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Abstract— In this paper, we propose a novel learning frame-
work for autonomous systems that uses a small amount of
“auxiliary information” that complements the learning of the
main modality, called “small-shot auxiliary modality distillation
network (AMD-S-Net)”. The AMD-S-Net contains a two-stream
framework design that can fully extract information from dif-
ferent types of data (i.e., paired/unpaired multi-modality data)
to distill knowledge more effectively. We also propose a novel
training paradigm based on the “reset operation” that enables
the teacher to explore the local loss landscape near the student
domain iteratively, providing local landscape information and
potential directions to discover better solutions by the student,
thus achieving higher learning performance. Our experiments
show that AMD-S-Net and our training paradigm outperform
other SOTA methods by up to 12.7% and 18.1% improvement
in autonomous steering, respectively.

I. INTRODUCTION

The core component of self-navigation systems is au-
tonomous steering that requires both correct scene under-
standing and rapid adaptation to the changing circumstances.
Because of the variant scenarios in autonomous driving,
people explore the possibility of seeking auxiliary infor-
mation instead of single sensor information to improve the
learning of the autonomous steering task. Previous works
[1], [2], [3] have tried to exploit the depth information in
addition to the RGB channels, such as Lidar. The unified
learning framework that involves multiple modalities of data
as input is referred as multi-modality learning. However, it
is computationally very expensive. Also, the framework that
requires the auxiliary sensor/data for input at test time largely
restricts its application to cars with less advanced equipment.
Another problem is, the amount of auxiliary information may
be small in some cases, e.g., expensive expert-labeled data,
or sensing data from a low-frequency sensor, which makes
the network harder to learn. Therefore, our aim in this work
is to design a learning framework that utilizes a small amount
of auxiliary sensor/data to assist the task during training, but
does not require it during test/inference time.

In this paper, we introduce a novel learning framework for
autonomous steering that uses a small amount of “auxiliary
modality” data to complement the learning of the main
modality, i.e., distilling knowledge from a multi-modality
teacher to a single-modality student with partially avail-
able auxiliary modality. Specifically, we propose a small-
shot auxiliary modality distillation network, AMD-S-Net
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(Sec. III-B), for the partially available setting, which is
trained with our multi-modality training paradigm and meets
a special “supermodel condition”. It uses a special “reset
operation” that allows a teacher to be aware of the exact
student states (Sec. III-C). In addition, another novelty of
the AMD-S-Net framework design is the classification of the
input data into two types. We design a specific framework
for each type of data, according to their special properties:
(1) “consistency supervision” for the pairwise data and (2)
“distribution divergence supervision” for the unpaired data
– to fully extract information in each data type (Sec. III-B).

Furthermore, general knowledge distillation methods do
not ensure that the teacher is aware of the student’s states.
This implies that the teacher itself may learn well, but
not necessarily teach well. Consider the difference between
letting a teacher teach by recording videos vs. by interacting
with students. We hereby propose a multi-round online-
distillation training paradigm (Sec. III-D) that utilizes the
“reset operation” which can ensure that the teacher is aware
of the exact student states (e.g., learning process, features,
loss, etc). In each round, our training paradigm will first reset
the teacher’s to the student’s states, then let the teacher learn
independently in a higher dimensional space to explore the
loss landscape near the student space, and guide the student
with the local landscape information and potential direction
of a better solution, leading to better student performance.
This is an advantageous property of the teacher, when the
student has converged to a relatively small empirical loss and
is unable to further optimize in a stochastic local search.

Experiments show that our AMD-S-Net architecture out-
performs other architectures by up to 12.7%, and our training
paradigm outperforms other knowledge distillation (KD)
methods by up to 18.1%. We conduct comparisons on 5
architectures, 10 KD methods, 5 backbones, 4 datasets, and 5
different auxiliary modalities to show their effectiveness. We
also perform experiments on other tasks, including waypoints
prediction (using RGB + point clouds) and handwritten
classification (images + non-image features) to illustrate the
generalizability of our method (see Sec. IV).

