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Figure 1: We compare results of bidirectional path tracing (BDPT, left) versus gradient-domain bidirectional path tracing (G-
BDPT, right) after thirty minutes of render time. While BDPT still exhibits visible residual noise, G-BDPT is free of artifacts
nearly everywhere with the exception of some difficult regions around caustics.

Abstract
Gradient-domain path tracing has recently been introduced as an efficient realistic image synthesis algorithm. This
paper introduces a bidirectional gradient-domain sampler that outperforms traditional bidirectional path tracing
often by a factor of two to five in terms of squared error at equal render time. It also improves over unidirectional
gradient-domain path tracing in challenging visibility conditions, similarly to how conventional bidirectional
path tracing improves over its unidirectional counterpart. Our algorithm leverages a novel multiple importance
sampling technique and an efficient implementation of a high-quality shift mapping suitable for bidirectional path
tracing. We demonstrate the versatility of our approach in several challenging light transport scenarios.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Gradient-domain methods have recently been introduced as
efficient, general techniques for physically-based rendering
[LKL∗13, MRK∗14, KMA∗15]. Instead of directly estimat-
ing the radiance responses for each image pixel, they pro-
duce unbiased estimates of the finite-difference gradients be-
tween neighboring pixels by deterministically shifting paths
between pixels. In a post-process step, the gradient estimates

are integrated with a conventionally sampled, noisy “guide
image” by solving the discrete screened Poisson equation.
Together, these steps yield images with lower variance, and
gradient-domain methods reduce the required render time to
achieve the same quality compared to traditional samplers.

While gradient-domain rendering was originally proposed
in the Markov Chain Monte Carlo (Metropolis) context,
an upcoming paper [KMA∗15] shows, both by theory and
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example, that similar benefits can also be claimed by a
gradient-domain extension of standard path tracing with
next event estimation. It is well known, however, that uni-
directional path tracing is ineffective in scenes where light
sources cannot be reached easily by tracing paths incremen-
tally from the eye. Bidirectional path tracing deals with these
situations much more robustly by constructing subpaths both
starting at the eye and at light sources, and forming complete
paths by making all possible connections.

In this paper, our objective is to combine the advantages
of bidirectional path tracing and gradient-domain rendering.
We describe a bidirectional gradient-domain light transport
sampler (G-BDPT) that builds on bidirectional path tracing
(BDPT). G-BDPT is useful in similar situations as conven-
tional BDPT. This is the case in scenes with realistic light
sources enclosed by light fixtures, or when the directly lit
area is small, i.e., when sources contribute mainly indirect
illumination. In both scenarios, connecting to light sources
via shadow rays often fails, leading to excessive noise in
unidirectional path tracers. In addition, we develop a novel
multiple importance sampling technique, and describe an ef-
ficient implementation of a high-quality shift mapping to
reduce sampling artifacts. Our results show that G-BDPT
performs consistently better than its non-gradient counter-
part, and that it yields significant improvement over standard
(gradient) path tracing in scenarios that benefit from bidirec-
tional sampling.

In summary, we make the following contributions:

• A bidirectional gradient-domain rendering algorithm (G-
BDPT) based on a bidirectional light transport sampler;
• A multiple importance sampling (MIS) technique that

combines MIS on gradients with conventional MIS for
BDPT;
• An efficient implementation of a high-quality shift map-

ping using a modification of conventional BDPT path
sampling.

2. Related Work

We base our work on the path space formulation of light
transport due to Veach [Vea98]. That is, the intensity I j for
each pixel j in the image is obtained by integrating the radi-
ance carried by all light paths with pixel filters:

I j =

(
h(x)∗

∫
Ω

f (x, p̄)dµ(p̄)
)
(x j). (1)

Here x is a pixel position, the p̄ range over the set of all ad-
ditional path parameters Ω, f (x, p̄) is the image contribution
function, and h(·) is the (shift-invariant) pixel filter. We ob-
tain the value I j of pixel j by evaluating the convolution at
its position x j .

Several Monte Carlo methods have been proposed for
evaluating Equation 1. In particular, constructing light paths
using successive independent sampling of scattering events

results in path tracing [Kaj86]; combining the results of suc-
cessive independent sampling from the camera and from the
light yields bidirectional path tracing [LW93, VG94]. While
not always superior to standard path tracing, bidirectional
sampling is particularly effective in reducing noise in scenes
with small, difficult to reach light sources. Our gradient-
domain bidirectional sampler retains this significant advan-
tage. In another vein, Markov Chain Monte Carlo methods
perform random walks on light paths instead of drawing in-
dependent samples [VG97, KSKAC02].

