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Figure 1: Our adaptive rendering method handles arbitrary light transport effects, employs a state of the art denoising filter, and incurs little
computational overhead. The “conference” scene includes indirect illumination and moderately glossy surfaces. We compare path tracing
using low-discrepancy sampling (far left) to our approach (far right). The close-ups in the middle show low-discrepancy sampling (LD),
adaptive sampling and reconstruction (ASR) by Rousselle et al. [2011], and our approach (OUR), all at equal rendering time.

Abstract

We propose a novel approach for image space adaptive sampling
and filtering in Monte Carlo rendering. We use an iterative scheme
composed of three steps. First, we adaptively distribute samples in
the image plane. Second, we denoise the image using a non-linear
filter. Third, we estimate the residual per-pixel error of the filtered
rendering, and the error estimate guides the sample distribution in
the next iteration. The effectiveness of our approach hinges on the
use of a state of the art image denoising technique, which we extend
to an adaptive rendering framework. A key idea is to split the Monte
Carlo samples into two buffers. This improves denoising perfor-
mance and facilitates variance and error estimation. Our method
relies only on the Monte Carlo samples, allowing us to handle arbi-
trary light transport and lens effects. In addition, it is robust to high
noise levels and complex image content. We compare our approach
to a state of the art adaptive rendering technique based on adaptive
bandwidth selection and demonstrate substantial improvements in
terms of both numerical error and visual quality. Our framework is
easy to implement on top of standard Monte Carlo renderers and it
incurs little computational overhead.
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1 Introduction

In this paper we present an algorithm to reduce numerical error and
visual artifacts in Monte Carlo rendering. Our approach relies on
image space adaptive sampling and filtering, which is attractive be-
cause it makes few assumptions about the specific light transport
or lens effects being rendered. Recent techniques that follow this
strategy [Overbeck et al. 2009; Rousselle et al. 2011] have been
shown to effectively improve the visual quality over standard sam-
pling and filtering for a wide range of effects that are prone to noise
artifacts, such as indirect illumination, soft shadows, participating
media, depth of field, or motion blur. We observe, however, that
previous work in adaptive rendering is based on image denoising
techniques that are not competitive with the state of the art in im-
age processing. For example, Overbeck et al.’s approach [Overbeck
et al. 2009] uses straightforward wavelet shrinkage, and Rousselle
et al.’s algorithm [Rousselle et al. 2011] is based on adaptive band-
width selection with isotropic Gaussian filters. Both techniques
leave ample room for improvement, as we show in this paper.

The main contribution of our approach is to extend an image de-
noising filter that is competitive with the state of the art in image
processing and employ it in an adaptive rendering framework. We
show that our approach is more robust under severe noise than pre-
vious techniques, significantly reducing numerical error and visual
artifacts. In addition, our approach is more effective at removing
noise even in complex image regions while minimizing the smooth-
ing of image features. Finally, our technique is compatible with
efficient low discrepancy sampling while previous techniques as-
sumed random sampling, which affords additional improvements
in output quality. Our technique shares the advantages of other im-
age based approaches. It can deal with arbitrary light transport and
lens effects, and it only requires the Monte Carlo samples as its in-
put such that it is straightforward to implement it on top of existing
renderers.

Our framework builds on an iterative strategy consisting of three
components in each iteration step. First, we distribute a given bud-
get of Monte Carlo samples over the image. We sample the image
uniformly in the initial iteration step, while consecutive iterations
employ adaptive sampling. Second, we filter the image to reduce
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noise. Finally, we estimate the error remaining in the filtered image
to drive adaptive sampling in the next iteration step. The effective-
ness of this scheme largely hinges on the denoising filter. A core
idea in our approach is to extend and adapt the non-local means
filter [Buades et al. 2005], which is competitive with the state of
the art in image denoising, to our adaptive rendering framework.
A challenge in applying such a filter for adaptive rendering is the
need to obtain an error estimate to drive adaptive sampling. We
address this issue using a dual-buffer strategy: we simply split the
samples into two sets that we render and filter in two separate im-
age buffers. The difference between the filtered buffers serves as an
effective error estimate. Hence we demonstrate that it is possible to
employ sophisticated denoising filters for adaptive rendering, and
our results show significant improvements over previous work. In
summary we make the following contributions:

• An adaptive rendering framework based on non-local means
filtering. We demonstrate significant improvements in numer-
ical error and visual quality compared to previous work.

• A dual-buffer strategy for non-local means filtering. This al-
lows us to obtain error estimates to drive adaptive sampling,
and to extend our method to low-discrepancy sampling.

• Extensions of the non-local means filter to adapt it to denoise
images produced by Monte Carlo rendering.