We summarize our key contributions as follows:
• We propose a novel framework that distill knowl-

edge from multi-modality model to single-modality
model in a partially available auxiliary modality setting,
i.e., small-shot auxiliary modality distillation network
(AMD-S-Net). AMD-S-Net contains a specific frame-
work design to fully distill the information, i.e., consis-
tency supervision for the pairwise data and distribution



divergence supervision for unpaired data (Sec. III-B).
• We propose a novel knowledge distillation training

paradigm (Sec. III-D) that enables teachers to explore
and learn student’s local loss landscape information in a
higher dimension, thus making it feasible to help student
get out of local minimal and boost performance, based
on a special “reset operation” that allows the teacher to
be aware of the exact student states.

II. RELATED WORK

In our paper, we mainly focus on the setting that there are
auxiliary modalities during training but only main modality
during test. One kind of solution is treating the multimodal
network as the teacher and single modality network as the
student, and use the general knowledge distillation meth-
ods (Sec. II-A) to transfer the knowledge. Another kind
of solution is designing architectures specifically for the
modality distillation (Sec. II-B). For the task, we choose end-
to-end learning steering under multimodal settings in general
(Sec. II-C).

A. Knowledge Distillation

Knowledge distillation is the process to transfer knowledge
between networks [4]. Many works have already been done
in the general knowledge distillation area. Hinton et al. [4]
do early research about distilling the knowledge from an
ensemble of models to a single model. Then more and
more works have explored the desired knowledge need to
be distilled, including intermediate layers’ feature [5], [6],
attention map [7], paraphrased feature [8], probability dis-
tribution in the feature space [9], activation of neurons [10]
and etc. Romero et al. [11] propose a method that can distill
knowledge from a wide shallow network to a deep thin
network (FitNet). VID [12] formulates knowledge transfer as
maximizing the mutual information between the teacher and
the student networks. Similarity-Preserving Knowledge Dis-
tillation [13] aims to preserve the similarity matrix of input
data within a mini-batch. CRD [14] encourages the teacher
and student to map the same input to close representations
and different inputs to distant representations. Some other
works [15], [16] focuses on correlation congruence between
data samples instead of instance congruence.

Our method can be combined with these methods and
achieve better performance. Specifically, our method can
reset the teacher to the student’s states and lead the student
step by step, making it possible to escape local minima
and achieve better performance. This is different from the
self-distillation methods (e.g., [17], [18]), where teacher and
student share the same architecture, while in our setting
teacher and student do not need to have the same network
architecture.

B. Modality Distillation

Modality distillation mainly focuses on distilling knowl-
edge between different modalities. Gupta et al. [19] learn
the representation of one modality with a pretrained network
on another modality. Hoffman et al. [20] do an early work

about modality hallucination, which contains a hallucination
network with RGB image as input but tries to mimic a
depth network, then combines with RGB network to achieve
multimodal learning. Following works [21], [22] train the
hallucination network with a different process to achieve
better performance. Some other works [23], [24] use GAN
or U-Net to generate another paired modality data with one
modality. MSD [25] transfers knowledge from a teacher on
multimodal tasks by learning the teacher’s behavior within
each modality. A latest work [26] trains the different modal-
ity data in different pipelines and distills the best modality
pipeline knowledge to other modality pipelines. Other than
action recognition, modality distillation has also been applied
in medical image processing [27]. Existing work of unpaired
modality distillation like [28], [29] only consider unpaired
data and assume both modalities have enough samples, while
ours consider both paired and unpaired data, and also only
have small number of auxiliary modality data. Compared to
these methods, our method is the first framework that uses
consistency supervision for the pairwise data and distribution
divergence supervision for the unpaired data (Sec. III-B) and
provide flexibility for real-world applications.

C. Multimodal End-to-end Steering

End-to-end steering is an essential task in end-to-end
autonomous driving [30]. Multimodal end-to-end steering be-
comes popular, because of its naturally abundant information
and the improvement of multimodal architectures.

Xiao et al. [1] analyze different architectures to fuse
multiple modalities in the simulator. Yang et al. [31] make
the multimodal data to be the supervision of their multimodal
multitask network with only image input. Huang et al. [2]
propose a multimodal method with scene understanding.
Recently Maanpää et al. [3] design a specific network to
fuse camera and lidar data that are suitable for adverse
road and weather conditions. Except for spatial methods,
Abou-Hussein et al. [32] propose an LSTM-based network
to utilize multimodal Spatio-Temporal information.