2.1. Gradient-Domain Rendering

We cursorily describe the necessary theoretical background
on gradient-domain rendering, and refer the reader else-
where for complete details [KMA∗15]. Gradient-domain
rendering techniques [LKL∗13, MRK∗14, KMA∗15] build
on strictly the same basis as previous Monte Carlo methods
— that is, they aim to evaluate Equation 1 using Monte Carlo
sampling. In contrast to regular (Markov Chain) Monte
Carlo methods, they do this indirectly by sampling image
gradients (differences in brightness between neighboring
pixels) in addition to the pixel intensities, using pairs of cor-
related path samples. The final intensities for all pixels are
found using the sampled gradients and pixel values by solv-
ing a screened Poisson equation. Recent work has demon-
strated that this, perhaps surprisingly, yields a significant re-
duction in total integration error [KMA∗15], and when used
in the Markov Chain context, diverts computational effort to
regions of path space that contribute to significant changes
in the image [LKL∗13]. Our work follows the same line of
thought.

2.2. Gradient-Domain Path Tracing

In gradient-domain rendering, differences between pixel in-
tensities are computed by directly evaluating the difference
in light throughput between two paths separated by one pixel
and integrating this over all paths. More precisely, we denote
the difference between the intensities of two pixels i and j by
∆i, j. As recently shown [KMA∗15], this can be written as the
integral of a path difference function gi j(x, p̄) instead of the
usual image contribution function f (x, p̄) as

∆i, j =

(
h(x)∗

∫
Ω

f (x, p̄)− f (Ti j(x, p̄))
∣∣T ′i j
∣∣dµ(p̄)

)
(xi)

=

(
h(x)∗

∫
Ω

gi j(x, p̄)dµ(p̄)
)
(xi), (2)

where x is the image coordinate, (x, p̄) is a light path with
additional parameters p̄ connecting a point on a light and
a point on the sensor, f is the image contribution function,
and Ti j is the shift mapping that deterministically maps a
base path (x, p̄) to a close-by offset path Ti j(x, p̄). We only
allow shifts that make sure that the offset path Ti j(x, p̄) has
the same pixel filter value as the base path, so we can express
it as a single convolution. The factor

∣∣T ′∣∣= |∂T/∂x̄| denotes
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the determinant of the Jacobian of T (x̄) accounting for the
change of integration variables [LKL∗13].

Symmetric Gradients The previous formulation assumes
the shift mapping is a bijection on path space. But this is not
the case in practice because the shift may fail due to numer-
ical reasons (see Section 3.1). In addition, it assumes that
we can sample all paths (x, p̄) that lead to a non-zero offset
path f (Ti j(x, p̄)). Monte Carlo path tracers like BDPT only
guarantee to sample all base paths with non-zero contribu-
tion f (x, p̄), however, and we may miss some non-zero off-
set paths, leading to biased gradients. As shown by Kettunen
et al. [KMA∗15], we can ensure that all relevant paths are
sampled in both pixels by using the symmetric formulation

∆i, j =

(
h(x)∗

∫
Ω

wi j(x, p̄)gi j(x, p̄)dµ(p̄)
)
(xi)+(

h(x)∗
∫

Ω

w ji(x, p̄)g ji(x, p̄)dµ(p̄)
)
(x j). (3)

The two integrals sample the same difference, once by shift-
ing from pixel i to j and vice versa. The multiple importance
sampling weights wi j and w ji serve two purposes: they are
normalized to add up to one, such that the two integrals cor-
rectly add up to the desired gradients, and they reduce vari-
ance by tempering the effect of the local squeezing of path
space caused by the shift. Finally, we need to take into ac-
count that the shift may not be invertible for some parts of
path space, which means the symmetric formulation cannot
be evaluated in these cases. We deal with this by simply sam-
pling the contributions of paths to the two pixels i and j sep-
arately, without applying any shift mapping, and add them
to (respectively subtract them from) ∆i, j .

Gradient MIS To set the weights in Equation 3, the forward
and inverse mappings are interpreted as two sampling tech-
niques to obtain the same base path x̄ = (x, p̄). This makes it
possible to derive multiple importance sampling weights

wi j(x̄) =
p(x̄)

p(x̄)+ p(Ti j(x̄))|T ′i j(x̄)|
. (4)

Gradients with a large Jacobian determinant |T ′i j(x̄)| obtain a
MIS weight of approximately 1/|T ′i j(x̄)|, which cancels their
large contribution.

