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Figure 1: Our regularized reconstruction for gradient-domain rendering obtains a high-quality image from a noisy base image, the sampled
gradients, and auxiliary features (left). We (right) achieve significantly better images than standard L1 reconstruction (middle). The depicted
features are, from left to right, the vertical and horizontal gradients, normals, texture values, positions and ambient occlusion values.

Abstract
We present a novel algorithm to reconstruct high-quality images from sampled pixels and gradients in gradient-domain render-
ing. Our approach extends screened Poisson reconstruction by adding additional regularization constraints. Our key idea is to
exploit local patches in feature images, which contain per-pixels normals, textures, position, etc., to formulate these constraints.
We describe a GPU implementation of our approach that runs on the order of seconds on megapixel images. We demonstrate
a significant improvement in image quality over screened Poisson reconstruction under the L1 norm. Because we adapt the
regularization constraints to the noise level in the input, our algorithm is consistent and converges to the ground truth.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
Algorithms

1. Introduction

With the ongoing path tracing revolution in the movie indus-
try [KFF∗15], there has been a renewed interest in noise reduc-
tion for Monte Carlo rendering. Monte Carlo algorithms are attrac-
tive because they are conceptually simple, general, and based on
a physical model of light transport. Noise artifacts, however, have
remained a challenge for real world applications. Since the level of
noise is inversely proportional to the square root of the number of
samples per pixel, it is often impractical to eliminate visual artifacts
in a brute force manner.

In this paper we build on gradient-domain rendering techniques,
which sample finite difference image gradients, in addition to the
usual pixel values, and then reconstruct final images by solving a
screened Poisson problem using the sampled gradients and pixels.
Gradient-domain rendering was originally proposed for Metropolis
light transport [LKL∗13], but recently Kettunen et al. [KMA∗15]
and Manzi et al. [MKA∗15] showed that it also significantly re-
duces the error compared to standard (bidirectional) path tracing
at equal computation time. Visual artifacts, however, often remain
even at hundreds of samples per pixel as shown in Figure 1. Even
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if we minimize the L1 error of the screened Poisson reconstruction,
which leads to bias but noticeably better visual quality than unbi-
ased L2 reconstruction, outlier pixels frequently persist.

Here we propose a technique to reduce these artifacts and fur-
ther increase image quality by leveraging auxiliary image space
information such as per pixel normals, albedo, or world space po-
sition. Our main contribution is to exploit these auxiliary image
features to extend and regularize screened Poisson reconstruction.
The basic idea of screened Poisson reconstruction is to find an out-
put image whose pixel values and finite difference gradients are
similar to the corresponding noisy, sampled data that we acquired
during gradient-domain Monte Carlo rendering. Intuitively, outlier
pixels in the reconstructed output appear if both the sampled pixel
value and its surrounding gradients contain outliers that happen to
be in rough agreement. Our regularization avoids these outliers by
adding constraints based on the features. These constraints encour-
age each small patch in the reconstructed output to be similar to a
weighted average of the corresponding feature patches. As shown
in Figure 1, our approach leads to much cleaner results with signif-
icantly lower numerical error.

We present an error analysis in terms of bias and variance that
allows us to study the influence of the parameters of our approach
on the output error, and choose robust parameters in practice. We
also describe a GPU implementation of our extended reconstruc-
tion technique that reduces the overhead of our method to a few
seconds on megapixel images. Our results show a significant visual
and numerical improvement over standard screened Poisson recon-
struction, and we show that our technique is consistent and con-
verges to the ground truth solution with increased sample counts.
In summary, we make the following contributions:

• An extended screened Poisson reconstruction approach for
gradient-domain rendering that leverages feature patches to reg-
ularize the solution.
• An error analysis that reveals the influence of the main parame-

ters of our method on the bias and variance in the output.
• An efficient GPU implementation that runs in a matter of sec-

onds on megapixel images.

2. Related Work

We discuss previous work in gradient-domain rendering and image
space denoising for Monte Carlo rendering.

Gradient-Domain Rendering. The core idea in gradient-domain
rendering is to sample finite difference image gradients in addition
to the usual pixel values. A gradient sample is simply the differ-
ence between the contribution of two light paths that go through
the neighboring pixels. By generating the two paths in a correlated
fashion such that they are as similar as possible, the magnitude of
their differences tend to become much smaller than their individ-
ual contributions. This leads to less noise in the sampled gradi-
ents compared to the conventionally sampled pixels, and screened
Poisson reconstruction yields output images with a higher qual-
ity at equal computation time compared to conventional rendering.
Gradient-domain rendering was proposed in pioneering work by
Lehtinen et al. [LKL∗13] in the context of Metropolis light trans-

port [VG97]. Manzi et al. [MRK∗14] improved the original ap-
proach by proposing more general gradient sampling techniques.
They exploit feature buffers to construct adaptive gradient kernels,
while we use them to regularize screened Poisson reconstruction.
These Metropolis methods adapt the target distribution that is sam-
pled by the Markov chain to include gradients, and to focus more
samples in regions with high gradients. Kettunen et al. [KMA∗15]
demonstrated that, maybe counterintuitively, adapting the sampling
distribution is not necessary to benefit from gradient sampling.
They describe a gradient-domain path tracer that simply obtains
four additional gradient samples for each conventional path con-
structed by a standard path tracer. Their approach consistently out-
performs conventional path tracing in a variety of scenarios at equal
render time. They also present a Fourier analysis that explains the
benefits of gradient sampling and reconstruction under some sim-
plifying assumptions. Manzi et al. [MKA∗15] subsequently de-
scribe a bidirectional gradient-domain path tracer with similar ben-
efits over the conventional approach. While screened Poisson re-
construction under the L2 norm leads to unbiased results with all
these techniques [LKL∗13], they typically advocate the use of the
L1 norm, which introduces bias but improves the visual quality. Yet
even L1 reconstruction suffers from artifacts as shown in Figure 1.