Compared to these works, ours considers the multimodal
end-to-end steering in a more specific setting, i.e., there is
a varying amount of auxiliary modality data during train-
ing that can reduce costs compared to general multimodal
methods while outperforming single-modality techniques.

III. APPROACH

In this section, we first introduce the task formalization in
Sec. III-A. Next, we explain our method in detail in Sec. III-
B (AMD-S-Net) under different settings. We introduce a
specific reset operation and supermodel condition in Sec. III-
C, which is used by our training paradigm in Sec. III-D.

The novelty of AMD-S-Net is that it’s trained with our
novel training paradigm and should satisfy the supermodel
condition to ensure their suitability for our training paradigm
with reset operation. The framework of AMD-S-Net is also
novel because of a specific two-stream framework design.
This is the first work that introduces a reset operation and



Fig. 1. AMD-S-Net architecture. The training process consists of t rounds and each round contains k epochs. At the beginning of each round, the
student network will be used to initialize the teacher. In each round of the AMD-S-Net training process, there are 2 steps: (1) Calculate the teacher’s
loss, Loss1; backpropagate and update teacher’s networks F1, F2, F3, D for k epochs; (2) Feed the paired main modality data to the student, calculate
the student’s loss, Loss2, and feature loss, Loss3, update student’s networks F4, F5, D, and feed unpaired main modality data to the student, calculate
student’s loss, Loss4, and divergence loss, Loss5, update F4, F5, D, train for k epochs.

supermodel condition that can be utilized by the training
paradigm to boost performance.

A. Auxiliary Modalities and Task Formalization

Given an arbitrary task that can be learned by observing
a series of task-related data captured by different sensors, or
processed using different techniques, we refer to these differ-
ent but related data types as modalities I = {Ik}Kk=1, where
K is the maximum number of modalities one can obtain with
the existing devices, signal prepossessing methods, or expert
annotation. We assume that among the K modalities, there is
one main modality IM that contributes the most information
to the task. The modalities other than IM are referred as
auxiliary modalities IA. Note that each sample from the IM

is not necessarily more informative than each sample from
an auxiliary modality. The main modality IM is considered
primary usually because it is the most available hence used-
at-inference data type. One example of the main modality
is the data captured with RGB cameras for autonomous
driving tasks, which is plentiful and not expensive, but not
necessarily more informative than depth cameras [1], [33],
[34].

We first consider a model with learnable parameters θm

that prioritizes the data from the main modality. The training
data from IM is denoted as IMtrain = {iMn }

Ntrain
n=1 , where

Ntrain is the number of training samples from IM . The
parameter that achieves the smallest inference error ϵM on
IMtest is denoted as θM

∗. With additional data from auxiliary
modalities joining the training process, a new model is
learned using Itrain = IMtrain ∪ IA. The question is, ”can
we find a better model that achieves a lower inference error
on IMtest”. In other words, our goal is to distill complemen-
tary information from the auxiliary modalities at training to
achieve higher accuracy at test time.

B. Small-shot Auxiliary Modality Distillation Network
(AMD-S-Net)

We first consider the training samples that can find paired
matches from both the auxiliary modality and main modality.
Our goal is to distill the knowledge from any arbitrary paired
IA and IM that improves the model that later inference on
IM .

Formally given a task, we denote a learner composed of
feature network F and a predictor of fully-connected layers
D. We design a student that takes IMtrain as input, and update
via iterations of mini-batches,

θstu ← θstu − η∇LM (1)

where θstu is the parameter of the student network, LM is
the loss function, and η is the learning rate. Meanwhile,
we design a teacher that takes {IMtrain, IA} as input, and
update via an independent feature network Ftea (F1, F2, F3

in Fig. 1) and a predictor D that share weights with that of
the student network. The teacher network is updated via

θtea ← θtea − η∇LA
(
D(Ftea({iMn , iAn })), yMn

)
. (2)

The teacher and student learn different representations
related to the same task by being exposed to different
modalities. The teacher has access to the auxiliary modality
IA, the knowledge of the teacher is distilled to assist the
student through a consistency loss Lcon that measures the
pairwise distance between Fstu(i