G-PT Algorithm The gradient-domain path tracing algo-
rithm (G-PT) simply draws a number of base paths from
each pixel, shifts them to the four horizontal and vertical
neighbor pixels, evaluates the differences between through-
puts, weighted as shown above, and accumulates the re-
sults in a throughput image and four additional gradient im-
ages. The process yields the inputs required by the screened
Poisson solver. When the shift mapping is designed so that
throughput differences between base and offset are small (in-
cluding the effect of the Jacobian), the resulting gradient es-
timates have low variance, which translates to higher quality
in the final reconstructed image [KMA∗15].

3. Bidirectional Gradient Sampling

We now describe a gradient-domain version of bidirectional
path tracing (G-BDPT). We follow the general outline of
Kettunen et al. [KMA∗15], and view the problem as formu-
lating a bidirectional Monte Carlo sampler for Equation 3.

A direct translation of BDPT with multiple importance
sampling to the gradient domain would, however, lead to a
prohibitively expensive algorithm, because the number of in-
dividual paths sampled is large (all connections are made
between the eye and light subpaths). The naive algorithm
that applies the shift mapping to each one turns out to be
too expensive. We alleviate the issue by selectively remov-
ing some bidirectional connection strategies. This reduction
in work allows us to use a more sophisticated shift mapping
compared to [KMA∗15], which we demonstrate to yield a
net performance win.

3.1. Shift Mapping

For G-BDPT we use the shift mapping proposed for
gradient-domain Metropolis rendering by Lehtinen et
al. [LKL∗13], which builds on the manifold perturbation
technique by Jakob and Marschner [JM12]. They express
their shift in the path parameterization by surface position,
which is the natural parameterization for BDPT. Hence, we
can directly reuse their mathematical formulation (and im-
plementation). To apply the shift to a given path we need
to classify its vertices as diffuse or specular, and we follow
their approach using a threshold on the material roughness.

The intuition behind the G-BDPT shift is to preserve half-
vectors at vertices classified as specular, while trying to con-
nect to the base path as soon as possible. The main advantage
over the shift proposed for G-PT is that it always connects
to the base path at the second diffuse vertex (starting from
and excluding the eye), independent of any specular vertices
before that. In contrast, the G-PT shift requires two consecu-
tive diffuse vertices to reconnect to the base path. This means
that the G-BDPT shift generally produces more similar base-
offset pairs than the G-PT shift.

We briefly review the definition of the G-BDPT shift as
introduced by Lehtinen et al. [LKL∗13]. Let us describe a
path x̄ as a sequence of vertex positions xi, x̄ = 〈x0, . . . ,xn〉.
We formulate the shift mapping as the concatenation of a
path reparameterization, a simple shift that only modifies the
image plane intersection of the reparameterized path with-
out changing the other parameters, and a reparameterization
back. We classify vertices into diffuse and specular vertices
based on material roughness as mentioned before. The key
idea now is to design the reparameterization such that the
simple shift described above preserves half-vectors at spec-
ular vertices, while connecting to the base path as soon as
possible.

Let a, b, and c be the indices of the first three vertices clas-
sified as diffuse along the path starting at the eye (including
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Figure 2: Visualization of the reparameterization and the
shift mapping in G-BDPT. Starting at the eye, the shift pre-
serves two consecutive half-vector chains between the first
three diffuse vertices a, b, and c along the path. It always
connects to the base path at the third diffuse vertex (includ-
ing the eye). In the figure, the first half-vector chain is empty.
In contrast the G-PT shift [KMA∗15] cannot connect to the
vertex c on the light source.

the eye vertex itself, which is classified as diffuse; hence we
always have a = 0). In the reparameterization, we represent
the specular vertices between the eye and b, and the spec-
ular vertices between b and c using projected half-vectors
hi (half-vectors projected onto local tangent planes) instead
of vertex positions xi. We call vertices i with a < i < b
and b < i < c the first and second half-vector chain, re-
spectively. The first chain is empty if b = 1, and the second
is empty if c = b + 1. We write our reparameterization as
x̂ = 〈x0,s1,h1, . . . ,hb−1,hb+1, . . .hc−1,xc, . . . ,xn〉, where
s1 is the image plane intersection of the path, and the posi-
tion of vertex b is determined implicitly by the parameters of
previous vertices. In this parameterization, the simple shift
only moves s1 to a neighboring pixel. We illustrate the repa-
rameterization and the shift in Figure 2.

