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ABSTRACT

Image denoising methods have been implemented in both spatial and
transform domains. Each domain has its advantages and shortcom-
ings, which can be complemented by each other. State-of-the-art
methods like block-matching 3D filtering (BM3D) therefore com-
bine both domains. However, implementation of such methods is
not trivial. We offer a hybrid method that is surprisingly easy to
implement and yet rivals BM3D in quality.

Index Terms— image denoising, bilateral filter, wavelet shrink-
age, short-time Fourier transform

1. INTRODUCTION

The classic image denoising problem is the reconstruction of an im-
age that has been degraded by addition of Gaussian white noise.
There are two main classes of image denoising methods: one op-
erates in the spatial domain, the other in a transform domain. The
bilateral filter [1] and the non-local means filter [2] are examples of
methods which define the filter kernel in the spatial domain. They
preserve features like edges, but have difficulties preserving low-
contrast details. On the other hand, wavelet thresholding and shrink-
age methods operate in a transform domain and excel in preserving
details like textures, but suffer from ringing artifacts near edges.

Thus, a hybrid approach is taken by recent works. BM3D [3],
shape-adaptive BM3D (SA-BM3D) [4], and BM3D with shape-
adaptive principal component analysis (BM3D-SAPCA) [5], sorted
by increasing denoising quality, are considered state-of-the-art.
These are sophisticated methods which pay for the high quality with
implementation complexity [6]. While producing numerically good
results, the methods are not yet perfect [7, 8, 9]. They are based on
block matching, which introduces visible artifacts in homogeneous
regions, manifesting as low-frequency noise.

We propose a method that is competitive in quality with BM3D,
but is much simpler to implement. We combine two popular filters
for the two domains. For the spatial domain, we use the bilateral
filter, and for the transform domain we use the short-time Fourier
transform (STFT) [10] with wavelet shrinkage. The bilateral filter
is known for its edge-preserving properties. It retains high-contrast
features like edges, but cannot preserve low-contrast detail like tex-
tures without introducing noise. STFT wavelet shrinkage on the
other hand results in good detail preservation, but suffers from ring-
ing artifacts near steep edges. We combine these two classic methods
to produce a new one which denoises better than when used sepa-
rately. Apart from operating in different domains, the bilateral filter
and the STFT shrinkage are very alike; hence, we call our method
dual-domain image denoising (DDID). The resulting algorithm is
described in section 2, followed by implementation details including
MATLAB code in section 3. Results are then presented in section 4,
and section 5 concludes our exposition.

2. ALGORITHM

In this section, we describe our iterative dual-domain algorithm. The
goal is to estimate the original image x from a noise-contaminated
image y = x + η with a stationary variance σ2 = Var [η]. We ob-
serve that spatial domain methods excel at denoising high-contrast
images while transform domain methods excel at low-contrast im-
ages. We therefore separate the image into two layers, and denoise
them separately. The bilateral filter is appropriate for this decom-
position, finding applications in detail enhancement [11] and HDR
compression [12]. The high-contrast layer is the bilaterally filtered
image, and the low-contrast layer is the residual image. Since the
high-contrast image is already denoised, it only remains to de-
noise the low-contrast image in the transform domain using wavelet
shrinkage. The original image can thus be approximated by the sum
of the two denoised layers as

x̃ = s̃+ S̃, (1)

where s̃ and S̃ are the denoised high- and low-contrast images.
The above procedure only denoises a single amplitude band.

The bilateral filter protects large amplitudes of the signal, while
wavelet shrinkage discards small amplitudes. As we will see in 2.5,
only the signals with amplitudes in between are denoised. We there-
fore denoise all amplitudes from large to small by iterating. Starting
with the noisy input y, we use the denoised result of an iteration to
guide the subsequent iteration. In the following three sections, we
describe the steps for a single iteration: bilateral filter in 2.1, domain
transform in 2.2, and wavelet shrinkage in 2.3. Finally, we extend
the algorithm to color images in 2.4 and provide a discussion in 2.5.

2.1. Spatial Domain: Bilateral Filter

In the first step, we calculate the denoised high-contrast value s̃p for
a pixel p using a joint bilateral filter [13]. Our joint bilateral filter
uses the guide image g to filter the noisy image y. We define the
bilateral kernel over a square neighborhood window Np centered
around every pixel p with window radius r. Since we want to guide
not only the bilateral filter but also the wavelet shrinkage, we filter
both guide and noisy images in parallel and obtain the two denoised
high-contrast images

g̃p =

∑
q∈Np kp,q gq∑
q∈Np kp,q

(2)

s̃p =

∑
q∈Np kp,q yq∑
q∈Np kp,q

(3)

where the bilateral kernel is

kp,q = e
− |p−q|

2

2σ2s e
− (gp−gq)2

γrσ2 . (4)

The parameters σs and γr shape the spatial and range kernels re-
spectively.