2 Previous Work

Adaptive Rendering. Image space adaptive sampling and fil-
tering has been pioneered by Mitchell [1987], and many subse-
quent techniques have been inspired by his approach. Bolin and
Meyer [1998] use a perceptual metric to drive the sample distri-
bution, and leverage a Haar wavelet representation of the data to
estimate values that have yet to be sampled. Recent techniques in-
clude the work of Bala et al. [2003], which uses edge detection to
constrain the interpolation of sparsely sampled data points. This
approach is prone to artifacts when edge detection fails. Chen et
al. [2011] propose a method specifically designed to handle depth of
field effects, which uses depth maps to select the appropriate filter
from a filterbank on a per-pixel basis. Adaptive wavelet rendering
by Overbeck et al. [2009] introduces an iterative framework alter-
nating between filtering and sampling steps, similar to our method.
They perform a wavelet decomposition of the rendered image and
denoise it using wavelet shrinkage [Donoho and Johnstone 1994].
Rousselle et al. [2011] build on the same iterative framework. Their
work relies on adaptive bandwidth selection for denoising, and
they report consistently higher quality results compared to adap-
tive wavelet rendering. Their approach relies on isotropic filters,
however, which cannot properly resolve noise along edges. In ad-
dition, errors in adaptive bandwidth selection can produce jarring
artifacts, particularly in the presence of spike noise. Our method
uses a filtering approach that is much more robust to noise and can
accommodate arbitrary anisotropy in the signal, which leads to sig-
nificantly lower error and improved quality at equal render time.
Sen and Darabi [Sen and Darabi 2012] propose an adaptive filtering
method based on a joint bilateral filter which can leverage known
scene features. A major conceptual difference to our approach is
that we develop an error estimation technique that enables adaptive
sampling, while their work focuses only on filtering. A practical
difference is that the computational complexity of our filter is pro-
portional to the number of pixels, while theirs is proportional to
the number of samples. As a consequence, their filter typically ac-
counts for more than 50% of rendering time and takes on the order
of minutes, while the overhead of our combined adaptive sampling
and filtering approach is usually only a few seconds.

Multi-dimensional methods exploit the structure of the sampled sig-

nal in high dimensional path space, which is not accessible in meth-
ods restricted to image space information. Hachisuka et al. [2008]
propose a general solution applicable to arbitrary effects. They per-
form adaptive sampling and anisotropic filtering directly in multi-
dimensional path space, but their approach scales poorly to higher
dimensional cases. Other methods have proposed specialized solu-
tions for specific cases. Soler et al. [2009] consider depth of field.
Egan et al. propose optimal sheared filters based on the frequency
analysis of motion blur [2009] and soft shadows [2011]. Lehtinen
et al. [2011] similarly exploit shearing in the light field, but handle
combinations of motion blur, depth of field, and soft shadows. The
main advantage of our work compared to these techniques is that
we are not restricted to any particular light transport or lens effect.

Many real-time and interactive methods employ sophisticated de-
noising filters, but dispense with adaptive sampling for performance
reasons. These methods often exploit geometry buffers storing nor-
mals and depth to guide filtering. For instance, Ritschel et al. [2009]
perform edge-aware cross bilateral filtering on sparsely sampled
scenes, Shirley et al. [2011] exploit the depth buffer to define a
per-pixel filter radius, Dammertz et al. [2010] propose an edge-
avoiding filter using an à-trous wavelet transform, and Bauszat et
al. [2011] use guided image filtering for highly efficient filtering.
While these methods can produce impressive results, they often fail
when high frequency image features are not represented in the ge-
ometry buffers.

Image Denoising. Our approach is inspired by powerful denois-
ing methods developed in the image processing community. We
provide references to some of the most successful ideas, without
any claim of completeness. A fundamental approach in image de-
noising is to transform the input into a domain where the signal
is expected to be sparse, that is, most coefficients are zero. De-
noising is then simply achieved by shrinking the coefficients in the
transform domain, for example by thresholding small coefficients to
zero, followed by an inverse transformation. There is a large num-
ber of algorithms based on wavelet shrinkage, initially proposed
and thoroughly analyzed by Donoho and Johnstone [1994]. This
is also the denoising method employed by Overbeck et al. [2009].
Significant improvements over the basic approach can be achieved
by taking into account statistical models of the distribution of the
wavelet coefficients [Portilla et al. 2003], learning dictionaries of
small image patches to construct sparse transform domains [Mairal
et al. 2008], or using collaborative filtering of groups of image re-
gions [Dabov et al. 2007], to name a few. Our denoising approach
is based on non-local means (NL-Means) filtering [Buades et al.
2005], which relies on a fundamentally different strategy than trans-
form domain methods. The main idea is simply to estimate each
pixel as a weighted average of other input pixels, where the weight
for each pair of pixels is determined by the similarity of small image
patches centered at the two pixels. This is essentially a generaliza-
tion of the bilateral filter [Tomasi and Manduchi 1998], where the
weights are determined by the similarities of the pixels themselves,
rather than small patches centered around them. This small exten-
sion, however, leads to greatly improved denoising performance,
and NL-Means filtering is competitive with the state of the art in im-
age denoising. Ji et al. [2009] modify the NL-Means distance com-
putation to operate with a rotationally invariant metric, but since
they cannot estimate the parameters of their filter from the noisy
input data, their method can only be applied to inputs with uni-
form noise of a known distribution. Kervrann and Boulanger [2006]
adapt the NL-Means filter window size on a per-pixel basis. While
this approach may lead to slight improvements, we chose to use the
basic NL-Means formulation for simplicity and computational ef-
ficiency. While Xu and Pattanaik [2005] use a modified bilateral
filter to denoise renderings produced with a Monte Carlo raytracer,



they do not include adaptive sampling. In addition, our approach
based on NL-Means filtering provides significantly improved de-
noising performance.

3 Algorithm Overview

The objective of our algorithm is to optimize rendering quality
given a user specified sampling budget. Figure 2 gives a visual
overview of our method. We build on image space adaptive sam-
pling and filtering using an iterative scheme, where each iteration
is composed of three steps: (1) sampling, (2) filtering, and (3) es-
timating the residual error. In each subsequent iteration we use the
error estimate from the previous one to drive adaptive sampling,
where we distribute a predetermined fraction of the sample budget
each time. We bootstrap the algorithm in the first iteration by sam-
pling the image uniformly. A key component of our approach is
the denoising filter in step two. We use a variant of the NL-Means
filter tailored to our adaptive rendering framework. During the it-
eration we keep track of per pixel statistics including sample count
and empirical variance, in addition to the usual pixel value. We use
these statistics to adapt the NL-Means filter to local image charac-
teristics. In addition, we operate on two image buffers (indicated in
red and green in Figure 2), instead of one, each receiving half of the
samples. This is a key idea of our method that allows us to improve
filtering quality and obtain simple but effective error estimates to
drive adaptive sampling.