We implement the shift by moving s1 to a neighbor
pixel, and re-tracing the first specular chain from the eye,
which yields vertex b on the offset path. We reconnect off-
set vertex b to the base path via the second half-vector
chain by applying the manifold perturbation by Jakob and
Marschner [JM12]. To formulate the Jacobian of the shift,
let us denote the shifted offset path in the original parame-
terization by surface position as ȳ, and in the reparameteri-
zation using half-vectors as ŷ. The Jacobian determinant of
the shift is then

|T ′(x̄)|=
∣∣∣∣∂ȳ
∂x̄

∣∣∣∣= ∣∣∣∣∂x0, . . . ,xn

∂y0, . . . ,yn

∣∣∣∣= ∣∣∣∣∂ȳ
∂ŷ

∣∣∣∣ ∣∣∣∣∂x̂
∂x̄

∣∣∣∣ . (5)

We compute the Jacobian determinants of the reparameter-
izations |∂ȳ/∂ŷ| and |∂x̂/∂x̄| as described by Lehtinen et
al. [LKL∗13].

3.2. Efficient Gradient Sampling

The computational cost of the G-BDPT shift is not negligi-
ble, and we need to employ it carefully to avoid large over-
heads. A naive implementation of the shift mapping would
apply it separately to each path sampled by BDPT. For each

eye and light subpath, however, BDPT samples all paths
that can be obtained by connecting these subpaths. Shifting
all connected paths and computing the Jacobians separately
from scratch is prohibitively expensive. We reduce this cost
by slightly modifying the usual BDPT sampling strategy.

Our key modification of usual BDPT is to omit sampling
techniques that include a specular vertex (according to our
classification) as a connecting vertex between eye and light
subpaths. Omitting these sampling techniques has little im-
pact on the effectiveness of BDPT, since connections involv-
ing non-diffuse vertices typically contribute very little. On
the other hand, it allows us to reduce the cost to compute the
shift mappings and their Jacobians.

For the Jacobian of the shift mapping described above
only vertices ≤ c are relevant, since the shift is independent
of the others. With our restriction on BDPT sampling tech-
niques, vertices ≤ c may have been sampled in only three
different ways illustrated in Figure 3: (i) all vertices (both
half-vector chains) are sampled on the eye path, (ii) vertices
up to and including b (only the first half-vector chain) are
sampled on the eye path, and vertices > b on the light path,
(iii) only vertex a is sampled on the eye path (the second
half-vector chain is sampled on the light path). We call such
paths light tracing paths. Case (ii) implies c = b + 1 (the
second half-vector chain is empty), since we do not make
connections with non-diffuse vertices. Also, in this case the
Jacobian is given by vertices ≤ b, since the shift is indepen-
dent of vertex c= b+1. Similarly, case (iii) implies b= a+1
(the first half-vector chain is empty)†.

We take advantage of these observations as follows: Given
an eye subpath x̄E , let us again denote the indices of its first
three diffuse vertices a,b,c. We then apply the shift to ver-
tices xE

a , . . . ,xE
c , yielding an offset path ȳE for the eye sub-

path. Under the previous considerations, this is sufficient to
construct all connected offset paths for cases (i), where the
connection is with a vertex ≥ c on the eye subpath, and (ii),
where the connection is with vertex b . Hence we need only
two different Jacobians for all these paths, in case (i) for the
shift of both half-vector chains a, . . . ,b, . . . ,c,

|T (i)(x̄E)|=
∣∣∣∣∂xE

a , . . . ,xE
c

∂yE
a , . . . ,yE

c

∣∣∣∣ , (6)

and in case (ii) for only the first chain a, . . . ,b,

|T (ii)(x̄E)|=

∣∣∣∣∣∂xE
a , . . . ,xE

b
∂yE

a , . . . ,yE
b

∣∣∣∣∣ . (7)

Dealing with light tracing paths in case (iii) is more expen-
sive. Given a ligth subpath x̄L, each of its diffuse vertices
needs to be connected to the eye to form a complete light
tracing path. For each connected light tracing path we need

† Since we assume a pinhole camera, we omit a fourth case where
both chains and the eye vertex are sampled from the light.
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case (i)
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eye subpath
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Figure 3: Visualization of modified sampling strategy in G-
BDPT. We do not sample subpath connections that include
a specular vertex. We color code connections according to
three cases: (i) both half-vector chains are sampled from the
eye (the second chain is empty here, but this is not always the
case); (ii) the first half-vector chain is sampled from the eye
(the second one is always empty, since we omit connections
to non-diffuse vertices); (iii) the second half-vector chain is
sampled from the light (implying the first half-vector chain
is always empty). To reduce clutter, the figure does not show
connections of type (i) and (ii) to the last vertex on the light
subpath, and it does not show the corresponding subpath
connections on the offset paths.

to recompute a shift and its Jacobian. Again, we compute all
Jacobians as described by Lehtinen et al. [LKL∗13].

