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Today

• Bump mapping

• Shadows

• Shadow mapping

• Shadow mapping in OpenGL
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Bump mapping
• Surface detail is often the result of small 

perturbations in the surface geometry

– Modeling detailed surfaces would lead to 
impractical number of triangles

• Bump mapping alters the surface normal

– Normals are encoded in texture maps

– Provide the illusion of small scale surface 
detail

– Does not change geometry (triangles)

• Requires per-pixel shading using a 
fragment program

3



Bump mapping

No bump mapping With bump mapping

No bump mapping With bump mapping Bump texture

Bump mapped plane
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Bump mapping

1. Generating and storing bump maps

2. Rendering with bump maps
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Generating bump maps
• Usually done in a pre-process

• Input

– Texture map that encodes 

small surface displacements

– Height field

– E.g., use gray scale image as height values

• Output

– Texture map that encodes normals of 

displaced surface

– This texture will be stored as an image, read 

by the application
6



• Start with displacement map (height field)

• Normal

• Discrete case using central differencing

– Usually, Du, Dv = 1

• Normalize length of normal!

Generating bump maps
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Storing bump maps

• Encode normal direction in RGB color 

channels

– Coordinates of unit normal are in [-1..1]3

– Need to map range [-1..1] to [0..255] for all 

channels

RGB encoded bump map
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Rendering with bump maps

• When applying a bump map to a curved 

surface, how are the normals specified in 

the bump map related to the surface?

• Normals are defined relative to local 

tangent/normal vectors

Normals in bump map
Bump map applied 

to curved surface

Local tangent vector

Normals
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Rendering with bump maps
• Bump map normals are defined in tangent 

space

– Defined by two tangent vectors and normal

• Will define tangent space for each triangle

– Texture coordinates provide parameterization 
of each triangle, i.e., parametric patch x(u,v)

– Compute tangent vectors using partial 
derivatives of parameterization

• For shading, will need to transform 
normals from tangent space to camera 
space
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Tangent space
• Triangle with texture coordinates can be 

expressed as parametric surface x(u,v)

– Triangle vertices in object space v0, v1, v2

– Texture coordinates  (u0, v0), (u1, v1), (u2, v2),

• Interpolation constraints: we know
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Tangent space

• Solve for affine function

• Using constraints at vertices
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Tangent space
• Tangent space defined by two tangent vectors 

(tangent t, “bi-tangent” b), and normal vector n

• t, b, n defined in object space coordinates

• Tangent, bi-tangent not orthogonal in general

• No normalization necessary
13



Normal in object space

• Normal map stores normals in tangent 

coordinates

– Basis vectors t, b, n

• Can transform normal from tangent to 

object space

– Given values [bm0, bm1, bm2] from bump map

– Unpacked from [0..1] to range [-1..1]
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Storing tangent vectors
Before rendering

• For each triangle, compute tangent, bi-
tangent vector

• At each vertex, average tangent, bi-
tangent vectors over adjacent triangles to 
get smooth transitions between triangles

• Store tangent vector as additional vertex 
attributes

– Only one tangent vector and normal necessary

– Second tangent vector computed on the fly
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Rendering
Vertex shader

• Per-vertex input

– Vertex position, normal, tangent vector in object 
space

– Bump map texture coordinates

• Compute bi-tangent vector

• Transform everything to camera space using 
modelview matrix

• Output to fragment shader (will be interpolated 
to each pixel)

– Vertex position, texture coordinates, tangent, bi-
tangent, normal vector in camera space

– Bump map texture coordinates
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Rendering
Fragment shader

• Transform normal [bm0, bm1, bm2] stored in 
bump map to camera coordinates

– Use t, b, n basis to transform to object space

– Use modelview matrix to transform from 
object space to camera space

– Normalize

• Perform lighting in camera coordinates
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Variations

• Perform lighting in different coordinate 

system than camera space

– Object space

– Tangent space

• Tangent space is more efficient

– Transform light direction to tangent space in 

vertex shader

– Rasterizer interpolates it across triangle

– No need to transform bump mapped normal at 

each pixel (in fragment shader)
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Caveats

