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Abstract

Learning global features by aggregating informa-
tion over multiple views has been shown to be ef-
fective for 3D shape analysis. For view aggregation
in deep learning models, pooling has been applied
extensively. However, pooling leads to a loss of the
content within views, and the spatial relationship
among views, which limits the discriminability of
learned features. We propo3BViewGraph to re-
solve this issue, which learns 3D global features
by more effectively aggregating unordered views
with attention. Specifically, unordered views tak-
en around a shape are regarded as view nodes on
a view graph. 3DViewGraph first learns a novel
latent semantic mapping to project low-level view
features into meaningful latent semantic embed-
dings in a lower dimensional space, which is s-
panned by latent semantic patterns. Then, the con-
tent and spatial information of each pair of view
nodes are encoded by a novel spatial pattern cor-
relation, where the correlation is computed among
latent semantic patterns. Finally, all spatial pattern
correlations are integrated with attention weights
learned by a novel attention mechanism. This fur-
ther increases the discriminability of learned fea-
tures by highlighting the unordered view nodes
with distinctive characteristics and depressing the
ones with appearance ambiguity. We show that
3DViewGraph outperforms state-of-the-art meth-
ods under three large-scale benchmarks.

1 Introduction

views can facilitate understanding of both manifold and-non
manifold 3D shapes via computer vision techniques. There-
fore, effectively and efficiently aggregating compreheasi
information over multiple views, is critical for the disort
inability of learned features, especially in deep learmirag-

els.

Pooling was designed as a procedure for information ab-
straction in deep learning models. In order to describe a
3D shape by considering features from multiple views, view
aggregation is usually performed by max or mean pooling,
where pooling only employs the max or mean value of each
dimension across all view featurk®u and others, 201 5Al-
though pooling is able to eliminate the rotation effect of 3D
shapes, both the content information within views and the s-
patial relationship among views cannot be fully preserved.
As a consequence, this limits the discriminability of lesdn
features. In this work, we address the challenge to learn 3D
features in a deep learning model by more effectively aggre-
gating the content information within individual views,dn
the spatial relationship among multiple unordered views.

To tackle this issue, we propose a hovel deep learning mod-
el called3D View Graph (3DViewGraph), which learns 3D
global features from multiple unordered views. By taking
multiple views around a 3D shape on a unit sphere, we rep-
resent the shape as a view graph formed by the views, where
each view denotes a node, and the nodes are fully connected
with each other by edges. 3DViewGraph learns highly dis-
criminative global 3D shape features by simultaneously en-
coding both the content information within the view nodes,
and the spatial relationship among the view nodes.

i) We propose a novel deep learning model called 3DView-
Graph for 3D global feature learning by effectively ag-
gregating multiple unordered views. It not only encodes

Global features of 3D shapes can be learned fromraw 3D rep-  the content information within all views, but also pre-
resentations, such as meshes, voxels, and point cloudsi Asa  serves the spatial relationship among the views.
alternative, a number of works in 3D shape analysis employed

multiple views [Su and others, 2015; Haal., 20190 as

raw 3D representation, exploiting the advantage that pialti

*Corresponding author: Yu-Shen Liu

i) We propose an approach to learn a low-dimensional la-
tent semantic embedding of the views by directly cap-
turing the similarities between each view and a set of la-
tent semantic patterns. As an advantage, 3DViewGraph



avoids mining the latent semantic patterns across the w3 3DViewGraph

hole training set explicitly. Overview. Fig. 1 shows an overview of 3DViewGraph,
iif) We perform view aggregation by integrating a novel spa-where the global featur&® ¢ R'*¥ of a 3D shapen’ is

tial pattern correlation, which encodes the content infor{earned from its corresponding view gragh. Here, m'

mation and the spatial relationship in each pair of viewsjs the i-th shape in a training set of/ 3D shapes, where

iv) We propose a novel attention mechanism to increasé € [1,M]. Based on the’-dimensional featuré™, 3D-
the discriminability of learned features by highlighting ViewGraph classifies:’ into one ofL shape classes accord-
the unordered view nodes with distinctive characteristicdng to the probabilityP* = [P*(I' = 1|F*),...,P*(l' =
and depressing the ones with appearance ambiguities. a|F"), ..., P*(I* = L|F*)], which is provided by a final soft-