2.2. Domain Transform

In the second step, we prepare for the wavelet shrinkage in the trans-
form domain (section 2.3) by extracting the low-contrast signals and
performing the STFT. We obtain the low-contrast signals by sub-
tracting the bilaterally filtered values g̃p and s̃p from gp and yp, fol-
lowed by multiplication with the range kernel of Equation 4. The
STFT is a discrete Fourier transform (DFT) preceded by multipli-
cation of the signal with a window function to avoid boundary arti-
facts [10]. We choose the spatial Gaussian of the bilateral kernel as
the window function, and the entire step becomes a Gabor transform
of the low-contrast signal. To transition to the frequency domain,
we perform a non-unitary DFT. The resulting coefficients Gp,f and
Sp,f are defined for frequencies f in the frequency window Fp with
the same size asNp. Assuming that the bilateral kernel kp,q is noise-
free, the variance σ2

p,f of the noisy Fourier coefficients and the coef-
ficients themselves are

σ2
p,f = σ2

∑
q∈Np

k2p,q (5)

Gp,f =
∑
q∈Np

e−i2π(q−p)·f/(2r+1) kp,q (gq − g̃p) (6)

Sp,f =
∑
q∈Np

e−i2π(q−p)·f/(2r+1) kp,q (yq − s̃p). (7)

The signal modifications prior to the DFT resemble shape-adaptive
methods [4, 5, 14]. These methods fit a kernel in the shape of a
polygon to locally homogeneous regions. However, a bilateral fil-
ter is simpler to implement and actually more adaptive to the signal.
Shape-adaptive methods also subtract the mean of the signal to keep
the remaining signal balanced around 0. Our observation is that sub-
tracting the bilaterally filtered value is a better choice.

2.3. Frequency Domain: Wavelet Shrinkage

In the last step, we shrink the noisy Fourier coefficients Sp,f . We
use shrinkage factors similar to the range kernel of the bilateral filter
in Equation 4. The range kernel is designed to retain the near zero-
mean noise and to discard the bias inducing signal. For the wavelet
shrinkage factors Kp,f , we want the opposite: we keep the signal
and discard the noise, so we take the reciprocal of the normalized

Euclidean distance
σ2
f

|Gp,f |2
. The return to the spatial domain is fast,

as we are only interested in the value at the center pixel p. The non-
unitary inverse DFT over the frequency domain Fp is simply the
mean of all shrunk wavelet coefficients, yielding the low-contrast
value

S̃p =
1

|Fp|
∑
f∈Fp

Kp,f Sp,f (8)

where the wavelet shrinkage factors are

Kp,f = e
−
γfσ

2
p,f

|Gp,f |2 . (9)

Like the bilateral kernel kp,q , the shrinkage factors Kp,f are defined
using the spectral guide Gp,f , and the wavelet shrinkage parameter
γf plays a similar role as the bilateral range parameter γr .

2.4. Color Images

For color images, we make two modifications to the algorithm.
Firstly, we filter in YUV-space using an orthogonal transformation

similar to other methods [3, 15]. While the transformation does not
need to be strictly orthogonal, having row vectors with unit length
has the advantage that variances do not change. Secondly, in the
range kernel of the bilateral filter in Equation 4, we calculate the nor-
malized Euclidean distance (gp−gq)2

σ2 as the sum of the normalized
distances of all channels. However, the STFT wavelet shrinkage is
performed for every channel independently.