• Need mesh with texture coordinates to 

define tangent space

• Avoid triangles with zero area in texture 

space

– Cannot compute valid tangent space

• Avoid triangles with negative area in 

texture space

– May happen when texture is mirrored

• Avoid non-uniform stretching of bump map
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Combination with env. map
• “Environment mapped bump mapping” 

(EMBM)

• Use bump mapped normal to compute 
reflection vector, look up cube map

http://zanir.wz.cz/?paged=3&lang=en
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Env. mapped bump mapping
• Use additional ‘dirt’ texture to modulate 

strength of reflection from environment 
map
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Tutorials

• Caution, slightly different derivation
http://www.blacksmith-

studios.dk/projects/downloads/bumpmapping_using_cg.php

• OpenGL shading language book

– Bump mapping uses shading

in tangent space
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Today

• Bump mapping

• Shadows

• Shadow mapping

• Shadow mapping in OpenGL
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Why are shadows important?

• Cues on scene lighting
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Why are shadows important?

• Contact points

• Depth cues
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Why are shadows important?

• Realism

Without self-shadowing Without self-shadowing
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Terminology

• Umbra: fully shadowed region

• Penumbra: partially shadowed region

(area) light source

receiver 
shadow

occluder

umbra

penumbra
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Hard and soft shadows

• Point and directional lights lead to hard 

shadows, no penumbra

• Area light sources lead to soft shadows, 

with penumbra

point directional area

umbra penumbra
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Hard and soft shadows

Hard shadow,

point light source

Soft shadow,

area light source
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Shadows for interactive rendering

• Focus on hard shadows

– Soft shadows often too hard to compute in 

interactive graphics

• Two main techniques

– Shadow mapping

– Shadow volumes

• Many variations, subtleties

• Still active research area
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• Shadow mapping in OpenGL
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Shadow mapping
http://en.wikipedia.org/wiki/Shadow_mapping

Main idea

• Scene point is lit by light source if it is visible
from light source

• Determine visibility from light source by placing 
camera at light source position and rendering 
scene

Scene points are lit if 

visible from light source

Determine visibility from 

light source by placing camera 

at light source position
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Two pass algorithm
First pass

• Render scene by placing 

camera at light source 

position

• Store depth image 

(shadow map)

Depth image seen 

from light source

depth value

in shadow map



Second pass

• Render scene from 
camera (eye) position

• At each pixel, compare 
distance to light source 
(yellow) with value in 
shadow map (red)

– If yellow distance is larger 
than red, we are in shadow

– If distance is smaller
or equal, pixel is lit

Two pass algorithm

Final image 

with shadows

vb is in 

shadow pixel seen 

from eye vb

depth value

in shadow map
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Issues

• Limited field of view of shadow map

• Z-fighting

• Sampling problems
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Limited field of view
• What if a scene point is 

outside the field of view 

of the shadow map?

field of view 

of shadow map



Limited field of view
• What if a scene point is 

outside the field of view 

of the shadow map?

• Use six shadow maps, 

arranged in a cube

• Requires rendering pass 

for each shadow map!

shadow

maps



• In theory, depth values 
for points visible from 
light source are equal 
in both rendering 
passes

• Because of limited 
resolution, depth of 
pixel visible from 
camera could be larger 
than shadow map value

• Need to add bias in 
first pass to make sure 
pixels are lit

z-fighting

Camera image

Shadow map

Image

pixels

Shadow map

pixels Pixel is 

considered

in shadow!

Depth 

of pixel visible

from camera

Depth of 

shadow map



Solution

• Add bias when rendering shadow map

– Move geometry away from light by small 

amount

• Finding correct amount of bias is tricky

Correct bias Not enough bias Too much bias
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Bias

Correct

Not enough Too much
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Sampling problems

• Shadow map pixel may project to many 

image pixels

• Ugly stair-stepping artifacts
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Solutions
• Increase resolution of shadow map

– Not always sufficient

• Split shadow map into several slices

• Tweak projection for shadow map 
rendering

– Light space perspective shadow maps (LiSPSM) 
http://www.cg.tuwien.ac.at/research/vr/lispsm/

– With GLSL source code!