max classifier (Fig. 1(f)), wher# is the class label ofi.
2 Related work We first take a set of unordered views= {v}|j € [1,V]}

ana unit sphere centeredsaf, as shown in Fig. 1(a). Here,

Deep learning models have made a bi rogress o . A :
Iearr?ing 3D sghape features from diﬁerentgra\[/)v r%presen‘-"’e use “unordered views” to indicate that the views cannot be

tations, such as meshedéan and others, 2018 voxel- o_rgamzed in a seguenual way. The viewsare regard_ed as
s [Wu and others, 2016 point clouds[Qi and others, 2047  View nodesD; (briefly shown by symbols) of an undirected
and views[Su and others, 2015 Because of page limit, we graphG*, where eachD!, is fully connected with other view
}‘_o%ushon revielwin? viewjbased deep !earning models to highnodesD;',/ by edgegg;'_ ;1 such thaty® = ({D§}7 {E; j/})_
ight the novelty of our view aggregation. ! .
View-based methods.View-based methods represent a 3D Next, _ we . extr_act Iow—!evel features f; - of
shape as a set of rendered viel@nezakiet al., 201§ or ~ €ach view vj using a fine-tuned VGG19 net-
panorama viewgSfikas and others, 2017 Besides direc- Work [Simonyan and Zisserman, 2414 as shown in
t set-to-set comparisdiBai and others, 2047pooling is the  Fig. 1(b), wheref; € R'*4%% is extracted from the last fully
widely used way of aggregating multiple views in deep learn-connected layer. To obtain lower-dimensional, semartyical
ing models[Su and others, 2015 In addition to global fea- More meaningful view features, we subsequently learn a
ture learning, pooling can also be used to learn local fealatent semantic mapping (Fig. 1(c)) to project a low-level
tures [Huanget al., 2017; Yuet al., 201§ for segmentation View featuref; into its latent semantic embedding.
or correspondence by aggregating local patches. To resolve the effect of rotation, 3DViewGraph encodes the
Although pooling can aggregate views on the fly in thecontent and spatial information 6 by exhaustively com-
models, it can not encode all the content information with-puting our novel spatial pattern correlation between eath p
in views and the spatial relationship among views. Thus, th@f view nodes. As illustrated in Fig. 1(d), we compute the
strategies of concatenatidi®avva and others, 201L6view  pattern correlatior; ;, betweenD; and each other node;, ,
pair weighting[Johnset al., 2014, cluster specified pool- and we weight it with their spatial similaritgé._j,. In addition,
ing [Wang and others, 201.7RNN [Han and others, 2019 tor each nodeD, we compute its cumulative correlatids
were employed to resolve this issue. However, these methy symmarize all spatial pattern correlations as the cheirac
ods can not learn from unordered views or fully capture thggtics of the 3D shape from thieth view nodeD;i.

spatial information among unordered views. . . ; ;
To resolve the aforementioned issues, 3DViewGraph ag. " nally, we obtain the global featurE” of shapem’ by