Image Space Denoising for Monte Carlo Rendering. Image
space filtering for Monte Carlo has a long history, but only re-
cently these techniques attracted renewed interest in the research
community and found application in movie production [Ren]. Here
we focus on the most relevant and recent work in image space de-
noising, and we refer to the work by Zwicker et al. [ZJL∗15] for a
more comprehensive survey. A key idea common to the most effec-
tive techniques to date is to use auxiliary per-pixel features, such as
normals, albedo, world space position, etc., to construct the denois-
ing filter. These features are effective because they are highly cor-
related with the output image, but they are usually much less noisy.
Bauszat et al. [BEM11] were some of the first to exploit this idea for
real-time rendering, building on the guided image filter [HST10].
Dammertz et al. [DSHL10] instead perform a fast wavelet trans-
form that considers the feature information. Shirley et al. denoise
motion and defocus blur [SAC∗11] by leveraging the depth buffer.

A number of approaches targeting off-line rendering exploit the
features by using them to define a cross-bilateral filter [ED04].
Sen and Darabi [SD12] propose an information theoretic approach
to deal with noisy features. Li et al. [LWC12] introduced a per-
pixel error estimate based on Stein’s unbiased risk estimator
(SURE) [Ste81] to select the best filter from a filter bank on a per-
pixel basis. Moon et al. [MJL∗13] apply a non-local means filter
(NL-means) [BCM05] guided by a virtual flash image. Rousselle
et al. [RMZ13] combine NL-means filter weights [RKZ12] for the
noisy color image with a cross-bilateral filter on the features, and
they also use SURE over several candidate filters to minimize the
output error. Kalantari et al. [KBS15] employ machine learning to
predict the parameters of a cross-bilateral filter at each pixel based
on image features. Our approach has similarities to Moon et al.’s
techniques based on local weighted regression [MCY14] and linear
prediction [MIGYM15]. While Moon et al. compute local linear
approximations separately, we use local linear models as regular-
ization terms in a global energy minimization setup.
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Sparse Reconstruction. Our approach is also inspired by image
denoising using sparse representations [AEB06], where the idea is
to express the desired output as a weighted sum of prototype signal-
atoms selected from an overcomplete dictionary. Signal reconstruc-
tion is performed by finding its sparsest representation, that is, a
linear combination of signal-atoms consisting of the fewest pos-
sible elements. Sparsity has been shown to effectively regularize
many problems including image denoising, image superresolution,
deconvolution, and many more. In our context, local patches taken
from the feature images around each pixel seem to be a natural
choice as the signal-atoms, because they contain most of the image
structure. Then it is straightforward to extend the screened Poisson
equation by expressing the image as a weighted sum of the atoms,
and solve for the sparsest representation of the image that satis-
fies the constraints on the output pixel values and the gradients.
In our experience, however, this approach did not lead to satisfac-
tory results. Because our images are often contaminated by sparse
outliers, imposing sparsity on the reconstruction from the dictio-
nary is not effective at eliminating the rare outliers. In addition,
sparse reconstruction of mega-pixel images tends to be expensive
even with fast solvers [vdBF08]. Instead, we require that the recon-
structed image, locally over each image patch, should be similar
to a weighted sum of a small number of predetermined basis func-
tions. These local constraints are overdetermined, since there are
more pixels in each local patch than predetermined basis functions.
We assemble the constraints in a global system that leads to an en-
ergy minimization problem that can be solved with the same simple
methods as the original screened Poisson equation.

3. Background

The key idea in gradient-domain rendering is to sample finite dif-
ference gradients between horizontal and vertical neighbor pixels,
in addition to pixel values. The final image is then reconstructed
by solving a screened Poisson equation. Gradient-domain render-
ing is beneficial because sampled gradients typically contain less
noise than sampled pixels. The noise level of high frequencies in
the reconstructed image is then determined by the noise in the gra-
dients, not the noise in the pixels [LKL∗13, KMA∗15]. While
our results in this paper build on the gradient-domain extensions
of (bidirectional) path tracing [KMA∗15, MKA∗15], our approach
is generic and applicable to all existing gradient-domain rendering
techniques [LKL∗13, MRK∗14].

Let us denote the conventional image sampled by a gradient-
domain rendering algorithm, also called the base image, by Ig and
the horizontal and vertical finite difference images by Idx and Idy.
Screened Poisson reconstruction solves for an image I that is most
consistent with both the sampled image Ig and the sampled gradi-
ents Idx and Idy,

I = argmin
Ī

∥∥α(Ī− Ig)
∥∥+∥∥∥∥( Hdx Ī

Hdy Ī

)
−
(

Idx

Idy

)∥∥∥∥ , (1)

where α weights the relative influence of the pixel and gradient
constraints, and Hdx and Hdy denote the horizontal and vertical fi-
nite difference operators. Solving this equation under the L2 norm
leads to unbiased reconstructions, but is susceptible to visual arti-
facts. In practice, the L1 norm leads to more pleasing results, at the

cost of introducing bias. Even with the L1 norm, however, artifacts
occur frequently if the input pixels and gradients are too noisy.

4. Regularized Reconstruction

The goal of our technique is to regularize screened Poisson recon-
struction from Equation (1) to better suppress artifacts even at high
noise levels in the input. The key idea is to leverage feature images
that contain per pixel normals, albedo, position, etc. Intuitively,
we add regularization constraints that push each local patch in the
reconstruction to be similar to a weighted sum of corresponding
patches in the feature images. Since the feature patches are largely
free of noise and outliers, this leads to much cleaner outputs. We
illustrate our feature patch constraints in Figure 2.