• Combination of splitting and LiSPSM

– Basis for most serious implementations

– List of advanced techniques see 
http://en.wikipedia.org/wiki/Shadow_mapping
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LiSPSM

Basic shadow map Light space perspective

shadow map
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Percentage closer filtering
• Goal: avoid stair-stepping artifacts

• Similar to texture filtering, but with a 
twist

http://http.developer.nvidia.com/GPUGems/gpugems_ch11.html

Simple shadow mapping Percentage closer filtering
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Percentage closer filtering
• Instead of looking up one shadow map pixel, 

look up several

• Perform depth test for each shadow map pixel

• Compute percentage of lit shadow map pixels
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Percentage closer filtering

• Supported in hardware for small filters 

(2x2 shadow map pixels)

• Can use larger filters (look up more 

shadow map pixels) at cost of performance 

penalty

• Fake soft shadows

– Larger filter,

softer shadow

boundary

46



Today

• Bump mapping

• Shadows

• Shadow mapping

• Shadow mapping in OpenGL
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Shadow mapping with OpenGL

• Recommended book: „OpenGL

Shading Language“ by Randi Rost
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First pass
• Render scene by placing camera at light source 

position

• Compute light view (look at) matrix

– Similar to computing camera matrix from look-at, up 

vector

– Compute its inverse to get world-to-light transform

• Determine view frustum such that scene is 

completely enclosed

– Use several view frusta/shadow maps if necessary
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First pass
• Each vertex point is transformed by

– Object-to-world 
(modeling) matrix M

– World-to-light space
matrix Vlight

– Light frustum (projection)
matrix Plight

• Remember: points within 
frustum are transformed to unit cube 
[-1,1]3 by projection matrix Plight

(-1,-1)

(1,1) Light space

Object space
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First pass

• Use glPolygonOffset to apply depth bias

• Store depth image in a texture

– Use glCopyTexImage with internal format 

GL_DEPTH_COMPONENT

Final result 

with shadows

Scene rendered 

from light source

Depth map

from light source
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Second pass

• Render scene from camera

• At each pixel, look up corresponding 

location in shadow map

• Compare depths with respect to light 

source

• Shade accordingly 
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• Need to transform each point from object space 
to shadow map

• Shadow map texture coordinates are in [0,1]2

• Transformation from object to shadow map 
coordinates (set it as texture matrix, see below)

• After perspective 
projection we have
shadow map coordinates

Looking up shadow map

(0,0)

(1,1)

Light space

Object space

Shadow map
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Looking up shadow map
• Transform each vertex to normalized frustum of 

light

• Pass s,t,r,q as texture coordinates to fragment 
shader

• Rasterizer interpolates s,t,r,q to each pixel

• Use projective texturing to look up shadow map

– This means, the texturing unit automatically computes 
s/q,t/q,r/q,1

– s/q,t/q are shadow map coordinates in [0,1]2

– r/q is depth in light space

• Shadow depth test: compare shadow map at 
(s/q,t/q) to r/q 54



GLSL specifics
In application

• Compute matrix T and pass to shader as uniform

In vertex shader

• Declare and access matrix T as uniform

• Multiply vertex positions with T and pass result 
to fragment shader

In fragment shader

• Declare shadow map as sampler2DShadow

• Look up shadow map using projective texturing 
with
vec4 textureProj(sampler2D, vec4, float bias)
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GLSL specifics

• When you do a projective texture look up 

on a sampler2DShadow, the depth test is 

performed automatically

– Return value is (1,1,1,1) if lit

– Return value is (0,0,0,1) if shadowed

• Simply multiply result of shading with 

current light source with this value
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Shadow volumes

Shadowing

object

Partially
shadowed 
object

Light

source 

Eye position

(note that 

shadows are 

independent of 

the eye position) 

Surface inside

shadow volume

(shadowed)

Surface outside

shadow volume

(illuminated) 

Shadow

volume

(infinite extent) 
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In shadow or not
• Test if surface visible in given pixel is 

inside or outside shadow volume

1. Allocate a counter per pixel

2. Cast a ray into the scene, starting from eye, 
going through given pixel 

3. Increment the counter when the ray enters 
the shadow volume

4.Decrement the counter when the ray leaves 
the shadow volume

5.When we hit the object, check the counter. 