gregates unordered views more effectively by simultanigous '”‘egra“”g_ all cgmulatlve cor.relgtmr@; with our llno.vel at-
encoding their content information and spatial relatignsh ~ tention weightsx*, as shown in Fig. 1(e) and (fix" aims to
structure of graphs, various methods have been prodepressing the ones with appearance ambiguity.
posed[Hamilton and others, 2017 Although we formulate Latent semantic mapping learning.To learn global features
the multiple views from a 3D shape as a view graph, existingrom unordered views, 3DViewGraph encodes the contentin-
methods proposed for graphs cannot be directly used foormation within all views and the spatial relationship argo
learning the 3D feature in our scenario. The reasons argi€éws in a pairwise way. 3DViewGraph relies on the intu-
two-fold. First, these methods main|y focus on how to ition that correlations between pairs of views can effedtiv
locally learn meaningful representation for each node in depresent discriminative characteristics of a 3D shapee-es
graph from its raw attributes rather than globally learningCially considering the relative spatial position of thewse
the feature of the whole graph_ Second, these methodEo |mplement this intuition, each view should be encoded |I:1
mainly learns how to process the nodes in a graph with firnferms (_Jf_a small set of common elements across all views in
order, while the order of views involved in 3DViewGraph are the training set. Unfortunately, the low-level featugsare
always ambiguous because of the rotation of 3D shapes. 100 high dimensional and not suitable as a representation of
Moreover, some methods have employed graphs to rethe views in terms of a set of common elements.
trieve 3D shapes from multiple viewAnanet al., 2015; To resolve this issue, 3DViewGraph introduces a latent se-
An-An et al., 2014. Different from these methods, 3DView- mantic mappingp by learning a kernel functiof” to directly
Graph employs a more efficient way of view aggregation incapture the similarities betweéhvieWSv;. andN latent se-
deep learning models, which makes the learned features userantic patterng ¢,, }. Our approach avoids additionally and
ful for both classification and retrieval. explicitly mining {¢,,} across the whole training set as the
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Figure 1: The demonstration of 3DViewGraph framework.
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Figure 2: The demonstration of latent semantic mapgding

common elementsd projects low-level view featureﬁ;' in-

to latent semantic space spanned{lgy, } as latent semantic
emdeddingsl;. d’ represents view nodds; with more se-

mantic meaning but lower dimension thﬁgi’n. Specifically,
predicted by kernek, then-th dimension ol characterizes
the similarity betweery; and then-th semantic pattere,,
suchthatd = [K(f}, ¢1), ... K(f}, dn), . K(f}, on)] €
RN, We define the kerndk as

exp(=B|f; — #all3)
S eap(=Bl £ = ull3)
where the similarityK ( ;', ¢n) Is inversely proportional to

the distance betweeﬁf and¢,, throughezp(), and gets nor-
malized across the similarities betwegnand allg,,. Param-

1)

K( ]z:a(bn):

{wn} and{e,} from {¢,}. This decoupling enables 3D-
ViewGraph to directly predict the similarity betweg*gfn and
¢, by the kernelK without explicitly mining ¢,, across all
low-level view features in the training set.

Based on the last line in Eq. 2, we implement the latent
semantic mapping as a row-wise convolution with each pair
of {w,} and{e, } corresponding to a filter and a row-wise
softmax normalization, as shown in Fig. 2.

Spatial pattern correlation. The pattern correlation;l,j,
aims to encode the content of view nodesand D%, . ¢’ ;,
makes the semantic patterns that co-occur in both’ views
more prominent while the non-co-occurring ones more sub-
tle. More precisely, we use the latent semantic embeddings
d’, andd’, to computec’ ;, as follows,

¢ = (d)" xd.,

3)
where c; . is a N x N dimensional matrix whose entry
¢’ i(n,n') measures the correlation between the semantic

patterng,, contributing tod§ ande,,. contributing tod;'-/.

eter 5 controls the decay of the response with the distance
This equation can be further simplified by cancelling the nor
m of f; from the numerator and the denominator as follows, ¥

I

(b) The length of edge

cap(—BIIFiI3 +28FidT — Blldnl3)
Sy eap(=Bl Fil3 + 28FidT, — Bllpnr13)
C eap(2BFidL — Bllénl3)
SN eap(2BFiT — Blldw3)

e:rp(f;-wn +eén)
SN eap(fiwn +ew)

K(f

VR

¢n) =

(c) The spatial similarities

(a) Edges on the unit sphere .

Figure 3: The illustration of spatial similaritgé.,j,.

We further enhance the pattern correlatiq'{}, between
the view nodesD; and Dj, by their spatial similaritys’, .,
which forms the spatial pattern correlatiep;, cj ;.