2.5. Discussion

We can gain an intuition about the collaboration of the two domains
by denoising a 1D signal. We specify the input as a rectangular func-
tion modulated with a sine wave, to which Gaussian white noise was
added. Figure 2 illustrates the intermediate steps in the spatial and
frequency domain for the first two iterations. The first bilateral filter
step uses a large range parameter γr . This retains the large steps of
the rectangle, but smoothens the rest of the signal. The following
STFT step recovers the previously lost detail without being affected
by the edges of the rectangle. The filtered signal is fed as a guide
to the second iteration step, which uses a smaller range parameter.
This time, the bilateral filter keeps the recovered edges from the pre-
vious STFT step. Although the first STFT step reintroduced ringing
artifacts, the bilateral filter recognizes them as noise and filters out.
The second STFT step reinforces the detail features in the center
but does not bring back the ringing. As observed, the joint bilateral
filter has the power to “heal” ringing artifacts caused by the wavelet
shrinkage of the preceding iteration; this phenomenon has previously
been exploited by Yu et al. [16]. Figure 3 shows the evolution of the
guide signal gp over three iterations. With every iteration, the noise
decreases, while only little bias is introduced. Figure 4 shows aver-
aged plots over 200 denoised signals. They demonstrate that DDID
avoids noisy ringing artifacts typical to STFT with Wiener filter.

Note that in the algorithm, the two filtering steps look similar.
In both domains we measure meaningful coefficients yq and Sp,f ,
which are then weighted with factors kp,q and Kp,f using the noise
statistics of the coefficients. Both filtered values s̃p and S̃p are es-
sentially dot products. The main difference is that the first step is
responsible for denoising high-contrast features and is thus a condi-
tion to the second step for denoising low-contrast features.

3. IMPLEMENTATION

The implementation of our algorithm is straightforward. The equa-
tions from section 2 directly translate to MATLAB code in Listing 1.
We iterate three steps, as we did not observe any improvement be-
yond that. For the three iterations, we use empirically found bilateral
range parameters γr = {100, 8.7, 0.7} and wavelet shrinkage pa-
rameters γf = {4.0, 0.4, 0.8}. We set the window radius to r = 15,
and the spatial kernel of the bilateral filter is specified by σs = 7.
In theory, the Fourier coefficients Sp,f in Equation 8 are conjugate
symmetric and Kp,f is symmetric which makes S̃p real. In practice,
due to numerical errors, S̃p may become complex, in which case we
drop the imaginary part.



function x = DDID(y, sigma2)
x = step(y, y, sigma2, 15, 7, 100, 4.0);
x = step(x, y, sigma2, 15, 7, 8.7, 0.4);
x = step(x, y, sigma2, 15, 7, 0.7, 0.8);

end

function xt = step(x, y, sigma2, r, sigma_s, gamma_r, gamma_f)

[dx dy] = meshgrid(-r:r);
h = exp(- (dx.^2 + dy.^2) / (2 * sigma_s^2));
xp = padarray(x, [r r], ’symmetric’);
yp = padarray(y, [r r], ’symmetric’);
xt = zeros(size(x));

parfor p = 1:numel(x), [i j] = ind2sub(size(x), p);

% Spatial Domain: Bilateral Filter
g = xp(i:i+2*r, j:j+2*r);
y = yp(i:i+2*r, j:j+2*r);
d = g - g(1+r, 1+r);
k = exp(- d.^2 ./ (gamma_r * sigma2)) .* h; % Eq. 4
gt = sum(sum(g .* k)) / sum(k(:)); % Eq. 2
st = sum(sum(y .* k)) / sum(k(:)); % Eq. 3

% Fourier Domain: Wavelet Shrinkage
V = sigma2 .* sum(k(:).^2); % Eq. 5
G = fft2(ifftshift((g - gt) .* k)); % Eq. 6
S = fft2(ifftshift((y - st) .* k)); % Eq. 7
K = exp(- gamma_f * V ./ (G .* conj(G))); % Eq. 9
St = sum(sum(S .* K)) / numel(K); % Eq. 8

xt(p) = st + real(St); % Eq. 1
end

end

Algorithm 1: MATLAB code of Dual-Domain Image Denoising.
This code reproduces all grayscale images in this paper.

4. RESULTS

The implementation of our algorithm produces competitive results.
Table 1 compares the peak signal-to-noise ratio (PSNR) of DDID
and BM3D for all the BM3D test images*. We chose σ = 25 (PSNR
= 20.17 dB) as the standard deviation of the noise. Numerically,
BM3D and DDID show comparable denoising quality.

Figure 1+ demonstrates that low-frequency noise present in
BM3D images is absent in DDID images. Figure 5 shows another
strength of DDID. The error comparison shows that DDID has
smaller errors than BM3D for hair texture. BM3D on the other hand
works well for edge-like structures as found in architecture or in the
blue ridges in the cheeks of the mandrill.

