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Rendering pipeline

Lectures 1 and 2

Lecture 3(last time)

Lecture 4 (today): 

rasterization, visibility

Lecture 5-7: shading

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image
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Base code architecture

Image

jrtr simple

Application program

• No OpenGL/jogl calls

• Independent of 

„rendering backend“ 

(low level graphics API)

• Can easily change

rendering backend

(OpenGL/jogl, 

software renderer)

Java library Java executable

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility
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The complete vertex transform

• Mapping a 3D point in object coordinates 

to pixel coordinates

• Object-to-world matrix    , camera matrix   

projection matrix    , viewport matrix

Object space

World space

Camera space

Image space

Canonic view volume
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The complete vertex transform

• Mapping a 3D point in object coordinates 

to pixel coordinates 

• Object-to-world matrix    , camera matrix   

projection matrix    , viewport matrix

Pixel coordinates
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Today

Drawing triangles

• Homogeneous rasterization

• Texture mapping

• Perspective correct interpolation

• Visibility
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Rendering pipeline

• Scan conversion and 

rasterization are synonyms

• One of the main operations 

performed by GPU

• Draw triangles, lines, points 

(squares)

• Focus on triangles in this 

lecture

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image
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Rasterization

• How many pixels can a modern graphics 

processor draw per second?

• See for example
http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
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Rasterization

• Ideas?

Center of projection

(camera)
Image plane

Transformed triangle, 

vertex coordinates p´, 

z coordinate is ignored
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Rasterization

• Idea

– Project vertices by dividing by w

– Fill triangle given by projected vertices

„scan conversion“
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Rasterization

• Idea

– Project vertices by dividing by w

– Fill triangle given by projected vertices

• Problems

– What happens if w=0 for some vertices?

– What happens if some vertices have w>0, 

others w<0?
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Clipping

• Split (subdivide) triangles along view

volume boundary into smaller ones

• Draw only triangles completely within view

volume

• Many sophisticated algorithms, but still 

complicated and slow

– Sutherland-Hodgman
http://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman

– Weiler-Atherton
http://en.wikipedia.org/wiki/Weiler%E2%80%93Atherton

• Try to avoid clipping!
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Homogeneous rasterization
• Based on not-so-old research (1995)

http://www.cs.unc.edu/~olano/papers/2dh-tri/

• Method of choice for GPU rasteriazation

– Patent (NVidia) http://www.patentstorm.us/patents/6765575.html

• Does not require homogeneous division at 
vertices

– Does not require costly clipping

• Caution

– Different algorithm than in Shirley’s book (Sec. 
3.6)

– Read for comparison
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Homogeneous rasterization
• Idea: define linear edge functions on triangles

– Three functions, one for each edge

– In x,y,w coordinates (2D homogeneous coordinates), 
before projecton (i.e., homogeneous division)

– Functions denoted a(x,y,w), b(x,y,w), g(x,y,w)
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Edge functions
• Edge functions are zero on one edge, one at

opposite vertex

• Sign indicates on which side of edge we are
(inside or outside triangle)

(x0, y0,w0)

(x1, y1,w1)

(x2, y2,w2)
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Edge functions
• Edge functions are zero on one edge, one at

opposite vertex

• Sign indicates on which side of edge we are
(inside or outside triangle)

(x2, y2,w2)

(x0, y0,w0)

(x1, y1,w1)
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Edge functions
• Edge functions are zero on one edge, one at

opposite vertex

• Sign indicates on which side of edge we are
(inside or outside triangle)

(x2, y2,w2)

(x0, y0,w0)

(x1, y1,w1)
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Edge functions
• Functions          are also called barycentric 

coordinates

• Functions are defined for any point x,y,w,      

not only on plane of triangle!

• Points x,y,w on plane defined by triangle 

have

• Points inside the triangle have
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Edge functions

• Points inside double pyramid spanned by 

triangle and center of projection:

Center of

projection
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Edge functions

• Linear functions have form

• Need to determine coefficients

• Using interpolation constraints

(zero on one edge, one at opposite vertex)
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Finding coefficients

• Determine coefficients using interpolation 

constraints

a needs to be 1 on vertex 0
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Finding coefficients

• Determine coefficients using interpolation 

constraints

a needs to be 0 on vertex 1

22

Known Unknown



Finding coefficients

• Determine coefficients using interpolation 

constraints

g needs to be 0 on vertex 1

Etc., matrix equation encodes 9 constraints

necessary to determine coefficients
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Finding coefficients

• Determine coefficients using interpolation 

constraints

• Matrix inversion to solve for coefficients
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Known Unknown



Pixel inside/outside test

• Our question: Are pixel coordinates (x/w, y/w)

inside or outside projected triangle?

