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• Each segment spans four control points

• Each segment contains four Bernstein polynomials

• Each control point belongs to one Bernstein polynomial

Piecewise Bézier curves

x0(t) x1(t)

x2(t)

x3(t)
u=0

u=12

u
129630 Segment

Bernstein 

polynomials
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• Same idea, but different polynomial blending 
functions

• Uniform B-splines have only one type of blending 
function: B-spline (basis) function bi

• B-spline function of degree n is Cn-1 continuous

• Local support, at each point u exactly n+1
functions are non-zero

B-splines

Uniform B-spline (basis) functions of degree 3

u
0 1 2 3 4 5 6 7 8 9
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B-splines
• Weighted average of control points pi using B-

spline functions bi(u)

• Positive, partition of unity => convex hull 
property

• Matrix form (note different basis matrix; 
caution: last lecture, matrices were 
transposed)

x(u)  t 3 t 2 t 1 

T

1
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B-splines
• Widely used for curve and surface 

modeling

• Advantages over Bézier curves

– Built-in continuity

– Local support: curve only affected by nearby 
control points

630 9 0 1 2 3 4 5 6 7 8 9

Bernstein polynomials, deg. 3 B-spline basis functions, deg. 3
6



Generalization: NURBS
http://en.wikipedia.org/wiki/Non-uniform_rational_B-spline

• Non-Uniform Rational B-splines

• Interactive explanation
http://www.ibiblio.org/e-notes/Splines/nurbs.html

http://www.gris.uni-tuebingen.de/edu/projects/grdev/doc/html/Overview.html

• NOTE: notation now uses t instead of u for 

curve parameter
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Non-uniform B-splines

Knot vector

• Defines B-spline bases functions

• Uniform B-spline bases and Bernstein 

polynomials are special cases for specific 

knot vectors
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5

Knot vector
• Knot vector is vector of locations {tj} on the t axis 

– B-spline function of degree n uses n+2 knots 

• (Uniform) B-splines use a uniform knot vector tj=j

• Nonuniform B-splines use an arbitrary knot vector

Uniform knot vector Nonuniform knot vector

t t

knots

http://ibiblio.org/e-notes/Splines/basis.html

knots
0 1 2 3 6 74
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Nonuniform B-spline bases

Construction using knot vector

• Recursive

• Generate higher order bases step by step 

from lower order bases

• Can prove

– Partition of unity (i.e., convex hull property)

– Built-in continuity
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Recursive construction

Nonuniform, linear

B-spline bases

Linear weighting

function

Quadratic

B-spline basis

t

t

t

Nonuniform

knot vector

Multiply & add

1
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Recursive construction

Recipe

• Input: two neighboring basis functions of 

degree n

– Multiply basis functions with linear weighting 

functions (one increasing, one decreasing)

– Add

• Output: one basis function of degree n+1
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For your reference...

• Recursive definition of non-uniform B-spline 

basis functions bj,n

– Function bj,n has degree n

– Knot vector {tj}

http://en.wikipedia.org/wiki/B-spline

Basis functions

of degree 0

Recursive definition of higher order functions
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Special cases
• Uniform B-splines have knot vector tj=j

• Cubic Bézier curves {tj}= [0,0,0,0,1,1,1,1]

– Can make corners (C1 discontinuity)

– Allows mixing interpolating (e.g. at endpoints) 
and approximating

Bézier curve as B-spline with nonuniform knot vector

4 coinciding

knots

u

http://www.ibiblio.org/e-notes/Splines/basis.html 15
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• Big drawback of all polynomial curves

– Can’t make circles, ellipses, nor arcs, nor conic 

sections

• Rational B-spline

– A type of rational function http://en.wikipedia.org/wiki/Rational_function

– Add a weight to each control point i

– Control points with homogeneous coordinates wi

Rational curves

Polynomial curve

(b-spline, Bézier)
Rational curve

Not polynomial any more!
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Rational curves
• Weight causes point to “pull” more (or 

less)

• With proper points & weights, can do 

circles

Polynomial

curve

Rational

curve

pull more

pull less
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Rational curves
• Can generate curves for conic sections 