M
n ) and Ftea(i

M
n , iAn ) as part

of the student’s objective LM , specifically,

LM = αLsup

(
D(Fstu(i

M
n )), yMn

)
+

βLcon

(
Fstu(i

M
n ), Ftea({iMn , iAn })

)
(3)

where Lsup supervises the learning on the main modality.
When auxiliary data is hard to obtain, utilizing a small

amount of paired auxiliary data based on the main data is an
alternative. We refer to distillation under such a condition as



small-shot auxiliary modalities distillation. Data modalities
such as intermediate annotations, expert commentary for
hard examples, etc. usually come in small amounts but are
exceptionally informative, e.g. the doctor’s coarse annotation
of medical images for tumor segmentation, or human-in-
the-loop interactive systems [35]. Except for the consistency
supervision by the pairwise feature distance, we also use
a divergence metric to estimate the difference of the dis-
tributions for the unpaired data, such as Kullback–Leibler
divergence [36]. During the training (Sec. III-D), after up-
dating the student network via loss, as defined in Eq. 1, for
all paired data, we update the student network again with
unpaired main modality data via the following loss:

LM
u = γLsup−u

(
D(Fstu(upi

M
m )), yMn

)
+

λLdiv

(
{Fstu(upi

M
m )}, {Ftea({piMn , iAn })}

)
(4)

where {piMn } and {upiMm } are paired and unpaired main
modality data that meet {piMn } ∪ {upiMm } = IMtrain,
and Ldiv(, ) measures the divergence between
the distributions of the feature representation sets
{Fstu(upi

M
m )}, {Ftea({piMn , iAn })}. Other training process

is shared with the paired process. See this AMD-S-Net
framework illustration in Fig. 1 and Algorithm. 1.

One key consideration of this design is, what kind of
information is important under this problem setting (input
data in Fig. 1). One is the relation between paired main
modality feature and the combination feature of paired
main and auxiliary modality, which can be extracted by
the paired data using consistency supervision knowledge
distillation. Another one is the relation between the unpaired
main modality feature and the combination feature of main
and auxiliary modality. Since the auxiliary modality data is
missing for the unpaired main modality data, the combination
feature is actually unknown. Thus we use the distribution
space of combination features of paired main and auxiliary
modality to be an approximation of the unknown distribution
space of combination features of the unpaired data. Also,
since we don’t have one-to-one mapping for unpaired data,
we use divergence supervision on the distribution-level,
instead of consistency supervision on the sample-level. To
the best of our knowledge, our AMD-S-Net is the first
method that uses consistency supervision for pairwise data
and distribution divergence supervision for unpaired data,
making this method unique and different from others.

C. Reset Operation

The reset operation plays an important role in our method,
but a condition is needed to apply this operation. Inspired by
“superset”, we introduce “supermodel”.

Definition 3.1: Given a model M (A)
θA

(IA) (weights θA and
input IA), and a model M

(B)
θB

(IB) (weights θB and input
IB), if for any θA, there is a θB , such that M

(A)
θA

(IA) =

M
(B)
θB

(IB) for any arbitrary valid input data IA and its
superset IB . We call model MB as a “supermodel” of MA.

The “reset operation” is the process of constructing the
weights of supermodel θB with the given model weights θA,

Algorithm 1 AMD-S-Net Training Paradigm
Input: Training data from main modality pIMtrain (with

paired auxiliary data) and upIMtrain (no paired auxiliary
data), training data from auxiliary modality IA (paired
with pIMtrain)

Output: student network weights θstu
Initialisation:
Training Round number t, epoch number in each round k,
loss correlation α, β, γ, λ, network weights θstu and θtea.
for r = 1 to t do

Reset teacher weights with student weights
for e = 1 to k do

Feed pIMtrain and IA into teacher, update teacher
weights θtea with Eq. 2

end for
for e = 1 to k do

Feed pIMtrain and IA into teacher, and feed pIMtrain
into student, update student weights θstu with Eq. 1
and loss 3
Feed upIMtrain into student, update student weights
θstu with Eq. 1 (replace loss 3 with loss 4).

end for
end for=0

defined as:
Definition 3.2: Given a model M (A)

θA
(IA) (weights θA and

input IA), and its supermodel M
(B)
θB

(IB) (weights θB and
input IB), we define “reset B with A” to be the process of
constructing a new θB that meet M (A)

θA
(IA) = M

(B)
θB

(IB) for
given θA and any valid input IA and its superset IB .