_Fig. 3 visualizes how we compute the spatial similarity
s; - In Fig. 3(a), we show all edges; ;, connectingD’;
to all other view noded);, in different colors, whereD;
is briefly shown by symbols. The length &f; ;, is mea-
sured by the length of the shortest arc connecting the two
view nodesD; and D}, on the unit sphere. Thudy; ,,

2w x 1 x (6/27) = 6 as illustrated in Fig. 3(b), where

(2)

where in the last step, we substitugtip! and— 3| ¢, |3 by
wy, ande,, respectively. Herelw,, }, {e, } and{¢, } are sets
of learnable parameters, in addition, béth,,} and{e,,} de-
pend on{¢,, }. However, to obtain more flexible training by
following the viewpoint in[Arandjelovic and others, 2016
we employ two independent sets{b,, }, {¢,, }, decoupling



is the central angle of the arc and the factocorrespond-

distinctiveness of vievw;'., as defined below,

s to the radius of the unit sphere. To reduce the high vari-

ance of{E} ..}, we employE? , = 0.5(1 — cos6) instead
of E;] = 6, which normalizesEh into the range of0, 1].
Finally, s} ;. is inversely proportional t@; ;, as follows,

sijl = exp(—aE;J,),

(4)

i

¥ w(WcC;wc + Wprwp + b),

o' = softmaz(al),

o

(6)

whereWg, we, wr, b andw are learnable parameters in the
attention mechanisni¥y € RX*F, whereF is the dimen-
sion of the learned global featule’, and L is the number of

whereo is a parameter to control the decay of the responsehape classes. Wit € R“*V andwe € RYV*!, Clis

with the edge length. In Fig. 3(c), we visualiz%/ by map-
ping the value of’, ;, to the width of edge#’; .

To represent the characteristics of 3D shapdrom the;-
th view nodeD; on G*, we finally introduce the cumulative
correlationC;
starting fromD?; as follows,

\%4

Ci= siciy ()
i'=1

Attentioned correlation aggregation. Intuitively, more

views will provide more information to any deep learning
model, which should allow it to produce more discrimina-

tive 3D features. However, additional views may also intro-

projected into al. x 1 dimensional space, whetbec RE*1

is a bias in that space. In additioW/r is projected into the
same space by € RX*! to compute the similarities be-
tweenC;ﬁ andWp along allL dimensions. Subsequently, the

which encodes all spatial pattern correlations@ttention weighty’ is calculated by comprehensively summa-

rizing all similarities along all th&. dimensions with a linear

mappingw € R'*%. Finally, thea’ in o' for all views of

i-th shape are normalized by softmax normalization.
Based o', the characteristic€”; of 3D shapen’ from

all view nodes are aggregated with weighting into atten-
tioned correlation aggregatid@dt’, as defined below,

1%
C'=> alCj, (7)
j=1

duce appearance ambiguities that negatively affect the dis

criminability of learned features, as shown in Fig. 4.

0.33450

0.00634

Figure 4: The ambiguous views and distinctive views.
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To resolve this issue, 3DViewGraph employs a novel at
tention mechanism in the aggregation of the 3D shape ch

lustrated in Fig. 1(e). 3DViewGraph learns attention wisgh
o' = {a}]j € [1,V]} for all view nodesD; on G, wherea;

would be a large value (the second row in Fig. 4) if the view

v has distinctive characteristics, whit€ would be a small
value (the first row in Fig. 4) if);'. exhibits appearance ambi-

guity with views from other shapes. Note tfﬁtj‘;l of = 1.

where C? represents 3D shape’ as aN x N matrix, as
shown in Fig. 1(e). Finally, the global featuF& of 3D shape
m' is learned by a fully connected layer with attentioned cor-
relation aggregatio@ as input, as shown in Fig. 1(f), where
the fully connected layer is followed by a sigmoid function.

Using F*, the final softmax classifier computes the prob-
abilities P? to classify the 3D shapa’ into one ofL shape
classes as

P! = softmar(WpF" + bp), (8)

whereWr ¢ REXK andbyr € RE*! are learnable param-
eters for the computation d?!. W is used to represent all
the characteristics of views that 3DViewGraph has proaksse
as employed to calculate® in Eq. 6.

a'l_earning inference. The parameters involved in 3DView-

acteristics from all unordered view nodes of a shape, as il

Graph are optimized by minimizing the log-likelihoodover
M 3D shapes in the training set, whepé is the truth label,

M L
1 o o
- _ 11— 1 Pz - .
O=-; ;;Q (I'=a)log P'(I' =a).  (9)
The parameter optimization is conducted by back propaga-
tion of classification errors of 3D shapes. Notewor#; is

Our novel attention mechanism evaluates how distinctiveipdated by two elements with the learning rates follows,
each view is to the views that 3DViewGraph has processed.