(circles, ellipses, etc.) with appropriate 
weights

• Need extra user interface to adjust the 
weights

• Often, hand-drawn curves are unweighted

http://en.wikipedia.org/wiki/Conic_section
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NURBS
• Math is more complicated

– Knot vectors

– Rational functions

• Very widely used for curve and surface modeling

– Supported by virtually all 3D modeling tools

– Open source modeling tool: http://www.blender.org

• Techniques for cutting, inserting, merging, 

revolving, etc…

• Applets

– http://ibiblio.org/e-notes/Splines/Intro.htm

– http://www.gris.uni-tuebingen.de/edu/projects/grdev/doc/html/etc/AppletIndex_en.html
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Curved surfaces
Curves

• Described by a 1D series of control points

• A function x(t)

• Segments joined together to form a longer curve

Surfaces

• Described by a 2D mesh of control points

• Parameters have two dimensions (two 
dimensional parameter domain)

• A function x(u,v)

• Patches joined together to form a bigger surface
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• x(u,v) describes a point in space for any given (u,v) pair

– u,v each range from 0 to 1

Parametric surface patch

0 1

1

u

v

x

y

z

x(0.8,0.7)

u

v

2D parameter domain
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• x(u,v) describes a point in space for any given (u,v) pair

– u,v each range from 0 to 1

• Parametric curves

– For fixed u0 , have a v curve x(u0,v) 

– For fixed v0 , have a u curve x(u,v0)

– For any point on the surface, there is one pair
of parametric curves that go through point

Parametric surface patch

0 1

1

u

v

x

y

z

x(0.8,0.7)

u

v

x(0.4,v)

x(u,0.25)

2D parameter domain
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• The tangent to a parametric curve is also tangent to the 
surface

• For any point on the surface, there are a pair of 
(parametric) tangent vectors

• Note: not necessarily perpendicular to each other

Tangents

u

v

x

u

x

v
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Tangents
Notation

• Tangent along u direction

or                  or

• Tangent along v direction

or                  or

• Tangents are vector valued functions, i.e., 
vectors!

@x

@u
(u; v)

@

@u
x(u; v) xu(u; v)

@x

@v
(u; v)

@

@v
x(u; v) xv(u; v)
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• Cross product of the two tangent vectors

• Order matters (determines normal orientation)

• Usually, want unit normal

– Need to normalize by dividing through length

Surface normal

x

u

x

vn

xu(u; v)£ xv(u; v)
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Bilinear patch
• Control mesh with four points p0, p1, p2, p3

• Compute x(u,v) using a two-step construction

p0 p1

p2

p3

u

v
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• For a given value of u, evaluate the linear curves on the 

two u-direction edges

• Use the same value u for both:

Bilinear patch (step 1)

p0 p1

p2

p3

u

v

q0

q1

q0=Lerp(u,p0,p1)

q1=Lerp(u,p2,p3)
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Bilinear patch (step 2)
• Consider that q0, q1 define a line segment

• Evaluate it using v to get x

p0 p1

p2

p3

u

v

q0

q1

x

x  Lerp(v,q0 ,q1)

31



Bilinear patch
• Combining the steps, we get the full formula 

p0 p1

p2

p3

u

v

q0

q1

x

x(u,v)  Lerp(v,Lerp(u,p0 ,p1),Lerp(u,p2 ,p3))
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Bilinear patch
• Try the other order

• Evaluate first in the v direction

r0  Lerp(v,p0 ,p2 )     r1  Lerp(v,p1,p3)

p0 p1

p2

p3

u

v

r0
r1
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Bilinear patch
• Consider that r0, r1 define a line segment

• Evaluate it using u to get x

x  Lerp(u,r0 ,r1)

p0 p1

p2

p3

u

v

r0

r1

x
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Bilinear patch
• The full formula for the v direction first:

x(u,v)  Lerp(u,Lerp(v,p0 ,p2 ),Lerp(v,p1,p3))

p0 p1

p2

p3

u

v

r0

r1

x
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Bilinear patch
• It works out the same either way!

x(u,v)  Lerp(v,Lerp(u,p0 ,p1),Lerp(u,p2 ,p3))

x(u,v)  Lerp(u,Lerp(v,p0 ,p2 ),Lerp(v,p1,p3))

p0 p1

p2

p3

u

v

q0

q1

r0

r1

x
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Bilinear patch

• Visualization
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Bilinear patches

• Weighted sum of control points

• Bilinear polynomial

• Matrix form exists, too
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Properties
• Interpolates the control points

• The boundaries are straight line segments

• If all 4 points of the control mesh are co-planar, the patch is flat

• If the points are not coplanar, get a curved surface

– saddle shape, AKA hyperbolic paraboloid

• The parametric curves are all straight line segments!