We next describe the main components of our algorithm. We review
the original NL-Means formulation and introduce our extensions in
Section 3.1. Section 3.2 covers our error estimation technique, and
Section 3.3 describes our adaptive sampling scheme.

3.1 The NL-Means Filter

The NL-Means filter [Buades et al. 2005] is a non-linear, edge-
preserving filter that computes each output pixel as a weighted sum
of input pixels. The set of input pixels contributing to one out-
put pixel may stem from a large region in the input image, hence
the term non-local. A key feature of the NL-Means filter is that
the weights are determined by the distance between small image
patches, as illustrated in Figure 3. The NL-Means filter is a gener-
alization of the bilateral filter [Tomasi and Manduchi 1998], which
considers distances between pairs of pixel values, instead of small
patches, to compute filter weights. This extension leads to much
improved denoising performance, and NL-means and its variants
are among the most successful denoising algorithms.

We propose several key extensions to the original filter formulation
that allow us to use it effectively in an adaptive rendering frame-
work:

• dual-buffered filtering (Section 3.1.1),

• support for non-uniform variance (Section 3.1.2),

• symmetric distance computation to better handle gradients
(Section 3.1.3).

We start by giving a definition of the original NL-Means filter, and
then detail our extensions and their impact on the filtering process.

The NL-Means filter computes the filtered value û(p) of a pixel p
in a color image u = (u1, u2, u3) as a weighted average of pixels
in the square neighborhood of size 2r + 1 × 2r + 1 centered on p,
as illustrated in Figure 3,

ûi(p) =
1

C(p)

∑
q∈N(p)

ui(q)w(p, q), (1)

1. Sampling 2. Filtering

3. Error Estimation

Noisy Images Pixel Variance

Sampling Map Filtered Images

Estimated Error Estimated Variance

Figure 2: Overview of our dual-buffer framework. We indicate the
two buffers with red and green borders. We iterate over three steps:
sampling, filtering, and error estimation. In the filtering step, we
first estimate the pixel variances using the noisy buffers. Then we
denoise the buffers with our variant of NL-Means filtering. In the
error estimation step, we first estimate the residual variance in the
filtered buffers, and then derive the potential error reduction af-
forded by placing an additional sample per pixel. In the sampling
step, we distribute a set of samples according to the estimated er-
rors in each buffer. We iterate until the sample budget is exhausted.

where N(p) is the square neighborhood centered on p, w(p, q) is
the weight of the contribution of q to p, i is the index of the color
channel, and C(p) is a normalization factor,

C(p) =
∑

q∈N(p)

w(p, q).

The weightw(p, q) of a neighbor q is based on the distance between
a pair of small patches of size 2f + 1× 2f + 1 centered at p and q.
The patch distance d2(P (p), P (q)) is the average of the per-pixel
and per color channel squared distances d2i (p, q) over the patches,

d2i (p, q) = (ui(p) − ui(q))
2, (2)

d2(P (p), P (q)) =
1

3(2f + 1)2

3∑
i=1

∑
n∈P (0)

d2i (p+ n, q + n),

(3)

where P (p) and P (q) are the patches centered on p and q, P (0)
represents the offsets to each pixel within a patch.

An important observation is that, because the input signal is noisy,
the measured squared distances are biased. Therefore, the origi-
nal NL-Means filter [Buades et al. 2005] subtracts the variance of



2r+1

2f+1

2f+1

p

q

N(p)

P(p)

P(q)

d²(P(p),P(q))

Figure 3: NL-Means computes the filtered value û(p) of pixel p
as a weighted average of all pixels q in a square neighborhood of
size 2r + 1 × 2r + 1. The weight between p and q is based on the
squared distance d2(P (p), P (q)) between the pair of patches P (p)
and P (q) of size 2f + 1 × 2f + 1 centered on p and q.

the measured squared distances to cancel out the noise contribu-
tion from the patch distance. Assuming uniform pixel noise with
variance σ2 and uncorrelated pixels p and q, the modified patch
distance is

max(0, d2(P (p), P (q)) − 2σ2).

The weight w(p, q) of the contribution of pixel q to p is then ob-
tained using an exponential kernel,

w(p, q) = exp
−max(0,d

2(P (p),P (q))−2σ2)

k22σ2 ,

where k is a user specified damping factor that controls the strength
of the filter. A lower k value yields a more conservative filter.

We also use the patchwise extension proposed by Buades et
al. [Buades et al. 2005], which produces slightly smoother outputs.
Instead of weighting only the pixel p at the center of the patch with
the weight w(p, q), we weight all pixels in the patch centered at p
withw(p, q). Each pair of pixels occurs in 2f+1×2f+1 patches,
each time with a distinct weight w(p + n, q + n), where n is the
offset of p and q in the patch. In the patchwise implementation the
final weight W (p, q) for a pair of pixels is simply the average over
all weights that involve these two pixels,

W (p, q) =
1

(2f + 1)2

∑
n∈P (0)

w(p+ n, q + n).

