Computergrafik

Matthias Zwicker

Universitat Bern
Herbst 2016

Rendering pipeline

Scene data

| Vertex processing, |
| modeling and viewing || =% Lectures 1 and 2

transformation
I ;
Projection =) Lecture 3(last time)

s &
| Rasterization, ;
| fragment processing, || mm Lecture 4 (today):
visibility rasterization, visibility
T . Lecture 5-7: shading

Base code architecture

Scene data
| Vertex processing, |
| modeling and viewing |
| transformation |

. i

Projection

. 3

: Rasterization, :
| fragment processing, ||
| visibility '

Java library Java executable ;

The complete vertex transform

e Mapping a 3D point in object coordinates
to pixel coordinates

e Object-to-world matrix M, camera matrix C
projection matrix P, viewport matrix D

p = D‘PC_lMp
Object space
World space
Camera space
Canonic view volume
Image space

The complete vertex transform

e Mapping a 3D point in object coordinates
to pixel coordinates

e Object-to-world matrix M, camera matrix C
projection matrix P, viewport matrix D

p’ = DPC 'Mp

T
4 Pixel coordinates :C/ v
z y/w

L w -

Today

Drawing triangles
« Homogeneous rasterization
e Texture mapping

e Perspective correct interpolation
e Visibility

Rendering pipeline

Scene data

Vertex processing,

transformation

. .

Projection

. 1

| Rasterization, :
| fragment processing, |
| visibility '

modeling and viewing

Scan conversion and
rasterization are synonyms

One of the main operations
performed by GPU

Draw triangles, lines, points
(squares)

Focus on triangles in this
lecture

Rasterization

« How many pixels can a modern graphics
processor draw per second?

e See for example

http://en.wikipedia.org/wiki/Comparison of Nvidia graphics processing units

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units

Rasterization

e |deas?

(X []-'y[]-' 1'1”0_)

Transformed triangle,
vertex coordinates p’,
z coordinate is ignored

p' = DPC™'Mp
X

Y
z
w

w=I

Center of projection
Image plane

(camera)

Rasterization

e Idea

- Project vertices by dividing by w
- Fill triangle given by projected vertices

Eo B S I B B A + |+
+l+ [+ + |+]+]+ NS |
N\

I EIEIEIENE: + +\
|+ +]+ + |+
+ |+ +]+ + |+
|+ +

|+]|+ + + |+
+ |+ +]+ + |+
|+ + +
|+ + + |+ |+ + |+
L I S I I B A + |+
Lo I S I I B A + |+

++ |+ |+ |+
++ |+]+ |+
|+ |+ +]+ |+
+ |+ |+ + |+ |+
|+ |+ + + |+
+ |+ |+ + |+ |+
+ |+ |+ + |+ |+
+ |+ | + + |+ |+
++ |+ |+ |+
++ |+]+ |+
|+ |+ + |+ |+
L N B T T R B T S T R B O S R R
L N B T T AR B T O S R O O S R R

,,scan conversion*

10

Rasterization

e Idea

- Project vertices by dividing by w

- Fill triangle given by projected vertices
e Problems

- What happens if w=0 for some vertices?

- What happens if some vertices have w>0,
others w<0?

Clipping
e Split (subdivide) triangles along view
volume boundary into smaller ones

e Draw only triangles completely within view
volume

e Many sophisticated algorithms, but still
complicated and slow

- Sutherland-Hodgman

http://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman

- Weiler-Atherton

http://en.wikipedia.org/wiki/Weiler%E2%80%93Atherton

e Try to avoid clipping!

http://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman
http://en.wikipedia.org/wiki/Weiler%E2%80%93Atherton

Homogeneous rasterization
e Based on not-so-old research (1995)

http://www.cs.unc.edu/~olano/papers/2dh-tri/

« Method of choice for GPU rasteriazation

- Patent (NVidia) nhttp://www.patentstorm.us/patents/6765575.html

e Does not require homogeneous division at
vertices
- Does not require costly clipping
e Caution

- Different algorithm than in Shirley’s book (Sec.
3.6)

- Read for comparison

13

http://www.cs.unc.edu/~olano/papers/2dh-tri/
http://www.patentstorm.us/patents/6765575.html