A simple example is, suppose B is a supermodel of
A (e.g., B = A + A′), reset B with A is constructing
θB = [θA, 0], where θA is the weights of A and 0 is the
weights of A′. In Fig. 1, the teacher network is a supermodel
of the student network, because for any weights of student
network, we can construct a teacher network that meet
D(Ftea({iMn , iAn })) = D(Fstu({iMn })) by resetting the F2

weights with F4 weights, F3 weights with F5 weights, and
set F1 weights to 0. Indeed the reset operation in our method
requires that the teacher model is a supermodel of the student
model. We also introduce a lemma on the optimal training
loss of the supermodel and its base model in Appendix. C.

To summarize: (1) The supermodel condition ensures the
student parameter space is a subspace of the teacher pa-
rameter space, thus enable the reset operation. (2) The reset
operation can reset the teacher to be in exactly the same states
as the student, which is then utilized by our training paradigm
when the teacher gets far from the student, thus allowing
the teacher to explore around the student space and teach
local landscape information and potential direction of a better
solution to the student, achieving superior performance.

D. Training Paradigm

In this section, we propose a simple yet effective training
paradigm based on the “reset operation” (Sec. III-C), which
can reset the teacher to exact student states.



Fig. 2. Training path comparison on loss landscape. Given the teacher network is a supermodel of the student network, the student parameter space
(along X axis with Y=0) is a subspace of the teacher parameter space (XY plane). LEFT: Without our training paradigm, the teacher is not aware of the
student states, the training path and the final state of the teacher can be far away from the student space, i.e. the landscape may be totally different, thus
providing limited guidance and lead to the student getting stuck in a local minimum. RIGHT: In our method, the teacher is reset to the student states at
the beginning of each round, and does optimization with additional dimensions but within a certain range of the student space, teaching the student with
local landscape information and potential direction to a better solution. The number 1∼10 is the step order of these processes, see details in Sec. III-C.

Accuracy (%) on different angle threshold τ (degree)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 τ = 75 Mean

Oracle (100% auxiliary modality data) 42.7 68.0 88.0 94.4 96.6 98.6 81.4

one stream (RGB only) 27.3 49.0 77.4 90.2 95.4 98.1 72.9
two streams (shared regressor) 25.9 47.2 77.7 88.4 93.6 97.8 71.8

Modified Xiao et al. [1] 40.8 64.1 84.7 92.7 95.8 98.2 79.4
Modified DMCL [26] 39.1 67.5 88.3 93.9 96.7 98.2 80.6
Ours (AMD-S-Net) 52.6 72.7 91.3 95.0 97.0 98.3 84.5

TABLE I
Performance comparison for AMD-S-Net under the small amount of auxiliary modality data setting (20%). OUR METHOD OUTPERFORMS OTHER

METHODS BY UP TO 12.7% MEAN ACCURACY IMPROVEMENT.

As shown in Algorithm. 1, the training paradigm contains
t rounds. In each round, we first reset the teacher with the
student, then train the teacher independently while training
the student with both the general label loss and knowledge
distillation loss for k epochs. k should not be too large
to avoid the teacher being far away from the student. The
training process stops when the student converges between
different rounds or until finishing t rounds.

Fig. 2 shows the training path comparison on loss land-
scape between general methods and our training paradigm
with reset operation. Given the teacher network is a su-
permodel of the student network, the student parameter
space (along X axis with Y=0) is a subspace of the teacher
parameter space (XY plane). Without the reset operation,
the teacher is not aware of the student states, the training
path and the final state of the teacher can be far away
from the student space, i.e. the landscape may be totally
different, thus providing limited guidance and lead to the
student getting stuck in a local minimum (LEFT of Fig. 2).
In our method, the teacher is reset to the student states at the
beginning of each round, and do optimization with additional
dimensions but within a certain range of the student space,
teaching the student with local landscape information and
potential direction to a better solution (right part of Fig. 2).
Specifically, when the student is potentially stuck in a local
minimum (step 1 in the right part of Fig. 2), e.g., already
converges with a basic method, we can reset the teacher to
the student’s states (step 2) and continue to train it (step 3).
Then the teacher will be exactly no worse, hopefully better
than the student (final position of step 3 is better than the final

position of step 1). Then in step 4, which is the distillation
training, the student will take both general loss (the force of
going downward) and distillation loss (the force of getting
closer to the teacher). The distillation loss makes it possible
to go upward. After the student pass the loss hill on Y=0,
both losses will make it move towards the better solution on
Y=0 (final position of step 10).