To comprehensively represent the characteristics of #hesi

that 3DViewGraph has processed, the attention mechanism

employs the fully connected weigh#®'z in the final softmax
classifier which accumulates the information of all views, a

V. dai

+y
j=1

oWpg
The advantage of Eq. (10) is theé{x can be learned more

00
OWp

WF%WF*E(

)- (10)

shown in Fig. 1(f). The attention mechanism projects thefiexibly for optimization convergencd¥  also enables to

characteristic€”} of 3D shapen’ from the j-th view node
D;ﬁ and the characteristicd/’r of the views that 3DView-

simultaneously observe the characteristics of shap&om
each view nodeD; and take all views that have been pro-

Graph has processed into a common space to calculate tieessed from different shapes as reference.



4 Results and analysis
We evaluate 3DViewGraph by comparing it with the state-

Table 4: Classification comparison under ModelNet with 0.009,
o =10, F' = 256, N = 128, unless noted otherwise.

of-the-art methods in shape classification and retrieval un Methods MN40(%) | MN10(%)
der ModelNet40[Wu and others, 2015 ModelNet10 and 3DGAN[Wu and others, 2016 833 91.0
ShapeNetCored5avva and others, 20 AVe also show ab- | pointNet+{Qi and others, 2017|  91.9 i
lation studies to justify the effectiveness of novel eletsen FoldingNetYanget al., 201§ 88.4 94.4
_ PANO[Sfikas and others, 201L7|  90.7 91.1
Table 1: F comparisong = 0.009, ¢ = 10, N = 128. PairwisdJohnset al., 2014 90.7 92.8
GIFT[Bai and others, 2017 89.5 91.5
I 64 128 | 256 | 512 | 1024 Domi[Wang and others, 2017 92.2 -
Acc % | 93.44| 93.03] 93.80| 93.07| 93.19 MVCNNI[Su and others, 2015 90.1 .
SphericdlCaoet al., 2017 93.31 -
Parameters. We first explore how the important parameters| RotatiofKanezakiet al., 2019 92.37 94.39
F, N ando affect the performance of 3DViewGraph under| SO-NefLi and others, 2018 90.9 94.1
ModelNet40. The comparison in Table. 1, 2, and 3 show$ SVSL[Han and others, 2019 93.31 94.82
that their effects are slight in a proper range. VIPGAN[Hanet al., 20194 91.98 94.05
VGG(ModelNet40) 87.27 -
Table 2: N comparisong = 0.009, o = 10, F' = 256. VGG(ModelNet10) - 88.63
Ours 93.80 94.82
N 32 64 | 128 | 256 | 512 Oursg = 5) 93.72 95.04
Acc % | 90.84| 92.91| 93.80| 93.44| 93.40 Ours(No finetune) 90.40 -
Ours(No spatiality) 92.91 94.16
Classification. As compared under ModelNet in Table 4, 3D- Ours(No attention) 93.07 93.72
ViewGraph outperforms all the other methods under the same Ours(No attentiorG;i) 91.82 93.39
condition'. In addition, we show the single view classifica- Ours(No attentior#¥/ ) 91.57 93.28
tion accuracy in VGG fine-tuning (“VGG(ModelNet)”). To Ours(No latent) 92.34 92.95
highlight the contribution of VGG fine-tuning, spatial simi Ours(No correlation) 89.30 93.83
larity, and attention, we remove fine-tuning (“Ours(No fine- Ours(MeanPool) 92.38 93.06
tune)”) or set all spatial similarity (“Ours(No spatialjtyand Ours(MaxPool) 91.89 92.84

