
Computergrafik

Matthias Zwicker

Universität Bern

Herbst 2016

Rendering pipeline

Lectures 1 and 2

Lecture 3(last time)

Lecture 4 (today):

rasterization, visibility

Lecture 5-7: shading

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing,

visibility

Image

2

Base code architecture

Image

jrtr simple

Application program

• No OpenGL/jogl calls

• Independent of

„rendering backend“

(low level graphics API)

• Can easily change

rendering backend

(OpenGL/jogl,

software renderer)

Java library Java executable

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing,

visibility

3

The complete vertex transform

• Mapping a 3D point in object coordinates

to pixel coordinates

• Object-to-world matrix , camera matrix

projection matrix , viewport matrix

Object space

World space

Camera space

Image space

Canonic view volume

4

The complete vertex transform

• Mapping a 3D point in object coordinates

to pixel coordinates

• Object-to-world matrix , camera matrix

projection matrix , viewport matrix

Pixel coordinates

5

Today

Drawing triangles

• Homogeneous rasterization

• Texture mapping

• Perspective correct interpolation

• Visibility

6

Rendering pipeline

• Scan conversion and

rasterization are synonyms

• One of the main operations

performed by GPU

• Draw triangles, lines, points

(squares)

• Focus on triangles in this

lecture

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing,

visibility

Image

7

Rasterization

• How many pixels can a modern graphics

processor draw per second?

• See for example
http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units

8

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units

Rasterization

• Ideas?

Center of projection

(camera)
Image plane

Transformed triangle,

vertex coordinates p´,

z coordinate is ignored

9

Rasterization

• Idea

– Project vertices by dividing by w

– Fill triangle given by projected vertices

„scan conversion“

10

Rasterization

• Idea

– Project vertices by dividing by w

– Fill triangle given by projected vertices

• Problems

– What happens if w=0 for some vertices?

– What happens if some vertices have w>0,

others w<0?

11

Clipping

• Split (subdivide) triangles along view

volume boundary into smaller ones

• Draw only triangles completely within view

volume

• Many sophisticated algorithms, but still

complicated and slow

– Sutherland-Hodgman
http://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman

– Weiler-Atherton
http://en.wikipedia.org/wiki/Weiler%E2%80%93Atherton

• Try to avoid clipping!
12

http://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman
http://en.wikipedia.org/wiki/Weiler%E2%80%93Atherton

Homogeneous rasterization
• Based on not-so-old research (1995)

http://www.cs.unc.edu/~olano/papers/2dh-tri/

• Method of choice for GPU rasteriazation

– Patent (NVidia) http://www.patentstorm.us/patents/6765575.html

• Does not require homogeneous division at
vertices

– Does not require costly clipping

• Caution

– Different algorithm than in Shirley’s book (Sec.
3.6)

– Read for comparison

13

http://www.cs.unc.edu/~olano/papers/2dh-tri/
http://www.patentstorm.us/patents/6765575.html

Homogeneous rasterization
• Idea: define linear edge functions on triangles

– Three functions, one for each edge

– In x,y,w coordinates (2D homogeneous coordinates),
before projecton (i.e., homogeneous division)

– Functions denoted a(x,y,w), b(x,y,w), g(x,y,w)

14

Edge functions
• Edge functions are zero on one edge, one at

opposite vertex

• Sign indicates on which side of edge we are
(inside or outside triangle)

(x0, y0,w0)

(x1, y1,w1)

(x2, y2,w2)

15

Edge functions
• Edge functions are zero on one edge, one at

opposite vertex

• Sign indicates on which side of edge we are
(inside or outside triangle)

(x2, y2,w2)

(x0, y0,w0)

(x1, y1,w1)

16

Edge functions
• Edge functions are zero on one edge, one at

opposite vertex

• Sign indicates on which side of edge we are
(inside or outside triangle)

(x2, y2,w2)

(x0, y0,w0)

(x1, y1,w1)

17

Edge functions
• Functions are also called barycentric

coordinates

• Functions are defined for any point x,y,w,

not only on plane of triangle!

• Points x,y,w on plane defined by triangle

have

• Points inside the triangle have

18

Edge functions

• Points inside double pyramid spanned by

triangle and center of projection:

Center of

projection

19

Edge functions

• Linear functions have form

• Need to determine coefficients

• Using interpolation constraints

(zero on one edge, one at opposite vertex)

20

Finding coefficients

• Determine coefficients using interpolation

constraints

a needs to be 1 on vertex 0

21

Known Unknown

Finding coefficients

• Determine coefficients using interpolation

constraints

a needs to be 0 on vertex 1

22

Known Unknown

Finding coefficients

• Determine coefficients using interpolation

constraints

g needs to be 0 on vertex 1

Etc., matrix equation encodes 9 constraints

necessary to determine coefficients

23

Known Unknown

Finding coefficients

• Determine coefficients using interpolation

constraints

• Matrix inversion to solve for coefficients

24

Known Unknown

Pixel inside/outside test

• Our question: Are pixel coordinates (x/w, y/w)

inside or outside projected triangle?