At each pixel p, let us denote its patch neighborhood byNp. The
neighborhood consists of s = (2r+ 1)2 pixels, where we call r the
patch radius. Given the feature images, we first construct orthogo-
nal bases for the local feature patches using truncated SVD, as de-
scribed below. Assuming we have m feature bases, we unroll them
and compile them into a matrix Bp ∈Rs×m. In addition, the matrix
Γp ∈ Rs×n selects the s pixels in the local neighborhood Np from
the desired output image Ī, which has n pixels. Our patch constraint
says that the patch of the desired output image, Γp Ī, should be as
similar as possible to the patch itself projected onto the orthogo-
nal basis of the feature patch (multiplication with BT

p ), followed by
back-projection (multiplication with Bp). That is,∥∥∥Dp · (BpBT

p − Ids)Γp Ī
∥∥∥= ‖Pp Ī‖ , (2)

should be as small as possible. Here, Ids is the s× s identity matrix,
Dp ∈ Rs×s is an additional weighting matrix, explained in detail
below. We summarize the constraint using an s×n matrix Pp.

We can stack all constraint matrices Pp, p = 1, . . . ,n into a ma-
trix M ∈ Rsn×n, and add these constraints to the original screened
Poisson problem to obtain

I = argmin
Ī

∥∥α(Ī− Ig)
∥∥+∥∥∥∥( Hdx Ī

Hdy Ī

)
−
(

Idx

Idy

)∥∥∥∥
+‖βMĪ‖ , (3)

where we introduced the scalar weight β to control the influence of
the patch constraints. Under the L2 norm, we obtain the minimum
energy by solving the system of linear equations(

β
2MT M+HT H +α

2Idn

)
I = αIg +HdxT

Idx +HdyT
Idy (4)

for the desired output image I. For simplicity, we introduced the no-
tation HT H = HdxT

Hdx +HdyT
Hdy, which represents the discrete

Laplacian opertor.

Feature Bases via Truncated SVD. Assume that we have l in-
put feature channels, where each element of vector valued features
(such as per pixel normals) is considered its own channel. At each
pixel p, we can unroll the channels into a s× l matrix Cp. We use
a singular value decomposition (SVD) of Cp to obtain our matrix
Bp that contains the orthogonal feature basis vectors. The SVD fac-
tors the matrix Cp ∈ Rs×l into a product of the form USV T , where
U ∈ Rs×s and V ∈ Rl×l are orthogonal matrices and S ∈ Rs×l is
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weighted
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Figure 2: Construction of the feature patch constraints. We try to reconstruct an image Ī where each patch Γp Ī is a weighted sum of the
features in that patch. We orthogonalize the features by using SVD and truncate basis vectors of low singular values to avoid fitting to
residual noise in the features. For better visualization we omit the weighting matrix Dp and show a larger patch size than used in practice.

a rectangular diagonal matrix containing the singular values. The
first s columns of U then form a basis of the range of Cp.

Although the features are less noisy than the sampled image and
gradients, residual noise in the features will negatively impact the
effectiveness of our regularization technique. Hence, we use a trun-
cated SVD to remove noise from the feature subspace similar to
Moon et al. [MCY14]. The vectors in U are ordered by the mag-
nitude of the corresponding singular value. The smaller the sin-
gular value, the more noise is captured in the corresponding sin-
gular vector. This is demonstrated on an example in Figure 2. By
discarding singular vectors with small singular values, one can re-
move noise from the subspace. We follow the approach by Moon
et al. [MCY14] and discard basis vectors with a singular value
that is below a pixel-wise threshold τp. The threshold is defined
as τp = c‖Ep‖2, where ‖Ep‖2 is the spectral norm of Ep and c is a
constant that we set to 0.1 in all our experiments. The entries in Ep
are the square-roots of the pixel-wise variances of the features in
the patch Np. We approximate these variances using a two-buffer
approach, as described below, and approximate the spectral norm
of Ep with the computationally cheaper Frobenius norm.

Per-Pixel Weights. The patch constraints can lead to inaccurate
results if some pixels cannot be predicted well by the patch basis
vectors. For example, a patch may contain pixels belonging to dif-
ferent geometric objects that may be lit differently, such that a sin-
gle linear fit using the patch basis vectors cannot fit all pixels well.
Each row of (BpBT

p − Is)Γp Ī in Equation (2) measures the differ-
ence between a patch and its projection onto the feature subspace
in one pixel for each color channel. The purpose of the diagonal
weighting matrix Dp is to downweight the error of pixels that we
consider too different to fit our model. We calculate the weights
similarly to Rousselle et al. [RMZ13] by considering differences in

features and color to the central pixel in the patch, and taking the
minimum over all color and feature channels as our final weight.

We compute the color weights similar as in NL-means filter-
ing [BCM05, RKZ12], that is, by averaging color differences over
small neighborhoods of pixels. We derive the weights from the so-
lution of the original Poisson problem (using the L1 norm), because
this is less noisy than the sampled pixels in Ig. We also normalize
the color differences using their estimated variance, and we obtain
the variance of the L1 reconstruction using a two-buffer approach.
During rendering we accumulate each half of the samples in two
separate buffers, both for the base image and the gradients. We
then solve the L1 reconstruction twice, and we estimate the vari-
ance of each pixel based on the difference between the two recon-
structed buffers. We blur the resulting variance with a Gaussian
filter with standard deviation of two pixels, and take the maximum
of the blurred two-buffer variance and the raw two-buffer variance.
This reduces noise in the estimate, and it prevents the estimate from
being too small when dealing with strong outliers. Concretely, the
normalized color difference between two pixels p and q is