3.1.1 Dual-Buffer Filtering

Dual-buffered filtering is our key modification to NL-Means that
enables most of our other extensions and allows us to employ it in
an adaptive rendering framework. We observe that in the original
NL-Means approach the filter weights and the input signal are cor-
related. This makes it challenging to analyze the error introduced
by the filter. In addition, since the filter weights not only adapt to
the signal but also to the noise, some noise tends to be preserved in
the output. We address both issues with our dual-buffered imple-
mentation. We maintain two image buffers, A and B, that receive
half the samples in each iteration of our framework (Figure 2). We
also store pixel statistics including the number of samples and the
empirical sample variance separately in each buffer. We then use
the two buffers to cross filter each other, that is, we use the filter
weights computed from buffer A to filter buffer B, and vice versa.
The final output is the average of the two filtered buffers. Our ap-
proach eliminates the correlation between the filter weights and the

Noisy data Single-buffer Dual-buffer

MSE: 7.890E-3 MSE: 0.069E-3 MSE: 0.027E-3

Figure 4: Filtering a noisy uniform input (left), using the single-
buffer approach (center), or our dual-buffer approach (right). Us-
ing a single buffer tends to preserve structures from the noisy input
because of the correlation between filter weights and input. The fil-
ter parameters are r = 10, f = 3 pixels, and k = 0.45. We list the
mean squared error (MSE) under each image.

noise, and we get much improved filtering as shown in Figure 4.
In addition, the per-pixel differences between the buffers serve as
a basis for our variance and error estimation components that we
describe next.

3.1.2 Non-uniform Variance

While the original NL-Means formulation assumes uniform noise
over input images, Monte Carlo rendering generally leads to highly
non-uniform noise patterns. The type of noise and its magnitude
depend on the scene geometry, object materials, and light trans-
port and lens effects. Therefore, let us denote per pixel variance of
color channel i at pixel p by Vari[p], replacing the uniform vari-
ance σ from Section 3.1. We modify the previous per-pixel squared
distance computation by performing variance cancellation and nor-
malization on a per-pixel basis,

d2i (p, q) =
(ui(p) − ui(q))

2 − α(Vari[p] + Vari[q, p])

ε+ k2(Vari[p] + Vari[q])
, (4)

where α controls the strength of variance cancellation. In addition,
we define Vari[q, p] = min(Vari[q],Vari[p]) to clamp the vari-
ance at position q to the variance at p. This ensures that the poten-
tially large variance of brighter neighbors does not cancel out the
measured squared difference, and it prevents bright regions from
blurring into dark ones. Note that with Vari[p] = Vari[q] = σ2 we
fall back to the original definition. We set ε = 10−10 to prevent di-
visions by 0. The value of ε must be very small in order to preserve
features in dark areas. Finally, the patch distance is computed as in
Equation 3, and the weight w(p, q) of the contribution of pixel q to
p is now simply

w(p, q) = exp−max(0,d2(P (p),P (q))) . (5)

Additionally, we set to zero weights W (p, q) below a threshold of
0.05, to help preserve fine features in noisy areas where non-feature
neighbors can greatly outnumber feature neighbors, dominating the
result even with very low weights.

Variance Estimation. Estimating the pixel variance Var [p] is a
key component of our algorithm (we omit the index i of the color
channel for better readability from now on). Assuming that samples
are drawn from a random distribution, we could estimate the pixel
variance using the empirical variance of the samples contributing
to the pixel, which we denote by Σ[p], as proposed by Rousselle et
al. [2011]. Random sampling, however, may lead to significantly
higher variance than more sophisticated sampling strategies such
as low-discrepancy sequences [Kollig and Keller 2002]. Therefore,
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Figure 5: Filtering with low-discrepancy samples. In the left im-
age, we directly used the squared difference ∆[p] between our two
buffers as an estimate of the pixel variance Var [p] in the NL-Means
filter. In the right image we cross-filtered ∆[p] using the sample
variance Σ[p] to obtain a smoother estimate for Var [p]. The un-
filtered buffer variance ∆[p] is too noisy to reliably estimate pixel
distances, whereas our filtered variance yields a smooth output.

we develop a simple approach to support low-discrepancy sampling
in our framework, taking advantage of our two buffers. The same
idea was developed by Sijbers et al. [1998] to estimate the vari-
ance in magnetic resonance images, but assuming uniform variance
across the image.

We obtain an initial estimate ∆[p] of the pixel variance Var [p]
using the squared difference between the two buffers, ∆[p] =
(A(p) − B(p))2/2. This is an unbiased estimate, but it is rather
noisy because it is based on just two samples, that is, the two
buffers. We found that we can improve our results, as illustrated
in Figure 5, by applying an additional smoothing step to the ini-
tial variance estimates ∆[p]. The intuition behind our smoothing
approach is that the empirical sample variances Σ[p] have a struc-
ture similar to the actual pixel variances, but Σ[p] may be strongly
biased. Therefore, we smooth the initial estimates ∆[p] by cross
filtering them with the empirical sample variances Σ[p], that is, we
compute NL-Means filter weights using Σ[p] and apply them to fil-
ter ∆[p]. We illustrate the process in Figure 6.

To obtain the filter weights we also need the variance of Σ[p], which
we compute as the difference between Σ[p] from buffers A and B.
We compute pixel distances as in Equation 4, but using Σ and its
variance estimate. Because the variance estimate for Σ is noisy,
we set α = 4 in Equation 4 to discard all differences lower than
two standard deviations. We use a small neighborhood with r = 1,
a patch size of f = 3, and k = 0.45. The small neighborhood
ensures that the variance peaks, which are aligned with the outliers
pixel values, are preserved. Since the filtering tends to increase
the variance estimate of pixels neighboring noisy regions, we also
clamp the filtered value of ∆[p] so that it does not exceed Σ[p].