• Homogeneous

division applied

to edge functions

Pixel coordinates

Functions of

pixel coordinates!

(x/w, y/w)!

25

Pixel inside/outside test

• Pixel is inside if

• Pixel is inside, but behind eye (w negative)

if

• Intuitively, test if pixel in double pyramid

Pixel coordinates

26

Pixel inside/outside test

• Trick

– Evaluate edge equations using pixel

coordinates (x/w,y/w)

– Result we get is a/w, b/w, g/w

– Can still determine inside outside based on

signs of a/w, b/w, g/w

• Main benefits

– Division by w is not actually computed, no

division by 0 problem

– No need for clipping

27

Summary

• Triangle setup

– Compute coefficients for edge functions

using 3x3 matrix inversion

• At each pixel of the image

– Evaluate using pixel

coordinates (x/w,y/w)

– Perform inside test

28

Open issues

• Matrix to find edge functions may be

singular

– Triangle has zero area before projection

– Projected triangle has zero area

– No need to draw triangle in this case

• Determinant may be negative

– Backfacing triangle

– Allows backface culling

• Do we really need to test each pixel on the

screen?

29

Binning
• Try to determine tightly enclosing area for triangle

– Patent (NVidia) http://www.patentstorm.us/patents/6765575.html

• Simpler but potentially inefficient solution: 3 cases

1. If all vertices have w>0, project them, find axis aligned
bounding box, limit extent to image boundaries

2. If all vertices have w<0, triangle is behing eye, don‘t draw

3. Otherwise, don‘t project vertices, test all image pixels
(inefficient, but happens rarely)

Axis aligned bounding boxes based on projected vertices
30

http://www.patentstorm.us/patents/6765575.html

Improvement
• If block of n x n pixels is outside triangle, discard

whole block, no need to test individual pixels

• Conservative test

– Never discard a block that intersects the triangle

– May still test pixels of some blocks that are outisde
triangle, but most of them are discarded

• How?

4 x 4 Blocks
31

Further improvement

• Can have hierarchy of blocks, usually two

levels

• Find right size of blocks for best

performance (experimentally)

– Fixed number of pixels per block, e.g., 4x4

pixels

32

Where is the center of a pixel?
• Depends on conventions

• With our viewport transformation from last lecture

– 4 x 3 pixels  viewport coordinates are in [0…4]x[0…3]

– Center of lower left pixel is 0.5, 0.5

– Center of upper right pixel is 3.5, 2.5

0.0, 0.0

4.0, 3.0

.

2.5, 0.5

33

Shared edges
• Each pixel needs to be rasterized exactly once

• Result image is independent of drawing order

• Rule: If pixel center exactly touches an edge or vertex

– Fill pixel only if triangle extends to the right

34

Implementation optimizations

• Performance of rasterizer is crucial, since

it‘s „inner loop“ of renderer

• CPU: performance optimizations

– Integer arithmetic

– Incremental calculations

– Multi-threading

– Vector operations (SSE instructions)

– Use C/C++ or assembler

• GPU: hardwired!

35

Today

Drawing triangles

• Homogeneous rasterization

• Texture mapping

• Perspective correct interpolation

• Visibility

36

Large triangles
Pros

• Often ok for simple
geometry

• Fast to render

Cons

• Per vertex colors look
bad

• Need more interesting
surfaces

– Detailed color variation, small scale bumps, roughness

• Ideas?

37

Texture mapping

• Glue textures (images)

onto surfaces

• Same triangles, much

more interesting

appearance

• Think of colors as reflectance coefficients

– How much light is reflected for each color

– More later in course

38

Creating textures
• Photographs

• Paint directly on surfaces

using modeling program

• Stored as image files
Images by Paul Debevec

Texture painting in Maya

Texture mapping
• Goal: assign locations in texture image to

locations on 3D geometry

• Introduce texture space

– Texture pixels (texels) have
texture coordinates (u,v)

• Common convention

– Bottom left corner of
texture is (u,v)=(0,0)

– Top right corner
is (u,v)=(1,1)

– Requires scaling of (u,v)
to access actual texture pixels
stored in 2D array

(1,1)

(0,0)
v

u

Texture space
40

Texture mapping

• Store texture coordinates at each triangle

vertex

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
u

v

Texture space

(0.65,0.75)

v1

(u,v) = (0.65,0.75)

Triangle (in any space

before projection)

v0

(u,v) = (0.6,0.4)

v2

(u,v) = (0.4,0.45)

41

Texture mapping
• Each point on triangle has barycentric

coordinates with 0<a,b,g, a+b+g =1

• Use barycentric coordinates to interpolate
texture coordinates

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
u

v

(0.65,0.75)

v1

(u,v) = (0.65,0.75)

v0

(u,v) = (0.6,0.4)

v2

(u,v) = (0.4,0.45)