– a (doubly) ruled surface: has (two) straight lines through every point

• Not terribly useful as a modeling primitive
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Bicubic Bézier patch
• Grid of 4x4 control points, p0 through p15

• Four rows of control points define Bézier curves along u

p0,p1,p2,p3; p4,p5,p6,p7; p8,p9,p10,p11; p12,p13,p14,p15

• Four columns define Bézier curves along v

p0,p4,p8,p12; p1,p6,p9,p13; p2,p6,p10,p14; p3,p7,p11,p15

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12 p13

p14 p15

u

v
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Bicubic Bézier patch (step 1)
• Evaluate four u-direction Bézier curves at u

• Get intermediate points q0 … q3

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12 p13

p14 p15

u

v

q0

q1

q2

q3

q0  Bez(u,p0 ,p1,p2 ,p3)

q1  Bez(u,p4 ,p5 ,p6 ,p7 )

q2  Bez(u,p8 ,p9 ,p10 ,p11)

q3  Bez(u,p12 ,p13,p14 ,p15 )
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Bicubic Bézier patch (step 2)
• Points q0 … q3 define a Bézier curve

• Evaluate it at v

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12 p13

p14 p15

u

v

q0

q1

q2

q3

x

x(u,v)  Bez(v,q0 ,q1,q2 ,q3)
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Bicubic Bézier patch
• Same result in either order (evaluate u before v or vice 

versa)

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12 p13

p14 p15

u

v

r0 r1

r2 r3

x

q0  Bez(u,p0 ,p1,p2 ,p3)

q1  Bez(u,p4 ,p5 ,p6 ,p7 )

q2  Bez(u,p8 ,p9 ,p10 ,p11)

q3  Bez(u,p12 ,p13,p14 ,p15 )

x(u,v)  Bez(v,q0 ,q1,q2 ,q3)

  

r0  Bez(v,p0 ,p4 ,p8 ,p12 )

r1  Bez(v,p1,p5 ,p9 ,p13)

r2  Bez(v,p2 ,p6 ,p10 ,p14 )

r3  Bez(v,p3,p7 ,p11,p15 )

x(u,v)  Bez(u, r0 , r1, r2 , r3)

q0

q1

q2

q3
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Tensor product formulation

• Corresponds to weighted average 

formulation

• Construct two-dimensional weighting 

function as product of two one-dimensional 

functions

– Bernstein polynomials Bi, Bj as for curves

• Same tensor product construction applies 

to higher order Bézier and NURBS surfaces
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Bicubic Bézier patch: properties
• Convex hull: any point on the surface will fall within the 

convex hull of the control points

• Interpolates 4 corner points

• Approximates other 12 points, which act as “handles”

• The boundaries of the patch are the Bézier curves 
defined by the points on the mesh edges

• The parametric curves are all Bézier curves
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Tangents of Bézier patch
• Remember parametric curves x(u,v0), x(u0,v) where v0, u0 is 

fixed

• Tangents to surface = tangents to parametric curves

• Tangents are partial derivatives of x(u,v)

• Normal is cross product of the tangents

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12
p13

p14

p15

u

v

u0

x

x

u

x

vv0
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Tangents of Bézier patch

q0  Bez(u,p0 ,p1,p2 ,p3)

q1  Bez(u,p4 ,p5 ,p6 ,p7 )

q2  Bez(u,p8 ,p9 ,p10 ,p11)

q3  Bez(u,p12 ,p13,p14 ,p15 )

x

v
(u,v)  Be z (v,q0 ,q1,q2 ,q3)

         

r0  Bez(v,p0 ,p4 ,p8 ,p12 )

r1  Bez(v,p1,p5 ,p9 ,p13)

r2  Bez(v,p2 ,p6 ,p10 ,p14 )

r3  Bez(v,p3,p7 ,p11,p15 )

x

u
(u,v)  Be z (u, r0 , r1, r2 , r3)