3.1.3 Symmetric Distance

Our symmetric distance computation is designed to improve the
filtering of smooth gradients. Because the original NL-Means for-
mulation tends to constrain the filter to neighbors orthogonal to the
gradient direction, as we illustrate in Figure 7, it often results in
distracting artifacts in otherwise smooth gradients. Our extension
builds on the observation that, in a smooth gradient, all pixel differ-
ences are radially symmetric with respect to the center pixel. The
error introduced by the contribution of a given neighbor is canceled
by the contribution of the radially symmetric neighbor. We exploit
radial symmetry in the signal by defining a modified distance to a
pair of symmetric neighbors q1 and q2,

d2i (p, q̄) =
(ui(p) − ui(q̄))

2 − (Vari[p] + Vari[p, q̄])

Vari[p] + Vari[q̄]
, (6)

(a) Sample variance Σ[p] (b) Buffer variance ∆[p]

(c) Filtered ∆[p], used as Var [p] (d) Reference

Figure 6: Estimating Var [p]. We use the sample variance Σ[p]
(a) to cross-filter the inter-buffer variance ∆[p] (b), an unbiased
but very noisy estimate of the true variance. The resulting filtered
variance (c) is our estimate for Var [p]. It is a reasonable approxi-
mation of the reference variance (d) as computed over 100 images.

where

ui(q̄) = (ui(q1) + ui(q2))/2,

Vari[q̄] = (Vari[q1] + Vari[q2])/4,

Vari[p, q̄] = (Vari[p, q1] + Vari[p, q2])/4.

Note that Vari[q̄] is half the mean variance of pixels q1 and q2, since
the effective sampling rate doubles when we compute ui(q̄). Using
these squared symmetric distances we compute the corresponding
symmetric weight w(p, q̄) as before.

In practice we always compute the asymmetric distances to both
q1 and q2 as in Equation 4 and the corresponding weights w(p, q1)
and w(p, q2), in addition to the symmetric weight w(p, q̄). Only if
the symmetric weight is larger the sum of both asymmetric weights,
we set both w(p, q1) and w(p, q2) to w(p, q̄). Otherwise we keep
the asymmetric weights. This prevents the use of the symmetric
weights if we do not have enough confidence in the symmetry of
the data.

3.2 Error Estimation

The error in the filtered image consists of residual variance and bias
introduced by the filtering. An analytical error analysis of the NL-
Means filtered output, however, is rather complicated because the
filter weights are both noisy and correlated with one another. In-
stead, we directly estimate the error as the squared relative differ-
ence between the two filtered buffers Â and B̂. We use the relative
difference to prevent overweighting differences in bright image re-
gions. We estimate the error E separately for each buffer (for sim-
plicity we omit the buffer index from the notation). The error of the
filtered buffer Â is

E =
(Â− B̂)2

ε+ Â2
,

where ε = 10−3 is an offset to prevent divisions by 0. Note that
our estimate accounts for variance but not bias in the error. We do
not attempt to estimate bias because the NL-Means filter tries to
avoid bias by design. In Figure 8 we compare our estimated error
to the ground truth error, that is, the relative squared distance to
the reference image. Our estimate captures the main features of the
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Figure 7: A noisy ramp (top left), filtered using the standard NL-
Means filter (middle column) and our extended filter including sym-
metric distances (right column). The corresponding filters for the
center pixel are shown in the bottom row. The standard filter is con-
strained to neighbors orthogonal to the gradient direction, while
our extended variant has a much larger effective support. The filter
parameters are r = 10, f = 3, and k = 0.45.

ground truth error, but may miss some small image details that are
smoothed out in both buffers. These details can only be resolved
with a larger number of samples per pixel.

Because we use the error estimation in the next sampling step to
guide the distribution of samples, we additionally weight it accord-
ing to the potential error reduction obtained by adding a single sam-
ple in each pixel. Given that the pixel variance is inversely propor-
tional to the number of samples, adding one sample to a pixel p
will decrease the variance by a factor of 1/(1 + np), where np is
the number of samples already contributing to the filtered value of
p. The new sample will also contribute to the pixels in the neighbor-
hood of p, whose filter weights include p. Consequently, the error
weight of an additional sample in p is

W (p) =

∑
N(p) w(p, q)

1 + np
,

and the weighted error of p is simply W (p)E(p).

3.3 Sampling

We allocate an equal fraction of the total sample budget to each
iteration. We split the number of samples in each iteration evenly
over the two image buffers and distribute samples according to the
same desired per-pixel sample density in each buffer. We represent
the desired sample density using a sampling map that specifies for
each pixel the number of additional samples to draw.

For the initial iteration we use a uniform sampling density. For the
subsequent iterations we obtain the sampling map as follows. We
sum the weighted error maps of both buffers, and smooth it using
a small Gaussian kernel with σ = 0.8. This smoothing step allows
pixels that missed a rare event (for instance a fast moving object),
to still be sampled if their neighbors recorded the event, effectively
filling holes in our sampling map. We then normalize the sampling
map to sum up to N/2, where N is the sample budget per iteration,
which gives us the number of samples to be drawn per pixel. Fi-
nally, we clamp the per-pixel sample count to a predefined value to
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Figure 8: Comparison of our error estimation using the relative
squared difference between the two filtered buffers and the relative
squared difference to the reference image, using uniform distribu-
tions of 32 samples per pixel.

prevent pixels with very large errors from draining too many sam-
ples. For each pixel, we use the fractional part of the sample count
as the probability of drawing an additional sample. For instance, if
we need to draw 3.2 samples in a pixel, we have a 80% chance of
drawing 3 samples, and a 20% chance of drawing 4 samples. The
rounding error is propagated from pixel to pixel, to ensure that the
overall average is maintained.