Texture space
Triangle (in any space

before projection) 42

Texture mapping

• Each point on triangle has corresponding

point in texture

• Texture is “glued” on triangle

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
s

t

(0.65,0.75)

v1

(u,v) = (0.65,0.75)

v0

(u,v) = (0.6,0.4)

v2

(u,v) = (0.4,0.45)

Texture space
Triangle (in any space

before projection) 43

Rendering

• Given

– Texture coordinates at each vertex

– Texture image

• At each pixel, interpolate texture

coordinates

• Look up corresponding texel

• Paint current pixel with texel color

• All computations on GPU

44

Texture look-up

• Given interpolated texture coordinates

at current pixel

• Closest four texels in texture space are at

• How to compute color of pixel?

45

Nearest-neighbor interpolation

• Use color of closest texel

• Simple, but low quality

46

Bilinear interpolation
http://en.wikipedia.org/wiki/Bilinear_interpolation

1. Linear interpolation

horizontally

47

http://en.wikipedia.org/wiki/Bilinear_interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

1. Linear interpolation

horizontally

2. Linear interpolation vertically

Bilinear interpolation

48

http://en.wikipedia.org/wiki/Bilinear_interpolation

Texture mapping

Fragment processing includes

texture mapping

(and shading, later in course)

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing,

visibility

Image

49

Today

Drawing triangles

• Homogeneous rasterization

• Texture mapping

• Perspective correct interpolation

• Visibility

50

Attribute interpolation
• Rasterizer needs to

– Determine inside/outside test for each pixel

– Fill in triangle by interpolating vertex attributes

– For example (u,v) texture coordinates, color, etc.

u1; (x1; y1; w1)

u0; (x0; y0; w0)

u2; (x2; y2; w2)

u(x; y;w)

Interpolated texture

coordinate

Triangle before projection

51

Observation
• Linear interpolation in image coordinates does not

correspond to linear interpolation in camera space

• “Equal step size on image plane does not correspond to

equal step size on object”

• Perspective correct interpolation: “translate step size in

image plane correctly to step size on object”

Image plane

Object

Equal steps in

image plane

Different steps

in camera space

Center of projection

52

Perspective correct interpolation

Perspective correct

interpolation

Linear interpolation of texture

coordinates on image plane

53

Strategy
1. Find linear function u(x,y,w) in 2D homogeneous

space that interpolates vertex attribute u

2. Project to pixel coordinates, find function of
pixel coordinates u(x/w,y/w)

54

Step 1: 2D homogeneous interp.

• Linear function for vertex attribute u

• Interpolation constraints (as for edge fncts.)

Given u texture

coordinate at vertices

Unknown

coefficients

u1; (x1; y1; w1)

u0; (x0; y0; w0)

u2; (x2; y2; w2)

55

Step 1: 2D homogeneous interp.

• Linear function for vertex attribute u

• Same matrix inversion to find coefficients

Given vertex

coordinates

Given texture

coordinates

Unknown

56

Step 2: projection to pixel coord.

• Homogeneous division yields function of

pixel coordinates

• But: we need u, not u/w as function of

pixels x/w, y/w

• Trick: get coefficients of constant function

• Homogeneous division

57

Step 2: projection to pixel coord.

• Finally

58

Summary

• Triangle setup

– Invert 3x3 matrix

– Compute coefficients for edge functions ,

attribute functions , constant fnct.

– Requires 3x3 matrix-vector multiplication each

• At each pixel (x/w,y/w)

– Linearly interpolate 1/w

– For each attribute function

• Linearly interpolate function/w

• Divide (function/w)/(1/w)

59

Today

Drawing triangles

• Homogeneous rasterization

• Texture mapping

• Perspective correct interpolation

• Visibility

60

Visibility

• At each pixel, need to

determine which triangle

is visible

61

Painter’s algorithm
http://en.wikipedia.org/wiki/Painter's_algorithm

• Paint from back to front

• Every new pixel always paints over
previous pixel

• Need to sort geometry according to depth

• May need to split triangles if they intersect

• Old style, before memory became cheap

62

http://en.wikipedia.org/wiki/Painter's_algorithm

Z-buffering
http://en.wikipedia.org/wiki/Z-buffering

• Store “depth” at each pixel

– Store 1/w because we compute it for rasterization already

• Depth test

– During rasterization, compare stored value to new value

– Update pixel only if new 1/w value is larger

setpixel(int x, int y, color c, float w)

if((1/w)>zbuffer(x,y)) then

zbuffer(x,y) = (1/w)

color(x,y) = c

• In graphics hardware, z-buffer is dedicated memory

reserved for GPU (graphics memory)

• Depth test is performed by GPU

63

http://en.wikipedia.org/wiki/Z-buffering

Next time

• Color

64