∆
2
i (p,q) =

(ui(p)−ui(q))2− (Vari[p]+Vari[q])
ε+ k2

c(Vari[p]+Vari[q])
,

where p denotes the center pixel of the patch and q a neighboring
pixel, ui, i ∈ {1,2,3} indexes a color channel, and ε = 1e− 10 is
a constant and kc a user parameter. We next compute NL-means
distances by averaging the color differences ∆

2
i (p,q) over small

neighborhoods around p and q,

d2
c (P(p),P(q)) =

1
3(2tc +1)2

3

∑
i=1

∑
n∈P(0)

∆
2
i (p+n,q+n) ,

where we sum over the color channels i of all pixels in the neigh-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



M. Manzi, D. Vicini & M. Zwicker / Regularizing Image Reconstruction for Gradient-Domain Rendering

borhood represented by a set P(0) of pixel offsets. The size of the
neighborhood is given by the radius tc. Finally, the color weights
are derived from the NL-means distances as

wc(p,q) = exp(−max(d2
c (P(p),P(q)),0)). (5)

Similar as for the color differences, we measure differences be-
tween pixels p and q of a feature channel f j as

Φ
2
j(p,q) =

( f j(p)− f j(q))2− (Var j[p]+Var j[q])
ε+ k2

f (V j[p]+V j[q]))
,

where we use the same two-buffer estimate for the feature variance
Var j. In the denominator, we threshold the feature variance using

V j[p] = max(10−3,Var j[p],
∥∥∇ j[p]

∥∥2
), where ∇ j denotes the fi-

nite difference gradient, to avoid being too strict with feature dif-
ferences in non-smooth regions. Again, we set ε = 1e− 10, and
k f is a user parameter. We normalize all features to have values
in [0,1]. For vector-valued features, such as the normals, we view
each vector element as one individual feature. We compute NL-
means distances d2

f j
(p,q) equivalently to d2

c (p,q), using a radius t f
instead of tc. Finally, the feature weights are

w f (p,q) = min
j∈{1,...,l}

exp(−max(d2
f j (p,q),0)) , (6)

where l is the number of feature channels. From the color and fea-
ture weights we obtain our final weights

w(p,q) = min(wc(p,q),w f (p,q)). (7)

Finally, the elements of our diagonal weighting matrix are
Dp(q,q) = w(p,q).

It is important to realize that weighting the patch constraints does
not change our patch basis vectors. Even if we downweight the
patch constraint error for a certain pixel to near zero, that pixel is
still included in our patch basis, and it will influence the projec-
tion of all other pixels in the patch onto the basis. We address this
issue by completely removing pixels with very small weights be-
low a threshold of 1e− 10 from the patch, that is, by removing
these pixels from all feature vectors. This leads to patch constraints
corresponding to arbitrarily shaped patches. We orthogonalize the
modified feature vectors using SVD as described above.

5. Error Analysis

We perform an error analysis to better understand the behavior of
our extended Poisson reconstruction approach. We express mean
squared error (MSE) as the sum of squared bias and variance, and
investigate the source of bias and variance separately. Let us write
our noisy sampled image as Ig = Iref +Σ

g, where Iref is the ground
truth image, and Σ

g is a vector of i.i.d, zero-mean normally dis-
tributed random variables with variance σ

2. Similarly, we write the
sampled gradients as Idx = HdxIref+γΣ

dx and Idy = HdyIref+γΣ
dy.

We assume both horizontal and vertical gradients have the noise
variance γ

2
σ

2, which is related to the variance of the pixels by a
factor of γ

2. We also assume that the constraint matrix M is not
influenced by noise in the input, and that we minimize the error un-
der the L2 norm. We then express our reconstruction I as the sum
of the ground truth image Iref and a per-pixel reconstruction error

ε, I = Iref + ε. Substituting this into Equation (4) yields(
β

2MT M+HT H +α
2Idn

)
(Iref + ε)

= α(Iref +Σ
g)+HdxT

(HdxIref + γΣ
dx)+HdyT

(HdyIref + γΣ
dy).

Taking into account that the ground truth image Iref satisfies the
constraints of the conventional screened Poisson equations, that is,(

HT H +α
2Idn

)
Iref = αIref +HdxT

HdxIref +HdyT
HdyIref, (8)

and after some algebraic reformulation, we obtain an expression for
the error

ε = A−1
(

αΣ
g +HdxT

γΣ
dx +HdyT

γΣ
dy−β

2MT MIref

)
, (9)

where, for simplicity, we introduced the shorthand notation

A =
(

β
2MT M+HT H +α

2Idn

)
. (10)

Bias. We now obtain the expected error, that is the bias, of our
reconstruction as

E[ε] =−A−1
β

2MT MIref, (11)

where we exploited that the noise Σ
g, Σ

dx, and Σ
dy is zero-mean.

Clearly, bias vanishes if β = 0, or the ground truth image fully sat-
isfies the patch constraints, that is MT MIref = 0. Note that E[ε] ex-
presses the per-pixel bias, and we can obtain the squared bias of an
image (or image region) as E[ε]T E[ε].

Variance. To compute variance we start by formulating ε−E[ε]
by combining Equations (9) and (11),

ε−E[ε] = A−1
(

αΣ
g +HdxT

γΣ
dx +HdyT

γΣ
dy
)
. (12)

The variance over an image (or image region) is E[(ε−E[ε])T (ε−
E[ε])], and we find that

E[(ε−E[ε])T (ε−E[ε])] = σ
2
(

α
2 tr(A−1T

A−1)

+ γ
2
(

tr(HdxT
A−1T

A−1Hdx)+ tr(HdyT
A−1T

A−1Hdy)
))

, (13)

where tr is the matrix trace. We observe that variance goes to zero
for large values of β, because A−1 tends to be dominated by a fac-
tor 1/β

2 (see Equation (10)). Using a spectral analysis, one can
also show that for β = 0 variance is minimized at α

2 = γ
2, which

corresponds to the result from previous work [KMA∗15].

