases (up to +15.6%) in either fully
paired or merely a small amount of additional modality data.

pendix A.8). See details on the experiment settings in Ap-
pendix A.8. We also use different types of data modalities
in our experiments, as shown in Fig. 4.

Comparison with other AML methods. We compare our
SAMD with other AML methods, Hoffman et al. (Hoff-
man et al., 2016), Garcia et al. (Garcia et al., 2018), Xiao
et al. (Xiao et al., 2020), and DMCL (Garcia et al., 2021),
using Audi dataset (Geyer et al., 2020) and Nvidia Pilot-
Net (Bojarski et al., 2016). For Xiao et al. (Xiao et al., 2020),
we adopt the single-sensor version and make it suitable for
the Audi dataset by removing the high-level route naviga-
tion command and measurement, and using Tao et al. (Tao
et al., 2020) as the segmentation generator. In Table 1, ours
outperforms others by up to 10%.

Effectiveness when combining with different knowledge
distillation methods. Since our training paradigm can
be applied to existing knowledge distillation methods, we
do experiments by combining ours with kd (Hinton et al.,
2015), hint (Romero et al., 2015), similarity (Tung & Mori,
2019), correlation (Peng et al., 2019), rkd (Park et al., 2019),
pkt (Passalis et al., 2020), abound (Heo et al., 2019), fac-
tor (Kim et al., 2018b), fsp (Yim et al., 2017). From Ta-
ble 2, our method achieves up to 15.6% improvement in
both settings, showing the effectiveness of our training
paradigm (containing reset operation). See more details
in Appendix A.8.
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Dataset Train Mod Test Mod Method mAcc

Audi RSDE RSDE Teacher 83.7

Audi RSDE RGB Best Others 72.9
RSDE RGB Ours 74.3

SullyChen RDE RDE Teacher 81.0

SullyChen RDE RGB Best Others 88.9
RDE RGB Ours 89.7

Honda RSDE RSDE Teacher 79.8

Honda RSDE RGB Best Others 77.4
RSDE RGB Ours 78.1

Table 3. Comparison on different datasets and different modal-
ities. “RSDE” refers to RGB + segmentation + depth map + edge
map, and “RDE” for RGB + depth map + edge map. Our method
outperforms others on different datasets and different additional
modalities by up to +11% accuracy improvement. “Best others”
stand for the best performance with methods in Table 1.

Comparison on different datasets and modalities. We
also perform comparison with other knowledge distillation
methods on different datasets (Audi (Geyer et al., 2020),
Honda (Ramanishka et al., 2018), and SullyChen (Chen,
2018)) and different modalities (RGB, segmentation, depth
map, and edge map). Specifically, Audi dataset contains
ground truth segmentation, and other segmentation is gen-
erated by Tao et al. (Tao et al., 2020), while the depth map
is generated by (Bian et al., 2019) and the edge map is
generated by DexiNet (Poma et al., 2020). In Table 3, Our
method outperforms others in nearly all cases by up to +11%
accuracy improvement. See more details in Appendix A.8.

Comparison on other tasks and modalities. We per-
form comparison on multi-feature handwritten classification
task (Han et al., 2021). We regard the six feature sets as
six modalities, and treat each of them as a target modal-
ity in each experiment. Our method outperforms others
with 5.1% on average. We also conducted experiments on
another end-to-end autonomous driving task, “way-point
prediction” task (Prakash et al., 2021). We use RGB image
as main modality, and point cloud as auxiliary modality, and
achieve 19% improvement on average route completion,
compared to RGB image baseline. In the materials classi-
fication task (Wilson et al., 2022), we use RGB image as
main modality, while using sound wave as auxiliary modal-
ity, achieving 6.4% performance gain. For the bird-eye-view
segmentation task (Li et al., 2022), point-cloud from multi-
ple vehicles are used during training, and point cloud from
only one vehicle is used during test. We get 0.78% accuracy
improvement. See Table 4 for a simplified comparison, and
more details in Appendix A.8.

Relation of Channel-level Importance and AML Perfor-
mance. To show the channel-level attention for different
auxiliary modalities is positively correlated to the final per-

Task Train Mod Test Mod Ours Best Others

Handwritten Clas Multi-features Single Feature 70.3 65.2
(Han et al., 2021)

Waypoint Pred Image Image 79.5 71.4
(Prakash et al., 2021) Point Cloud

Materials Clas Image Image 83.2 76.8
(Wilson et al., 2022) Audio

Bird-eye-view Seg Multi-view Single-view 45.30 44.91
(Li et al., 2022) Point Cloud Point Cloud

Table 4. Performance comparison on different tasks with dif-
ferent auxiliary modalities. Our method outperforms other meth-
ods on all tasks. See details in Appendix A.8.

formance of AML with different auxiliary modalities, we
conduct experiments on three tasks with the same setting
stated in Sec. 4.1.3, then use the same three auxiliary modal-
ities and an additional random noise modality (whose impor-
tance should be the lowest). As shown in Table 11, in Task
1, the importance order from the channel-level attention is
attention image > depth map > frequency image, and the
performance order from AML is also attention image >
depth map > frequency image. The same phenomenon can
be observed in Task 2 and 3. This shows we only need to
perform one-time training to select the best modality for a
given task. See more details in Appendix A.8.