We show the sample density maps obtained with our algorithm for
a set of test scenes in Figure 9. This figure also shows ground truth
sample density maps obtained using ground truth error maps, that
is, the relative squared difference to a reference image. The density
maps are similar in both cases, but the MSE is lower when driv-
ing the sampling using the ground truth error. We presume this is
because the ground truth error captures the bias introduced by the
filtering, while our estimation does not.

4 Implementation

We integrated our algorithm in the PBRT [Pharr and Humphreys
2010] framework. We implemented a dual-buffered film interface,
along with a new sampler and denoiser. The renderer of PBRT was
also modified to perform sampling over multiple iterations. We ac-
celerate NL-Means filtering by exploiting the fact that all operations
on pixel patches amount to averaging per-pixel values over a patch.
This averaging could be performed in constant time using summed
area tables [Liu et al. 2008], or in linear time using separable box
filters. We use a box filter for numerical stability. Consequently,
the cost of our implementation is mostly driven by the filter win-
dow size, while the patch size has a negligible impact. This brings
the cost of the filter in line with that of a bilateral filter. Given the
embarrassingly parallel nature of the filter, we ported it to CUDA
to further improve performance. We suffer some overhead due to
data transfer between the CPU and the GPU at each iteration, but
this could be eliminated by using the NVIDIA OptiX [Parker et al.
2010] framework instead of PBRT to do the raytracing.

Our weighted error estimation, which we use to drive the adaptive
sampling, assumes that the bias introduced by our filter is negligi-
ble. To minimize the amount of bias, we use a very conservative
filter to drive sampling, and a more aggressive one for final re-
construction. During the iteration we use parameters r = 7 and
α = 0.5 in Equation 4. For final reconstruction we use r = 10
and α = 1. In both cases we use f = 3 and k = 0.45. To en-
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Figure 9: Sampling density maps with 32 samples per pixel on
average. The top row shows maps obtained by driving the sampling
with the squared difference to the reference image. The bottom row
shows maps obtained with our estimated error. We list MSE values
of the corresponding renderings under each image.

sure that our reconstruction of pixel values accounts for the sharply
varying sample densities across image edges, we use a subpixel
grid and simple push-pull filtering to fill subpixel holes, similarly
as proposed by Rousselle et al. [2011].

5 Results

We evaluate our algorithm on a set of five test scenes and com-
pare our results to the algorithm proposed by Rousselle et al. [2011]
(ASR), and unfiltered uniform low-discrepancy sampling (LD). Our
test machine is a dual 4-core XEON system at 2.50GHz, with 8GB
of RAM, and a GeForce GTX580 GPU. All three methods are im-
plemented on top of PBRT, using 8 threads. For the ASR algorithm
we use the settings suggested in the original paper. For our algo-
rithm we use four iterations, one with uniform sampling followed
by three with adaptive sampling, and the parameters mentioned in
Section 4. Each iteration is assigned one fourth of the total sample
budget. We report the relative mean squared error (MSE), but also
provide the perceptually based structural similarity (SSIM) [Wang
et al. 2004] with respect to the reference in Table 1. The MSE is
computed directly on the high-dynamic range data, while the SSIM
is computed on tone-mapped images. Our tone mapping is a sim-
ple gamma correction, using γ = 2.2, followed by clamping to the
range [0, 1].

Renderings of our five test scenes are shown in Figure 14. We
performed equal rendering time comparisons to account for the
overhead of each method. We rendered all scenes at a resolution
of 1024 × 1024 pixels. The “killeroos” scene illustrates the effi-
ciency of our method for relatively low-dimensional cases includ-
ing motion blur and area lighting. Our use of low-discrepancy sam-
ples coupled with the anisotropy of our filter provides a significant
improvement over the ASR algorithm. The “plants-dusk” scene
features environment lighting and depth of field. In the focused
grass region shown in the close-up, the ASR algorithm produces
an overly blurry image and increases the MSE compared to uni-
form low-discrepancy sampling, illustrating the limitation of the
isotropic filters used in ASR. Our method, on the other hand, pre-
serves the small anisotropic features while further removing some
of the residual noise. The “sibenik” scene illustrates the case of a

r = 10 r = 20 r = 30

MSE: 2.292E-3 MSE: 1.809E-3 MSE: 1.722E-3

Figure 10: Filtering of the “conference” scene using varying filter
window sizes. With a smaller window size, the spike contributions
to their neighborhoods are not sufficiently spread out, yielding a
higher MSE.

moderately noisy scene. It is path-traced and features area lighting,
depth of field, and single-bounce indirect illumination. The ASR
algorithm gives very good results in smooth regions of the scene,
but has difficulties handling noise along the many sharp edges. Our
method gives similar results in smooth regions, but is much more
effective at resolving sharp edges. The “conference” scene high-
lights the robustness of our method to severe noise. To this end
we rendered the scene using a path-tracer, even though it would be
appropriate in practice to use a more sophisticated rendering algo-
rithm that produces less noise in the first place. The scene features
single-bounce indirect illumination and moderately glossy materi-
als. The ASR method cannot reliably select the appropriate band-
width in the presence of such high levels of noise, which leads
to jarring filtering artifacts, while our method can still produce a
pleasing image with few obvious artifacts. Also, the ASR algo-
rithm tends to suppress noise spikes, producing darker patches on
the top of the table. In contrast, our dual-buffered strategy, which
decorrelates the filter weights from the noise, maintains the correct
luminance by smoothing spikes instead of suppressing them. To
ensure that the contribution of spikes was sufficiently distributed,
we increased the filter window size to r = 20 for this scene (in-
stead of r = 10 for the others). We show renderings of this scene
using other window sizes in Figure 10. The “sanmiguel” scene il-
lustrates the behavior of our method with highly complex scenes.
It is path-traced and features environment lighting, single-bounce
indirect illumination, and complex textured geometry. Here again,
our algorithm significantly improves upon the results of the ASR
algorithm. Noisy features in particular, such as the chandelier in
the inset, are much better preserved by our algorithm. We also pro-
vide additional results including comparisons to reference images
in the supplemental material with this submission.