Discussion. In Figure 3, we visualize squared bias, variance, and
their sum (that is, MSE) for a small image region over a range of
the α, β, and kc parameters of our method. On the left we show the
image region (top), and the bias over this region depending on our
parameters. Parameter α varies along the vertical, and β over the
horizontal axis. In addition, for each α we plot a range of kc values
along the vertical axis. We show variance and MSE (middle and
right) for two noise levels, assuming Gaussian noise for pixels and
gradients, where the variance of the gradients is γ

2 = 0.2 times the
variance of the pixels. In the top row, the MSE is dominated by the
bias, and in the bottom row by the variance. Our main observation
is that the lowest variance for any β, and the lowest MSE, are both
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Figure 3: We plot the logarithm of the bias, variance and mean squared error of a 64×64 pixels region of Bathroom according to Equation
11 and 13 for different α, β and kc. We show β on the horizontal axis , and the unrolled parameters α and kc on the vertical axis. We plot
variance and MSE for two variance levels σ = 0.01 (low) and σ = 0.1 (high). We encircled the parameters with the minimal MSE in red. The
optimal α and kc are not affected by the noise level, whereas the optimal β gets shifted to the right with increasing noise.

achieved at approximately α
2 ≈ γ

2. Parameter β provides a bias-
variance tradeoff, where the value of β to minimize MSE depends
on the noise level and on kc.

6. Conjugate Gradient Solver

In practice, including the L1 norm to solve Equation (3) provides
superior results over pure L2 minimization. We use an iteratively
reweighted least squares (IRLS) approach, with the important ex-
tension to provide an estimate of the residual variance of the so-
lution. This enables further post-processing based on the residual
variance to improve the visual quality of the output, as described
below, and to perform error estimation and reconstruction scale se-
lection (Section 7). Solving Equation (3) is equivalent to obtaining

I = argmin
Ī

∥∥∥∥∥


αIn

Hdx

Hdy

βM


︸ ︷︷ ︸

A

Ī−


αIb

Idx

Idy

0


︸ ︷︷ ︸

b

∥∥∥∥∥ . (14)

We estimate the variance of our solution by expressing the right
hand side b as the sum of two image buffers b̂ and b̌, where each
contains one half of the samples that we rendered. We solve sep-
arately for both right hand sides, obtaining two solutions Î and Ǐ.
Because our solutions are linear in the two buffers b̂ and b̌, we have
I = (Î + Ǐ)/2, and we can estimate the residual variance of I as
(Î− Ǐ)2/4.

The matrix AT A is symmetric and positive-definite, hence we ap-
ply the conjugate gradient (CG) method. We summarize our modi-
fied CG algorithm in Figure 4. The main idea is to solve for b̂ and
b̌ simultaneously, while computing the IRLS weights based on the
desired final solution for b = (b̂+ b̌)/2. We use a fixed number of
five reweighting and 500 CG steps. The IRLS weights are stored
in the diagonal W matrix. We use a standard reweighting scheme
(Line 14). We normalize the weights such that they average to one
by multiplying W with the scalar A.rows/tr(W ), where A.rows is
the number of rows in A and tr(W ) the trace of W (Line 16). It is
important, however, to note that we take the L2 norm for the term
‖α(Ī− Ig)‖2 from Equation (3), that is, we do not reweight the cor-
responding elements of our system in Line 15. We found that using
the L1 norm for this term was not necessary thanks to our patch
constraints, and the advantage of the L2 norm is that we avoid the
loss of image brightness due to outlier removal under the L1 norm.
Although we use a combination of L1 and L2 norm in practice, as
opposed to the L2 norm in our analysis in Section 5, we empiri-
cally observe similar behavior of bias and variance as summarized
in Figure 3. In particular, we retain the ability to suppress a lot of
noise by introducing only a little bias as shown in Figure 3.

GPU Implementation. We implemented our solver in CUDA.
The regular structures of our sparse matrices allow us to calculate
indices of non-zero values directly, instead of reading them from
index arrays. As the algorithm is limited by memory bandwidth,
this directly translates into performance gains. We also use shared
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POISSONREGULARIZED(A, b̂, b̌,x0)

1 for k = 1 to 5
2 r̂0 = ATW 2b̂−ATW 2Ax0
3 ř0 = ATW 2b̌−ATW 2Ax0
4 p̂0 = r̂0; p̌0 = ř0
5 for i = 1 to 500
6 q̂ = ATW 2Ap̂i; q̌ = ATW 2Ap̌i
7 α̂ = (r̂T

i r̂i)/(p̂T
i q̂); α̌ = (řT

i ři)/(p̌T
i q̌)

8 x̂i+1 = x̂i + α̂ p̂i; x̌i+1 = x̌i + α̌ p̌i
9 r̂i+1 = r̂i− α̂q̂; ři+1 = ři− α̌q̌

10 β̂ = (r̂T
i+1r̂i+1)/(r̂

T
i r̂i); β̌ = (řT

i+1ři+1)/(ř
T
i ři)

11 p̂i+1 = r̂i+1 + β̂p̂i; p̌i+1 = ři+1 + β̌p̌i
12 e = A(x̂i+1 + x̌i+1)− (b̂+ b̌)/2
13 for j = 1 to A.rows
14 W j j = 1/(||e j||2 +0.05×0.5k−1)
15 W = setRowsToOne(W,1,x0.rows)
16 W =W ·A.rows/tr(W )
17 return [Î = x̂i+1, Ǐ = x̌i+1]

Figure 4: Pseudocode of our modified IRLS CG solver. We com-
pute the solution for two image buffers containing half the samples
separately, which allows us to estimate the variance of the solu-
tion. Crucially, we compute the IRLS weights based on the residual
of the average (Line 12), such that the average of our solution is
equivalent to the solution of the average of the two buffers.

memory and coalesced memory access patterns to further improve
performance.