6. Conclusion
This paper aims to introduce and understand ’Auxiliary
Modality Learning (AML)’. We first formalize the concept
of AML, systematically list and classify the types of auxil-
iary modality and architectures for AML. We then analyze
how types of auxiliary modality and architectures can affect
AML performance on a single task and across tasks, i.e.,
best architecture is consistent within a task or across tasks,
while best auxiliary modality is consistent within one task
but not consistent across tasks. We also analyze the reason
of the effectiveness of AML in optimization and data per-
spectives to provide theory support for our method. Given
the observation, we propose a method SAMD that can first
determine the best auxiliary modality , and then do a special
auxiliary modality distillation that enables the teacher net-
work to be aware of the student’s status, leading to a better
distillation that achieves the SOTA performance.

Limitations and Future Work: We assume that the
teacher network is a supermodel of the student’s. In modal-
ity distillation, such an assumption is reasonable, as this task
focuses on the reduction of modality, instead of model size,
like general knowledge distillation. A possible future direc-
tion for AML is to further examine the impact of auxiliary
modality data size, e.g., can we use only a small amount
of auxiliary modality data to achieve better performance?
What if data is not paired with the main modality? Are there
better architectures?



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Auxiliary Modality Learning with Generalized Curriculum Distillation

References
Ahn, S., Hu, S. X., Damianou, A., Lawrence, N. D., and

Dai, Z. Variational information distillation for knowledge
transfer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9163–
9171, 2019.

Bian, J., Li, Z., Wang, N., Zhan, H., Shen, C., Cheng, M.-
M., and Reid, I. Unsupervised scale-consistent depth and
ego-motion learning from monocular video. Advances in
neural information processing systems, 32:35–45, 2019.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B.,
Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller,
U., Zhang, J., et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Chai, J., Zeng, H., Li, A., and Ngai, E. W. Deep learning
in computer vision: A critical review of emerging tech-
niques and application scenarios. Machine Learning with
Applications, 6:100134, 2021.

Chang, M.-W., Srikumar, V., Goldwasser, D., and Roth, D.
Structured output learning with indirect supervision. In
ICML, pp. 199–206, 2010.

Chen, S. A collection of labeled car driving datasets,
https://github.com/sullychen/driving-datasets, 2018.

Cochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D.,
Kaenel, R. A., Lang, W. W., Maling, G. C., Nelson, D. E.,
Rader, C. M., and Welch, P. D. What is the fast fourier
transform? Proceedings of the IEEE, 55(10):1664–1674,
1967.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele, B.
The cityscapes dataset for semantic urban scene under-
standing. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

Ding, Q., Wu, S., Sun, H., Guo, J., and Xia, S.-T. Adaptive
regularization of labels. arXiv preprint arXiv:1908.05474,
2019.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and
Koltun, V. Carla: An open urban driving simulator. In
Conference on robot learning, pp. 1–16. PMLR, 2017.

Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A.,
Mottaghi, A., Liu, Y., Topol, E., Dean, J., and Socher,
R. Deep learning-enabled medical computer vision. NPJ
digital medicine, 4(1):1–9, 2021.

Gao, Z., Chung, J., Abdelrazek, M., Leung, S., Hau, W. K.,
Xian, Z., Zhang, H., and Li, S. Privileged modality distil-
lation for vessel border detection in intracoronary imag-
ing. IEEE transactions on medical imaging, 39(5):1524–
1534, 2019.

Garcia, N. C., Morerio, P., and Murino, V. Modality distilla-
tion with multiple stream networks for action recognition.
In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 103–118, 2018.

Garcia, N. C., Morerio, P., and Murino, V. Learning
with privileged information via adversarial discrimina-
tive modality distillation. IEEE transactions on pattern
analysis and machine intelligence, 42(10):2581–2593,
2019.

Garcia, N. C., Bargal, S. A., Ablavsky, V., Morerio, P.,
Murino, V., and Sclaroff, S. Distillation multiple choice
learning for multimodal action recognition. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 2755–2764, 2021.

Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh,
R., Chung, A. S., Hauswald, L., Pham, V. H., Mühlegg,
M., Dorn, S., Fernandez, T., Jänicke, M., Mirashi, S.,
Savani, C., Sturm, M., Vorobiov, O., Oelker, M., Garreis,
S., and Schuberth, P. A2D2: Audi Autonomous Driving
Dataset. 2020. URL https://www.a2d2.audi.

Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T.,
Mu, T.-J., Zhang, S.-H., Martin, R. R., Cheng, M.-M.,
and Hu, S.-M. Attention mechanisms in computer vision:
A survey. Computational Visual Media, pp. 1–38, 2022.

Gupta, S., Hoffman, J., and Malik, J. Cross modal distilla-
tion for supervision transfer. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 2827–2836, 2016.

Han, Z., Zhang, C., Fu, H., and Zhou, J. T. Trusted multi-
view classification. arXiv preprint arXiv:2102.02051,
2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Heo, B., Lee, M., Yun, S., and Choi, J. Y. Knowledge
transfer via distillation of activation boundaries formed by
hidden neurons. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 3779–3787,
2019.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowl-
edge in a neural network. Advances in Neural Information
Processing Systems (NIPS), 2015.

Hoffman, J., Gupta, S., and Darrell, T. Learning with side
information through modality hallucination. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 826–834, 2016.

https://www.a2d2.audi


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Auxiliary Modality Learning with Generalized Curriculum Distillation

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7132–7141,
2018.

Jiang, X., Ma, J., Xiao, G., Shao, Z., and Guo, X. A review
of multimodal image matching: Methods and applica-
tions. Information Fusion, 73:22–71, 2021.

Jin, W., Sanjabi, M., Nie, S., Tan, L., Ren, X., and
Firooz, H. Modality-specific distillation. arXiv preprint
arXiv:2101.01881, 2021.

Jin, X., Peng, B., Wu, Y., Liu, Y., Liu, J., Liang, D., Yan, J.,
and Hu, X. Knowledge distillation via route constrained
optimization. In IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 1345–1354, 2019.

Joshi, G., Walambe, R., and Kotecha, K. A review on
explainability in multimodal deep neural nets. IEEE
Access, 2021.

Kim, J., Park, S., and Kwak, N. Paraphrasing complex
network: Network compression via factor transfer. Ad-
vances in Neural Information Processing Systems (NIPS),
pp. 2765–2774, 2018a.

Kim, J., Park, S., and Kwak, N. Paraphrasing complex
network: Network compression via factor transfer. arXiv
preprint arXiv:1802.04977, 2018b.

Li, K., Yu, L., Wang, S., and Heng, P.-A. Towards cross-
modality medical image segmentation with online mutual
knowledge distillation. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pp. 775–783,
2020.

Li, Y., Ren, S., Wu, P., Chen, S., Feng, C., and Zhang,
W. Learning distilled collaboration graph for multi-agent
perception. Advances in Neural Information Processing
Systems, 34:29541–29552, 2021.

Li, Y., Ma, D., An, Z., Wang, Z., Zhong, Y., Chen, S., and
Feng, C. V2x-sim: Multi-agent collaborative perception
dataset and benchmark for autonomous driving. IEEE
Robotics and Automation Letters, 7(4):10914–10921,
2022.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In European conference on
computer vision, pp. 740–755. Springer, 2014.

Liu, Y.-C., Tian, J., Glaser, N., and Kira, Z. When2com:
Multi-agent perception via communication graph group-
ing. In Proceedings of the IEEE/CVF Conference on
computer vision and pattern recognition, pp. 4106–4115,
2020a.

Liu, Y.-C., Tian, J., Ma, C.-Y., Glaser, N., Kuo, C.-W.,
and Kira, Z. Who2com: Collaborative perception via
learnable handshake communication. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pp. 6876–6883. IEEE, 2020b.

Park, W., Kim, D., Lu, Y., and Cho, M. Relational knowl-
edge distillation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
3967–3976, 2019.

Passalis, N., Tzelepi, M., and Tefas, A. Probabilistic knowl-
edge transfer for lightweight deep representation learning.
IEEE Transactions on Neural Networks and Learning
Systems, 32(5):2030–2039, 2020.

Peng, B., Jin, X., Liu, J., Li, D., Wu, Y., Liu, Y., Zhou, S.,
and Zhang, Z. Correlation congruence for knowledge dis-
tillation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5007–5016, 2019.
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A. Appendix
A.1. Details on Experimental Settings

Single task. We use autonomous driving task since there
are datasets for this task that contain all types of auxiliary
modality in Sec. 4.1.1. Specifically, the input is one RGB
image and the output is one float value which represents the
steering angle. Classical computer vision tasks, like object
classification or detection, mostly do not have datasets with
Low-level sensing data other than RGB image (like depth
map is not available in ImageNet or COCO). We use Audi
dataset (Geyer et al., 2020) and Honda dataset (Ramanishka
et al., 2018) in this experiment. Also, we use depth map
(Type 1), frequency image (Type 2), and attention image
(Type 3) as Auxiliary modalities. We generate depth map
with (Bian et al., 2019), frequency image with standard 2D
fast Fourier transform (Cochran et al., 1967), and attention
image with segmentation map provided by Audi dataset.
We implement all four types of auxiliary modality learning
architectures introduced in Sec. 4.1.2, and choose the Nvidia
PilotNet (Bojarski et al., 2016) and ResNet (He et al., 2016)
as the main backbones. Mean accuracy defined in (Shen
et al., 2021) is used as the evaluation metric.