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12
p13

p14

p15

u

v

r0 r1

r2 r3

x

q0

q1

q2

q3

x

u

x

v
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Tessellating a Bézier patch
• Uniform tessellation is most straightforward 

– Evaluate points on uniform grid of u, v coordinates

– Compute tangents at each point, take cross product to get per-

vertex normal

– Draw triangle strips (several choices of direction)

• Adaptive tessellation/recursive subdivision

– Potential for “cracks” if patches on opposite sides of an edge 

divide differently

– Tricky to get right, but can be done
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Piecewise Bézier surface
• Lay out grid of adjacent meshes of control points

• For C0 continuity, must share points on the edge

– Each edge of a Bézier patch is a Bézier curve based 
only on the edge mesh points

– So if adjacent meshes share edge points, the patches 
will line up exactly

• But we have a crease…

Grid of control points Piecewise Bézier surface
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C1 continuity

• Want parametric curves that cross each 

edge to have C1 continuity

– Handles must be equal-and-opposite across  

edge

[http://www.spiritone.com/~english/cyclopedia/patches.html]

C1 continuousC0 continuous
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Modeling with Bézier patches

• Original Utah teapot specified as 

Bézier Patches
http://en.wikipedia.org/wiki/Utah_teapot
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Advanced surface modeling
• B-spline/NURBS patches instead of Bézier

• For the same reason as using B-spline/NURBS 
curves

– More flexible (can model spheres)

– Better mathematical properties, continuity

4th order NURBS patch
http://de.wikipedia.org/wiki/Non-Uniform_Rational_B-Spline
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Modeling headaches

• Original Teapot is not “watertight”
http://en.wikipedia.org/wiki/Utah_teapot

– Spout & handle intersect with body

– No bottom

– Hole in spout

– Gap between lid and body
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Modeling headaches
NURBS surfaces are flexible

– Conic sections
– Can blend, merge, trim…

…but

• Any surface will be made of quadrilateral patches 
(quadrilateral topology)

– Because of tensor product formulation
– Grid of “horizontal” and “vertical” curves
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Quadrilateral topology

Makes it hard to

• join or abut curved pieces

• build surfaces with awkward topology or 

structure
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Trim curves
• Cut away part of surface

• Define “holes” with trim curves in u/v domain

• Tessellation uses trim curve to define surface

• Still hard to fit different parts together 

u

v

u

v

x

z

y

Tessellation
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Subdivision surfaces

• Goal

– Create smooth surfaces from small number of 

control points, like splines

– More flexibility for the topology of the control 

points (not restricted to quadrilateral grid)

• Idea

– Start with initial coarse polygon mesh

– Create smooth surface recursively by 

1. Splitting (subdividing) mesh into finer polygons

2. Smoothing the vertices of the polygons

3. Repeat from 1.
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Subdivision surfaces

Input mesh Subdivision

& smoothing

Subdivision

& smoothing

Subdivision

& smoothing

Limit surface

http://en.wikipedia.org/wiki/Catmull%E2%80%93Clark_subdivision_surface
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Subdivision schemes

• Various schemes available to subdivide and 

smooth

• All provide certain guarantees for 

smoothness of limit surface

Doo-Sabin
http://en.wikipedia.org/wiki/Doo%E2%80%93Sabin_subdivision_surface

Loop
http://en.wikipedia.org/wiki/Loop_subdivision_surface
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Loop subdivision
• Subdivision

– Split each triangle into four

• Smoothing

– New vertex positions as weighted average of neighbors

– Different cases

http://graphics.stanford.edu/~mdfisher/subdivision.html

Cases for b:

62

Number of 
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Subdivision surfaces
• Arbitrary mesh of control points

• Arbitrary topology or connectivity

– Not restricted to quadrilateral 

topology

– No global u,v parameters

• Work by recursively subdividing mesh 

faces

• Used in particular for character 

animation

– One surface rather than 

collection of patches

– Can deform geometry without 

creating cracks

Subdivision surfaces
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Next time

• Implementing subdivision surfaces

• More shaders
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