• If counter > 0, in shadow

• Otherwise, not in shadow
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In shadow or not

Occluder
Light

source 

Eye

position 

+1 +2 +2+3

In shadow

+1
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Implementation in rendering pipeline

• Ray tracing not possible to implement 

directly

• Use a few tricks...
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Shadow volume construction

• Need to generate shadow polygons to 

bound shadow volume

• Extrude silhouette edges from light source

Extruded shadow volumes
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Shadow volume construction

• Needs to be done on the CPU

• Silhouette edge detection

– An edge is a silhouette if one adjacent triangle 

is front facing, the other back facing with 

respect to the light

• Extrude polygons from silhouette edges

62



Shadow test without ray tracing
Using the stencil buffer

• A framebuffer channel (like RGB colors, depth) 
that contains a per-pixel counter (integer value)

• Available in OpenGL

• Stencil test

– Similar to depth test (z-buffering)

– Control whether a fragment is discarded or not

– Stencil function: is evaluated to decide 
whether to discard a fragment

– Stencil operation: is performed to update the 
stencil buffer depending on the result of the 
test
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Shadow volume algorithms
Z-pass approach

• Count leaving/entering shadow volume events as 
described

• Use stencil buffer to count number of visible (i.e. 
not occluded from camera) front-facing and back 
facing shadow volume polygons for each pixel

• If equal, pixel is not in shadow

Z-fail approach

• Count number of invisible (i.e. occluded from 
camera) front-facing and back-facing shadow 
volume polygons 

• If equal, pixel is not in shadow
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Z-pass approach: details
• Render scene with only ambient light

– Update depth buffer

• Turn off depth and color write, turn on stencil, keep the depth 
test on

• Init stencil buffer to 0

• Draw shadow volume twice using face culling

– 1st pass: render front faces and increment stencil buffer when 
depth test passes

– 2nd pass: render back faces and decrement when depth test 
passes

• At each pixel

– Stencil != 0, in shadow

– Stencil = 0, lit

• Render the scene again with diffuse and specular lighting

– Write to framebuffer only pixels with stencil = 0
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Issues

• Z-pass fails if

– Eye is in shadow

– Shadow polygon clipped by near clip plane
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Shadow volumes
• Pros

– Does not require hardware support for shadow 
mapping

– Pixel accurate shadows, no sampling issues

• Cons

– More CPU intensive (construction of shadow 
volume polygons)

– Fill-rate intensive (need to draw many shadow 
volume polygons)

– Expensive for complex geometry

– Tricky to handle all cases correctly

– Hard to extend to soft shadows

70



Shadow maps
• Pros:

– Little CPU overhead

– No need to construct extra geometry to 
represent shadows

– Hardware support

– Can fake soft shadows easily

• Cons:

– Sampling issues

– Depth bias is not completely foolproof

• Shadow mapping has become more popular 
with better hardware support
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Resources
• Overview, lots of links

http://www.realtimerendering.com/

• Basic shadow maps
http://en.wikipedia.org/wiki/Shadow_mapping

• Avoiding sampling problems in shadow maps
http://www.comp.nus.edu.sg/~tants/tsm/tsm.pdf
http://www.cg.tuwien.ac.at/research/vr/lispsm/

• Faking soft shadows with shadow maps
http://people.csail.mit.edu/ericchan/papers/smoothie/

• Alternative: shadow volumes
http://en.wikipedia.org/wiki/Shadow_volume
http://developer.nvidia.com/object/robust_shadow_volumes.html
http://www.gamedev.net/reference/articles/article1873.asp
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Next time

• Advanced topics, outlook
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