Homogeneous rasterization
e |dea: define linear edge functions on triangles

- Three functions, one for each edge

- In x,y,w coordinates (2D homogeneous coordinates),
before projecton (i.e., homogeneous division)

- Functions denoted a(x,y,w), B(x,y,w), Ax,y,w)

(XU.}’[,. WI])

(‘X‘-E '}?3' \12:

+ .
. .
. .
s ’
.
¢ .
. .
. .
’ .
.
.
.
.
.
¢
.
.
. . .
¢ .
N . .
. .
. . -
. . "
+ . .
. -
s . s
. . -
. .
. .-
. .
‘ . .
. . -
. . -
’ . -
. .
* . .
. . .-
v + -
. . -
e .
’
LA P
. .
. .
. .
. -
.t
-

14

Edge functions

e Edge functions are zero on one edge, one at
opposite vertex

e Sign indicates on which side of edge we are
(inside or outside triangle)

(Xor Yo:Wo)
a(z,y, w) =

alz,y,w) <0

Edge functions

e Edge functions are zero on one edge, one at
opposite vertex

e Sign indicates on which side of edge we are
(inside or outside triangle)

Bz, y,w) = Bz, y,w) <0

(Xq, Y1, W)

Bz, y,w) >0

B(z,y,w) =0

Edge functions

e Edge functions are zero on one edge, one at
opposite vertex

e Sign indicates on which side of edge we are
(inside or outside triangle)

Edge functions

e Functions «, 3,~ are also called barycentric
coordinates

e Functions are defined for any point x,y,w,
not only on plane of triangle!

e Points x,y,w on plane defined by triangle
have o(z,y,w) + 8(z, y,w) + y(z,y,w) =1

e Points inside the triangle have 0 < «, 3,7 < 1

Edge functions

e Points inside double pyramid spanned by
triangle and center of projection: 0 < o, 3,~

Center of
projection

19

Edge functions

 Linear functions have form
a(x,y, w) = a,x + by + cow
B(z,y,w) = agx + bgy + cpw
Y(z,y,w) = ayx + byy + cyw

e Need to determine coefficients a,, b., ca, . . .

e Using interpolation constraints
(zero on one edge, one at opposite vertex)

70 Yo Wy 11 a, ag Q- _ 1 0 0
1 Y1 U ba bﬁ bfy =10 1 0
To Y2 W2 || Ca € Cy | 0 0 1

Finding coefficients

e Determine coefficients using interpolation
constraints

Known Unknown
T Yo wo | [ag ag a,,y_ 100
1 Y1 U ba bﬁ bfy =10 1 0
To Y2 W2 || Ca C3 Cy | 00 1

OJ(ZC(), Yo, ”LU()) = 1

a needs to be 1 on vertex 0

Finding coefficients

e Determine coefficients using interpolation
constraints

Known Unknown
70 Y0 wo | [ag ag a,,y_ 100
1 Y1 U ba bﬁ bfy =10 1 0
To Y2 W2 || Ca C3 Cy | 00 1

@(xla Y, wl) =0

a needs to be 0 on vertex 1

Finding coefficients

e Determine coefficients using interpolation
constraints

Known Unknown
70 Y0 wo | | ag ag a,,y_ 100
1 Y1 U ba bﬁ bfy =10 1 0
To Y2 W2 || Ca €3 Gy | 00 1

’)/(iUl, Y1, wl) =0

yneeds to be 0 on vertex 1

Etc., matrix equation encodes 9 constraints
necessary to determine coefficients

Finding coefficients

e Determine coefficients using interpolation
constraints

Known Unknown
70 Y0 wo | | ag ag a,,y_ 100
1 Y1 U ba bﬁ bfy =10 1 0
| To Y2 W2 || Ca € Cy | 00 1

e Matrix inversion to solve for coefficients

- 7 - 7 —1
Ao Ap U~ Lo Yo Wy

bo bg by | = |21 w1 w
Ca C3 C?f _ZCQ Y2 ’LUQ_

Pixel inside/outside test

e Our question: Are pixel coordinates (x/w, y/w)

inside or outside projected triangle?

« Homogeneous a/w = ag(x/w) + be(y/w) -

division applied | g/w = ag(a/w) + bs(y/w) -

to edge functions y/w = a (z/w) + by (y/w) + ¢,

(x/w, y/w)!