Multiple tasks. We use Audi dataset (Geyer et al., 2020) for
end-to-end steering task, COCO dataset (Lin et al., 2014)
for real-world classification task, and a customized dataset
for customized classification task. We use semantic segmen-
tation label contained in Audi and COCO to generate related
attention images. We use blur-level estimation task as the
customized task, following Shen et al.’s work (Shen et al.,
2021) to add blur perturbation onto the Audi dataset, and
use the level ID as the ground truth, see Fig. 6. Also, we use
attention image and frequency image as auxiliary modalities,
and implement all four types of auxiliary modality learning
architectures introduced in Sec. 4.1.2. We choose Nvidia
PilotNet (Bojarski et al., 2016) for steering task, ResNet (He
et al., 2016) for the classification task, and modified PilotNet
for the customized classification task (change the header of
the network to general classification header). We use mean
accuracy (Shen et al., 2021) for steering task, accuracy for
real-world classification and customized classification.

A.2. Experiment Results for Auxiliary Modality Types
and Architectures

We show experimental results for auxiliary modality in Ta-
ble 5 and architectures in Table 6. See analysis in Sec. 4.1.

A.3. Supermodel Example

We first introduce the “supermodel” definition:

Definition A.1 Given a model M (A)
θA

(IA) (weights θA and

input IA), and a model M (B)
θB

(IB) (weights θB and input

Figure 5. A simple example of supermodel. Net1 contains two
blocks f1 and f2. Net2 contains the same block f1 and f2, and
another block h which is possible to be set as an identical function.

IB), if for any θA, there is a θB , such that M (A)
θA

(IA) =

M
(B)
θB

(IB) for any arbitrary valid input data IA and its
superset IB . We call model MB as a “supermodel” of MA.

We show a simple example of supermodel in Fig. 5. Net1
contains two blocks f1 and f2. Net2 contains the same
block f1 and f2, and another block h. If there is a set of spe-
cific weights θ0 for h that can meet hθ0(x) = x for any valid
x, then Net2 is a supermodel of Net1, according to Defi-
nition. A.1. In this case, for any specific weights of Net1,
we can always construct a set of weights for Net2 that has
exactly the same performance of Net1, which means the op-
timal solution for training Net2 will be no worse than Net1.
Furthermore, if these two models are training in parallel, the
supermodel can be “repositioned” to the same status of the
base model at any time by the construction method above.
This property can be used in knowledge distillation to let
the teacher get back to the student’s position and help find a
better way at any time the student is stuck.

A.4. Prove of Lemma. 4.1

Lemma A.1 Given a model M and its supermodel
M(s), the optimal training loss of M(s) (which
is argminθ(s) L(M(s)

θ(s)(I
(s)), GT )) is less than or

equal to the optimal training loss of M (which is
argminθ L(Mθ(I), GT )). where L is the loss function and
GT is the ground truth.

Prove: Let θ∗ = argminθ L(Mθ(I), GT ) represent the
weights that lead to the best training performance for model
M, then according to the definition of supermodel, there
is a θ(s)∗ that meetMθ∗(I) =M(s)

θ(s)∗(I
(s)), equivalent to

L(Mθ∗(I), GT ) = L(M(s)

θ(s)∗(I
(s)), GT ). That is, there’s

at least one solution for trainingM(s) can get the same per-
formance as trainingM. Furthermore, if θ∗ is the optimal
solution that achieves the minimal training loss of M(s),
then the equal condition in Lemma 4.1 holds, if not, the less
condition holds.
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Audi (Geyer et al., 2020) Honda (Ramanishka et al., 2018)

Attention Frequency Depth Attention Frequency Depth

Archi Type A 66.3 64.9 65.8 74.5 72.9 73.4
PilotNet (Bojarski et al., 2016) Archi Type B 71.6 66.5 68.4 75.9 73.2 75.1

Archi Type C 70.1 65.7 68.8 74.3 73.7 74.2
Archi Type D 73.4 67.9 70.8 77.4 74.8 76.7

Archi Type A 78.5 77.9 78.2 82.1 81.1 81.9
ResNet (He et al., 2016) Archi Type B 80.5 79.1 80.1 84.7 82.4 83.9

Archi Type C 79.6 78.5 79.3 83.6 82.1 83.1
Archi Type D 82.4 79 81.8 85.2 83 84.3