• Homogeneous 

division applied

to edge functions

Pixel coordinates

Functions of 

pixel coordinates!

(x/w, y/w)!
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Pixel inside/outside test

• Pixel is inside if                        

• Pixel is inside, but behind eye (w negative) 

if

• Intuitively, test if pixel in double pyramid

Pixel coordinates
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Pixel inside/outside test

• Trick 

– Evaluate edge equations using pixel 

coordinates (x/w,y/w)

– Result we get is a/w, b/w, g/w

– Can still determine inside outside based on 

signs of a/w, b/w, g/w

• Main benefits

– Division by w is not actually computed, no 

division by 0 problem

– No need for clipping
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Summary

• Triangle setup

– Compute coefficients for edge functions

using 3x3 matrix inversion

• At each pixel of the image

– Evaluate                         using pixel 

coordinates (x/w,y/w)

– Perform inside test 
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Open issues

• Matrix to find edge functions may be 

singular

– Triangle has zero area before projection

– Projected triangle has zero area

– No need to draw triangle in this case

• Determinant may be negative

– Backfacing triangle

– Allows backface culling

• Do we really need to test each pixel on the 

screen?
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Binning
• Try to determine tightly enclosing area for triangle

– Patent (NVidia) http://www.patentstorm.us/patents/6765575.html

• Simpler but potentially inefficient solution: 3 cases

1. If all vertices have w>0, project them, find axis aligned 
bounding box, limit extent to image boundaries

2. If all vertices have w<0, triangle is behing eye, don‘t draw

3. Otherwise, don‘t project vertices, test all image pixels
(inefficient, but happens rarely)

Axis aligned bounding boxes based on projected vertices
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Improvement
• If block of n x n pixels is outside triangle, discard 

whole block, no need to test individual pixels

• Conservative test

– Never discard a block that intersects the triangle

– May still test pixels of some blocks that are outisde 
triangle, but most of them are discarded

• How? 

4 x 4 Blocks
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Further improvement

• Can have hierarchy of blocks, usually two 

levels

• Find right size of blocks for best 

performance (experimentally)

– Fixed number of pixels per block, e.g., 4x4 

pixels
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Where is the center of a pixel?
• Depends on conventions

• With our viewport transformation from last lecture

– 4 x 3 pixels  viewport coordinates are in [0…4]x[0…3]

– Center of lower left pixel is 0.5, 0.5

– Center of upper right pixel is 3.5, 2.5

0.0, 0.0

4.0, 3.0

.

2.5, 0.5
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Shared edges
• Each pixel needs to be rasterized exactly once

• Result image is independent of drawing order

• Rule: If pixel center exactly touches an edge or vertex

– Fill pixel only if triangle extends to the right
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Implementation optimizations

• Performance of rasterizer is crucial, since 

it‘s „inner loop“ of renderer

• CPU: performance optimizations

– Integer arithmetic

– Incremental calculations

– Multi-threading

– Vector operations (SSE instructions)

– Use C/C++ or assembler

• GPU: hardwired!
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Today

Drawing triangles

• Homogeneous rasterization

• Texture mapping

• Perspective correct interpolation

• Visibility
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Large triangles
Pros

• Often ok for simple 
geometry

• Fast to render

Cons

• Per vertex colors look 
bad

• Need more interesting
surfaces

– Detailed color variation, small scale bumps, roughness

• Ideas?
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Texture mapping

• Glue textures (images)

onto surfaces

• Same triangles, much

more interesting

appearance

• Think of colors as reflectance coefficients

– How much light is reflected for each color

– More later in course
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Creating textures
• Photographs

• Paint directly on surfaces 

using modeling program

• Stored as image files
Images by Paul Debevec

Texture painting in Maya



Texture mapping
• Goal: assign locations in texture image to 

locations on 3D geometry

• Introduce texture space

– Texture pixels (texels) have 
texture coordinates (u,v)

• Common convention

– Bottom left corner of 
texture is (u,v)=(0,0)

– Top right corner 
is (u,v)=(1,1)

– Requires scaling of (u,v)
to access actual texture pixels
stored in 2D array

(1,1)

(0,0)
v

u

Texture space
40



Texture mapping

• Store texture coordinates at each triangle 

vertex

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
u

v

Texture space

(0.65,0.75)

v1

(u,v) = (0.65,0.75) 

Triangle (in any space 

before projection)

v0

(u,v) = (0.6,0.4) 

v2

(u,v) = (0.4,0.45) 
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Texture mapping
• Each point on triangle has barycentric 

coordinates with 0<a,b,g, a+b+g =1

• Use barycentric coordinates to interpolate 
texture coordinates

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
u

v

(0.65,0.75)

v1

(u,v) = (0.65,0.75) 

v0

(u,v) = (0.6,0.4) 

v2

(u,v) = (0.4,0.45) 