V(Y W,)

(x/w,y/w)

’ "'
. .
. .
.
.
.
,
.
‘
. . 7 A
| P
. .
A . .
.
. . P
. .
. . .
’ .
. ‘. -
‘ .
. -
B - pad
. .-
.
-
.
.

Pixel coordinates

w=1

- Functions of
N7 / pixel coordinates!

Pixel inside/outside test

e Pixel is inside if 0 < a/w, G/w,~/w

e Pixel is inside, but behind eye (w negative)
if 0> a/w,B3/w,v/w

e Intuitively, test if pixel in double pyramid

Xy Yoy Wo)

L (xzryZ’ Wz)

.

.

;
.
.
o)
.
-
>
-'-
2
p

(x/w,p/w)

#
.
4
.
.
#
p
y .
2 2
4 .
P i
& o
y .
4 .
.
. B
£
4 -
y .
4 . o
S _oad
p) -
P e od
, -
/ . - . .
S =~
. .-
Py 2
s -
Py .
.
. e
e S
P -
.

Pixel inside/outside test
e Trick

- Evaluate edge equations using pixel
coordinates (x/w,y/w)

- Result we get is aw, f/w, y¥w

- Can still determine inside outside based on
signs of a/w, B/w, yw

e Main benefits

- Division by w is not actually computed, no
division by 0 problem

- No need for clipping

Summary

e Triangle setup

- Compute coefficients for edge functions Q, . . .

using 3x3 matrix inversion
o At each pixel of the image

- Evaluate «/w, 5/w,~/w using pixel
coordinates (x/w,y/w)

- Perform inside test 0 < a/w, B/w,~v/w

Open issues

e Matrix to find edge functions may be
singular

- Triangle has zero area before projection
- Projected triangle has zero area
- No need to draw triangle in this case

e Determinant may be negative

- Backfacing triangle
- Allows backface culling

e Do we really need to test each pixel on the
screen?

Binning
e Try to determine tightly enclosing area for triangle

- Patent (NVidia) http://www.patentstorm.us/patents/6765575.html
o Simpler but potentially inefficient solution: 3 cases

1. If all vertices have w>0, project them, find axis aligned
bounding box, limit extent to image boundaries

2. If all vertices have w<0, triangle is behing eye, don‘t draw

3. Otherwise, don‘t project vertices, test all image pixels
(inefficient, but happens rarely)

Axis aligned bounding boxes based on projected vertices

http://www.patentstorm.us/patents/6765575.html

Improvement

e If block of nx n pixels is outside triangle, discard
whole block, no need to test individual pixels

e Conservative test

- Never discard a block that intersects the triangle

- May still test pixels of some blocks that are outisde
triangle, but most of them are discarded

e How?

4 x 4 Blocks

31

Further improvement

e Can have hierarchy of blocks, usually two
levels

e Find right size of blocks for best
performance (experimentally)

- Fixed number of pixels per block, e.g., 4x4
pixels

Where is the center of a pixel?

e Depends on conventions
e With our viewport transformation from last lecture

— 4 x 3 pixels < viewport coordinates are in [0...4]x[0...3]
- Center of lower left pixel is 0.5, 0.5
- Center of upper right pixel is 3.5, 2.5

4.0, 3.0

0.0,0.0 25.05

Shared edges

e Each pixel needs to be rasterized exactly once
e Result image is independent of drawing order
e Rule: If pixel center exactly touches an edge or vertex

- Fill pixel only if triangle extends to the right

34

Implementation optimizations

o Performance of rasterizer is crucial, since
it‘s ,,inner loop“ of renderer

o CPU: performance optimizations

- Integer arithmetic

- Incremental calculations

- Multi-threading

- Vector operations (SSE instructions)
- Use C/C++ or assembler

e GPU: hardwired!

Today

Drawing triangles
« Homogeneous rasterization
e Texture mapping

e Perspective correct interpolation
e Visibility

Large triangles

Pros

o Often ok for simple
geometry

e Fast to render ‘

Cons

e Per vertex colors look
bad

 Need more interesting
surfaces

- Detailed color variation, small scale bumps, roughness
e |ldeas?