The most expensive step in the algorithm is the computation of
the sparse matrix-vector product in line 6, where performance is
limited by memory access to load non-zero matrix elements. We
found that for our constraint matrix A it is beneficial to precompute
the matrix product ATW 2A. For a feature patch radius of r = 2, the
product has about seven times fewer non-zero elements than the
matrix A itself. Precomputing ATW 2A reduces the time required to
read matrix elements for the computation of the matrix-vector prod-
uct, and the corresponding performance increase for the matrix-
vector product outweighs the cost of the precomputation.

We use a fixed number of conjugate gradient iterations, but it
would also be possible to return earlier from the algorithm if it
already has converged sufficiently. The convergence speed of the
conjugate gradient algorithm depends on the root of the condition
number of the matrix ATW 2A. Using our patch constraints, the con-
dition number can get significantly larger than in the original Pois-
son problem and the algorithm can suffer from slow convergence.
We thus use a default of 500 conjugate gradient iterations, while the
original Poisson solver only uses 50 iterations. We could resort to
the preconditioned conjugate gradient method, but finding a good
preconditioner can be challenging and is left for furture work.

Post-Processing. The CG solver returns two images Î and Ǐ, and
we estimate the variance in the reconstructed image I = (Î+ Ǐ)/2 as
(Î− Ǐ)2/4. We leverage this estimate in a post-processing step that
is targeted at further reducing variance and artifacts. We achieve
this by filtering I with a cross NL-means filter using weights as

Before post-processing After post-processing
(relative MSE: 0.0176) (relative MSE: 0.0083)

Figure 5: This figure shows the effect post-processing step on
Bookshelf using G-BDPT with 32 samples per pixel and the third
reconstruction scale (Section 7).

described in Section 4, Equation (7). We provide more details in
Section 7. Figure 5 illustrates the post-processing step.

7. Multiscale Reconstruction and Scale Selection

We have shown (Figure 3) that by adjusting the parameters of our
approach we can minimize the reconstruction error depending on
the relative amount of noise in the rendered pixels and gradients (α
parameter), and depending on the levels of bias and variance (β,kc
parameters). Since these properties vary within each image, we ex-
pect to be able to reduce error by adjusting parameters locally. We
employ a multiscale reconstruction and scale selection approach
similar as in previous work to achieve this: we obtain three scales
by running our reconstruction with different parameters, estimate
the error of each scale locally, and combine them into a final image
by selecting for each pixel the scale that minimizes the error.

Reconstruction Parameters. Our goal was to determine the α,β,
and kc parameters for three reconstruction scales by finding param-
eters that minimize the error over a set of training images at differ-
ent sample counts. We found that the other reconstruction parame-
ters are insensitive to local bias and noise levels, and we set them
to constants reported in Section 8. Let us denote the set of recon-
struction scales in our search by P, where scale i has parameters
Pi =

[
αi,βi,kc,i

]
. We determined the combination of three scales

i1, i2 and i3 that yielded the smallest error of all combinations.

For simplicity we ran a brute force search where we evalu-
ated scales with α ∈ {0.05,0.1, . . .0.25}, β ∈ {3,5, . . . ,19}, and
kc ∈ {0.025,0.05,0.1, . . . ,0.35} for a total of |P| = 360 scales,
and 3603 ≈ 47m combinations. For each combination we com-
puted the reconstruction error over the training images. Since
we want to select scales locally, we computed the reconstruc-
tion error for small image patches. We chose 10× 10 pixels in
practice. Let relMSE(i, p) be the reconstruction error of scale i
measured in terms of relative MSE over a patch around pixel p
with respect to a reference image. The error of a combination of
three scales for the patch around p is then relMSE(i1, i2, i3, p) =
min(relMSE(i1, p), relMSE(i2, p), relMSE(i3, p)), and the total er-
ror of each combination i1, i2, i3 is the sum over all local patches in
all training images.
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Variance Bias Error Error
(estimated) (estimated) (estimated) (ground truth)

Figure 6: We compare our error estimate, with variance and bias,
to the ground truth on Bathroom (1024 samples per pixel).

Error Estimation. Given the three scales, which we determined
using the procedure described above, we estimate the MSE of each
scale to enable local scale selection. We express MSE as the sum
of squared bias and variance and estimate each separately.

The bias of a reconstructed scale Ii is defined as the difference
of the expected value of the reconstructed image Ii and the ground
truth image Iref, that is, Bias(Ii) = E[Ii]− Iref. Since the expected
value of the base image Ig is the ground truth we can reformulate
this to Bias(Ii) = E[Ii− Ig]. While Ii− Ig is trivial to compute, Ig is
typically very noisy, which will lead to a high variance in the bias
estimate. Even worse, squaring it to get the squared bias will sys-
tematically overestimate the true bias. Hence, we reduce the noise
of both Ig and Ii by filtering both images with an identical edge pre-
serving filter. We use the color based NL-means distances wc(p,q)
from Equation (5) with the parameters kc = 0.6 and f = 25 as the
filtering weights. Intuitively, this aggregates data of similar regions
to get a more reliable bias estimate. For the variance estimation we
use the squared difference between our two reconstructed buffers
as explained in Section 6. Finally, after adding our variance and
squared bias estimates, we filter this MSE estimate with a small
3×3 box-filter to further remove noise.