The computational overhead of our method is largely dominated by
the cost of the filtering step. For each iteration, we filter the pixel
variance, and we cross filter the two image buffers. The pixel vari-
ance is filtered with r = 1, while the image buffers are cross filtered
using either r = 7 (for the intermediate iterations), or r = 10 (for
the final iteration). The total filtering cost over the four iterations
amounts to 8.5s (1.9s per intermediate iteration, and 2.8s for the
final iteration). For the “conference” scene we use r = 20 to cross-
filter the buffers during the final iteration, which increases the total
filtering cost to 16.5s, the final iteration taking 10.8s. For our sim-
plest test scene, “sibenik”, the overall overhead of our method rep-
resented less than 10% of the total rendering time, while reducing
the MSE by a factor of 8.6 compared to standard low-discrepancy
sampling.

We also provide convergence plots for standard low-discrepancy
sampling with no filtering (LD), the ASR algorithm, and our own
method in Figure 13. For our method we provide convergence plots
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Figure 11: Filtering of a uniformly sampled image with 16 samples
per pixel, using two patch sizes, f = 0 and f = 3. By setting
f = 0, we obtain the same behavior as the bilateral filter, minus the
spatial component of its distance computation. In both cases, we set
k = 0.45 and r = 10. The smaller patch size is not sufficient to
compute robust pixel distances, leading to a significantly degraded
image.

using both adaptive sampling and uniform sampling. Our method
consistently yields the lowest MSE value. The gain of adaptive
sampling depends on scene complexity. In scenes such as the “con-
ference” scene, where noise can be filtered out effectively over large
regions, the adaptive sampling offers a marked improvement. The
“killeroos” scene is similar, where noise is restricted to limited re-
gions that the adaptive sampler targets extensively. On complex
scenes such as the “sanmiguel” scene, too many features need to be
sampled, negating any potential gain of the adaptive sampling.

In Figure 11, we show the impact of the patch-based distance com-
putation of the NL-Means filter. To isolate the impact on the filter-
ing, we used uniform sampling, instead of adaptive sampling. By
setting the patch size parameter to f = 0, we get the same behavior
as the bilateral filter, minus the spatial component of its distance
computation. The resulting image has significantly more residual
variance and bias because of the unreliable distance estimates than
when setting f = 3, which is the value we use for all other results.

To illustrate the need for the per-pixel variance estimate used in
our formulation of the NL-Means filter, we show in Figure 12 the
result of filtering the “sibenik” scene (uniformly sampled using 32
samples per pixels) with a uniform variance estimate for all pixels in
the image. In this case, we used the mean pixel variance (computed
over the entire image) to guide the filtering. As expected, some
regions are then correctly filtered, while others are over- or under-
filtered. Some other value may yield a better result, but it would
have to be hand-tuned and there would always remain an implicit
trade-off between over- and under-filtered regions.

Temporal Coherence Temporal coherence is an important con-
cern when considering video sequences, since inconsistencies be-
tween frames will produce flickering artifacts. For unfiltered video
sequences these artifacts appear as fine grained temporal noise, but
filtered sequences can produce disturbing flickering artifacts be-
cause of low-frequency errors. These affect large image patches
and are very noticeable. We greatly mitigate these low-frequency
artifacts by using a straight-forward space-time extension of the
NL-Means filter [Buades et al. 2008], which simply extends a pixel
neighborhood to also include pixels from adjacent frames. Inter-
pixel distances are still computed over spatial patches centered on
the respective pixels, but the extended neighborhood leverages the
full spatio-temporal data set and increases temporal coherence. For
results showcasing the spatial and space-time filtering approaches,
we refer the reader to our supplemental material, which include
video sequences of the “conference” and “sanmiguel” scenes. The
“conference” sequence in particular illustrates the issue of low-

uniform per-pixel
variance variance reference

MSE: 4.248E-3 MSE: 1.260E-3

Figure 12: Filtering of the “sibenik” scene (uniformly sampled us-
ing 32 samples per pixels) with the standard NL-Means formulation
which assumes a uniform variance across the image (left column)
and our own formulation which uses per-pixel variance estimates
(middle column). The reference rendering is given in the right col-
umn. While filtering using a uniform variance estimate (the mean
pixel variance over the image in this case) works for some regions,
many end up over- or under-filtered.

frequency flickering, which is very striking using spatial filter-
ing, and significantly reduced by the space-time filtering extension.
However, at the chosen sample rate, the low-frequency flickering
is still very noticeable, even using space-time filtering. We believe
there is room for further improvement of the temporal filtering, and
this would be a fruitful avenue for future work.