Texture space
Triangle (in any space 

before projection) 42



Texture mapping

• Each point on triangle has corresponding 

point in texture

• Texture is “glued” on triangle

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
s

t

(0.65,0.75)

v1

(u,v) = (0.65,0.75) 

v0

(u,v) = (0.6,0.4) 

v2

(u,v) = (0.4,0.45) 

Texture space
Triangle (in any space 

before projection) 43



Rendering

• Given

– Texture coordinates at each vertex

– Texture image

• At each pixel, interpolate texture 

coordinates

• Look up corresponding texel 

• Paint current pixel with texel color

• All computations on GPU
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Texture look-up

• Given interpolated texture coordinates     

at current pixel

• Closest four texels in texture space are at

• How to compute color of pixel?
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Nearest-neighbor interpolation

• Use color of closest texel

• Simple, but low quality
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Bilinear interpolation
http://en.wikipedia.org/wiki/Bilinear_interpolation

1. Linear interpolation

horizontally
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http://en.wikipedia.org/wiki/Bilinear_interpolation


http://en.wikipedia.org/wiki/Bilinear_interpolation

1. Linear interpolation

horizontally

2. Linear interpolation vertically

Bilinear interpolation
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Texture mapping

Fragment processing includes 

texture mapping

(and shading, later in course)

Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image
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Today

Drawing triangles

• Homogeneous rasterization

• Texture mapping

• Perspective correct interpolation

• Visibility
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Attribute interpolation
• Rasterizer needs to 

– Determine inside/outside test for each pixel

– Fill in triangle by interpolating vertex attributes

– For example (u,v) texture coordinates, color, etc.

u1; (x1; y1; w1)

u0; (x0; y0; w0)

u2; (x2; y2; w2)

u(x; y;w)

Interpolated texture

coordinate

Triangle before projection
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Observation
• Linear interpolation in image coordinates does not 

correspond to linear interpolation in camera space

• “Equal step size on image plane does not correspond to 

equal step size on object”

• Perspective correct interpolation: “translate step size in 

image plane correctly to step size on object”

Image plane

Object

Equal steps in 

image plane

Different steps

in camera space

Center of projection
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Perspective correct interpolation

Perspective correct

interpolation

Linear interpolation of texture 

coordinates on image plane
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Strategy
1. Find linear function u(x,y,w) in 2D homogeneous 

space that interpolates vertex attribute u

2. Project to pixel coordinates, find function of
pixel coordinates u(x/w,y/w)
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Step 1: 2D homogeneous  interp.

• Linear function for vertex attribute u

• Interpolation constraints (as for edge fncts.)

Given u texture 

coordinate at vertices

Unknown

coefficients

u1; (x1; y1; w1)

u0; (x0; y0; w0)

u2; (x2; y2; w2)
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Step 1: 2D homogeneous interp.

• Linear function for vertex attribute u

• Same matrix inversion to find coefficients

Given vertex

coordinates

Given texture

coordinates

Unknown
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Step 2: projection to pixel coord.

• Homogeneous division yields function of 

pixel coordinates

• But: we need u, not u/w as function of 

pixels x/w, y/w

• Trick: get coefficients of constant function

• Homogeneous division
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Step 2: projection to pixel coord.

• Finally
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Summary

• Triangle setup

– Invert 3x3 matrix

– Compute coefficients for edge functions         , 

attribute functions          , constant fnct.

– Requires 3x3 matrix-vector multiplication each

• At each pixel (x/w,y/w)

– Linearly interpolate 1/w

– For each attribute function

• Linearly interpolate function/w

• Divide (function/w )/(1/w)
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Today

Drawing triangles

• Homogeneous rasterization

• Texture mapping

• Perspective correct interpolation

• Visibility
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Visibility

• At each pixel, need to 

determine which triangle

is visible
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Painter’s algorithm
http://en.wikipedia.org/wiki/Painter's_algorithm

• Paint from back to front

• Every new pixel always paints over 
previous pixel

• Need to sort geometry according to depth

• May need to split triangles if they intersect

• Old style, before memory became cheap
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Z-buffering
http://en.wikipedia.org/wiki/Z-buffering

• Store “depth” at each pixel

– Store 1/w because we compute it for rasterization already

• Depth test

– During rasterization, compare stored value to new value

– Update pixel only if new 1/w value is larger

setpixel(int x, int y, color c, float w)

if((1/w)>zbuffer(x,y)) then

zbuffer(x,y) = (1/w)

color(x,y) = c

• In graphics hardware, z-buffer is dedicated memory 

reserved for GPU (graphics memory)

• Depth test is performed by GPU
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Next time

• Color
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