Table 5. Performance improvement comparison (Mean Accuracy %) with different auxiliary modalities, architectures, backbones and
datasets. The relative effectiveness for different architectures is consistent under different datasets, backbones, and auxiliary modalities
within one task. Similarly, The relative effectiveness for different auxiliary modalities is consistent under different datasets, backbones,
and architectures within one task.

task 1 task 2 task 3

Attention Frequency Attention Frequency Attention Frequency

Archi Type A 66.3 64.9 70.1 69.3 64.3 65.2
Archi Type B 71.6 66.5 82.1 73.6 68.4 72.5
Archi Type C 70.1 65.7 80.7 71.1 65.3 70.8
Archi Type D 73.4 67.9 84.3 75.6 70.3 74.9

Table 6. Performance comparison (Mean Accuracy %) across tasks. The effectiveness order of different architectures is consistent across
tasks, but not for auxiliary modalities.

A.5. More Explanation on Why AML Can Work

In Fig. 7, the main modality data has few examples in the
hard and challenging case area, which leads to a wrong deci-
sion boundary. This is common in real-world datasets, e.g.,
autonomous driving datasets usually have fewer datasets
for night-time driving, and even fewer on accidents. After
adding the auxiliary modality that provides more informa-
tion in the hard case area, it would be much easier to learn a
correct decision boundary, then use this information to guide
the training process with the main modality. For example,
the infra-red image or depth map contains more information
than RGB image when captured at night. This explains why
the low-level sensing data (Type 1 in Sec. 4.1.1) can help
AML.

A.6. Modality Choice

We show a modified network to extract channel-level impor-
tance and estimate modality effectiveness with SE block in
Fig. 8. See more descriptions in Sec. 5.1.

A.7. AML in SAMD

Formally, given a task, we denote a learner composed of a
feature network F and a predictor of fully-connected layers
D. We design a student that takes IM as input, and update

via iterations of mini-batches,

θstu ← θstu − η∇LM (1)

where θstu is the parameter of the student network, LM is
the loss function, and η is the learning rate. Meanwhile, we
design a teacher that takes {IM , IA} as input, and update via
an independent feature network Ftea (F1, F2, F3 in Fig. 3)
and a predictor D that share weights with that of the student
network. The teacher network is updated via

θtea ← θtea − η∇LA (D(Ftea({IM , IA})), GT ) . (2)

The teacher and student learn different representations re-
lated to the same task by being exposed to different modal-
ities. The teacher has access to the auxiliary modality IA,
the knowledge of the teacher is distilled to assist the student
through a consistency loss Lcon that measures the pairwise
distance between Fstu(IM ) and Ftea(IM , IA) as part of the
student’s objective LM , specifically,

LM = Lsup (D(Fstu(IM )), GT )+

βLcon (Fstu(IM ), Ftea({IM , IA})) (3)

where Lsup is a term that supervises the learning on the
main modality.

Definition A.2 Given a model M (A)
θA

(IA) (weights θA and

input IA), and its supermodel M (B)
θB

(IB) (weights θB and
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Figure 6. Tasks for our experiments. LEFT: end-to-end steering task, input image, output steering angle. MIDDLE: classification task,
input image, output object category. RIGHT: classification task, input image, output blur level.

Figure 7. Auxiliary modality helps construct the decision boundary around the difficult cases (e.g. lack of data coverage). Circles are
main modality data, and squares are auxiliary modality data.

Figure 8. Modified network to extract channel-level importance
and estimate modality effectiveness with SE block. (Hu et al.,
2018)

input IB), we define “reset B with A” to be the process of
constructing a new θB that meet M (A)

θA
(IA) = M

(B)
θB

(IB)
for given θA and any arbitrary valid input data IA and its
superset IB .

A simple example is, suppose B is a supermodel of A (e.g.,
B = A+A′), reset B with A is constructing θB = [θA, 0],
where θA is the weights of A and 0 is the weights of
A′. In Fig. 3, the teacher network is a supermodel of
the student network, because for any weights of student

network, we can construct a teacher network that meet
D(Ftea({IM , IA})) = D(Fstu({IM})) by resetting the
F1 weights with F4 weights, F2 weights with F5 weights,
and set F3 weights to 0. Indeed the reset operation in our
method requires that the teacher model is a supermodel of
the student model.

As shown in Algorithm 1, the training paradigm contains
t rounds. In each round, we first reset the teacher with the
student, then train the teacher independently while training
student with both the general label loss and knowledge
distillation loss for k epochs. k should not be too large
to avoid the teacher being far away from the student. The
training process stops when the student converges between
different rounds or until finishing t rounds.