Discussion and Limitations. The efficiency of our adaptive
sample distribution is quite dependent on the accuracy of the pixel
statistics. For scenes featuring moderate to high noise levels, we
found it preferable to use a larger set of samples in the first itera-
tion. This lead us to our current approach of distributing evenly the
sampling budget over each iteration. Still, for the “killeroos” and
“plants-dusk” scenes, rendered using only 16 samples per pixel,
each buffer has only two samples per pixel after the first iteration,
illustrating our method’s robustness to sparsely sampled data. The
main limitation of our method is its image-based nature. While
this offers some compelling computational advantages, it limits the
adaptivity of both the sampling and the filtering. Overlapping el-
ements with different anisotropy should be processed with differ-
ent filters, which our method cannot accommodate. Similarly, we
rely on brute force sampling, which can be highly inefficient when
noise comes from a small subset of the sampling domain. Our
variance estimation for low-discrepancy samples offered significant
improvements for all of our test scenes compared to random sam-
pling. Nevertheless, it could be made more accurate to better han-
dle scenes with very high frequencies, or sharp spikes of noise. In
particular, we drive the cross filtering in part using a very noisy esti-
mate of the variance of the pixel variance computed using only two
samples, the two buffers’ pixel variance estimates. We believe that
an estimation based on the sample distribution kurtosis may lead
to a more robust filtering. In the presence of strong noise spikes,
we need to use a large filter window to spread out the spike contri-
bution which can lead to an increased bias. Since noise spikes are
often due to indirect light, it should be beneficial to filter separately
the direct and indirect illuminations, using a larger filter only for
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Figure 13: Convergence plots for some of the scenes of Figure 14. For our method, we show the convergence using adaptive sampling (solid
line), and uniform sampling (dashed line). In all scenes, our method consistently improves upon the ASR algorithm. The gain of adaptive
sampling with our method is constrained by the scene complexity. For the “conference” scene, the MSE of the LD method is too high to
appear on the plot.

Table 1: Perceptual quality, measured using the SSIM metric, for
images of Figure 14. Values range from 0 to 1000, where 1000
indicates a perfect match with the reference. The SSIM metric is
based on tone-mapped images using gamma correction (γ = 2.2)
and clamping to the range [0, 1]. The LD column uses uniform low-
discrepancy sampling with no filtering. The ASR column uses the
method proposed by Rousselle et al. [2011] with adaptive random
sampling. The OUR column uses our method with adaptive low-
discrepancy sampling.

Scene LD ASR OUR

Full Inset Full Inset Full Inset
killines 961 853 993 956 997 987
plants-dusk 971 962 990 912 996 975
sibenik 650 650 935 912 969 956
conference 523 416 914 877 970 963
sanmiguel20 755 532 844 793 891 863

the indirect illumination.

6 Conclusions

We described a robust and versatile adaptive method for Monte
Carlo rendering. Our work offers a significant improvement over
the previous state of the art in terms of both numerical error and vi-
sual quality. The two key characteristics of our method are its pow-
erful non-linear filter, which can adapt to the anisotropy in the im-
age, and its ability to process samples drawn from low-discrepancy
sequences, whereas previous work was limited to samples drawn
from a random distribution. The main limitation of our method,
inherent to its image-space nature, is that it relies on brute force
sampling to resolve noise, which is highly inefficient when useful
light paths are difficult to find. It would be interesting to experi-
ment with more robust sampling methods, such as Metropolis Light
Transport [Veach and Guibas 1997]. Another venue of research
would be to extend our adaptive sampling to the time domain in or-
der to directly process animations, instead of individual frames. We
could also augment the distance computation by comparing both the
pixel mean and the pixel sample variance, which may improve the
robustness of the filtering for low-contrast regions where the pixel
mean provides insufficient constraints. Similarly, we could aug-
ment the distance computation by leveraging each sample’s normal,
depth, etc. In order to extend our approach to interactive render-
ing, we could make use of the new filter introduced by Gastal and
Oliveira [2012] which can very efficiently approximate the results
of the NL-Means filter, and therefore should be possible to integrate
within our framework.
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OUR LD ASR OUR REFERENCE

killeroos 22 spp (108s) 15 spp (108s) 16 spp (105s) 32000 spp
Full: 0.907E-3; Inset: 18.548E-3 Full: 0.291E-3; Inset: 4.994E-3 Full: 0.068E-3; Inset: 1.524E-3

plants-dusk 24 spp (139s) 14 spp (145s) 16 spp (139s) 32000 spp
Full: 0.417E-3; Inset: 0.720E-3 Full: 0.290E-3; Inset: 2.233E-3 Full: 0.172E-3; Inset: 0.470E-3

sibenik 37 spp (111s) 27 spp (113s) 32 spp (110s) 32000 spp
Full: 9.287E-3; Inset: 21.203E-3 Full: 2.081E-3; Inset: 5.390E-3 Full: 1.076E-3; Inset: 2.401E-3

conference 140 spp (311s) 126 spp (308s) 128 spp (308s) 256000 spp
Full: 73.532E-3; Inset: 46.348E-3 Full: 6.766E-3; Inset: 4.071E-3 Full: 1.809E-3; Inset: 1.123E-3

sanmiguel 142 spp (619s) 119 spp (625s) 128 spp (616s) 32000 spp
Full: 20.820E-3; Inset: 17.574E-3 Full: 14.353E-3; Inset: 6.668E-3 Full: 8.761E-3; Inset: 4.251E-3

Figure 14: Renderings using a variety of methods. Non-filtered uniform low-discrepancy sampling (LD); adaptive random sampling and
filtering as proposed by Rousselle et al. [2011] (ASR); our method with adaptive low-discrepancy sampling (OUR). The last column shows
nearly converged renderings using uniform sampling (REFERENCE). All results for a given scene have an equal rendering time, to account
for each method overhead. For the conference scene, we use a larger filtering window (r = 20 instead of r = 10), to ensure the noise spikes
are sufficiently spread out. The MSE values are listed under each image and the corresponding SSIM values are given in Table 1.