37

Texture mapping

e Glue textures (images)
onto surfaces

e Same triangles, much
more interesting
appearance

e Think of colors as reflectance coefficients

- How much light is reflected for each color
- More later in course

38

Creating textures
e Photographs

e Paint directly on surfaces
using modeling program

e Stored as image files

Images by Paul Debevec

Pl e oty Mmmmu«mms«@a et
v (D . H lll b eN%0ofn ﬁ’ﬁ%

PariElects | Co | Fuids |

H ﬂ&ll@‘b@&u&‘iiﬁi&ﬁ 9»]

" Texture painting in Maya

Texture mapping

o Goal: assign locations in texture image to
locations on 3D geometry

e Introduce texture space

- Texture pixels (texels) have
texture coordinates (u,v) (1,1)

e Common convention

- Bottom left corner of
texture is (u,v)=(0,0) y
- Top right corner
is (u,v)=(1,1)
- Requires scaling of (u,v) (0,0) —

to access actual texture pixels

stored in 2D array Texture space

40

Texture mapping

e Store texture coordinates at each triangle
vertex

\Z1

(u,v) = (0.65,0.75) (1,1)

Vo v
V) = (0.6,0.4)

Vv,
(u,v) =(0.4,0.45)

(0,0)

Triangle (in any space . i
before projection) exture space 4

Texture mapping

e Each point on triangle has barycentric
coordinates with O<ea,f,7, a+f+y =1

e Use barycentric coordinates to interpolate
texture coordinates

Vq (1,1)

u,v) = (0.65,0.75 0.6 0.65 0.4
() = () /,a[M]w[m e 2

(u,v) =(0.4,0.45)

(0,0)

Triangle (in any space . i
before projection) exture space 4

Texture mapping

e Each point on triangle has corresponding
point in texture

e Texture is “glued” on triangle

Vl (111)
(u,v) = (0.65,0.75)

Vo
V) = (0.6,0.4)

Vo
(u,v) =(0.4,0.45)

(0,0)

Triangle (in any space >
Texture space

before projection) 4

Rendering
e Given

- Texture coordinates at each vertex
- Texture image

o At each pixel, interpolate texture
coordinates

e Look up corresponding texel
e Paint current pixel with texel color

e All computations on GPU

Texture look-up

e Given interpolated texture coordinates (u,v)
at current pixel

e Closest four texels in texture space are at
(UO, UO)? (ulv UO); (ula UO)? (ula Ul)

 How to compute color of pixel?

Nearest-neighbor interpolation

e Use color of closest texel

| |
vl—ﬁl-——————-ﬁl-—
: :
v — @) |
| \I
S e
U u Uuj

e Simple, but low quality

46

Bilinear interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

1. Linear interpolation

horizontally
U — U
W, —
Uy — Ug
o, = tex(ug,vo)(l —wy,)+ tex(u, vg)w,

¢ = tex(ug,v)(l —wy)+ tex(ur,v)w,

http://en.wikipedia.org/wiki/Bilinear_interpolation

Bilinear interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

1.

Linear interpolation V]~ h e
horizontally S I
U — U U ! S !
Hu = U1 — Ug I Cp I
MG 2
oy, = tex(ug,vo)(l — wy)+ tex(ur, vo)w, Ul() o /U»ll
¢ = tex(ug,v)(l —wy)+ tex(ur,v)w,

Linear interpolation vertically
U — U

W,y =
U1 — Uy

c = cp(1 — wy) + crw,

48

http://en.wikipedia.org/wiki/Bilinear_interpolation

Texture mapping

Scene data
| Vertex processing, |
| modeling and viewing |
| transformation |

. .

Projection

. 1

| Rasterization,
| fragment processing, -Fragment processing includes
visibility : texture mapping
. e (and shading, later in course)

Today
Drawing triangles
« Homogeneous rasterization

e Texture mapping

e Perspective correct interpolation
e Visibility

Attribute interpolation

e Rasterizer needs to

- Determine inside/outside test for each pixel
- Fill in triangle by interpolating vertex attributes
- For example (u,v) texture coordinates, color, etc.