Scale Selection. We obtain our final image I by interpolating the
values of the three scales in each pixel with weights that are in-
versely proportional to the estimated errors,

I(p) =
3

∑
i=1

1/(estMSE(Ii(p))+ ε)

∑ j 1/(estMSE(I j(p))+ ε)
Ii(p), (15)

where estMSE(Ii(p)) is our error estimate of scale i at pixel p, Ii(p)
is the reconstructed value of scale i at pixel p, and ε = 10e− 10
prevents divisions by zero. Figure 7 compares a selection based on
our error estimate and a selection based on the true error. Our error
estimation and scale selection effectively reduces the error of the
final image below the error of any of the individual scales.

Final Algorithm. Figure 8 shows the complete reconstruction al-
gorithm. The inputs are the rendering outputs distributed into two
separate buffers, including the base image Îg, Ǐg, the gradients
Îdx, Ǐdx, Îdy, Ǐdy, and features F̂ , F̌ , as well as the reconstruction
scale parameters αi, βi and kc,i, i ∈ {1,2,3}. The features are inter-
preted as images with one channel per feature. Many reconstruction
steps must be applied on both buffers (·̂ and ·̌) separately. We rep-
resent steps that are applied on both buffers separately with the star
subscript (·?). We denote the average of both buffers as avg(·), and
var(·) computes the two-buffer variance as described in Section 6.
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Figure 7: We compare our scale selection to a reference selection
based on ground truth data. The color of the selection maps in the
middle are set according to the border colors of the scales on the
left. To highlight regions where correct scale selection is crucial
we modulated the brightness of the selection map per pixel by the
highest error of any scale in that pixel. We successfully select the
correct scales in regions where the scales differ dramatically (e.g.
the highlights) and obtain an overall numerical benefit.

Line 1 unrolls the input into a 1-d vector, used as the right hand
side in Equation 14. Line 2 removes excess noise from the features
with a NL-means filter, processing each channel of F separately.
This is similar to the feature pre-processing described in Rous-
selle et al. [RMZ13], and we found it to be beneficial in addition
to SVD truncation. We compute filter weights using Equations (5),
(6), and (7). The function nlmFilter(·, ·, ·, ·, ·) takes as arguments, in
this order, the image to be filtered, a guide image and its variance to
compute color weights (Equation (5)), a multi-channel feature im-
age (one channel per feature) and their variances to compute feature
weights (Equation (6)). We set the parameters to k f = 1, the NL-
means radius to t f = 3, and we ignore the color guide image. We
use a filter window size of 11× 11 pixels. Line 3 applies standard
L1 Poisson reconstruction with α = 0.2 on both inputs, and the re-
sulting images G? are used in Line 5 to compute per-pixel weights
for the patch constraints (Section 4).

We apply the reconstruction steps from Line 4 to 10 for each
scale separately. Line 5 and 6 builds the constraint-matrix A of our
equation system. Line 7 is the core of our algorithm where we
perform the regularized reconstruction as described in Section 6.
The found optimal parameters for the three scales are α1,2,3 =
[0.25,0.25,0.1], β1,2,3 = [5,17,19] and kc,1,2,3 = [0.1,0.35,0.15].
For the regularized Poisson step we further set r = 2, tc = 1 and
t f = 0 and k f =∞ for all scales. Line 8 applies the post-process
filter on the reconstruction to get rid of residual noise (see also
Section 6). The parameters for the NL-means filter are kc = 0.45,
k f = 1, tc = 1, t f = 0, and we filter over windows of 21× 21 pix-
els. Finally, we get the reconstruction scale Ii by averaging the two
reconstructed buffers (Line 9). Line 10 estimates the reconstruc-
tion error Ii as described earlier in this section. We obtain our final
output by combining the three scales using Equation 15 (Line 11).
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RECONSTRUCT(Îg, Ǐg, Îdx, Ǐdx, Îdy, Ǐdy, F̂ , F̌ ,α,β,kc)

1 b? = unroll(Ig
? , I

dx
? , Idy

? )
2 F? = nlmFilter(F?,null,null,avg(F),var(F))

3 G? = poissonL1(I
g
? , I

dx
? , Idy

? ,0.2)
4 for i = 1 to 3
5 M = buildM(avg(G),var(G),avg(F),var(F),kc,i)
6 A = buildA(M,αi,βi)

7 [x̂, x̌] = poissonRegularized(A, b̂, b̌,avg(Ig))
8 x? = nlmFilter(x?,avg(x),var(x),avg(F),var(F))
9 Ii = avg(x)

10 estMSEi = estimateError(Ii,avg(Ig), x̂, x̌)
11 I = combineScales(I1, I2, I3,estMSE1,estMSE2,estMSE3)
12 return I

Figure 8: Pseudocode of our complete reconstruction pipeline.

8. Results and Discussion

Implementation and Performance. We implemented our ap-
proach on top of the gradient-domain path tracing (G-
PT) [KMA∗15] and gradient-domain bidirectional path tracing (G-
BDPT) [MKA∗15] implementations in Mitsuba [Jak10] by the
original authors. We modified G-PT and G-BDPT to render the
sampling data into two separate buffers and to store feature infor-
mation (position, normal and texture). We also use an ambient oc-
clusion feature that helps to preserve some shading effects. We use
existing Mitsuba functionality to efficiently generate the ambient
occlusion maps. On an NVidia Titan X our approach takes about
one minute to reconstruct a one mega-pixel image. The pre-filtering
of all our features (Line 2) takes 0.5 seconds, solving the L1 recon-
struction for both input buffers (Line 3) 0.3 seconds, building the
patch constraint matrix M (Line 5) 5 seconds per scale, solving the
regularized reconstruction (Line 7) 14 seconds per scale, and post
processing both outputs (Line 8) takes 1.1 second per scale. The
time taken for error estimation and final scale selection is negli-
gible. Memory consumption of our implementation is rather high
since we store ATW 2A on the GPU. For a one mega-pixel image
we require approximately 7.5GB of GPU memory. This could be
reduced by performing the reconstruction on overlapping tiles of
the image separately, at the cost of some performance.