IV. EXPERIMENTS

We first introduce experiment setups in Sec. IV-A, then
show the results on the real-world dataset in Sec. IV-B.

A. Implementation Details

Setting. All experiments are conducted using one Intel(R)
Xeon(TM) W-2123 CPU, two Nvidia GTX 1080 GPUs,
and 32G RAM. We use the SGD optimizer with learning
rate 0.001 and batch size 128 for training. The number of
epochs is 2,000. The loss correlations are α = 1, γ = 1,
while β are set with different values for different knowledge
distillation methods following [14], and λ = β/10. We pick
epoch number in each round k = 5 from ablation study of
k = 1, 2, 5, 20. We set the round number n = 400 for Audi
dataset and n = 40 for Honda dataset. In the experiments,
each training process is finished within 24 hours.
Evaluation metric. We use the same evaluation metric as
a lastest work [37], i.e., the accuracy w.r.t a threshold τ
as accτ = count(|vpredicted − vactual| < τ)/n, where n
denotes the number of test cases; vpredicted and vactual
indicate the predicted and ground-truth value, respectively.
We compute mean accuracy (mAcc) as

∑
τ accτ∈T /|T |,



Mean Accuracy (mAcc in %)

Method 20%IA 20%IA (ours) Diff

kd [4] 67.7 73.9 6.2
hint [11] 72.7 83.1 10.4

similarity [13] 66.4 84.5 18.1
correlation [15] 68.5 68.7 0.2

rkd [16] 71.2 74.6 3.4
pkt [9] 73.4 74.4 1

abound [10] 70.6 70.6 0
factor [8] 72.2 84.4 12.2

fsp [6] 71.6 71.8 0.2

Average 70.5 76.2 5.7

Teacher (img+seg) 79.4 - -
Student (img) 72.9 - -

TABLE II
Performance comparison with vs. without our training paradigm

(containing reset operation). BY APPLYING OUR TRAINING PARADIGM

ON OTHER KNOWLEDGE DISTILLATION METHODS, WE CAN ACHIEVE

BETTER PERFORMANCE IN MOST CASES (UP TO +18.1%) IN FULLY

PAIRED OR A SMALL AMOUNT OF ADDITIONAL MODALITY DATA.

where T = {1.5, 3.0, 7.5, 15, 30, 75} contains empirically
selected thresholds of steering angles.

B. Results on Real Dataset

We perform main comparisons for our key contributions,
i.e., AMD-S-Net, and our training paradigm. We also per-
form other comparisons on different datasets, modalities, and
tasks to show the generalizability of our method, as well as
performing comparisons for the robustness of our method.
More experiments can be found in the Appendix PDF in
our project page.
Comparison for AMD-S-Net. Since there’s no existing
method specifically for the small-shot auxiliary modality dis-
tillation, we compare our AMD-S-Net with 2 straightforward
frameworks and 2 modified frameworks based on SOTA
modality distillation methods. We use Audi dataset [38]
and Nvidia PilotNet [30] for this experiment. We use 100%
RGB images and 20% segmentation data in this experiment.
Specifically, the one stream (RGB only) method uses 100%
RGB images only with the student network; two streams
(shared regressor) method contains RGB and segmentation
pipelines with a feature extractor for each pipeline and a
shared regressor. For modified Xiao et al. [1] and modified
DMCL [26], we keep the 20% paired RGB and segmentation
to go through the original pipeline, and let the rest 80% RGB
data go through a single RGB pipeline. Table. I shows that
our method outperforms other methods by up to 12.7% mean
accuracy improvement.
Combination for our training paradigm. Since our training
paradigm can be applied on existing knowledge distillation
methods, we conduct experiments by combining ours with
kd [4], hint [11], similarity [13], correlation [15], rkd [16],
pkt [9], abound [10], factor [8], fsp [6]. One set of experi-
ments use 100% RGB + 100% segmentation, and another set
of experiments use 100% RGB + 20% segmentation. From
Table. II, our method achieves up to 18.1% improvement
in both settings, showing the effectiveness of our training
paradigm (containing reset operation).
Comparison on different datasets and modalities. We also
conduct experiments with different modalities and datasets