Figure 6 studies noise induced artifacts. Random noise can gen-
erate patterns which can be confused as signal. DDID and BM3D-
SAPCA retain the wavy patterns in the noise, while BM3D smoothes
them away. The latter should be considered a mistake as on other
occasions the pattern could indeed have been a valid signal. Re-
call that our method is much simpler than BM3D and especially
BM3D-SAPCA, which extends BM3D by additional shape-adaptive
and PCA steps.

In MATLAB, denosing a grayscale image with 256×256 pixels
and a window size of 31×31 using a single core of a Intel Xeon 2.67
GHz takes 70 seconds. The bottleneck is the transition from spa-
tial to frequency domain. If this transition was a pure Gabor trans-
form, we could exploit sliding window techniques [17] to update the
Fourier coefficients incrementally. However, since the signal is mul-
tiplied by an arbitrary range kernel, we need a per-pixel FFT with
complexity O(N2 logN). Thus, we implemented a C version using
the FFTW library, which shortened the time to 40 seconds. Since
the pixels are mutually independent, we achieved linear scalability
using dual quad-core CPUs, reducing the time to 5 seconds. Finally,

GRAYSCALE DDID BM3D

Barbara 30.80 30.72
Boats 29.79 29.91
Cameraman 29.46 29.45
Couple 29.56 29.72
Finger Print 27.32 27.70
Hill 29.71 29.85
House 32.66 32.86
Lena 32.14 32.08
Man 29.62 29.62
Montage 32.61 32.37
Pepper 30.26 30.16

COLOR DDID BM3D

Baboon 26.17 25.95
F-16 32.88 32.78
House 32.69 33.03
Kodak 1 29.09 29.13
Kodak 2 32.29 32.44
Kodak 3 34.55 34.54
Kodak 12 33.46 33.76
Lake* 28.85 28.68
Lena 32.30 32.27
Pepper 31.25 31.20
Tiffany* 32.49 32.23

Table 1: PSNR (dB) comparison between DDID and BM3D for
noise with standard deviation σ = 25. Better results are in bold.

our GPU implementation on an NVIDIA GeForce GTX 470 cut the
time down to one second.

5. CONCLUSIONS

We have presented an image denoising method that is simple to im-
plement, yet achieves competitive results with sophisticated state-
of-the-art methods. Our method denoises 1D and 2D signals effec-
tively and we expect straightforward extension to higher dimensions.
Furthermore, our algorithm exhibits interesting properties, notably a
hierarchy of signals, parallels between the guide and noisy images,
and symmetry in the spatial and frequency domains. We believe that
by studying simpler methods, we can gain new intuition to make
progress. The simplicity of our method is an invitation to further
exploration, ultimately leading to better understanding of image de-
noising.

*Lake and Tiffany are not part of the BM3D test images. They are taken
from the SIPI image database like most of the BM3D test images.

+Thanks to Alessandro Foi for allowing us to include the Montage image.

Original Noisy Image (20.17 dB)

DDID (32.61 dB) BM3D (32.37 dB)

Fig. 1: DDID has less low-frequency noise than BM3D.



Iteration 1: Bilateral only Iteration 1: Bilateral + STFT Iteration 2: Bilateral only Iteration 2: Bilateral + STFT

Fig. 2: Intermediate steps of first two iterations of denoising. The bilateral filter and STFT shrinkage cooperate in alternation to denoise the
signal. Denoised results in red are compared against the initial noisy signal in black.

Noisy Input (21.50 dB) Iteration 1 (24.58 dB) Iteration 2 (27.67 dB) Iteration 3 (27.84 dB)

Fig. 3: Progression of denoising. The guide signal in red improves every iteration, approximating the original signal in black.
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Fig. 4: Comparison of DDID against STFT with Wiener filter, averaged over 200 signals. STFT has residual noise due to ringing artifacts,
while DDID benefits from using the bilateral mask. Left: red solid and dashed lines denote the expected value with a confidence interval of
one standard deviation. Right: red solid and dashed lines are the squared bias and variance. Black dashed lines are the initial noise variance.
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Fig. 5: Comparison of DDID and BM3D. DDID effectively denoises hair-like structures, while BM3D is stronger for edge-like structures.
Blue regions mark where DDID has lower error than BM3D, yellow and red regions mark the opposite, and green regions mark similar errors.
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Fig. 6: Artifact comparison of DDID, BM3D, and BM3D-SAPCA. Misclassification of noise as signal due to accidently regular patterns is
acceptable and is to be expected. BM3D produces a smooth result, but this would fail in other occasions where the pattern would be a signal.
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