A.8. Additional SAMD Results

Setting. All experiments are conducted using one Intel(R)
Xeon(TM) W-2123 CPU, two Nvidia GTX 1080 GPUs, and
32G RAM. We use the SGD optimizer with learning rate
0.001 and batch size 128 for training. The number of epochs
is 2,000. The loss correlation β is set with different values
for different knowledge distillation methods following (Tian
et al., 2020). We pick epoch number in each round k = 5
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Algorithm 1 SAMD Training Paradigm
Input: Training data from main modality IM , training

data from auxiliary modality IA (chosen by method in
Sec. 5.1)

Output: student network weights θstu
Initialisation:
Training Round number t, epoch number in each round
k, loss correlation β, network weights θstu and θtea.
for r = 1 to t do

Reset teacher weights with student weights
for e = 1 to k do

Feed IM and IA into teacher, update teacher weights
θtea with Eq. 2

end for
for e = 1 to k do

Feed IM and IA into teacher, and feed IM into stu-
dent, update student weights θstu with Eq. 1 and
loss 3

end for
end for

from ablation study of k = 1, 2, 5, 20. We set the round
number n = 400 for Audi dataset and n = 40 for Honda
dataset. In the experiments, each training process is fin-
ished within 24 hours. The main task is the steering task
introduced in the single task setting in Appendix A.1.

Comparison on other tasks. To show the generalizability
of our method, we perform comparison on multi-feature
handwritten classification task (Han et al., 2021) in Table 7.
The dataset (UCI, 0) consists of six features of handwritten
numerals (‘0’–‘9’) with 2,000 samples in total. We regard
the six feature sets as six modalities, and treat each of them
as target modality in each experiment. Our method outper-
forms others by 5.1% higher accuracy on average.

Accuracy (%) on different modalities (ID:1∼6)

Method 1 2 3 4 5 6 mean

Best Others 84.92 62.98 68.75 61.10 70.35 43.17 65.2
Ours 89.40 65.20 72.80 69.50 73.15 51.75 70.3

Table 7. Performance comparison on handwritten classification
task. Our method outperforms other KD methods listed in Table 1
by 5.1% higher accuracy on average.

We also conducted experiments on another end-to-end au-
tonomous driving task, “way-point prediction” task. Fol-
lowing the setting of (Prakash et al., 2021), we consider
the task of navigation along a set of predefined routes in
different areas, such as motorways, urban regions, and resi-
dential districts. A sequence of sparse goal locations in GPS
coordinates, provided by a global planner and the related
discrete navigational commands (e.g. “follow lane”, “turn
left/right”, and “change lane”), constitute the routes. Only

Model DS↑ RC↑ IP↓ CP↓ CV↓ CL↓ RLI↓ SSI↓
RGB 21.0 60.5 0.49 0.01 0.15 0.08 0.14 0.04

RGB+PC 11.2 52.9 0.37 0.02 0.22 0.01 0.38 0.02
Ours(new) 22.1 79.5 0.37 0.01 0.07 0.04 0.26 0.04

Table 8. Performance comparison on long-route waypoints pre-
diction between base (train and test on RGB), multi-modality
(train and test on RGB + point cloud), and ours (train on RBG +
point cloud, test using only RGB). DS: Avg. driving score, RC:
Avg. route completion, IP: Avg. infraction penalty, CP: Collisions
with pedestrians, CV: Collisions with vehicles, CL: Collisions with
layout, RLI: Red lights infractions, SSI: Stop sign infractions.

the sparse GPS locations are used in our method. Each route
consists of several scenarios, which are initialized at prede-
fined locations and test the agent’s ability to handle various
adversarial situations, such as obstacle avoidance, unpro-
tected turns at intersections, vehicles running red lights, and
pedestrians emerging from occluded regions crossing the
road at random locations. The agent needs to complete
the route within a certain amount of time, while following
traffic regulations and dealing with large numbers of dy-
namic agents. For dataset, we use the CARLA (Dosovitskiy
et al., 2017) simulator for training and testing, specifically
CARLA 0.9.10 that include 8 publicly available towns. We
use 7 towns for training and hold out Town05 for evaluation,
as in (Prakash et al., 2021). We use both RGB and LiDAR
for training in AML, but only RGB data for testing. The
results are shown in Table 8. Our method benefits from the
auxillary LiDAR modality in training using AML, with only
RGB data during query. This set of experimental results
demonstrates the effectiveness of AML.

In addition, we apply our method on audio modality based
on an audio-visual depth and material estimation work (Wil-
son et al., 2022). We use RGB image as the main modality,
and audio wave as the auxiliary modality. The task is ma-
terial and depth classification. We use the same dataset
in the original audio-visual work, which contains about
16,000 pairs of RGB image and audio wave. Since there’s
no open-source code, we reimplement the original work,
then apply our method to it. Our method outperforms other
KD methods listed in Table 1 by 6.4%.