to show the effectiveness of our method. Specifically, we
perform comparison on Audi [38], Honda [33], and Sul-
lyChen [39] dataset with RGB image, segmentation, depth
map, and edge map modalities. The segmentation is gener-
ated by Tao et al. [40], the depth map is generated by [41],
and the edge map is generated by DexiNet [42]. Our method
outperforms others with up to 11% improvement.
Comparison on different backbones. Except for the Nvidia
PilotNet [30], we change the backbone to four other back-
bones, ResNet [43], ShuffleV2 [44], MobileNetV2 [45], and
WRN [46]. Our method outperforms others in all the cases
with up to 18.1% improvement.
Comparison on other tasks. Although here we mainly
focus on image format auxiliary modalities because it’s the
most available format, our method can also perform well
on other tasks with different data formats, e.g., end-to-end
“waypoints prediction task” with point cloud as an auxiliary
modality (2.6% improvement), and handwriting classification
task with non-image features as auxiliary modalities (2.9%
improvement).
Robustness. We also test the robustness of our distilled
model following a SOTA work [47] on clean and perturbed
Audi dataset (generated with ImageNet-C effects [48]). Our
method achieves 4.8% accuracy improvement compared to
the RGB only baseline.

V. CONCLUSION

In this paper, we study the problem of how to introduce
a variant amount of auxiliary modality data to increase the
performance of single modality learning in an end-to-end
steering task. We propose a new framework that can take
in the main modality and a variant amount of auxiliary
modality data to address this problem (AMD-S-Net). In
addition, we propose a novel training paradigm that utilizes
reset operation to help knowledge transfer. Our AMD-S-
Net and training paradigm achieve up to 12.7% and 18.1%
performance improvement, respectively.
Limitations: Our training paradigm assumes that the teacher
network is a supermodel of the student network. For gen-
eral knowledge distillation, which usually distills knowledge
from a large network to a small network with different
architectures, this requirement can possibly limit overall
performance gain. However, for modality distillation, when
the goal is to reduce the modality instead of reducing the
model size, it is common to use a teacher network that
has similar architecture as a student network, except for the
additional pipeline for auxiliary modalities, as assumed.

Given that it is possible to use a small amount of expert
annotation as the auxiliary modality data to improve the
performance, what form of expert annotations can be used
in the end-to-end steering task or other tasks would be
a possible topic for exploration. Also, under the current
setting, the auxiliary modality data is paired with the main
modality data. It is unclear if the same can be applied to
unpaired auxiliary modality data to improve the performance,
especially without ground truth.
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[24] N. Piasco, D. Sidibé, V. Gouet-Brunet, and C. Demonceaux, “Improv-
ing image description with auxiliary modality for visual localization
in challenging conditions,” International Journal of Computer Vision,
vol. 129, no. 1, pp. 185–202, 2021.

[25] W. Jin, M. Sanjabi, S. Nie, L. Tan, X. Ren, and H. Firooz, “Modality-
specific distillation,” arXiv preprint arXiv:2101.01881, 2021.

[26] N. C. Garcia, S. A. Bargal, V. Ablavsky, P. Morerio, V. Murino, and
S. Sclaroff, “Distillation multiple choice learning for multimodal ac-
tion recognition,” in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, 2021, pp. 2755–2764.

[27] Z. Gao, J. Chung, M. Abdelrazek, S. Leung, W. K. Hau, Z. Xian,
H. Zhang, and S. Li, “Privileged modality distillation for vessel border
detection in intracoronary imaging,” IEEE transactions on medical
imaging, vol. 39, no. 5, pp. 1524–1534, 2019.

[28] J. Jiang, A. Rimner, J. O. Deasy, and H. Veeraraghavan, “Unpaired
cross-modality educed distillation (cmedl) applied to ct lung tumor
segmentation,” arXiv preprint arXiv:2107.07985, 2021.