Triangle before projection

Q U, (3307 Yo, wO)

Interpolated texture
coordinate

u(x,y, w)

Uy, (331,’3/1,7111) U9 (372 Y2 w2)
9))

Observation

e Linear interpolation in image coordinates does not
correspond to linear interpolation in camera space

o “Equal step size on image plane does not correspond to
equal step size on object”

in camera space

I ma g e p l ane ¢ S E q ua l S te p S 'i N

o image plane

Center of projection

e Perspective correct interpolation: “translate step size in
image plane correctly to step size on object”

Perspective correct interpolation

Linear interpolation of texture Perspective correct
coordinates on image plane interpolation

I

Strategy

1. Find linear function u(x,y,w) in 2D homogeneous
space that interpolates vertex attribute u

2. Project to pixel coordinates, find function of
pixel coordinates u(x/w,y/w)

u’o.ﬂ (x()!y(}l WO)

Step 1: 2D homogeneous interp.

e Linear function for vertex attribute u
w(x,y,w) = a,x + by + cw

e Interpolation constraints (as for edge fncts.)

i LEO yo UJO au uO | an(ajO)yO)wO)
T Y1 wy by | = | w1
L2 Y2 W2 Cy U2
______________ S]) |l'|) usg, (xla Y1, wl) Uz, (5(:27 Y2, w2)
Unknown Given u texture
coefficients coordinate at vertices

Ay To + by Yo + cuwe = U

Step 1: 2D homogeneous interp.

e Linear function for vertex attribute u
w(x,y,w) = a,x + by + cw

_930 Yo Wy (y, U

T1 Y1 wi by | = | W

T2 Y2 W2 | | Cy | | U2

Given vertex Unknown Given texture
coordinates coordinates

e Same matrix inversion to find coefficients

_ - _ __1 _ -

Ay o Yo Wo Uy

b, | = | x1 y1 w; U

| Cy | | T2 Y2 W2 | | U2 |

Step 2: projection to pixel coord.

« Homogeneous division yields function of
pixel coordinates

u/w = ay(z/w) + by(y/w) + ¢y

e But: we need u, not u/w as function of
pixels x/w, y/w

e Trick: get coefficients of constant function

_35'0 Yo w()__al
l =a1x+ by + qqw oy w || b | =1
| T2 Y2 W2 | | €1

« Homogeneous division
Ljw = ay(z/w) + bi(y/w) + ¢

e Finally

u2’ (xZ’ Y b WZ)

58

Summary

e Triangle setup

- Invert 3x3 matrix

- Compute coefficients for edge functions a,, . .,
attribute functions a,, ..., constant fnct. aq, . ..

- Requires 3x3 matrix-vector multiplication each
o At each pixel (x/w,y/w)

- Linearly interpolate 1/w

- For each attribute function
e Linearly interpolate function/w
e Divide (function/w)/(1/w)

Today

Drawing triangles
« Homogeneous rasterization
e Texture mapping

e Perspective correct interpolation
e Visibility

e At each pixel, need to Rk T
determine which triangle |- nRBE

o LI + | + | + + |+ |+ | +

is visible
+ |+ |+ + |+ |+ |+
+ |+ |+ + |+ |+ |+
+ |+ |+ + |+ |+ |+
+ |+ |+ + |+ |+ |+
+ |+ |+ + |+ |+ |+
+ |+ |+ +|+|+]|+|+]|+|+ |+ +]|+|+]|+]|+]|+]|+]|+
+ |+ |+ +|+ |+ +|+]|+]|+|+]|+]|+|+]|+|+]|+]|+]|+

61

Painter’s algorithm

http://en.wikipedia.org/wiki/Painter's algorithm

e Paint from back to front

» Every new pixel always paints over
previous pixel

e Need to sort geometry according to depth
e May need to split triangles if they intersect

D

e Old style, before memory became cheap

62

http://en.wikipedia.org/wiki/Painter's_algorithm

Z-buffering

http://en.wikipedia.org/wiki/Z-buffering

o Store “depth” at each pixel

- Store 1/w because we compute it for rasterization already
e Depth test

- During rasterization, compare stored value to new value
- Update pixel only if new 1/w value is larger

setpixel (int x, int y, color ¢, float w)
if((1/w)>zbuffer(x,y)) then

zbuffer (x,y) = (1/w)

color(x,y) = cC

 In graphics hardware, z-buffer is dedicated memory
reserved for GPU (graphics memory)

e Depth test is performed by GPU

http://en.wikipedia.org/wiki/Z-buffering

e Color

64