Finally, we apply our method on a bird-eye-view segmen-
tation task (Li et al., 2022). During training, a mixed point
cloud from multiple viewpoints is used as input, while a
point cloud from one viewpoint is used during test. We use
the same virtual autonomous driving dataset (Li et al., 2022),
which contains 48,000 datapoints for training, 6,000 data-
points for test, and 6,000 datapoints. We apply our method
based on the DiscoNet (Li et al., 2021). In Table 10, we
show our method achieves the best performance compared
to other methods.

Comparison on different datasets and modalities. We
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Accuracy (%) on various angle threshold τ (degree)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 75 mAcc

Seg GT 50.6 70.9 85.4 96.1 99.2 80.44
Seg Infer 48.3 69.5 85.3 95.7 98.6 79.48

Table 9. Performance comparison between ground truth and
generated segmentation. The results show that the inferred seg-
mentation can do nearly as well as ground truth segmentation,
when serving as auxiliary modality (within 1% of difference).
Therefore, we can use pre-trained models to generate auxiliary
modality conveniently.

also perform comparison with other knowledge distillation
methods on different datasets (Audi (Geyer et al., 2020),
Honda (Ramanishka et al., 2018), and SullyChen (Chen,
2018)) and different modalities (RGB, segmentation, depth
map, and edge map). Specifically, Audi dataset contains
ground truth segmentation, and other segmentation is gen-
erated by Tao et al. (Tao et al., 2020), while the depth map
is generated by (Bian et al., 2019) and the edge map is gen-
erated by DexiNet (Poma et al., 2020). In Table 12, our
method outperform others in practically all cases by up to
+11% accuracy improvement.

Effectiveness when combining with different knowledge
distillation methods. Since our training paradigm can
be applied on existing knowledge distillation methods, we
do experiments by combining ours with kd (Hinton et al.,
2015), hint (Romero et al., 2015), similarity (Tung & Mori,
2019), correlation (Peng et al., 2019), rkd (Park et al., 2019),
pkt (Passalis et al., 2020), abound (Heo et al., 2019), fac-
tor (Kim et al., 2018b), fsp (Yim et al., 2017). From Ta-
ble. 13, our method achieves up to 15.6% improvement
in both settings, showing the effectiveness of our training
paradigm (containing reset operation).

Relation of Channel-level Importance and AML Perfor-
mance. To show the channel-level attention for different
auxiliary modalities is positively correlated to the final per-
formance of AML with different auxiliary modalities, we
conduct experiments on three tasks with the same setting
stated in Sec. 4.1.3, then use the same three auxiliary modal-
ities and an additional random noise modality (whose impor-
tance should be the lowest). We use knowledge distillation
based architecture (Type D), since it’s consistently better
than other architectures (see Sec. 4.1.3).

As shown in Table 11, in Task 1, the importance order from
the channel-level attention is attention image > depth map
> frequency image, and the performance order from AML
is also attention image > depth map > frequency image.
The same phenomenon can be observed in Task 2 and 3.
This shows we only need to perform one-time training to
select the best modality for a given task.

Comparison of ground truth and generated auxiliary
modality. We conduct experiment with ground truth seg-
mentation and generated segmentation (Tao et al., 2020) to
see how much it will influence the performance. The model
used to generate segmentation for Audi dataset (Geyer et al.,
2020) is trained on Cityscapes dataset (Cordts et al., 2016).
Table 9 shows that the generated segmentation can do nearly
as well as ground truth segmentation, when serving as aux-
iliary modality (i.e. within 1% of difference), thus we can
use pre-trained models to generate auxiliary modality con-
veniently.
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Method Vehicle Sidewalk Terrain Road Building Pedestrian Vegetation mIoU

Lower-bound 45.93 42.39 47.03 65.76 25.38 20.59 35.83 40.42
Co-lower-bound 47.67 48.79 50.92 70 25.26 10.78 39.46 41.84

When2com (Liu et al., 2020a) 48.43 33.06 36.89 57.74 29.2 20.37 39.17 37.84
Who2com (Liu et al., 2020b) 48.4 32.76 36.04 57.51 29.17 20.36 39.08 37.62

DiscoNet (Li et al., 2021) 56.66 46.98 50.22 68.62 27.36 22.02 42.5 44.91
Ours 56.52 47.43 49.72 67.72 30.59 22.23 42.86 45.30

Upper-bound 64.09 41.34 48.2 67.05 29.07 31.54 45.04 46.62

Table 10. Performance comparison on bird-eye-view segmentation task. Our method achieves the best performance compared to three
other methods, with only 1.32% performance difference from the upper-bound. We follow the same setting of (Li et al., 2021) for the
lower-bound, co-lower-bound and upper-bound.

Channel-level Importance AML Performance

Attention Frequency Depth Noise Attention Frequency Depth Noise

Task 1 0.32 0.08 0.12 6.9e-6 73.4 67.9 70.8 65.2
Task 2 0.65 0.12 - 2.7e-6 84.3 75.6 - 70.1
Task 3 0.09 0.26 - 3.2e-6 70.3 74.9 - 60.8

Table 11. Relation between relative orders of channel-level importance and AML performance for different auxiliary modalities.
The relative modality orders are consistent between channel-level importance and AML performance within each task, therefore we can
use channel-level importance to choose the best auxiliary modality before AML.