3.3. Multiple Importance Sampling

Let us use the common notation (s, t) to represent the differ-
ent sampling strategies in BDPT, where s is the number of
vertices on the light subpath, and t the number of vertices on
the eye subpath. In BDPT any given path with n vertices can
be sampled using all techniques (s, t) where s+ t = n. Multi-
ple importance sampling (MIS) introduces a weight for each
sampling technique to reduce variance in a provably good
manner [VG95]. Here we extend usual MIS for G-BDPT
by combining it with the gradient-MIS technique outlined
in Section 2.

For each gradient sample we not only consider all the
potential sampling techniques that could be used to sam-
ple the base path, but we also take into account that the
gradient could be sampled using either the forward or the
inverse mapping, as described in Section 2. The combined
MIS weight for a gradient sample using the balance heuris-
tics is then

wi j;st(x̄) =
ps,t(x̄)

k≤s+t
∑

k=0
pk,s+t−k(x̄)+ pk,s+t−k(Ti j(x̄))|T ′i j|

, (8)

where ps,t(x̄) is the probability density function (PDF) for
the (s, t) sampling technique evaluated for the base path x̄.
Note that this implies that the sum of the weights over the
two gradient directions is normalized, that is, wi j;st(x̄) +
w ji;st(Ti j(x̄)) = 1.

Figure 4 illustrates the effectiveness of our combined MIS

Figure 4: Comparison of MIS techniques in G-BDPT using
L2 reconstruction. Left: G-BDPT with modified MIS weights
given by Equation 9, that is, the balance heuristics for BDPT
sampling of base paths with a discrete case distinction to
avoid double counting of gradients. Right: G-BDPT with our
combined MIS from Equation 8. Combined MIS effectively
reduces gradient sampling artifacts in concave regions.

approach. We compare our combined MIS weights from
Equation 8 with a modified approach that only performs con-
ventional BDPT MIS, but does not consider the two tech-
niques to sample gradients. More precisely, the modified ap-
proach uses weights based on the balance heuristics

wi j;st(x̄) =
ri, j(x̄)ps,t(x̄)

k≤s+t
∑

k=0
pk,s+t−k(x̄)

, (9)

where the factor ri, j(x̄) is necessary to make sure we do not
double count gradient contributions in the symmetric formu-
lation (Equation 3). We set ri, j(x̄) = 1/2 if there is a tech-
nique k that samples the gradient from the opposite direction,
that is, there is a k with pk,s+t−k(Ti j(x̄))> 0. Otherwise, the
gradient can be sampled only from one direction, and we
set ri, j(x̄) = 1. The figure shows that combined MIS effec-
tively reduces sampling artifacts in concave regions, which
otherwise can only be avoided with sophisticated shift map-
pings [MRK∗14].

4. Implementation

We implemented G-BDPT on top of the standard BDPT
implementation in the freely available Mitsuba renderer
[Jak12]. The basic structure of G-BDPT is very similar to
BDPT, as shown in the pseudocode in Algorithm 1. For ev-
ery sample, we draw an eye subpath x̄E and a light subpath
x̄L (line 1). Then (lines 3-5), for each of the four horizon-
tal and vertical neighbor pixels, we apply the shift mapping
to the eye subpath to construct four shifted eye subpaths
ȳE, j = Ti j(x̄E). For each we obtain the corresponding Jaco-

bians |T (i)
i j | and |T (ii)

i j | for cases (i) and (ii) as described in
Equation 6 and Equation 7.

We then construct all complete base paths x̄ by connect-
ing x̄E and x̄L with all valid connection strategies (line 6),
skipping connections between vertices classified as specular
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Input: Scene and camera specification, total number of
bidirectional samples N.

Output: Image I, gradient images ∆·,·.
for all pixels and samples do

[1] x̄E , x̄L = sample eye and light subpath
[2] i = screen-space position of x̄E

a,b,c = first three diffuse vertices on x̄E

for all neighbours j of i do
[3] ȳE, j = Ti j(x̄E) // shift eye subpath

[4] |T (i)
i j |=

∣∣∣ ∂[yE, j
a ,...,yE, j

c ]
∂[xE

a ,...,xE
c ]

∣∣∣ // case (i) Jacobian

[5] |T (ii)
i j |=

∣∣∣∣ ∂[yE, j
a ,...,yE, j

b ]

∂[xE
a ,...,xE

b ]