Comparison to Previous Work. We compare the denoising per-
formance of our algorithm in Figure 9 and 10 to gradient-domain
rendering using conventional L1 reconstruction (L1) and to Robust
Denoising with Feature and Color Information (RDFC) [RMZ13].
We measure all errors as relative mean squared error (rel. MSE)
E = mean((I − Ire f )

2/(I2
re f + 10−3)). Figure 10 shows that our

approach outperforms L1 reconstruction by a large margin. While
L1 reconstruction suffers from isolated spikes and low frequency
noise, our reconstruction yields a clean image even at low sampling
counts. In our tested scenes we report a significant improvement in
relative MSE of a factor of 1.5 to 5.

RDFC is representative for recent image space denoising tech-
niques for Monte Carlo rendering, achieving state of the art per-
formance for moderate and higher sampling rates (64 samples per
pixel and higher) [KBS15]. It leverages features similar to our ap-

proach, and for a fair comparison we used the exact same features
for both algorithms, including RGB texture, normal, world space
position, and a scalar ambient occlusion term. We use RDFC with
uniform sampling, since adaptive sampling for gradient-domain
rendering has not been described in the literature yet. We compare
our reconstruction on top of G-BDPT to RDFC on top of BDPT,
and our reconstruction on top of G-PT to RDFC on top of PT. The
authors of G-PT and G-BDPT report an overhead of their meth-
ods of roughly 2.5x for G-PT and 4x for G-BDPT compared to the
base algorithms. Hence, for equal time comparisons RDFC can use
2.5x more base samples when applied on top of PT and 4x more
base samples when applied on top of BDPT. Despite this, we still
achieve slightly better results with our method in our tested scenes.
With PT as base algorithm we show in Figure 10 that our method
improves upon RDFC in Bathroom and Bookshelf by 12% and in
Sponza by 50%. With BDPT as base algorithm we improve upon
RDFC in Bottle by 16%. Finally, Figure 9 demonstrates the con-
vergence of our method for the Bathroom scene using a log-log
plot. We observe that our method converges to the correct solution,
with errors by a factor of three to five lower than L1 reconstruc-
tion. Independent of rendering time, our method also consistently
outperforms RDFC time in this scene.

Discussion. The denoising results of our method and RDFC are
quite similar despite the rather different reconstruction approaches.
In regions that are well captured by features, both algorithms man-
age to remove variance nearly completely without introducing ar-
tifacts. Remaining error concentrates mostly at edges or around
scene details that are not well captured by the features. Our method
seems to benefit from the gradient information in these areas, which
often manages to capture such details with less noise. One such ex-
ample is the shading on the rubber duck in the Bathroom scene
(Figure 10). Gradients do not guarantee to reduce noise, however,
and there are also image regions where our approach has higher er-
ror than RDFC. An interesting observation is that RDFC uses very
large filtering kernels of size 21×21 or even 41×41 pixels, while
our method achieves comparable results using patch constraints of
size 5× 5 (r = 2). This is because our patch constraints are linked
in a global system, and as we showed, the parameter β allows us to
reduce variance independently of patch size.

To ensure a fair comparison to RDFC, we also tried to enhance
RDFC with the gradient information directly. First, we tried to
post-process the conventional screened Poisson reconstruction with
RDFC, and second, we tried to prefilter both gradients and pix-
els with RDFC, followed by conventional screened Poisson recon-
struction. In equal time comparisons, both these variants perform
significantly worse than RDFC without gradients and our proposed
approach.

Our approach is also orthogonal to specifics of the underlying
gradient-domain rendering algorithm, as long as the renderer re-
turns auxiliary feature data. Since variance computation relies on a
two-buffer approach [RKZ12], our technique can also be used with
Metropolis gradient-domain rendering [LKL∗13,MRK∗14], for ex-
ample. This would simply require to run two Markov chains with
different seeds. In summary, our approach closes the gap between
gradient-domain rendering and image space denoising. A key ad-
vantage over existing image space denoising techniques is that it
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Figure 9: Convergence for the Bathroom scene in a log-log plot.
We show path-tracing without de-noising (black), path-tracing with
RDFC (blue), gradient-domain path-tracing using L1 reconstruc-
tion (green), and our reconstruction (red).

will benefit from future improvements in gradient-domain render-
ing, such as improvements in gradient sampling using better shift
mappings, higher order finite differences, or adaptive sampling.

9. Conclusions

We presented an improved reconstruction technique for gradient-
domain rendering that leverages auxiliary image features. A
GPU implementation processes one mega-pixel images in about
one minute. Our approach outperforms previous solutions of the
screened Poisson equation under the L1 norm by a large margin.
We also compare our approach to a state of the art image space
denoising technique for Monte Carlo rendering and demonstrate,
for the first time, that gradient-domain rendering can outperform
conventional denoising. The margin, however, is modest and our
observations raise the challenge to further improve gradient sam-
pling. Since our approach is orthogonal to the underlying sampling
distribution, there are various avenues for future work. For exam-
ple, adaptive sampling based on the estimated error of the recon-
structed image should be straightforward to add on top of our im-
proved reconstruction technique. Finally, enforcing temporal con-
sistency would also be an interesting direction for future work.
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Figure 10: We compare our new algorithm (Ours) on several scenes to gradient-domain rendering using the L1 reconstruction (L1), to
ordinary rendering using Robust Denoising (RDFC) and to the used base algorithm (Base). The base algorithm for Bathroom, Sponza and
Bookshelf is unidirectional path tracing, while for Bottle it is bidirectional path tracing. The rendering times for all methods are approxima-
tively the same (except for the reference image) and are shown on the left of the insets. Below the insets we show the relative mean squared
error of each method for the entire image. The full resolution images on the left-most column show the result using our method.
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