[29] Q. Dou, Q. Liu, P. A. Heng, and B. Glocker, “Unpaired multi-
modal segmentation via knowledge distillation,” IEEE transactions on
medical imaging, vol. 39, no. 7, pp. 2415–2425, 2020.

[30] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[31] Z. Yang, Y. Zhang, J. Yu, J. Cai, and J. Luo, “End-to-end multi-modal
multi-task vehicle control for self-driving cars with visual perceptions,”
in 2018 24th International Conference on Pattern Recognition (ICPR).
IEEE, 2018, pp. 2289–2294.

[32] M. Abou-Hussein, S. H. Müller, and J. Boedecker, “Multimodal
spatio-temporal information in end-to-end networks for automotive
steering prediction,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 8641–8647.

[33] V. Ramanishka, Y.-T. Chen, T. Misu, and K. Saenko, “Toward driving
scene understanding: A dataset for learning driver behavior and causal
reasoning,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 7699–7707.

[34] S. Huch, A. Ongel, J. Betz, and M. Lienkamp, “Multi-task end-to-end
self-driving architecture for cav platoons,” Sensors, vol. 21, no. 4, p.
1039, 2021.

[35] A. Holzinger, “Interactive machine learning for health informatics:
when do we need the human-in-the-loop?” Brain Informatics, vol. 3,
no. 2, pp. 119–131, 2016.

[36] J. Goldberger, S. Gordon, H. Greenspan et al., “An efficient image
similarity measure based on approximations of kl-divergence between
two gaussian mixtures.” in ICCV, vol. 3, 2003, pp. 487–493.

[37] M. Shu, Y. Shen, M. C. Lin, and T. Goldstein, “Adversarial differ-
entiable data augmentation for autonomous systems,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 14 069–14 075.

[38] J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S.
Chung, L. Hauswald, V. H. Pham, M. Mühlegg, S. Dorn, T. Fernandez,
M. Jänicke, S. Mirashi, C. Savani, M. Sturm, O. Vorobiov, M. Oelker,
S. Garreis, and P. Schuberth, “A2D2: Audi Autonomous Driving
Dataset,” 2020. [Online]. Available: https://www.a2d2.audi

[39] S. Chen, “A collection of labeled car driving datasets,
https://github.com/sullychen/driving-datasets,” 2018.

[40] A. Tao, K. Sapra, and B. Catanzaro, “Hierarchical multi-scale attention
for semantic segmentation,” arXiv preprint arXiv:2005.10821, 2020.

[41] J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng, and I. Reid,
“Unsupervised scale-consistent depth and ego-motion learning from
monocular video,” Advances in neural information processing systems,
vol. 32, pp. 35–45, 2019.

[42] X. S. Poma, E. Riba, and A. Sappa, “Dense extreme inception network:
Towards a robust cnn model for edge detection,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision,
2020, pp. 1923–1932.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[44] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical



guidelines for efficient cnn architecture design,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 116–131.

[45] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[46] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[47] Y. Shen, L. Zheng, M. Shu, W. Li, T. Goldstein, and M. C.
Lin, “Gradient-free adversarial training against image corruption for
learning-based steering,” in Neural Information Processing Systems
(NIPS), 2021.

[48] D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” Proceedings of
the International Conference on Learning Representations, 2019.

[49] W. Li, D. Wolinski, and M. C. Lin, “ADAPS: Autonomous driving via
principled simulations,” in IEEE International Conference on Robotics
and Automation (ICRA), 2019, pp. 7625–7631.

[50] A. Prakash, K. Chitta, and A. Geiger, “Multi-modal fusion transformer
for end-to-end autonomous driving,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
7077–7087.

[51] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[52] Z. Han, C. Zhang, H. Fu, and J. T. Zhou, “Trusted multi-view
classification,” arXiv preprint arXiv:2102.02051, 2021.

[53] UCI, “Multiple Features Data Set,
https://archive.ics.uci.edu/ml/datasets/multiple+features,” 1998.

[54] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[55] M. van Breukelen, R. P. Duin, D. M. Tax, and J. Den Hartog,
“Handwritten digit recognition by combined classifiers,” Kybernetika,
vol. 34, no. 4, pp. 381–386, 1998.