∣∣∣∣ // case (ii) Jacobian

end
for all connection strategies (s,t) do

[6] x̄ = connect(s, t, x̄E , x̄L) // base path
[7] i = screen-space position of x̄

a,b,c = first three diffuse vertices on x̄
[8] if case (iii) // light tracing path, t = 1

then
for all neighbours j of i do

[9] ȳ = Ti j(x̄) // recompute shift

[10] |Ti j|=
∣∣∣ ∂[ya,...,yc]

∂[xa,...,xc]

∣∣∣ // Jacobian
[11] ∆i j = ∆i j+

wi j;st(x̄)
[

f (ȳ)|Ti j|− f (x̄)
]
/pst(x̄)

end
else

for all neighbours j of i do
[12] ȳ = connect(s, t, ȳE, j, x̄L)

if case (ii) then
[13] ∆i, j = ∆i, j +

wi j;st(x̄)
[

f (ȳ)|T (ii)
i j |− f (x̄)

]
/pst(x̄)

else
[14] ∆i, j = ∆i, j +

wi j;st(x̄)
[

f (ȳ)|T (i)
i j |− f (x̄)

]
/pst(x̄)

end
end

end
[15] Ii = Ii +wi;st(x̄) f (x̄)/pst(x̄)

end
end

[16] I = I/N;∆·,· = ∆·,·/N
[17] Reconstruct(I, ∆·,·,α)

Algorithm 1: Pseudocode for gradient-domain bidirec-
tional path tracing (G-BDPT).

according to our roughness criterion. We also determine the
pixel index i of the base path (line 7, this may be different
from the pixel index corresponding to the eye subpath). Next
(line 8) we check if the current base path is a light tracing
path, that is, whether it connects a vertex on the light sub-

path directly to the eye (case (iii), meaning t = 1). Because in
these cases the eye subpath has only one vertex (the eye), we
cannot make use of the shifted eye subpaths ȳE, j for shifting
these paths. Instead, we must apply the shift mapping (and
compute its Jacobian) to each light-traced path separately
(line 9 and 10). We then compute the gradient sample con-
tribution and weight it by the MIS weight defined in Equa-
tion 8 (line 11). For connection strategies that do not directly
connect with the eye vertex, we form the offset path by con-
necting the shifted eye subpath ȳE, j with the light subpath x̄L

(line 12). We account for the two cases (i) and (ii) by choos-
ing the correct Jacobian determinants (lines 13 and 14).

We also store the value of the base sample in the primal
image (line 15). The weight ωi;st is the usual power or bal-
ance heuristic, not the one from Equation 8.

Finally, we normalize both the primal image and the gra-
dient images by the total number of bidirectional samples
(line 16), which also accounts for the light paths that are
distributed non-uniformly over the image. Then we per-
form screened Poisson reconstruction on the output of the
renderer (line 17), as in previous work [KMA∗15]. Our
L1 solver is based on iteratively reweighed least squares
(IRLS) implemented through the conjugate gradient method
in CUDA. Its performance is less than a second for a 720p
image.

As an important detail, we treat some situations in a
slightly different manner than implied by the pseudocode.
This is when in lines 9 and 12 the offset paths ȳ cannot be
constructed because the shift failed for numerical reasons, or
when these offset paths are blocked, and when the base path
x̄ (line 6) is blocked. In these cases we fall back to naive gra-
dient sampling, that is, we simply set the contribution of the
offset path to zero, and we use conventional MIS weights for
the base path, instead of combined MIS (Equation 8). In the
case of failing shifts, this is our only option. In the case of
blocked paths, it allows us to take a number of early exits in
our implementation that lead to some performance gains.

5. Results and Discussion

We evaluate G-BDPT by comparing to standard bidirec-
tional path tracing (BDPT), standard path tracing (PT), and
gradient-domain path tracing (G-PT) [KMA∗15]. All meth-
ods were implemented in the Mitsuba renderer [Jak12]. We
generated reference images using BDPT with 32000 samples
per pixel. Except where expressly stated otherwise, all eval-
uations use L1 reconstruction. All results are computed with
24 rendering threads on a workstation with dual Intel Xeon
E5645 processors with a total of twelve cores at 2.5GHz.

For comparisons, we use relative mean squared error
(relMSE), which we compute as relMSE = average[(X −
R)2/(R2 + 0.001)], where R is a reference pixel and X our
estimate. With all four compared methods, two of our test
scenes (GLASS EGG and BOTTLE) suffer from massive
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spike noise due to difficult caustics. Because this corrupts
the metric, we ignored the 0.01% of the highest pixel errors
in the relMSE computation in these scenes‡.