attention (“Ours(No attention)”) to 1. The degeneratedites

s indicate these elements are important for 3DViewGraph to
achieve high accuracy. Similar phenomena is observed whegyention visualization. We visualize the attention learned

we justify the effect on andWy in Eq. 6 by setting them
to 1 (“Ours(No attention-)"), respectively. We also jusgtif
the latent semantic embedding and spatial pattern caoelat
by replacing them by single view features (“Ours(No laten-
t)”) and summation (“Ours(No correlation)”), the degenera
ed results also show that they are important elements. F
nally, we compare our proposed view aggregation with mea
(“Ours(MeanPool)”) and max pooling (“Ours(MaxPool)”) by
directly pooling all single view features together. Duehe t
loss of content information in each view and spatial informa
tion among multiple views, pooling performs worse.

Table 3:0 comparisong = 0.009, N = 128, F' = 256.

0
92.91

1
93.48

5
93.72

10
93.80

11
93.48

ag
Acc %

3DViewGraph also achieves the best under the more chag
lenging benchmark ShapeNetCore55, based on the fine—tun%

VGG (“VGG(ShapeNetCore55)”), as shown in Table 5. We
also find that different parameters do not significantly tffe
the performance, such aé ando.

we use the same modality of views from the same camera sy£xa@mple, the most am-

tem for the comparison, where the results of RotationNefrara
Fig.4 (d) and (e) in https://arxiv.org/pdf/1603.06208.ddoreover,
the benchmarks are with the standard training and test split

by 3DViewGraph under ModelNet40, which demonstrates
how 3DViewGraph understands 3D shapes by analyzing
views on a view graph. In Fig. 5, attention weigft$ on
view nodesD; of G* are visualized as a vector which is rep-
resented by scattered black nodes, where the corresponding
Views are also shown nearby, such as the views of a toilet in

'Fig. 5(a), a table in Fig. 5(b) and a cone in Fig. 5(c). The €oor

dinates of black nodes along the y-axis indicate how much at-
tention 3DViewGraph pays to the corresponding view nodes.
In addition, the views that is paid the most and least atten-
tion to are highlighted by the red upward and blue downward
arrow, respectively.

Fig. 5 demonstrates
that 3DViewGraph is
able to understand each
view, since the view
ith the most ambigu-
S appearance in a
w graph is depressed
while the view with the
most distinctive appear-
ance is highlighted. For

cision

Pre:

Graph View Set
—— Clique Graph

— 3DViewGraph
0 0.1 02 03 04_05
Recal

=)

0.6 0.7
1

08 09 1

Figure 6: The precision and recall
comparison with graph-based multi-
view learning methods under PSB.

biguous views of toilet,
table and cone merely
show some basic shapes



Table 6: Retrieval comparison under ShapeNetCore550.009, o = 10, F' = 256, N = 128.

micro macro
Methods| P@N | R@N | FI@N | mAP@N | NDCG@N | P@N | R@N | F1@N | mAP@N | NDCG@N
All 0.818 | 0.803 | 0.798 0.772 0.865 0.618 | 0.667 | 0.590 0.583 0.657
Taco 0.701 | 0.711 | 0.699 0.676 0.756 - - - - -
Ours | 0.6090| 0.8034| 0.6164| 0.8492 0.9054 | 0.1929| 0.8301| 0.2446| 0.7019 0.8461

Table 5: Classification comparison under ShapeNetCorefbewi
0.009, o = 10, F' = 256, N = 128, unless noted otherwise.

o =10, F = 256, N = 128.