Accuracy (%) on different angle threshold τ (degree)

Dataset Train Mod Test Mod Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 τ = 75 mAcc

Audi RGB+seg RGB+seg Teacher 42.7 68.0 88.0 94.4 96.6 98.6 81.4

Audi RGB+seg RGB best others 30.3 51.0 78.2 88.4 94.4 98.2 73.4
RGB+seg RGB ours 52.6 72.7 91.3 95.0 97.0 98.3 84.5

Audi RSDE RSDE Teacher 49.9 72.1 89.5 94.9 97.1 98.6 83.7

Audi RSDE RGB best others 27.7 47.8 77.4 90.8 95.6 98.3 72.9
RSDE RGB ours 30.2 50.3 79.7 91.0 96.2 98.6 74.3

SullyChen RDE RDE Teacher 41.1 63.7 88.6 95.9 97.9 99.1 81.0

SullyChen RDE RGB best others 59.5 82.1 93.9 98.2 99.5 100.0 88.9
RDE RGB ours 63.4 83.0 94.3 98.2 99.5 100.0 89.7

Honda RSDE RSDE Teacher 41.3 61.1 83.9 94.0 98.3 99.9 79.8

Honda RSDE RGB best others 38.9 57.7 79.7 91.7 97.5 99.3 77.4
RSDE RGB ours 37.9 57.7 81.7 93.5 98.2 99.6 78.1

Table 12. Comparison on different datasets and different modalities. “RSDE” refers to results from RGB + segmentation + depth map
+ edge map, and “RDE” for RGB + depth map + edge map. Our method outperforms others on different datasets and different additional
modalities by up to +22.3% accuracy improvement.
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Accuracy on different threshold τ (%)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 τ = 75 Mean Improvement

Train Vanilla
Teacher (img+seg) 42.7 68.0 88.0 94.4 96.6 98.6 81.4

Student (img) 27.3 49.0 77.4 90.2 95.4 98.1 72.9

Existing Distillation Methods
kd (Hinton et al., 2015) 28.4 47.7 73.2 87.2 94.3 98.4 71.5

hint (Romero et al., 2015) 31.7 50.2 69.5 77.0 83.7 93.8 67.6
similarity (Tung & Mori, 2019) 33.0 55.9 80.8 90.5 95.1 98.3 75.6
correlation (Peng et al., 2019) 36.2 59.1 81.5 91.7 95.3 98.2 77.0

rkd (Park et al., 2019) 32.9 53.6 80.3 91.8 96.2 98.5 75.6
pkt (Passalis et al., 2020) 34.2 55.4 80.8 90.4 94.9 98.5 75.7

vid (Ahn et al., 2019) 49.7 71.2 89.9 94.8 96.7 98.3 83.4
abound (Heo et al., 2019) 32.8 53.9 77.8 88.9 94.6 98.0 74.3
factor (Kim et al., 2018b) 36.8 59.2 82.0 90.6 94.7 97.9 76.9

fsp (Yim et al., 2017) 30.8 51.6 74.9 85.8 91.6 97.4 72.0

Existing Distillation Methods with Our Training Paradigm
kd (Hinton et al., 2015) 49.7 71.2 89.9 94.8 96.7 98.3 83.4 11.9

hint (Romero et al., 2015) 48.6 71.0 90.1 94.8 96.7 98.3 83.2 15.6
similarity (Tung & Mori, 2019) 52.1 71.8 90.0 94.8 96.6 98.3 83.9 8.3
correlation (Peng et al., 2019) 31.8 52.7 78.1 89.7 95.2 98.3 74.3 -2.7

rkd (Park et al., 2019) 54.3 72.2 90.1 94.7 96.6 98.3 84.4 8.8
pkt (Passalis et al., 2020) 34.5 56.9 82.9 90.3 95.5 98.4 76.4 0.7

vid (Ahn et al., 2019) 48.6 71.0 90.1 94.8 96.7 98.3 83.2 -0.2
abound (Heo et al., 2019) 29.6 49.5 74.4 87.3 93.5 97.8 72.0 -2.3
factor (Kim et al., 2018b) 49.7 71.2 89.9 94.8 96.7 98.3 83.4 6.5

fsp (Yim et al., 2017) 28.8 48.2 71.5 83.9 91.2 97.4 70.1 -1.9

Table 13. Performance comparison with vs. without our training paradigm (containing reset operation). By applying our training
paradigm on other knowledge distillation methods, we can achieve better performance in most cases (up to +15.6%) in either fully paired
or merely a small amount of additional modality data.