5.1. Evaluation of G-BDPT

In Figure 6, we visually compare the four methods at equal
render time. Full resolution images with error scores are also
provided as supplemental material. In Figure 5, we plot the
numerical convergence of all methods. We now briefly dis-
cuss each scene.

GLASS EGG is a standard benchmark scene for BDPT.
The light from the lamp on the left illuminates most of the
scene indirectly, making it hard for unidirectional PT to con-
nect paths with the light source. Additionally, the glass egg
on the table is lit directly by a second light source which
creates a strong caustic that is notoriously hard to sample
with PT. Unsurprisingly, BDPT performs much better in this
scene than PT. The behaviour of G-PT and G-BDPT is more
interesting: G-PT reduces the error compared to PT by a very
large margin, but for low sampling rates, it improves sub-
linearly with time. The reason for this is that direct caustics
lead to strong spike noise with unidirectional sampling, and
the L1 reconstruction suppresses the effect of such noise as
outliers. This means the L1 reconstruction reduces the error
significantly at the price of removing most of the caustic.
With higher sampling rates, the convergence rate becomes
more linear again since less of the caustic is removed in re-
construction. Since a bidirectional sampler can resolve caus-
tics much better, G-BDPT does not suffer from this. Com-
pared to its non-gradient counterpart, G-BDPT leads to an
improvement of a factor of five, in terms of render time to
same quality.

DOOR is a benchmark scene for testing rendering algo-
rithms under challenging illumination conditions. All visible
light has to pass from another room through a thin crack of
the door into the visible part of scene. For an unidirectional
sampler it is very unlikely to find a path that connects the
eye to the light, since it has to randomly pass through the
thin crack. For bidirectional path sampler this is slightly eas-
ier since it is enough if either the eye subpath or the light
subpath randomly passes through the crack. However, the
somewhat higher chance of finding valid paths is nullified by
the higher overhead of BDPT. Therefore, the performance of
both non-gradient algorithms is approximatively equal. Still,
G-BDPT outperforms G-PT by a factor of approximately
two. This is most likely due to the superior shift-mapping
(see Section 5.3).

BOTTLE is a complex scene with many glossy and spec-
ular surfaces, and a prominent direct caustic due to a small
area light source. Similar to GLASS EGG, PT and G-PT fail

‡ All images, including the references, are available in the supple-
mental material for inspection.

Scene G-PT G-BDPT
w/o LTP

G-BDPT
w/ LTP

G-BDPT
HV

Glass Egg x2.87 x3.83 x5.71 x5.56
Door x3.18 x3.34 x3.49 x3.48
Bottle x2.16 x3.42 x3.48 x3.72
Bathroom x2.39 x3.42 x3.83 x4.12
Sponza x2.47 x3.88 x4.03 x4.14

Table 1: The overhead of the different gradient-domain
methods compared to their non-gradient counterparts at
equal number of base samples. An overhead of 5 means that
gradient and conventional samples are equally expensive.
We compare G-BDPT in three set-ups: without light trac-
ing paths and with the Manifold perturbation shift mapping
(3rd column), with light tracing paths and the Manifold per-
turbation shift mapping (4th column), and with light tracing
paths and the half-vector preserving mapping (5th column).

to capture the caustic in a satisfactory way, while BDPT and
G-BDPT succeed. The non-linear convergence for low sam-
pling rates is stronger here for G-PT than in GLASS EGG

because the caustic covers a bigger fraction of the image.
Again, G-BDPT does not suffer from this, and provides a
benefit over BDPT by a factor of two.

Since the performance of the gradient-domain methods is
highly dependent on the performance of the underlying sam-
pler, we also analyzed scenes where bidirectional sampling
strategies are not beneficial.

BATHROOM is a complex scene that is illuminated by a
large light source from the outside through a glass window.
As the light source is large, even the unidirectional sampler
has a good chance to randomly hit the source, even in pres-
ence of the glass in between, making bidirectional sampling
of not much use. Because of this, the unidirectional meth-
ods (PT and G-PT) both have, at higher sample counts, an
error about 30% lower than their bidirectional counterparts.
Nonetheless, G-BDPT still improves over BDPT by a factor
of six.

Finally, SPONZA is a simple scene consisting of diffuse
surfaces only that are illuminated by a large area light. Since
there are no caustics and no challenging illumination con-
ditions, the overhead of bidirectional sampling is not amor-
tized in equal time comparisons. Thus in comparison both
bidirectional samplers are beaten by the unidirectional ones
roughly by a factor of two. Again, G-BDPT improves on its
non-gradient counterpart, here by almost an order of magni-
tude.