Table 7: Retrieval comparison (mAP) under ModelNet: 0.009,

Methods Views | Accuracy(%) Methods Range | MN40 [ MN10
VIPGAN[Hanet al., 20194 12 82.97 SHD Test-Test | 33.26 | 44.05
SVSL[Han and others, 2019 12 85.47 3DNetW LFS thers, 2015 38?35: jg-g% gg-gg

VGG(ShapeNetCore55 1 81.33 €l3WWu and others, est-Tes - -
( Opurs ) 20 86.87 GImagéSinhaet al., 2014 Test-Test | 51.30 | 74.90
ours(V = 256) 20 86.36 DPangShi and others, 2015 | Test-Test | 76.81 | 84.18
0 o 20 86. 6 MVCNN[Su and others, 2015 Test-Test | 79.50 -
ursg = 5) 5 PANO[Sfikas and others, 2017 Test-Test | 83.45 | 87.39
Oursp = 5,N = 256) 20 86.71 GIFT[Bai and others, 2017 | Random | 81.94 | 91.12
TriplefHe et al., 2014 Test-Test | 88.0 -
0.12 . Ours Test-Test 90.54 92.40
ol | Ours Test-Train | 93.49 | 95.17
oo J T Ours Train-Train| 98.75 | 99.79
T g Y S & Lo Ours AllLAI | 96.95 | 98.52
° 4 < N
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Figure 5: The visualization of attention weights (black esd
learned for views of (a) a toilet, (b) a table, and (c) a conde T
highest and lowest attention weights are indicated by redaog

arrow and blue downward arrow, respectively.

that provide little useful information for classificatiosiich

der Princeton Shape Benchmark (PSB) in Fig. 6.

5 Conclusion

metric due to page limit. Finally, we demonstrate that 3D-
ViewGraph is also superior to other graph-based multi-view
learning methodBAnanet al., 2015; An-Anet al., 2016 un-

as the rectangles of the toilet and table, and the circle®f thin view-based deep learning models for 3D shape analysis,
cone. In contrast, the most distinctive views of toilet,Iéab view aggregation via widely used pooling, leads to informa-

and cone exhibit more unique and distinctive charactessti

Retrieval.

tion loss about content and spatial relationship of views. W
We evaluate the retrieval performance of 3D- propose 3DViewGraph to address this issue for 3D global

ViewGraph under ModelNet in Table 7. We outperform feature learning by more effectively aggregating unordere
the state-of-the-art methods, where the retrieval rangd is views with attention. By organizing unordered views taken
so shown. We further detail the precision and recall curvegsround a 3D shape into a view graph, 3DViewGraph learns
of these results in Fig. 7. In addition, 3DViewGraph alsoglobal features of the 3D shape by simultaneously encoding
achieve the best results under ShapeNetCore55 in Table Both the content information within view nodes and the spa-
We compare 10 state-of-the-art methods under testing séil relationship among the view nodes. Through a novel la-
in the SHREC2017 retrieval contdSavva and others, 20[L7 tent semantic mapping, low-level view features are prejgct
and Taco[Cohenet al., 2014, where we summarize all the into a meaningful, lower-dimensional latent semantic ednbe
10 methods (“All") by presenting the best result of eachding using a learned kernel function, which directly capgur



the similarities between low-level view features and lagsn ~ [Hanet al., 20194 Zhizhong Han, Mingyang Shang, Yu-

mantic patterns. The latent semantic mapping successfully Shen Liu, and Matthias Zwicker. View inter-prediction

facilitates 3DViewGraph to encode the content information gan: Unsupervised representation learning for 3D shapes

and the spatial relationship in each pair of view nodes us- by learning global shape memories to support local view

ing a novel spatial pattern correlation. Further, our natel predictions. IPAAAI, 2019.

tention mechanism effectively increases the discrimilitsbi [Hanetal., 20198 Zhizhong Han, Mingyang Shang,

of learned features by efficiently highlighting the unotkr Xiyang Wang, Yu-Shen Liu, and Maitthias Zwicker.

view nodes with distinctive characteristics and depr@s8ie  y7seq2seq: Cross-modal representation learning for 3D

ones with appearance ambiguity. Our results in classifinati shape and text by joint reconstruction and prediction of

and retrieval under three large-scale benchmarks show that \;;a\v and word sequences. ARAI, 2019.

3DViewGraph can learn better global features than the-statet . : :

of-the-art methods due to its more effective view aggregati LHe €t al., 2018 Xinwei He, Yang Zhou, Zhichao Zhou,
Song Bai, and Xiang Bai. Triplet-center loss for multi-

K | view 3D object retrieval. IiThe | EEE Conference on Com-
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