5.2. Computational Overhead

Intuitively, there are two reasons why gradient-domain ren-
dering improves over conventional approaches at equal
render time: first, sampled gradient samples have less
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Figure 5: Error plots of the scenes used in this paper, comparing bidirectional path tracing (BDPT), gradient-domain bidirec-
tional path tracing (G-BDPT), path tracing (PT), and gradient-domain path tracing (G-PT) at equal render time. The error is
measured as relative mean squared error (relMSE).

variance than sampled pixels in general, as shown re-
cently [KMA∗15]; and second, the overhead for computing
a gradient sample is typically cheaper than obtaining a con-
ventional sample, because it does not require tracing a full
path.

To show this empirically, we measured the overhead of
gradient-sampling by comparing the rendering time of gra-
dient and non-gradient methods with the same number of
base samples per pixel. That is, we compare gradient ren-
dering with n base samples and 4n offset paths to conven-
tional rendering with n samples. Hence at equal costs per
sample, gradient-domain rendering would have an overhead
factor of 5 in this comparison. We summarize our empirical
results in Table 1. For G-PT (first column) we measured a
scene-dependent overhead factor of 2.2 to 3.2, which agrees
with Kettunen et al. [KMA∗15]. For G-BDPT we report on
two configurations (second and third column), first without
the expensive sampling strategies for light tracing paths, and
then with it. To make the comparison meaningful we config-
ured BDPT in the same way. The results show that without
light tracing paths the overhead is roughly around 3.5 for all
scenes. Including light tracing paths increases the overhead
in general, but the increase is highly scene dependent. The
overhead can even become larger than 5, meaning that gradi-
ent samples become more expensive than conventional sam-
ples. This is the case in GLASS EGG where many, potentially
long light tracing paths need to be shifted for each base path.
The different overheads of G-PT and G-BDPT without light
tracing paths can probably be attributed to different levels of
code optimization.

5.3. Evaluation of the shift mapping

To justify our decision to use the manifold perturbation shift
mapping from Lehtinen et al. [LKL∗13] we compared it to
the simpler “half-vector shift mapping” from Kettunen et al.
[KMA∗15]. In a nutshell, this shift preserves the half-vectors
of the base path along the offset path starting at the eye, and
reconnects the offset path to the base path as soon as it en-
counters two consecutive diffuse vertices. For the compar-
ison we implemented both shift mappings in our G-BDPT
framework. In all tested scenes, G-BDPT with the manifold
perturbation shift yielded more pleasing results than with the

Manifold Perturbation Half-Vector

Figure 7: Comparison of the Manifold perturbation shift
mapping [LKL∗13] and the half-vector preserving shift
mapping [KMA∗15] on the BATHROOM scene at 1024spp.

half-vector shift at equal time. Figure 7 shows an example.
Surprisingly, despite the gradient descent optimization re-
quired in manifold perturbation, the overhead compared to
the half-vector shift is very small in practice. We report em-
pirical measurements in Table 1, rightmost column, which
shows that the overheads are consistently very similar. There
are two reasons. First, the gradient descent is only applied for
a small fraction of all shifts; second, the manifold perturba-
tion shift can often connect earlier to the base path, and thus
must shift fewer vertices.

6. Conclusions

We presented gradient-domain bidirectional path tracing, a
gradient-domain rendering algorithm that significantly and
consistently improves performance in comparison to stan-
dard bidirectional path tracing. Compared to previous uni-
directional gradient-domain path tracing, this is most use-
ful in scenarios where the additional cost of bidirectional
sampling is justified, in particular for scenes with caustics
or light sources that are not easily reachable for unidirec-
tional path tracers. Our method retains the attractive prop-
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erties of gradient-domain path tracing in that it is an un-
biased estimator when using L2 reconstruction, and can be
used in conjunction with the more outlier-friendly L1 re-
construction. In addition, we have shown that a shift map-
ping based on Manifold perturbation is advantageous com-
pared to the half-vector preserving shift proposed previously
for gradient-domain path tracing, providing improved image
quality at almost no additional cost.

While this paper shows the viability and benefits of
gradient-domain bidirectional path tracing, there are many
attractive avenues for future research to further reduce vari-
ance and sampling artifacts. We will investigate more pow-
erful reconstruction techniques, combining different shift
mappings, and more advanced gradient sampling techniques.
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Figure 6: Visual equal-time comparison of path tracing (PT), gradient-domain path tracing (G-PT), bidirectional path tracing
(BDPT) and gradient-domain bidirectional path tracing (G-BDPT). We provide the full resolution images with numerical error
measurements in the supplemental material.

c© The Eurographics Association 2015.


